Accepted Manuscript

Body Composition, dietary intake and physical activity of young survivors of childhood cancer

Alexia J. Alford, Melinda White, Liane Lockwood, Andrew Hallahan, Peter SW. Davies

PII: S0261-5614(18)30085-2

DOI: 10.1016/j.clnu.2018.02.020

Reference: YCLNU 3401

To appear in: Clinical Nutrition

Received Date: 1 June 2016

Revised Date: 9 February 2018

Accepted Date: 19 February 2018

Please cite this article as: Alford AJ, White M, Lockwood L, Hallahan A, Davies PS, Body Composition, dietary intake and physical activity of young survivors of childhood cancer, *Clinical Nutrition* (2018), doi: 10.1016/j.clnu.2018.02.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Body Composition, dietary intake and physical activity of young survivors of childhood cancer
2	Alexia J Alford ^a , Melinda White ^b , Liane Lockwood ^c , Andrew Hallahan ^c and Peter SW Davies ^a
3	^a Children's Nutrition Research Centre, Child Health Research Centre, Faculty of Medicine, The University of
4	Queensland, Brisbane, Australia; ^b Department of Dietetics and Food Services, Lady Cilento Children's Hospital,
5	Brisbane, Australia; ^c Oncology Service Group, Children's Health Queensland, Lady Cilento Children's Hospital,
6	Brisbane, Australia
7	
8	
9	Address reprint requests and correspondence to Alexia J Alford, ajmurphyalford@gmail.com
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
23	
25	Y
26	
27	
28	
29	Aim

30 To describe the body composition, dietary intake and physical activity and of paediatric, adolescent and young

31 adult childhood cancer survivors (CCS) and examine the factors that impact body composition after treatment.

32 Methods

33 This prospective cross-sectional study involved 74 subjects who were at least three years post treatment.

- 34 Measurements included anthropometry, whole body potassium counting, air displacement plethysmography,
- 35 and three day physical activity and diet diaries.
- 36 Results

37 The CCS had significantly reduced body cell mass index Z-scores compared to controls (p=0.0001), with 59% 38 considered undernourished. The CCS had a significantly higher percent fat (p=0.002) than the controls, with 39 27% classified as obese. The intake of 60% of CCS met estimated energy requirements, but the CCS consumed 40 high amount of energy from fat and low amount of energy from carbohydrates. A high percentage of CCS did 41 not meet their dietary requirements for calcium (61%), magnesium (46%), folate (38%) and iodine (38%). The 42 CCS group had a light active lifestyle with 64% spending more than two hours daily on screen time. Receiving a 43 bone marrow transplant (r=-0.27; p=0.02) and physical activity level (r=0.49; p=0.0001) were significantly 44 correlated with body cell mass index.

45 Conclusions

This study demonstrates that increased fat mass and decreased body cell mass is a concern for CCS and that CCS have poor health behaviours including light active lifestyles, excessive screentime, high fat intake, and poor intake of essential nutrients. This study has highlighted that CCS are at risk of both obesity and undernutrition and that increasing body cell mass as well as decreasing fat mass should be a focus of energy balance interventions in survivorship. There is a need for parents and children undergoing treatment for cancer to be educated about diet quality and importance of daily physical activity to ensure healthy habits are established and maintained into survivorship.

53

54 *Keywords:* childhood cancer survivors; body composition; dietary intake; physical activity

55

Abbreviations: AMDR, Acceptable Macronutrient Distribution Range ; BCM, body cell mass; BCMI, body cell
 mass index; BMT, bone marrow transplant; BMI, body mass index; CCS, childhood cancer survivors; EAR,
 estimated average requirement; EER, estimated energy requirements; %FM, percent fat mass; FM, fat mass;

- 59 FMI, fat mass index; FFM, fat free mass; FFMI, fat free mass index; METs, metabolic equivalents; MVPA,
- 60 moderate to vigorous physical activity PAL, physical activity level; TBK, total body potassium

61

62

63 The five-year relative survival rate for all children diagnosed with cancer has improved over recent decades 64 and is approximately 80% in developed countries [1-4]. The improvement in survival of cancer patients has 65 placed an increased focus on the long term effects of treatment, with late effects of childhood cancer 66 representing a continuing emotional and physical burden on children and families. It has recently been 67 reported that 70% of survivors exhibit at least one chronic health condition five years post treatment [2] and it 68 is recognized that adult survivors of childhood cancer are at increased risk of developing second cancers [5, 6], 69 cardiovascular disease [7, 8], diabetes [9, 10], and obesity [11, 12]. The development of obesity in this 70 population is particularly alarming because increased fat mass may exacerbate the other chronic health 71 conditions experienced by childhood cancer survivors (CCS). Increased fat mass is not the only body 72 composition alteration that is a concern in cancer patients and survivors, as recent studies in adult patients 73 have shown that it may be the reduced lean mass that influences outcomes in cancer [13-16].

74

75 Body composition is modifiable by nutritional intake and physical activity; however the impact of cancer on 76 dietary intake and physical activity in paediatric and adolescent survivors before reaching adulthood is still 77 poorly understood. Recent studies provide some evidence that young survivors of childhood cancer have 78 increased body mass index [17] and poor adherence to dietary and physical activity guidelines [18-21], but 79 there is limited research examining both body composition and influencing factors in young childhood cancer 80 survivors who have undergone treatment for a range of cancers on recent protocols. The aim of this study was 81 to define the body composition, physical activity and dietary intake of paediatric, adolescent and young adult 82 survivors of childhood cancer and to examine the effect of lifestyle and clinical factors on body composition in

83

84

85 Methods

CCS.

86 Participants

All children, adolescents and young adults attending the After Cancer Clinic of the Royal Children's Hospital, Brisbane, who were (1) diagnosed with cancer at an age younger than 21 years, (2) between the ages of 5 to 25 years at time of study, and (3) at least two years post treatment completion, were approached to be involved in the study. Patients were excluded if they had conditions know to influence dietary intake or energy expenditure. Clinical data were retrospectively collected from medical records, including data on type of

cancer, age at diagnosis, duration of treatment, time since completion of treatment and type of treatment
(radiation, chemotherapy, bone marrow transplant). The study protocol was approved by the University of
Queensland Medical Research Committee and the Royal Children's Hospital Brisbane Ethics Committee.
Written consent was obtained from all parents of children under 18 years, participants over 12 years and
verbal assent was obtained for children under 12 years.

97

98 Measurements

99 Body Composition

All measurements in each subject were carried out in the Children's Nutrition Research Centre Body Composition Laboratory at the Royal Children's Hospital on the same day. Body weight was measured to the nearest 0.05 kg using calibrated digital scales (Tanita BWB-600, Wedderburn Scales, Australia) and height was measured to the nearest 0.1 cm using a wall-mounted stadiometer (Seca 222, Germany). Body mass index (BMI) was calculated as weight divided by height squared. Height, weight and BMI Z-scores were calculated using data published by the Centers for Disease Control and Prevention; all subjects over 20 years of age had Zscores calculated relative to a 20 year old [22].

107

108 Measurements of body cell mass (BCM) by whole body potassium counting (TBK) represents the metabolically 109 active component of fat free mass (FFM) and is independent of extracellular fluid changes that may occur as a 110 result of disease state [23]. TBK counting was performed as described previously using a sodium iodide shadow 111 shield whole-body counter (Accuscan, Canberra Industries, MA, USA) [24]. BCM was then calculated from TBK 112 using the equation of Wang et al. [25]: BCM (kg) = (TBK (g) * 9.18)/39.1. BCM was adjusted for height (BCM 113 index (BCMI)), with height being raised to the power of 2.5 for females and 3 for males [24]. The BCMI was 114 expressed as a Z-score relative to laboratory reference data for subjects, all subjects and controls over 18 years 115 of age were calculated compared to 18 year old reference data. A cut off of BCMI Z-score <-1.65 was used to 116 determine those individuals who have a reduced BCM and considered undernourished.

117

Air displacement plethysmography was used to measure percent fat mass (%FM), fat mass (FM) and FFM using
the Bod Pod[®] Body Composition System, adhering to the manufacturer's instructions (Life Measurement Inc,
Concord, Ca, USA; software version 1.91) and described previously (30). Fat mass index (FMI) was calculated as

FM/height² and fat free mass index (FFMI) as FFM/height². Obesity was defined as %FM over the 95th centile from the reference curves [26], all subjects and controls over 18 years of age were assessed relative to 18 year old reference data. Body composition was compared to 1:1 age and gender matched controls from the Laboratory database. The control subjects were recruited as part of the Normative Study undertaken by the Children's Nutrition Research Centre. An exclusion criterion was any condition known to affect body composition. From the healthy reference subject pool, subjects were sex- and age-matched to the cancer patients involved in the study.

128

129 Dietary intake

130 Information about the participant's diet was collected using a three day food diary. Parents or participants 131 were asked to record all they ate and drank on three consecutive days (2 weekdays and 1 weekend day). 132 Participants were given written and verbal instructions to complete the diary and were asked to record the 133 time, type, brand, portion size of all food and drink. At the end of the recording period, the diary was checked 134 for completeness and any clarification of entries was sought from parents of the child participating. These data 135 were analysed using FoodWorks® 7 Pro. From these dietary data, the mean daily energy intakes were 136 calculated and expressed as a percentage of their estimated energy requirement (EER). The age-appropriate 137 Schofield equation was used to predict basal metabolic rate [27] and the physical activity level (PAL) from 138 physical activity diaries (described below) was used to calculate estimated energy requirements. The intake for 139 energy from fat, carbohydrates and protein was assessed against the Acceptable Macronutrient Distribution 140 Range (AMDR) and the mean daily nutrient intake was calculated and expressed as a percent of their age-141 appropriate estimated average requirement (EAR) [28].

142

143 Physical activity and screen time

Physical activity was measured via a three-day self-reported diary, using a simplified version of activity dairies as described previously and collected on the same days as the dietary intake diaries [29]. Subjects were given verbal and written instructions with an example of how to complete the diary. At the end of the recording period, the diary was checked with a researcher for completeness and any clarification of recorded activities was sought from parents of the child participating. Each day was divided into 96 × 15 minute intervals and the subjects were asked to record their activities on each day. On completion, these activities were categorised

into nine levels according to their average energy costs, representing multiples of their respective metabolic equivalents (METs) [30]. Total daily METs values were calculated and averaged over the three days to give a PAL value for each subject. Time spent in daily moderate to vigorous intense activity and screen time daily was averaged across the three days. Results were compared to the recommendations that 'Children and young people should accumulate at least 60 minutes of moderate to vigorous intensity physical activity every day' and 'limit their screen time to no more than two hours per day'[31].

156

157 Statistical Analysis

158 Descriptive statistics were used to characterise the CCS. For the dietary and physical activity data, the control 159 subjects did not have dietary intake or physical activity data recorded, so the proportion of the CCS sample 160 who did not meet the physical activity guidelines, AMDR and EAR was assessed. The body composition of the 161 CCS and controls were compared using independent t-tests and chi-squared for categorical data. Correlational 162 analysis examined the clinical, dietary and physical activity variables associated with body composition, 163 adjusting for age and sex. When multiple variables were found to be significantly associated to the outcome 164 variables (p<0.05), a multivariable linear regression model was created, retaining only those predictors that 165 were statistically significant.

166

167 Results

Seventy-four children, adolescents and young adults between 6.5 and 24.7 years were recruited to the study between 2012 and 2014. The participants were treated for cancer during the period of 1995 to 2011, with the mean age at diagnosis of 4.3 ± 3.8 years and mean time since treatment of 9.4 ± 3.3 years. There were 53 subjects diagnosed with a haematological malignancy and 21 subjects with a solid tumour. Subject characteristics are presented in Table 1.

173

Anthropometry and body composition results for the CCS and controls are reported in Table 2. There was no significant difference in the mean weight Z-score (p=0.63) and mean BMI Z-score (p=0.30) between the CCS and the healthy controls, however the CCS had significantly lower mean height Z-scores than the controls (p=0.03). According to BMI, 8% were underweight, 67% were normal weight, 23% were overweight and 2% were obese. Ninety-two percent of the matched controls were normal weight and 8% were overweight. There

was a significant difference between the BCM of the CCS and the age and sex matched controls, with the CCS
having a significantly lower BCMI (p=0.02) and BCMI Z-score (p=0.0001). The CCS had a significantly higher
%FM (p=0.002) and FMI (p=0.003) than the controls. There was no significant difference in the FFMI (p= 0.09)
between the CCS and the controls.

183

184 When CCS were separated based on BCMI Z-score into well-nourished and under nourished groups, 59% of 185 CCS were considered under nourished. The only significant difference in clinical, physical activity and dietary 186 variables between the well-nourished and under nourished groups was for PAL, with malnourished subjects 187 having a significantly lower PAL (1.39 \pm 0.19) than well-nourished subjects (1.57 \pm 0.32) (p=0.01). When 188 subjects were separated based on %FM into obese and non-obese groups, 27% were considered obese, and 189 the obese subjects had significantly lower PAL than the non-obese groups $(1.37 \pm 0.16 \text{ vs } 1.51 \pm 0.30; \text{ p}=0.03)$. 190 There were no other significant differences in clinical, physical activity and dietary intake variable between the 191 obese and non-obese groups.

192

193 The relationship between body composition and clinical variables (type of cancer, age at diagnosis, time since 194 treatment completion, bone marrow transplant (BMT) or any radiation), physical activity (PAL and total energy 195 expenditure) and energy intake (energy intake, energy intake as percent of estimated requirements, protein, 196 fat and carbohydrate intake) was analysed. When adjusted for gender and age, receiving a BMT (r=-0.27; p=0.02) and PAL (r=0.49; p=0.0001) were significantly correlated with BCMI. When significant variables were 197 198 combined in regression model; gender, BMT and PAL remained significantly associated with BCMI (Table 3). 199 Receiving a BMT (r=-0.27; p=0.02) and PAL (r=0.61; p=0.0001) were also significantly correlated with FFMI. 200 When age, gender, BMT and PAL were combined in regression model, all variables remained significantly 201 associated with FFMI (Table 3). No variables were significantly associated with FMI.

202

Sixty-one subjects completed the three day food diaries and results are shown in Table 4. For the average intake over the 3 days, 18% of the survivors were consuming more than 110% of their EER, while 22% of the survivors were consuming less than 75% of their EER. The percentage of children not meeting their dietary requirements for calcium was 61%; with a high percentage of the survivors also not meeting needs for magnesium (46%), folate (38%) and iodine (38%). Sixty-seven percent of subjects had a usual intake that

exceeded the upper limit for sodium. The mean macronutrient distribution of total energy intake consisted of 46% carbohydrates, 34% fat and 20% protein. When assessed against the AMDR, 38% of population had a usual intake of carbohydrate as a proportion of total energy below the lower limit, while 48% of the subjects had energy intake from fat above the upper limit. Eighty percent of survivors met protein AMDR, with 11% below and 10% above limits.

213

214 Fifty-seven subjects completed a physical activity diary. The subjects had a mean PAL of 1.45 ± 0.19 , with 215 males (PAL = 1.50 ± 0.20) having a significantly higher PAL level than females (PAL = 1.39 ± 0.14) (p=0.04). The 216 average PAL of 1.45 for this population was characteristic of a population with a sedentary or light activity 217 lifestyle. From the respondents, 74% participated in at least 1hr of moderate to vigorous physical activity 218 (MVPA) per day and participated in an average of 117 minutes of MVPA per day. The survivors in this study 219 participated in more daily MVPA than reported for 5-18 year olds in the Australian Health Survey (117 220 minutes/day versus 91 minutes/day), with only 60% of Australian children meeting recommendations in the 221 Australian Health Survey [32]. Sixty-four percent of the survivors did not meet the recommendation of "no 222 more than two hours of screen-based entertainment" every day, with the average amount of time spent in 223 sedentary screen-based activities being 159 mins per day over the assessment period. Survivors in this study 224 spent a longer average amount of time in sedentary screen-based activities than the Australian population 225 (136 minutes/day) [32].

226

227 Discussion

228 Childhood cancer occurs during the critical period of growth and development so both the cancer treatment 229 and behaviours developed during this time may affect long term nutritional health. This study aimed to 230 examine the physical activity, dietary intake and body composition of children, adolescents and young adults 231 who had completed cancer treatment and the impact of clinical and lifestyle factors on body composition in 232 CCS.

233

The weight and BMI Z-scores of the CCS were not significantly different to their peers, and despite being significantly shorter than the controls, the height Z-score was within expected range. According to BMI, 25% of the CCS were overweight or obese compared to 8% of the controls. The prevalence of overweight and obesity

237 according to BMI in the CCS was the same as the reported prevalence of overweight and obesity in Australian 238 children of around 25% [33], but was lower than previous studies have reported in young CCS [34-36]. As 239 previous studies have shown, BMI is not an accurate assessment of nutritional status in children and survivors 240 with cancer [37-39], so it is essential to report on FM and FFM components when evaluating the impact of 241 cancer on nutritional health. Our study showed that the CCS had significantly higher %FM and FMI compared 242 to controls, which is in agreement with previous studies who examined FM in CCS by dual energy x-ray 243 absorptiometry [40-42]. The survivors in this study also had significantly reduced BCMI, which we have shown 244 previously with a cohort of 53 of the current 74 subjects [43]. More research is needed to examine the clinical 245 implications of decreased BCM and increased FM on clinical outcomes for CCS.

246

Although obesity is a recognised late effect of childhood cancer, the important finding of this study is that under nutrition, as indicated by reduced BCM, is actually more prevalent than obesity in this group of CCS, with 59% of survivors considered under nourished compared to 27% who were obese. The clinical implications of these findings are that CCS clinics be aware that both malnutrition and obesity may be a late effect for CCS and should screen for both. It is also highlights an important consideration for diet and exercise intervention programs for CCS, which is that the intervention needs to not only target obesity, but also on improving the metabolically active lean tissues.

254

In this study the only clinical variable that was associated with body composition, was that having received a BMT was related to low BCMI and FFMI. The conditioning regimens, mucositis and gut graft-versus-host disease can result in poor functional integrity of the gastrointestinal tract during BMT, which affects nutritional status in the short term [44, 45]. Our study demonstrates that having had a BMT continues to influence nutritional status in the long term and that consequently nutritional support should be an important consideration before, during and after BMT.

261

Sixty-one percent of the CCS had energy intake between 75% and 110% of predicted energy requirements, with around 1 in 5 consuming above and 1 in 5 consuming below the predicted requirements. The energy intake of this cohort of paediatric cancer survivors appears comparable to that of the general Australian population which is consistent with previous research in CCS [20]. The macronutrient distribution of total

266 energy intake consisted of 46% carbohydrates, 34% fat and 20% protein, which demonstrated that the 267 survivors consumed more energy from fat and protein and less from carbohydrates than Australian population 268 [46]. Our study showed that 48% of the CCS population consumed energy from fat above the upper end of the 269 recommended range compared to 15% of Australian population (4-18 year olds) and that 38% of CCS had a 270 usual intake of carbohydrate as a proportion of total energy below the lower limit of the AMDR, compared to 271 the 19% of Australian 4-18 year olds [46]. The results of this study demonstrate that CCS have overall energy 272 intake that meets energy requirements, but that the CCS consumed high amount of calories from fat and low 273 amount of calories from carbohydrates. Although no dietary variables were related to body composition in 274 this study, consuming higher fat than AMDR may be a contributing factor to the increased fat mass seen in our 275 subjects.

276

277 We observed a high intake of sodium (77% exceeded upper limit) in CCS, which is consistent with the 278 Australian Health Survey in which 91% of males and 74% of females aged 2-18 years exceeded the upper limit 279 [46]. Our study found that a high percentage of the CCS were not meeting needs for intake of calcium (61%), 280 magnesium (46%), iodine (38%) and folate (38%), which were consistent with findings in previous CCS cohorts 281 [20, 47]. The inadequate intakes of calcium and magnesium were consistent with the Australian Health Survey 282 where 50% of 4-18 year olds were not consuming recommended intakes of calcium and 34% of 4-19 year olds 283 were not consuming recommended intakes of magnesium [46]. However, the low intakes of iodine and folate 284 of the CCS were not observed in the Australian Health Survey [46]. Calcium, magnesium, folate and iodine are 285 essential for healthy brain, muscle and bone growth and functioning. Reduced intake of these nutrients during 286 the rapid growth periods of childhood and adolescents can lead to poor muscle and bone development and 287 exacerbate the chronic health conditions commonly experienced in CCS.

288

The majority of survivors in this study met the recommendations for daily physical activity and were more active than children in the community [32] and previous studies into CCS [48]. However, they spent a longer daily amount of time in sedentary screen–based activities than the Australian population and were less likely to meet the screen based entertainment recommendations, which was consistent with previous research into CCS [48]. Although the CCS in this study did not have activity patterns different to Australian children, due to

their increased FM and decreased BCMI, it is vital that the CCS population has active lifestyles with minimalscreen time to improve body composition and reduce risk of associated late effects.

296

The survivors had a sedentary/light active lifestyle classified by PAL of 1.45, which was below the PAL of 1.75 for adolescents and adults that is considered to be compatible with a healthy lifestyle [49]. In this study, PAL was significantly reduced in the CCS group who were classified as under nourished and the CCS group classified as obese. When the relationship between physical activity and body composition was examined, PAL was significantly related to BCMI and FFMI. These findings indicate that increasing the physical activity level of CCS is an important component for interventions which aim to improve body composition in CCS.

303

304 This study demonstrates that young CCS are at risk of both undernutrition and obesity, with BMT and current 305 PAL important contributing factors to reduced BCM in this group. The CCS in this study had poor dietary and 306 physical activity habits, with low carbohydrate and high fat contribution to energy intake, poor intake of 307 essential nutrients, light active lifestyle and excessive screen time. Limitations of the study are the small 308 subject numbers and that the control group did not have physical activity and dietary results so CCS results 309 could only be compared to population values; future studies should explore these findings in a larger case-310 control study. There is a need for parents and children undergoing treatment for cancer to be educated about 311 diet quality and importance of daily physical activity to ensure healthy habits are developed, which may lead 312 to improving body composition and reducing risk of developing nutrition related late effects. Future research 313 should focus on investigating intervention programs that target both increasing BCM and decreasing FM for 314 CCS through physical activity and good dietary habits.

- 315
- 316

317 Acknowledgments

All authors contributed to the study design. AJA was responsible for coordinating the study, analysis of the data and preparation of the manuscript. All authors contributed to the final version of the manuscript. All authors read and approved the final submitted manuscript. The authors would like to acknowledge Sarah Elliott and Paula Brown who conducted the data collection and thank the After Cancer Clinic nurses and coordinators, parents and participants for their part in the study. This work was supported by the Children's

323 Health Queensland Early Career Fellowship funded by the Children's Hospital Foundation and The Cressbrook

- 324 Committee (AJA).
- 325

326 Table 1 Subject characteristics

	Mean ± SD
	(n=74)
Female, n (%)	35 (47)
Age, y	15.0 ± 4.5
Cancer diagnosis, n (%)	
Leukemias, myeloproliferative diseases, and	45 (61)
myelodysplastic diseases	
Lymphomas and reticuloendothelial neoplasms	8 (11)
CNS and miscellaneous intracranial and intraspinal	4 (5)
neoplasms	
Neuroblastoma and other peripheral nervous cell	6 (8)
tumors	2 (3)
Retinoblastoma	2 (3)
Hepatic Tumours	3 (4)
Soft tissue and other extraosseous sarcomas	2 (3)
Germ cell tumours, trophoblastic tumours, and	
neoplasms of gonads	1 (1)
Renal Tumors	1 (1)
Other malignant epithelial neoplasms and malignant	
Melanomas	
Age at diagnosis, y	4.3 ± 3.8
Time since treatment, y	9.4 ± 3.3
Bone Marrow Transplant, n (%)	23 (31%)
Radiation, n (%)	17 (23%)

- ³27 ¹International Classification for Childhood Cancer (ICCC) definitions based on site and morphology coded
- according to ICD-O-3 [50]
- 329
- 330

331 Table 2 Comparison between body composition of survivors and controls

	Survivors (<i>n</i> =74)	Control (<i>n</i> =74)
Age	14.9 ± 4.4	14.9 ± 4.5
Height Z score	0.06 ± 1.10^{c}	0.46 ± 0.99
Weight Z score	0.14 ± 1.09	0.21 ± 0.80
BMI Z score	0.14 ± 0.98	-0.01 ± 0.74
BCMI	5.42 ± 0.91 ^{<i>c</i>}	5.75 ± 0.68
BCMI Z score ³	-1.90 ± 1.17 ^a	-0.38 ± 0.99
Percent fat, % ⁴	24.0 ± 9.8^{b}	20.1 ± 6.8
FMI ⁴	5.1 ± 2.7^{b}	4.0 ± 1.6
FFMI ⁴	15.4 ± 2.6	15.8 ± 2.6

- ¹All values are mean ± SD. BMI, body mass index; BCMI, body cell mass index; FMI, fat mass index; FFMI, fat
- 333 free mass index. ²Cancer and 1:1 matched controls were compared by paired t-test
- 334 ³CCS group and control group, n=65
- 335 ⁴ CCS group and control group, n=72
- 336 ^{*a*}Significant difference between cancer group and controls P < 0.0001
- 337 ^bSignificant difference between cancer group and controls P < 0.01
- 338 ^cSignificant difference between cancer group and controls P < 0.05
- 339
- 340
- 341
- 342
- 343
- 344
- 345

349

350 Table 3 Multiple regression analysis

Dependent	Independent	В	SE	β	P
variable	Variables				
	Condor	0.72	0.10	0.40	0.0001
BCIVII	Gender	-0.72	0.19	-0.40	0.0001
	(0=male,				
	1=female)				
	Age	-0.001	0.02	-0.007	0.95
	BMT	-0.61	0.20	-0.32	0.004
	PAL	2.01	0.50	0.43	0.0001
FFMI ²	Gender	-1.80	0.48	-0.35	0.0001
	(0=male,				
	1=female)				
	Age	0.38	0.06	0.59	0.0001
	BMT	-1.19	0.50	-0.21	0.02
	PAL	5.79	1.23	0.42	0.0001

351 ¹Adjusted R2 = 0.44; F=11.97; p=0.0001

352	² Adjusted R2 = 0.61; F=21.98; p=0.0001
353	
354	
355	Y.
356	
357	

358 Table 4 Mean daily dietary intake of subjects

	Mean ± SD	Percentage of subjects	
	(n = 61)	meeting estimated	
		average requirements	
Energy Intake (kcal)	2024 ± 596	60	
Protein (g)	99 ± 42	79	
% calories	20 ± 5		
Carbohydrates (g)	222 ± 73	62	
% calories	46 ± 8		
Fat (g)	78 ± 28	52	
% calories	34 ± 6		
Sodium (g)	2830 ± 1023	23	
Thiamin (mg)	1.8 ± 0.9	87	
Riboflavin (mg)	2.3 ± 0.9	98	
Vitamin C (mg)	113 ± 157	90	
Folate (µg)	406 ± 241	62	
Vitamin A (µg)	782 ± 356	77	
Magnesium (mg)	276 ± 99	54	
Calcium (mg)	776 ± 309	39	
Phosphorus (mg)	1500 ± 521	89	
Iron (mg)	12 ± 5	84	
Zinc (mg)	30 ± 135	90	
lodine (μg)	104 ± 45	62	

365 References

366	1.	Baade, P.D., et al., Population-based survival estimates for childhood cancer in Australia
367		during the period 1997-2006. British Journal of Cancer 2010. 103(11): p. 1663-1670.
368	2.	Phillips, S.M., et al., Survivors of Childhood Cancer in the United States: Prevalence and
369		Burden of Morbidity. Cancer Epidemiol Biomarkers Prev, 2015. 24(4): p. 653-663.
370	3.	National Cancer Intelligence Network, National Registry of Childhood Tumours Progress
371		<i>Report, 2012</i> . 2013: Oxford.
372	4.	Ellison, L.F., L. Pogany, and L.S. Mery, Childhood and adolescent cancer survival: a period
373		analysis of data from the Canadian Cancer Registry. Eur J Cancer, 2007. 43 (13): p. 1967-75.
374	5.	Friedman, D.L., et al., Subsequent neoplasms in 5-year survivors of childhood cancer: the
375		Childhood Cancer Survivor Study. J Natl Cancer Inst, 2010. 102(14): p. 1083-95.
376	6.	Olsen, J.H., et al., Lifelong cancer incidence in 47,697 patients treated for childhood cancer in
377		the Nordic countries. J Natl Cancer Inst, 2009. 101(11): p. 806-13.
378	7.	Rugbjerg, K., et al., Cardiovascular disease in survivors of adolescent and young adult cancer:
379		A Danish cohort study 1943-2009. J Natl Cancer Inst 2014. 106(6): p. dju110.
380	8.	Gudmundsdottir, T., et al., Cardiovascular disease in Adult Life after Childhood Cancer in
381		Scandinavia: A population-based cohort study of 32,308 one-year survivors. Int J Cancer.,
382		2015.
383	9.	Meacham, L.R., et al., Diabetes mellitus in long-term survivors of childhood cancer. Increased
384		risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch
385		Intern Med., 2009. 169(15): p. 1381-8.
386	10.	Holmqvist, A.S., et al., Adult life after childhood cancer in Scandinavia: diabetes mellitus
387		following treatment for cancer in childhood. Eur J Cancer. , 2014. 50(6): p. 1169-75.
388	11.	Wilson, C.L., et al., Genetic and clinical factors associated with obesity among adult survivors
389		of childhood cancer: A report from the St. Jude Lifetime Cohort. Cancer, 2015.
390	12.	Zhang, F.F., et al., Predictors of being overweight or obese in survivors of pediatric acute
391		lymphoblastic leukemia (ALL). Pediatr Blood Cancer, 2014. 61(7): p. 1263-9.
392	13.	Gonzalez, M.C., et al., Obesity paradox in cancer: new insights provided by body composition.
393		Am J Clin Nutr., 2014. 99 (5): p. 999-1005.
394	14.	Prado, C.M., et al., Prevalence and clinical implications of sarcopenic obesity in patients with
395		solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet
396		Oncol., 2008. 9 (7): p. 629-35.
397	15.	Martin, L., et al., Cancer cachexia in the age of obesity: skeletal muscle depletion is a
398		powerful prognostic factor, independent of body mass index. J Clin Oncol., 2013. 31 (12): p.
399		1539-47.
400	16.	Villaseñor, A., et al., Prevalence and prognostic effect of sarcopenia in breast cancer
401		survivors: the HEAL Study. J Cancer Surviv, 2012. 6(4): p. 398-406.
402	17.	Zhang, F.F., et al., Obesity in pediatric ALL survivors: a meta-analysis. Pediatrics, 2014.
403		133 (3): p. e704-15.
404	18.	Zhang, F.F., et al., Comparison of childhood cancer survivors' nutritional intake with US
405		dietary guidelines. Pediatr Blood Cancer, 2015.
406	19.	Landy, D.C., et al., Dietary quality, caloric intake, and adiposity of childhood cancer survivors
407		and their siblings: an analysis from the cardiac risk factors in childhood cancer survivors
408		<i>study.</i> Nutr Cancer, 2013. 65 (4): p. 547-55.
409	20.	Cohen, J., et al., Dietary intake after treatment in child cancer survivors. Pediatr Blood
410		Cancer, 2012. 58 (5): p. 752-7.
411	21.	Slater, M.E., et al., Physical activity and cardiovascular risk factors in childhood cancer
412		survivors. Pediatr Blood Cancer., 2014
413	22.	Ogden, C.L., et al., Centers for Disease Control and Prevention 2000 Growth Charts for the
414		United States: Improvements to the 1977 National Center for Health Statistics Version.
415		PEDIATRICS, 2004. 109 : p. 45-60.

416	23.	Moore, F.D., <i>Energy and the maintenance of the body cell mass.</i> JPEN J Parenter Enteral
417	24	Null, 1980. 4(3): P. 228-00. Murphy A. Land D.S.W. Davies, Rody cell mass index in shildren; interpretation of total hody
418 419	24.	potassium results. British Journal of Nutrition, 2008. 100 (3): p. 666-8.
420	25.	Wang, Z., et al., Body cell mass: model development and validation at the cellular level of
421		body composition. Am J Physiol Endocrinol Metab., 2004. 286(1): p. E123-8.
422	26.	McCarthy, H.D., et al., Body fat reference curves for children. Int J Obes (Lond). 2006. 30(4):
423		p. 598-602.
424	27.	Schofield, W.N., Predicting basal metabolic rate, new standards and review of previous work.
425		Hum Nutr Clin Nutr, 1985. 39 (Suppl 1): p. 5-41.
426	28.	National Health and Medical Research Council, Nutrient reference values for Australia and
427		New Zealand including recommended dietary intakes, D.o.H.a. Ageing, Editor. 2006,
428		Australian Government: Canberra.
429	29.	Bouchard, C., et al., A method to assess energy expenditure in children and adults. Am J Clin
430		Nutr, 1983. 37 (3): p. 461-7.
431	30.	Ainsworth, B.E., et al., Compendium of physical activities: an update of activity codes and
432		MET intensities. Medicine and Science in Sports and Exercise, 2000. 32: p. S498-S505.
433	31.	Department of Health - Australian Goverment. Australia's Physical Activity and Sedentary
434		Behaviour Guidelines. 2014 [cited 2015; Available from:
435		http://www.health.gov.au/internet/main/publishing.nsf/content/health-pubhlth-strateg-
436		phys-act-guidelines.
437	32.	Australian Bureau of Statistics, 4364.0.55.004 - Australian Health Survey: Physical Activity,
438		2011-12 Australian Bureau of Statistics, Editor. 2013: Canberra.
439	33.	Australian Bureau of Statistics, 4364.0.55.003 - Australian Health Survey: Updated Results,
440		2011-2012 Australian Bureau of Statistics, Editor. 2013: Canberra.
441	34.	Didi, M., et al., High incidence of obesity in young adults after treatment of acute
442		lymphoblastic leukemia in childhood. J Pediatr, 1995. 127 (1): p. 63-7.
443	35.	Lindemulder, S.J., et al., Survivors of standard risk acute lymphoblastic leukemia do not have
444		increased risk for overweight and obesity compared to non-cancer peers: A report from the
445		Children's Oncology Group. Pediatr Blood Cancer, 2015. 62(6): p. 1035-41.
446	36.	Love, E., et al., A cross-sectional study of overweight in pediatric survivors of acute
447		lymphoblastic leukemia (ALL). Pediatr Blood Cancer, 2011. 57(7): p. 1204-9.
448	37.	Karlage, R.E., et al., Validity of anthropometric measurements for characterizing obesity
449		among adult survivors of childhood cancer: A report from the St. Jude Lifetime Cohort Study.
450		Cancer., 2015, 121 (12); p. 2036-43.
451	38.	Blijdorp, K., et al., Obesity is underestimated using body mass index and waist-hip ratio in
452		long-term adult survivors of childhood cancer. PLoS One, 2012. 7(8): p. e43269.
453	39.	Murphy, A.J., M. White, and P.S. Davies, The validity of simple methods to detect poor
454		nutritional status in paediatric oncology patients. Br J Nutr, 2009. 101 (9): p. 1388-92.
455	40.	Nysom, K., et al., Degree of fatness after treatment for acute lymphoblastic leukemia in
456		<i>childhood.</i> J Clin Endocrinol Metab. 1999. 84 (12): p. 4591-6.
457	41.	Mostoufi-Moab, S., et al., Body composition abnormalities in long-term survivors of pediatric
458		hematopoietic stem cell transplantation. J Pediatr., 2012, 160 (1): p. 122-8.
459	42.	Pietilä. S., et al., Obesity and metabolic changes are common in young childhood brain tumor
460		<i>survivors.</i> Pediatr Blood Cancer 2009. 52 (7): p. 853-9.
461	43.	Murphy, A.J., et al., Body composition of children with cancer during treatment and in
462	-	<i>survivorship</i> . Am J Clin Nutr. , 2015, 102 (4); p. 891-6.
463	44.	Nysom, K., et al., Degree of fatness after allogeneic BMT for childhood leukaemia or
464		lymphoma. Bone Marrow Transplant, 2001. 27 (8): p. 817-20.
465	45.	Campos, D.J., et al., Bone mineral density. vitamin D. and nutritional status of children
466		submitted to hematopoietic stem cell transplantation. Nutrition 2014 30 (6): p. 654-9.
		, <u> </u>

- 467 46. Australian Bureau of Statistics and Food Standards Australia New Zealand, *4364.0.55.008* 468 *Australian Health Survey: Usual Nutrient Intakes, 2011-12.* 2015, Commonwealth of
 469 Australia.
- 47. Tylavsky, F.A., et al., *Nutritional intake of long-term survivors of childhood acute*471 *lymphoblastic leukemia: evidence for bone health interventional opportunities.* Pediatr Blood
 472 Cancer., 2010. 55(7): p. 1362-9.
- 473 48. Bogg, T.F., et al., *Physical activity and screen-time of childhood haematopoietic stem cell transplant survivors.* Acta Paediatr. , 2015. **104**(10): p. e455-9.
- 475 49. Food and Agricultural Organization, World Health Organization, and United Nations
- 476 University Expert consultation, *Report on human energy requirements.* 2004, FAO: Rome.
- 477 50. Steliarova-Foucher, E., et al., *International Classification of Childhood Cancer, third edition.*478 Cancer, 2005. **103**(7): p. 1457-1467.

479