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GRAPHICAL ABSTRACT 

 

 

Highlight 

 

 Six low-index surface atomic structures were completely built. 

 Surface energies were calculated via first-principles density 

functional theory (DFT). 

 An equilibrium rutile TiO2 model was constructed based on Wullf 

principles. 

 The established model is in the consistence with typical morphology 

of fully-developed rutile TiO2 particles. 
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Abstract 

Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry 

application and surface engineering. In this study, the shape of the rutile TiO2 was 

constructed by applying equilibrium thermodynamics of TiO2 crystals via 

first-principles density functional theory (DFT) and Wulff principles. From the DFT 

calculations, the surface energies of six low-index stoichiometric facets of TiO2 are 

determined after the calibrations of crystal structure. And then, combined surface 

energy calculations and Wulff principles, a geometric model of equilibrium rutile 

TiO2 is built up, which is coherent with the typical morphology of fully-developed 

equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for 

the surface analysis and surface modification of the rutile TiO2-based materials from 

experimental research to industry manufacturing. 

Keywords: Rutile TiO2, DFT calculations, Wulff principle, equilibrium model. 

  

ACCEPTED M
ANUSCRIP

T



1. Introduction 

Titanium dioxide (TiO2) is well-known as primary white pigment and one of the most 

important fine chemical materials [1, 2], which has extensive industry applications, 

including photocatalytic degradations [3], sensors [4], cosmetics [5], coating [6] and 

photovoltaics [7, 8]. The performance of the TiO2 is highly affected by its crystalline 

phase (rutile, brookite or anatase), particle size, surface energy state and morphology 

[9, 10]. In general, nano-sized rutile TiO2 is the most important industrial TiO2-based 

material and has drawn much attentions due to its unique properties [11-13]. For 

stoichiometric rutile TiO2, its {110} plane (R{110}) has been proved to have the 

lowest energy and to be energetically the most stable planes in both experimental and 

theoretical works [14, 15]. Therefore, {110} facets are usually the main exposed 

surfaces of rutile TiO2. From first-principles calculations, extensive investigations [8, 

14-18] show that the oxygen vacancies on the surface significantly affect the 

absorption and reaction on R{110}. Hussain et al. [17] constructed a model of R{110} 

interacting with water, in which a solid liquid interface between TiO2 and water can 

be expected because all five coordination Ti sites were occupied by half a monolayer 

of terminal hydroxyls. This finding reveals that the surface absorption behavior of 

R{110} facets in rutile TiO2 is crucial to guide the practical industry applications. 

Meanwhile, researchers have also paid much attention on other high-energy planes of 

the rutile TiO2 due to their high reactivity as well as their merits in industry 

applications. Rutile TiO2 rods with exposed {111} facets show high photocatalytic 
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activity [19, 20]. Dumbbell-shaped rutile TiO2 particles with exposed {001} facets 

were successfully fabricated by using different counterions and display improved 

lithium storage properties [10]. Ahmed et al. [21] produced rutile TiO2 single crystal 

with {011} facets by wet chemical preparation, presenting a non-ultra-high vacuum 

recipe for preparing the prototypical metal oxide surface. Ramamoorthy et al. [22] 

also investigated the shape of rutile TiO2 after the surface energy calculations of only 

four main facets including R{110}, R{100}, R{101} and R{011}. However, 

systematic research that involves all the possible exposed facets and the equilibrium 

rutile TiO2 shape is still urgently demanded for guiding the surface modification or 

absorption of TiO2 in industry applications [23]. 

In this work, we construct a comprehensive low-index stoichiometric facets model 

based on rutile TiO2 geometry optimization through first-principle density functional 

theory (DFT) [24]. According to the surface energy calculations, a geometric model of 

equilibrium rutile TiO2 particle with five low-index exposed facets was constructed 

by the Wulff grain growth principles. The model shows a good agreement with the 

fully-developed raw TiO2 particles that obtained in experiment, which will provide 

theoretical guidance for surface energy analysis and surface modifications of rutile 

TiO2-based materials [25]. 

2. Calculations and Analysis 

The calculations were performed using the DFT and Cambridge Serial Total Energy 

Package (CASTEP) codes, employing the ultrasoft pseudopotential expanded in a 
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planewave basis [26]. Exchange and correlation effects were treated by the revised 

Perdew-Burke-Ernzerhof (PBE) function [27] within the generalized gradient 

approximation (GGA) [28]. The calculation has been performed in an iterative 

process, in which the coordinates of the atoms are adjusted so that the total energy of 

the structure is minimized [21]. Structural relaxation was carried out using a 

Broyden-Fletcher-Glodfarb-Shanno (BFGS) algorithm [29] with full relaxation taken 

to be when none of the forces exceeded 0.03 eV/Å and none of the stresses exceeded 

1.0E-05 eV/atom. The stress on the atom was less than 0.05 GPa and the displacement 

of the atom was less than 0.001 Å. We used an energy cutoff 420 eV and a k-points 

grid of Monkhorst-Pack [30] 4×4×1 in the Brillouin zone. The third number of 

k-points is always small, 1 or 2, just for ignoring the periodic of the z axis. In 

three-dimensional (3D) periodic geometry, a slab of atoms separated by a 10 Å 

thickness vacuum layer was used to model the surface. To get an accurate result, 

parameter settings have been extensively tested and fully meet the requirements of 

calculation convergence. 

2.1 Crystal structure of TiO2 and analysis 

The space group of rutile TiO2 is P42 /mnm with lattice parameters of a = b = 4.59 Å, 

c = 2.96 Å, and belongs to tetragonal crystal system. Ti atoms coordinate in (0，0，0) 

and (1/2, 1/2, 1/2) positions while oxygen atoms in ±(u, u, 0) and ±(u+1/2, 1/2-u, 

1/2) positions, respectively. The model of TiO2 crystal was constructed using 

Materials Studio (Accelrys) as shown in Fig. 1(a), in which each unit cell contains 
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two TiO2 units. 

There are one Ti atom in the center of each cell and eight Ti in the corners which 

contribute overall 2 Ti atoms to each cell. Each O atom is threefold coordinated to Ti 

atom with different Ti-O bonds’ lengths. The lengths of Ti-O bonds are 1.98 Å and 

1.95 Å. Every threefold coordinated oxygen atoms have one long and two short Ti-O 

bonds; And two apical Ti-O bonds are longer than the four equatorial Ti-O bonds. 

Geometry optimization has been realized for the established TiO2 crystal structure to 

reach the minimum system energy. The lengths of long and short Ti-O bonds were 

adjusted to 2.01Å and 1.96Å, respectively, which caused a slightly expansion of the 

unit cell. The crystal parameters of the geometry optimization are shown in Table 1. 

Comparing to the experimental results and reported theoretical calculations (marked 

as 1 and 2 in Table 1), the optimized parameters show good reliability with a low 

relative error of ~ 2%. In all the subsequent calculations, we used the optimized lattice 

constants for the input parameters. 

Table 1. Geometry optimization result of TiO2 

 a (Å) b (Å) c (Å) U 

unrelaxed 4.594 4.594 2.959 0.3048 

Relaxed 4.664 4.664 2.968 0.3054 

theoretical 1[31] 4.536 4.536 2.914 0.304 

theoretical 2[32] 4.653 4.653 2.975 0.306 

experimental[33] 4.623 4.623 2.984 0.306 
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Fig. 1. (a) Rutile TiO2 crystal structure. (b) Model of R{011} plane, the black atoms 

are constrained Ti and O atoms for relaxation. 

2.2 Supercell modeling and surface energy calculation 

The surface energy of each facet is calculated from the total energy of a (2×1) 

supercell of six surface orientations as follows [34, 35]: 

     
)/()( SmENEE bulkslabsurf           (1) 

where Esurf is the surface energy; Ebulk is the total energy of a bulk TiO2; Eslab is the 

total energy of the given supercell, containing N TiO2 units; And m represents the 

number of surfaces for relaxation. The calculation of surface energy is based on 

structure optimization of the supercell with a superficial area of S. 

We built a four-layer slab of {011} orientation. The surface has two kinds of 

exposed atoms including fivefold coordination titanium atoms (Ti5c) and twofold 

coordination oxygen atoms (O2c), connecting to Ti5c. Herein, m is 1 as we relaxed the 

surface atoms while the under-layer atoms were constrained, as colored in black..Fig. 
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2(a) is the typical structure of R{011} after relaxation. Since surface Ti and O atoms 

both slightly moved and the O atoms has a smaller moving distance than Ti atoms, the 

bond length between surface O and Ti atoms (named Ti-1– O-1, Ti-3– O-1) is slightly 

smaller than that of bulk phase. Besides, Ti atoms also have a tiny horizontal 

movement which leads to a closer distance between Ti and O atoms. 

 

Fig. 2. (a) The changed structure of R{011}. (b) Energy evolution curve of R{011} 

relaxing. (c) Convergence curve of R{011} relaxing. 

The orbits of O-2s22p4 and Ti-3s23p63d24s2 were used in DFT calculations. The 

used lattice parameters are a = 9.12 Å, b = 5.487 Å, c = 28.94 Å, α = β = γ = 90°. 

After relaxation, Eslab = -39695.07 eV can be determined. According to equation 1, the 

surface energy of {011} facet can be calculated as 1.11 J/m2. In Fig. 2, (b) and (c) 

show the energy convergence curve and self-consistent convergence curve during 

calculation. As can be seen, the energy of the system drops rapidly in the first five 

steps of calculation and then stabilizes gradually. The convergence curve indicates 

that the system can well reach to a stable state with minimum energy. 
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Then we established other five low-index facet models, shown in Fig. 3. According 

to the report [33], the pure rutile TiO2 {110} surfaces have two different Ti atoms of 

Ti5c and six-fold coordination titanium atoms (Ti6c). The oxygen atoms bonding with 

two Ti6c are O2c and the ones bonding with Ti5c are the unsaturated threefold 

coordination oxygen (O3c). R{100} has the same atoms as R{110} on surface. For 

R{101}, there are two-type atoms of Ti5c and O2c on surface. Also, there are two-type 

atoms of Ti4c and O2c on the surface of R{001} [36]. R{111} has the atoms of Ti5c, 

Ti4c and O2c on its surface. The four coordination Ti atoms contain high unsaturated 

valence, which leads to acidity. Building these six low-index surface structures is the 

crucial first step to model complex adsorption [8] and mixture processes [18] in each 

surface. 

 

Fig. 3. Models of R{110}, R{100}, R{101}, R{001}, R{111} and R{011} planes.  
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After modeling each surface structure, we constrained under-layer atoms for 

relaxation. The changes of surface atoms before and after the relaxation are shown in 

Table 2. The coordination atoms and charge distribution changed during relaxation, 

which results in the surface-layer has a displacement. The change of Ti atoms in the Z 

direction of the slab is greater than the O atoms, which is mainly due to their different 

electronic orbits, namely Ti-3s23p63d24s2 and O-2s22p4, respectively. The surface 

atoms of R{110} have larger displacement than the atoms of other surfaces. In R{001} 

and R{111} surfaces, Ti4c atoms present greater displacement than Ti5c and Ti6c atoms 

in other surfaces due to the high unsaturated valence. The change of atomic 

parameters on the surface during the relaxation can significantly affect the surface 

energy calculation. 

Table 2. Displacement of surface atoms along Z-axis. 

facet surface atoms ΔZ (Å) ΔZ Ref. (Å) 

R{110} Ti(6c) 0.198 0.23 [35] 

Ti(5c) -0.153 -0.11 [35] 

O(2c) -0.009 -0.02 [35] 

O(3c) 0.195 0.18 [35] 

R{101} Ti(5c) -0.059  

O(2c) -0.055 -0.1 [37] 

R{001} Ti(4c) -0.168  

O(2c) -0.06 -0.09 [37] 

R{100} Ti(5c) -0.088  

O(2c) -0.011 -0.11 [37] 
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R{011} Ti(5c) 0.094  

O(2c) 0.016  

R{111} Ti(4c) -0.301  

O(2c) -0.097  

 

After that, we calculated the surface energy of six facets using the Equation 1 and 

the results are listed in Table 3. As can be seen, R{110} has the lowest surface energy 

[14], while R{001} and R{111} have the highest surface energy. Such information is 

crucial to guide the research on surface modification or industry manufacturing [23]. 

Table 3. Surface energy of the six rutile facets. 

 R{110} R{101} R{100} R{001} R{011} R{111} 

Eslab (eV) -14886.56 -14884.88 -49622.64 -27291.32 -39695.07 -59542.39 

Ebulk (eV) -4962.78 -4962.78 -4962.78 -4962.78 -4962.78 -4962.78 

N 3 3 10 5.5 12 12 

m*S (Å2) 38.45 50.21 108.75 42.21 103.13 117.06 

Esurf (J/m2) 0.74  1.11  0.76  1.51  1.11 1.51 

Esurf (Ref.) 

(J/m2) 

0.73 [34] 1.39 [34] 0.83 [22] 1.65 [22] 1.50 [35] 1.46 [38] 

3. Modeling an equilibrium TiO2 shape 

3.1 Wulff grain growth principles 

Wulff principles [39] are widely used in the grain growth with the request that the 

terminal geometrical shape of crystal grain has a minimum surface energy, as shown 
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in Equation 2.  




1i

iiS =Min                                                      (2) 

γ1  : γ2  : γ3 ……= n1 : n2 : n3 ……                                     (3) 

Where Si is the area of the facet belongs to No. i;  i is the surface energy of the facet 

belongs to No. i and ni is the length of normal from crystallization center of the facet 

belongs to No. i. 

When we construct a model shape, we follow Wulff drawing principle to determine 

the exposed surface, as shown in Equation 3. The ratio of normal length from 

crystallization center equals to the ratio of surface energy. Therefore, the facets with 

low energy are preferred to be exposed during the growth. The high energy facets 

have always been covered by other adjacent facets during process of the growth of the 

crystal due to the faster growth rate in the normal direction [39]. The facets with 

lower energy are always the low-index facets, which leads to a result that the final 

exposed surface should be low-index facets. 

3.2 Modeling  

According to the calculated surface energy of the rutile TiO2 in Table 3, we built a 

model of equilibrium TiO2 crystal structure in 3D Auto CAD drawing software 

(Autodesk) using Wulff principles. Each facet has a miller index corresponding to a 

space position as shown in Fig. 4(a). In Fig. 4(a), there are five different facets on the 

exposed surface while R{111} disappeared, which is more comprehensive compared 
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to the model of TiO2 built by Ramamoorthy et al. (Fig. 4(b)), In their study, only four 

main facets of rutile TiO2 was calculated, including R{110}, R{100}, R{101} and 

R{011}.  

The energies of R{111} and R{001} are both 1.51 J/m2, which are the highest in six 

low-index facets. Such high energy leads to the fastest growth rate along the normal 

direction during equilibrium growth. In rutile TiO2, R{111} planes are not exposed 

because they are covered by adjacent facets that have slower growth rate, while the 

exposed surface area of R{001} is a small rectangle adjacent with R{011} and 

R{101}. The exposed surface area of R{011} and R{101} are both hexagonal shape, 

which significantly prevents the disappearance of R{001}. As a result, the model with 

large exposed areas of R{110}, R{011} and R{101} but a very small exposed area of 

R{001} shows a slim rod-like shape, which is different from the previous model 

developed by Ramamoorthy et al [22]. Our model has been established reliably with 

significant precision of six low-index facets that can be used as an initial model for 

further reaction mechanism of complex adsorption and mixture processes. 

To verify our built model, we further analyze the morphology of industrial grade 

rutile TiO2 and the typical morphology is shown in Fig. 4(c). As can be seen, one facet 

particle is observed and can be indexed by the miller index (hkl) for each crystal facet, 

shown in Fig. 4(d). The shape and exposed surfaces are consistent with the 

equilibrium TiO2 shape modeled above, which verifies our accuracy of the DFT 

calculation and Wulff principle modeling. 
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Fig. 4. (a) The equilibrium model of TiO2 crystal (the left part views from [001] and 

[010] respectively, the right part is the bulk to show main exposed facets.). (b) TiO2 

crystal modeled by Ramamoorthy [22] for comparison. (c) SEM image of rutile TiO2 

particles, inset a typical TEM. (d) High magnification SEM image of the marked 

particle in (c) shows facets consistent with our modeling result. 

4、Conclusion 

In summary, an equilibrium rutile TiO2 model with five low-index exposed facets 

was constructed using first-principles DFT calculations and Wulff principles. 
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Moreover, the R{110} has the lowest energy while R{001} and R {111} are the 

highest energy, leading to a high reactivity. The established model is in the 

consistence with typical morphology of fully-developed rutile TiO2 particles, which 

suggests that this study is more comprehensive and accurate compared to previously 

theoretical modeling results. The developed knowledge of exposed surfaces could 

provide theoretical guidance for surface analysis in industry application of TiO2. 
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