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We derive the leading asymptotic approximation, for low angle θ, of the Wigner
rotation matrix elements, dj

m1m2
(θ), uniform in j, m1, and m2. The result is in terms of

a Bessel function of integer order. We numerically investigate the error for a variety
of cases and find that the approximation can be useful over a significant range of
angles. This approximation has application in the partial wave analysis of wavepacket
scattering. Published by AIP Publishing. https://doi.org/10.1063/1.5012583

I. INTRODUCTION

The purpose of this paper is to derive an approximation for the Wigner rotation matrices, dj
m1m2

(θ),
as a function of the angle θ and uniform in j, m1, and m2, for use in analytic calculations.

There are several methods available for computing individual Wigner rotation matrix elements
to high precision. Wigner’s series for the matrix elements [equivalent to the terminating hyper-
geometric series in Eq. (11) below] becomes, for large indices, a sum of very large terms with
alternating signs, exceeding the floating-point precision. One of the alternative methods involves
using recurrence relations obeyed by the matrix elements.1,2 A precision of 15 significant fig-
ures can be obtained. Another method involves converting the sum into a Fourier series, which
is better behaved.3,4 Fukushima5 presents a method, using recurrence relations and extension
of floating-point exponents that can achieve 16 significant figures for very large values of the
indices.

The approximation presented here cannot obtain the very high precisions of the methods just
mentioned, as we will see below. However, it has the advantage of giving the approximation as a
function of the angle, which can then be used in integrals.

The motivation for this work came from a recent paper6 on the scattering theory of wavepackets
in a Coulomb potential. The system considered was a single, non-relativistic spinless particle, but the
results presented here should have wider applicability to multiple particles, nonvanishing spins, and
relativistic treatments.7,8

It was necessary to transform the wavefunction from a basis of momentum eigenvectors (with
wavefunction Ψ0 (k)) to a basis of free eigenvectors of the magnitude of momentum, k, and the
familiar angular momentum quantum numbers, l and m, taking only integer values in this case [with
wavefunction Ψ(k, l, m)]. The transformation is

Ψ(k, l, m)= k
∫ π

0
sin θ dθ

∫ 2π

0
dϕ Y ∗lm(θ, ϕ)Ψ0(k), (1)

where k = |k| and k̂ has spherical polar coordinates (θ, ϕ).
To illustrate the method and avoid complications regarding wavepacket spreading, we choose

the simple, normalized momentum wavefunction

Ψ0(k)=
e−|k−pẑ |2/4σ2

p

(2πσ2
p)

3
4

. (2)
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The following calculation is simplest if the average momentum is chosen in the z direction. The
standard deviation of each momentum component is σp.

In a scattering experiment, we want the initial momentum to be well resolved, so we choose

ε ≡
σp

p
� 1. (3)

The results we derive below will be to the lowest order in ε . It is the small magnitude of this parameter
that will allow us to construct an approximation method for which the leading term will be sufficient
for our purposes.

The spherical harmonic can be expressed in terms of a Wigner rotation matrix as

Y ∗lm(θ, ϕ)=

√
2l + 1

4π
e−imϕdl

m0(θ), (4)

so ∫ 2π

0
dϕ e−imϕ = 2π δm0. (5)

Then we use
|k − pẑ|2 = (k − p)2 + 2kp(1 − cos θ), (6)

so the remaining integral for the wavefunction becomes

Ψ(k, l, m)= δm0

√
2π k e−(k−p)2/4σ2

p

√
l +

1
2

∫ π

0
sin θ dθ e−kp(1−cos θ)/2σ2

p dl
00(θ). (7)

It was intended to find an analytic approximation to this integral so that we could make contact
with results from partial wave analysis and to minimize the amount of numerical computation needed.
The final calculation of the differential cross section then requires only a numerical evaluation of a
sum over l.6

In Eq. (7), the Gaussian in k is only significant for k = p + O(σp). Then the exponential func-
tion of θ is sharply peaked at θ = 0 with a width of order ε . To evaluate this integral, we cannot
use a Taylor series for the rotation matrix, as for large l it oscillates many times within the peak
of the exponential. Instead, we need an approximation valid for low θ that is uniform in l. We
use the method of Olver9 for obtaining such expansions from the differential equation for the
function.

The Wigner rotation matrices are matrix elements of unitary rotations about the y axis,

dj
m1m2

(θ)= 〈 j, m1 | e
−iθJy | j, m2 〉, (8)

and with the Condon-Shortley phase convention10 the matrix elements are all real.
The Wigner rotation matrices are predefined functions in Mathematica (WignerD).11 Note that

the Mathematica sign convention is

WignerD[{j, m1, m2}, θ]= dj
−m1,−m2

(θ). (9)

Note that in other cases of interest,7,8 more general rotation matrices dj
m1m2

(θ) will appear in
place of

dl
00(θ)=Pl(cos θ), (10)

including for half-integral angular momentum. We will derive a result valid for the general case.

II. ASYMPTOTIC APPROXIMATION FROM THE DIFFERENTIAL EQUATION

Wigner’s series for the rotation matrix elements dj
m1m2

(θ) can be written in terms of a terminating
hypergeometric series as12

dj
m1m2

(θ)=

[
(j + m1)!(j − m2)!
(j − m1)!(j + m2)!

] 1
2 (−)m1−m2

(m1 − m2)!
(sin

θ

2
)m1−m2 (cos

θ

2
)2j+m2−m1

× 2F1(−( j−m1),−( j + m2); m1−m2 + 1;− tan2 θ

2
)

(11)
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for m1 ≥ m2. We consider this regime first, then, for m1 ≤ m2, we use the symmetry relation,10

dj
m1m2

(θ)= (−)m1−m2 dj
m2m1

(θ). (12)

This form gives us the small θ behaviour (again for m1 ≥ m2),

dj
m1m2

(θ)∼

[
(j + m1)!(j − m2)!
(j − m1)!(j + m2)!

] 1
2 (−)m1−m2

(m1 − m2)!
(
θ

2
)m1−m2 , (13)

which we will use shortly.
An equivalent form is in terms of a Jacobi polynomial,13

dj
m1m2

(θ)= (−)m1−m2

[
(j + m1)!(j − m1)!
(j + m2)!(j − m2)!

] 1
2

(sin
θ

2
)m1−m2 (cos

θ

2
)m1+m2

×P(m1−m2,m1+m2)
j−m1

(cos θ). (14)

The function

w(θ)= (sin
θ

2
cos

θ

2
)

1
2 dj

m1m2
(θ) (15)

obeys the particularly simple differential equation14

{
d2

dθ2
+ (j +

1
2

)2 −
α2 − 1

4

4 sin2 θ
2

−
β2 − 1

4

4 cos2 θ
2

}w = 0, (16)

with

α ≡m1 − m2, (17)

β ≡m1 + m2. (18)

Since we are looking for a low angle approximation, we expand the trigonometric factors in
powers of θ, keeping terms of order θ2 in the differential equation. This gives the approximate
equation

{
d2

dθ2
+ ∆2 −

α2 − 1
4

θ2
+ ∆2ψ(θ)}w = 0, (19)

where

∆(j, m1, m2)≡

√
j(j + 1) −

1
3

(m2
1 + m2

2 + m1m2 − 1) (20)

and

ψ(θ)∼
(α2 − 1

4 )

∆2

θ2

160
−

(β2 − 1
4 )

∆2

θ2

16
(21)

for small θ. Note that

j(j + 1) −
1
3

(m2
1 + m2

2 + m1m2 − 1) ≥ j +
1
3

(22)

for given j, so it is always strictly positive.
Now we define

z≡∆θ (23)

and use the transformation
w =
√

z y(z). (24)

Then the differential equation becomes

{
d2

dz2
+

1
z

d
dz

+ 1 −
α2

z2
+ ψ(

z
∆

)}y= 0. (25)

If the correction factor, ψ(θ), is sufficiently small and can be neglected, this becomes the differential
equation for the Bessel function15 (the solution finite at the origin)

y(z)= Jα(z). (26)
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Instead of analytically calculating bounds on the error in our approximation, we use numerical
methods in Sec. III.

Now we have
w(θ)∼C θ

1
2 Jm1−m2 (∆θ), (27)

which then gives

dj
m1m2

(θ)∼D(
θ

sin θ
)

1
2 Jm1−m2 (∆θ) (28)

for m1 ≥ m2.
To normalize the solutions, we note

Jm1−m2 (∆θ) �
1

(m1 − m2)!
(∆
θ

2
)m1−m2 (29)

for small θ. Comparing with Eq. (13), we find

D( j, m1, m2)= (−)m1−m2

[
(j + m1)!(j − m2)!
(j − m1)!(j + m2)!

] 1
2 1
∆m1−m2

. (30)

Finally

dj
m1m2

(θ)= (−)m1−m2

[
(j + m1)!(j − m2)!
(j − m1)!(j + m2)!

] 1
2 1
∆(j, m1, m2)m1−m2

× (
θ

sin θ
)

1
2 Jm1−m2 (∆(j, m1, m2)θ) + E( j, m1, m2, θ),

(31)

for m1 ≥ m2. We will find numerical bounds on the absolute error, |E(j, m1, m2, θ)|, in Sec. III. Note
that

|dj
m1m2

(θ)| ≤ 1 (32)

from unitarity.
Note also that in typical applications, we have

j� |m1 |, |m2 |, (33)

in which case
[

( j + m1)!( j − m2)!
( j − m1)!( j + m2)!

] 1
2 1
∆( j, m1, m2)m1−m2

= 1 + O(
mi

j
) i= 1, 2. (34)

III. NUMERICAL CALCULATION OF ERROR BOUNDS

In the applications we envision, for example the scattering of two particles, m2 will be a difference
of helicities, not a large number. For an impact parameter of, say, 10σx, whereσx = 1/2σp, we expect
the wavefunction to only be significant for m1 . 10. Furthermore, for a typical choice, ε = 0.001, the
wavefunction will only be significant for j . 2000.

We first try a simple example that will be relevant to our original problem, finding the error
bound for

dj
00(θ)=Pj(cos θ)= (

θ

sin θ
)

1
2 J0(

√
j( j + 1) +

1
3
θ) + E( j, θ). (35)

We plot the absolute error, |E( j, θ)|, and |Pj(cos θ)| (as calculated by Mathematica) against θ on
log-log plots for j = 10 and j = 2000 in Figs. 1(a) and 1(b), respectively.

As expected, we see the absolute and relative errors rising with angle. For the small angles,
θ ∼ ε that dominate the integral Eq. (7), the relative error remains less than about 10�6 over the range
of physical j values. We plot the dependence on j for θ = 0.001 explicitly in Fig. 2, confirming these
conclusions.
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FIG. 1. Absolute errors for our approximation of dj
00(θ), compared to |Pj(cos θ)| for (a) j = 10 and (b) j = 2000.

FIG. 2. Absolute errors for our approximation of dj
00(0.001), compared to |Pj(cos 0.001)| for the physical range of j.

At another extreme, to see a case where our approximation may be less valid, we investigate

dj
jj(θ)= (

θ

sin θ
)

1
2 J0(

√
j +

1
3
θ){1 + R(j, θ)}, (36)

using Mathematica for the exact Wigner matrices. For this example, we plot the relative errors,
defined by

R(j, θ)= {dj
jj(θ) − (

θ

sin θ
)

1
2 J0(

√
j +

1
3
θ)}/dj

jj(θ), (37)

in Fig. 3. We see again that the error rises with angle, and it also increases with j. For the low angle
θ = ε , the relative error is less than 10�7 for j = 2000.

We conclude with an example using half-integer spins,

dj
5
2 , 1

2

(θ)=


(j + 5
2 )!(j − 1

2 )!

(j − 5
2 )!(j + 1

2 )!



1
2 1

j(j + 1) − 9
4

(
θ

sin θ
)

1
2 J2(

√
j(j + 1) −

9
4
θ) + E(j, θ), (38)

FIG. 3. Relative errors for our approximation of dj
jj(θ), for j = 0, 20, 200, 2000.
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FIG. 4. Absolute error for our approximation of d2000.5
5
2 , 1

2

(θ).

for j ≥ 5
2 . The absolute error and |dj

5
2 , 1

2

(θ)| (Mathematica) are plotted in Fig. 4 for j = 2000.5. Again

we find very small relative errors at low angles, rising with angle.

IV. APPROXIMATION OF THE INTEGRAL

Returning to our original problem, we consider the factor from Eq. (7) (with ρ = k/p),

I(ρ, l)=
1

2ε2

∫ π

0
sin θ dθ e−ρ(1−cos θ)/2ε2

Pl(cos θ). (39)

We make the further approximations sin θ = θ(1+O(θ2)) and 1−cos θ = θ2

2 (1+O(θ2)) in the exponent
and extend the upper limit of the integral to infinity to find15

I(ρ, l)∼
1

2ε2

∫ ∞
0

θ dθ e−ρθ
2/4ε2

J0(

√
l(l + 1) +

1
3
θ)

=
1
ρ

e−ε
2(l(l+1)+ 1

3 )/ρ (40)

to lowest order in ε = σp/p. A narrow distribution in angle produces a wide distribution in angular
momentum.

We define the relative error in this approximation as

R(ρ, l)= {I(ρ, l) −
1
ρ

e−ε
2(l(l+1)+ 1

3 )/ρ}/I(ρ, l). (41)

In Fig. 5, we plot the magnitude of this relative error for ρ = 1 as a function of l, up to three standard
deviations. We see that the relative error is .10�5. The dependence on ρ is very gradual, with the
relative error changing by only 7% of its ρ = 1 value over |ρ � 1| ≤ 10 ε for l = 3000.

FIG. 5. Relative error for ρ = 1.
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V. AN ALTERNATIVE APPROACH

A referee suggested using the Fourier series form of the Wigner rotation matrices,3,16

dl
m1m2

(θ)= ei(m1−m2)π/2
l∑

n=−l

e−inθdl
nm1

(
π

2
)dl

nm2
(
π

2
), (42)

which follows immediately from the rotation result

Ry(θ)=Rx(−
π

2
)Rz(θ)Rx(+

π

2
)=Rz(−

π

2
)Ry(−

π

2
)Rz(+

π

2
)Rz(θ)Rz(−

π

2
)Ry(+

π

2
)Rz(+

π

2
). (43)

Then the integral we want to approximate would be (using an integral from Ref. 15)

I(ρ, l)∼
1

2ε2

∫ ∞
0

θ dθ e−ρθ
2/4ε2

l∑
n=−l

e−inθdl
n0(

π

2
)dl

n0(
π

2
)

=
1
ρ

l∑
n=−l

e−ε
2n2/2ρD−2(i

√
2
ρ
εn) dl

n0(
π

2
)dl

n0(
π

2
), (44)

where Dν is a parabolic cylinder function. Comparison with (40) suggests that the method presented
here has the advantage of simplicity, with no further sum to evaluate.

VI. CONCLUSIONS

We have found a low angle approximation of the Wigner rotation matrix elements, dj
m1m2

(θ),
uniform in j, m1, and m2. Numerical determinations of errors in this approximation have been given
for a variety of cases. The relative error is reduced if j� |m1|, |m2|, which is the case in the applications
we envision. For our original problem of approximating a change of basis, our method gives a relative
error of 10�5. We expect that this approximation will have applications in the partial wave analysis
of wavepacket scattering.

The approximation presented here is merely the leading approximate solution of a differential
equation in the low angle region. It is possible that an approximation with greater precision can be
produced by calculating additional terms.
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