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Abstract 

Aims: To develop a risk “engine” or calculator, integrating the risks of hyperglycemia, maternal BMI 

and other basic demographic data commonly available at the time of the pregnancy oral glucose 

tolerance test (OGTT), to predict an individual’s absolute risk of specific adverse pregnancy 

outcomes.    

Methods: Data from the Brisbane HAPO cohort was analysed using logistic regression to determine 

the relationship between four clinical outcomes (primary CS, birth injury, large-for-gestational age, 

excess neonatal adiposity) with different combinations of OGTT results and maternal demographics 

(age, height, BMI, parity).  Existing sets of international GDM diagnostic criteria were also applied to 

the cohort. 

Results: 191 (15.3%) women were diagnosed as GDM by one or more existing criteria.  All 

international criteria performed poorly compared to risk models utilising OGTT results only, or 

OGTT results in combination with maternal demographics. 

Conclusions:  The risk engine’s empirical performance on receiver – operator curve analysis was 

superior to the existing GDM diagnostic criteria tested.  This concept shows promise for use in 

clinical practice, but further development is required. 
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1.0 Introduction 

In 2010, the International Association of Diabetes in Pregnancy Study Groups (IADPSG) published 

consensus based recommendations on the diagnosis and classification of hyperglycemia in pregnancy 

(HIP) [1], based primarily on data from the Hyperglycemia and Adverse Pregnancy Outcome Study 

(HAPO) [2].  A guiding principle of these recommendations was that classification should be based 

on the risk of adverse pregnancy outcomes, specifically in the case of IADPSG - risk of delivery of a 

large for gestational age (LGA) infant, risk of excess infant adiposity and risk of neonatal 

hyperinsulinemia.  Other reports from the HAPO study have outlined the association of increasing 

maternal body mass index (BMI) with pregnancy complications [3] and described the combined 

associations of hyperglycemia and BMI with these complications [4].  In particular, the latter study by 

Catalano et al clearly demonstrated that the risks of obesity and IADPSG-defined gestational diabetes 

(GDM), considered as categorical variables, were additive and that the presence of both identified a 

group of women at particularly high risk of a broad range of adverse pregnancy outcomes. 

However, these reports still considered both GDM and maternal obesity as dichotomous (YES / NO) 

variables, despite the fact that the underlying associations between both glucose [2] and maternal BMI 

were clearly continuous [3].  Thus, for example, a woman with one glucose value on an oral glucose 

tolerance test (OGTT) marginally above the diagnostic threshold, but with a BMI well in the 

population normal range would be considered as having GDM and thus requiring treatment.  By 

contrast, a woman with obesity and all OGTT glucose values just below diagnostic thresholds would 

be classified as “normal” from the glycemic viewpoint.  The latter woman might receive some dietary 

or lifestyle advice during pregnancy, but, depending on local clinical policy, might also continue in 

routine antenatal care. 

The aim of the current work was to develop a risk “engine” or “calculator” connecting HIP to the 

frequency of adverse pregnancy outcomes, similar to the approach used for predicting cardiovascular 

risk in diabetes outside pregnancy [5].  We particularly wished to integrate consideration of the risks 

of and maternal glycemia and BMI, along with other basic demographic data commonly available at 

the time of OGTT, to determine an individual woman’s absolute risk of specific adverse pregnancy 

outcomes.    

2.0 Subjects, Materials and Methods 

This study is a post hoc analysis of data collected at Mater Health Services, South Brisbane under the 

auspices of the HAPO study.  Approval from Mater Health Services Human Research Ethics 

Committee was current throughout the course of the study. 
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Exclusion criteria for this study were: unblinding from the HAPO study; multiple pregnancy (not 

included in HAPO), stillbirth, congenital anomaly, non-Caucasian mother, birth at less than 33 

completed weeks of gestation and missing data for key independent variables. 

Four key clinical outcomes were extracted from the Mater HAPO dataset for use in this study; 1) 

primary caesarean section as noted in the HAPO data file, 2) birth injury (including shoulder dystocia)  

defined as in the primary HAPO cohort [2], 3) large-for-gestational age (LGA) (corrected for gender 

and gestational age at delivery) defined as birthweight greater than the 90
th
 centile in comparison to 

the Australian national standard values published by Roberts and Lancaster [6], 4) neonatal adiposity 

defined as % body fat greater than the 90
th
 centile derived from within the Mater HAPO dataset, 5) 

neonatal hyperinsulinemia defined as elevated cord c-peptide (>1.7µg/L, 90
th
 centile in the HAPO 

dataset) and 6) neonatal hypoglycaemia defined as a blood glucose level of <2.2mmol/L (10
th
 centile 

in the HAPO dataset. 

Since a “risk engine” would potentially offer an alternative to dichotomous GDM diagnosis, it was 

considered important to define the predictive ability of the currently used diagnostic criteria for GDM 

to identify women at risk of these outcomes. Thus, four sets of recognised GDM diagnostic criteria 

were firstly applied to the data: 

(1) the 1991Australasian Diabetes in Pregnancy Society (ADIPS) criteria [7] (fasting 

≥5.5mmol/L and/or 2-hour ≥8.0mmol/L), 

and current international criteria:  

(2) IADPSG criteria [1] (now also adopted by ADIPS and the World Health Organization [8]; 

any of fasting ≥5.1mmol/L, 1-hour ≥10.0mmol/L, 2-hour ≥8.5mmol/L),  

(3) National Institute for Clinical Excellence (NICE criteria) [9] (fasting ≥5.6mmol/L and/or 2-

hour ≥7.8mmol/L), and  

(4) American College of Obstetricians and Gynecologists (ACOG) / Carpenter and Coustan 

criteria [10, 11] (two or more of fasting ≥5.3mmol/L, 1-hour ≥10.0mmol/L, 2-hour 

≥8.6mmol/L).   

It must be noted that although we applied differing sets of GDM diagnostic thresholds, we were 

unable to mimic the full diagnostic protocols of NICE, which involves risk factor screening and 

selective biochemical testing, or ACOG, which involves two step testing with an initial non-fasting 

glucose “challenge” test and subsequent 100-gram OGTT. 

 

The sensitivity, specificity, receiver operator characteristic (ROC) area under the curve (AUC) 

(calculated as [sensitivity + specificity] / 2) and Youden Index [12](calculated as [sensitivity + 
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specificity - 1]), along with associated 95% confidence intervals (CIs), were calculated for each 

combination of outcome and criteria.  The optimum set of criteria was determined using comparison 

of the ROC AUCs and 95% CIs. 

We then sought to develop and assess multivariable regression models incorporating potential 

predictors of pregnancy outcomes available within the HAPO dataset and likely to be available in 

routine clinical practice.  The choice of independent variables was limited to those available for all 

pregnant women and thus previous birth outcomes were excluded.  Exploratory analyses suggested 

that maternal age, height and body mass index (BMI) were relevant predictors and these variables 

were included in the models.  Their values were mean centred based on the data from the HAPO 

Brisbane sample and the association of glucose values with outcomes was assessed using the 

individual values for fasting/one hour/two hour glucose on the 75g HAPO OGTT as well as using a 

standardised average  measure of glycemia during the OGTT, calculated using the following formula:  

average OGTT = ([standardised fasting glucose] + [standardised one hour glucose] + [standardised 

two hour glucose]) / 3. Parity was collapsed to nulliparous (referent) vs parous. 

The following models were developed: A) fasting OGTT result only; B) fasting and one hour OGTT 

results; C) fasting and two hour OGTT results; D) fasting, one hour and two hour OGTT results; E) 

average OGTT results; F) Hemoglobin A1c (HbA1c); G) fasting, one hour and two hour OGTT 

results and maternal demographics (age, height, BMI, parity); H) average OGTT components and 

maternal demographics (age, height, BMI, parity). 

Logistic regression analyses were undertaken for the four clinical outcomes using the independent 

variables outlined above (Models A – H).  Given the exploratory nature of this study, potential 

predictor variables were included in the regression analyses for all outcome variables, even if they 

were not individually significant on bivariate analysis for some outcomes (see Table 2).  Statistical 

assumptions for models were tested and met.  For each model the predicted risk of each outcome was 

calculated and compared using the Mann-Whitney U test between actual cases and non-cases. To 

enable comparison to existing criteria, the Youden Index “optimal cut-off” and the “diagnostic cut-

off”  (where the specificity is approximately three times the sensitivity)[13] for each model was 

determined.  Sensitivity, specificity and ROC AUC was calculated for existing criteria and for Models 

A - H.  Each model was also applied to the whole dataset to determine how many participants would 

be identified as ‘at-risk’ of each outcome using both the Youden Index “optimal” cut-off and the 

diagnostic cut-off thresholds.  These dichotomous predictions derived from Models A – H were then 

compared to existing dichotomous criteria.   Analyses were conducted in Stata/SE 13.1 (StataCorp 

LLC, College Station, Texas, USA) and deemed statistically significant at the 0.05 level. 

3.0 Results 
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A total of 1248 women from the Brisbane HAPO cohort met the inclusion criteria.  Baseline 

characteristics are noted in Table 1.   

Comparing the existing sets of international criteria, 113 (9.1%) participants were classified as GDM 

by the previous ADIPS criteria, 131 (10.5%) using IADPSG, 134 (10.7%) using NICE and 33 (2.6%) 

using the ACOG / Carpenter and Coustan criteria.  In total, 191 (15.3%) participants were diagnosed 

by one or more sets of GDM diagnostic criteria, with only 30 participants diagnosed as GDM by all 

four criteria (Figure 1). 

All sets of existing criteria yielded low sensitivities, specificities, ROC AUC and Youden Indices 

when related to the clinical adverse outcomes. Sensitivities for birth injury ranged from 7.7% (95% CI 

0.2%-36.0%, ACOG) to 30.8% (95% CI 9.1%-61.4%, IADPSG), specificity 89.3% (95% CI 87.5%-

91.0%, NICE) to 97.4% (95% CI 96.4%-98.2%, ACOG), ROC AUC 0.523 (95% CI 0.421-0.626, 

NICE) to 0.602 (95% CI 0.472-0.733, IADPSG) and Youden Index 4.7% (NICE) to 20.5% 

(IADPSG).  Results were similar for primary CS, LGA and adiposity (data not shown).  There was no 

statistically significant difference between the predictive ability of the four pre-existing sets of GDM 

diagnostic criteria, however visual inspection indicated that the IADPSG criteria were consistently 

slightly better (Figure 2a), and therefore IADPSG criteria were used in subsequent comparisons to the 

new models developed. 

Similar analyses were carried out for the newly developed regression models A to F, using the 

Youden Index to determine a potential cut-off value to categorise participants as “at-risk” of each 

clinical outcome.  If applied in clinical practice, this designation would be similar to a GDM 

“diagnosis” using a conventional dichotomous approach. 

When comparing the five models, there was no statistically significant difference between the models. 

However, in general, the point estimates for model C (fasting and 2 hour OGTT results) were higher 

than for the other models.  There was a statistically significant benefit over IADPSG for prediction of 

primary CS (Figure 2b).  Using model C, there were 39.0%, 36.6%, 36.2%, 53.5%, 31.7% and 60.1% 

of participants identified as at-risk of primary CS, birth injury, LGA, adiposity, hyperinsulinemia and 

hypoglycaemia, respectively, compared with actual rates of 19.3%, 1.6%, 14.0%, 8.2%, 7.7% and 

10.5%. 

In order to develop a model that provided less over-classification of “at-risk” patients, models A to F 

(containing glycemic variables only) were re-evaluated using the diagnostic cut-off (Figure 2c).  

There were no statistically significant differences between the five models.  Using model C (for 

consistency with the model chosen based on the Youden Index), there were 18.7%, 14.3%, 16.7%, 

16.8%, 17.7% and 23.1% of participants identified as at-risk of primary CS, birth injury, LGA, 

adiposity, hyperinsulinemia and hypoglycaemia respectively, compared with actual rates of 19.3%, 

0.8%, 14.0%, 8.2%, 7.7% and 10.5%. 
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Model G (individual GTT components) and model H (averaged GTT results) included maternal 

characteristics, in addition to the OGTT results, as independent variables. While both models 

demonstrated similar strength of relationships between the independent variables and the clinical 

outcomes, model G had slightly better predictive ability (data not shown), and as such results from 

model H will not be presented. 

Differing combinations of maternal age, height, BMI, parity, fasting glucose and two hour OGTT 

glucose were significantly related to the clinical outcomes of interest (Table 2).  Parity, BMI and 

fasting glucose were most frequently associated with a clinical outcome.  When using the logistic 

regression models to calculate the predicted risk for each case and outcome, there was a significant 

difference in the median predicted risk between actual cases and non-cases. 

The potential utility of these models arguably lies in their potential ability to calculate a predicted 

absolute risk for outcome(s) on a continuous scale, rather than to dichotomise outcome risks into “at 

risk” and “not at risk” categories.  However, to allow comparison with the dichotomous results of 

current diagnostic criteria, the sensitivity, specificity and ROC AUC were calculated for model G 

using both the Youden Index and the diagnostic cut-off (Table 3).  Figure 5 presents the ROC curves 

for the dataset for the four key clinical outcomes, along with the point estimates of sensitivity and 

specificity for each of the four existing international criteria, model C (Youden Index and diagnostic 

cut-off) and model G (Youden Index and diagnostic cut-off). 

4.0 Discussion 

Despite spirited defence of their supposed virtues by proponents aligned with various national and 

international professional and scientific organizations, all the existing criteria for dichotomous 

classification or “diagnosis” of HIP performed extremely poorly in terms of objective ROC analysis 

in the current study, with ROC AUCs generally < 55%.  Thus, they are barely superior to “tossing a 

coin” in terms of specifically identifying individual women at risk of adverse pregnancy outcomes.  

Such a result is perhaps not unexpected given the known continuous relationship between glucose 

measures and pregnancy outcomes [2].  When the commonly used Youden index is applied and 

“optimal” cut-offs used to delineate women “at risk” of particular adverse outcomes, the ROC AUCs 

improve to approximately 60%, but at the cost of over classification, with 30 – 60% of the cohort 

identified as “at risk”.  Higher potential rates of GDM diagnosis have already been identified as a 

barrier to implementation of the IADPSG / WHO 2013 criteria into clinical practice [14, 15] and a 

further increase in the frequency of women identified as “at risk” and potentially requiring 

intervention appears untenable.   

Given this pragmatic obstacle, we also considered the potential use of “diagnostic” thresholds, also 

derived from ROC analysis, as a way of better identifying women “at risk”.  Due to the continuous 

risk gradient and the inevitable “trade – off” between sensitivity and sensitivity involved, this 
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approach gave lower frequencies (between 14 – 23%) of women identified as “at risk”, but 

nonetheless performed better than existing dichotomous diagnostic criteria (see Figure 5a).   

Overall, the ROC curve analyses demonstrate both the poor performance of existing strategies for 

classification of HIP and the difficulty of developing dichotomous approaches to separating “normal” 

from “abnormal” or “at risk” from “not at risk” across a spectrum of risk.  The risk gradient is 

acknowledged as continuous, but tradition and “clinical thinking” seek to dichotomise it at all costs, 

even in defiance of the observed data. 

We consider that a more rational future approach, in line with the findings described in this study, 

would be to define a point estimate of the absolute risk (and appropriate confidence intervals) of 

specific adverse outcomes for each woman on the basis of her individual demographic, clinical and 

laboratory findings.  The variables used in the current study provide the initial basis for a logical 

approach to this issue.  The data used in our regression models have significant strengths, being 

derived from carefully standardized clinical observational data with strict quality control and data 

supervision.  Furthermore, glucose measurements in HAPO were blinded and women received no 

glucose lowering treatment, eliminating treatment confounding on the basis of perceived risk.  

However, some important limitations must also be noted.  The data used in development of these 

models were confined to a single HAPO center and to women of Caucasian ethnicity (89% of HAPO 

participants at the Mater site) and require validation across geographically and ethnically diverse 

cohorts.  Women with marked hyperglycemia were unblinded and treated under the HAPO study 

protocol [2] and thus the models do not encompass the full range of glucose values which might be 

encountered in routine clinical practice, especially in areas with a high prevalence of diabetes.  

Further, previous randomized controlled trials (RCTs) have been conducted using inclusion criteria 

based on existing dichotomous diagnostic frameworks [16, 17] and have demonstrated meaningful 

clinical benefits in terms of immediate pregnancy outcomes.  Thus, an attempt at risk classification 

using an alternative approach such as a “risk engine” would require validation before being used 

routinely in clinical care.   

Risk models have been applied to other aspects of GDM.  Barnes et al [18] have reported a risk model 

designed to predict the likelihood of a woman with GDM requiring insulin therapy, but this model 

employed a conventional dichotomous GDM diagnosis strategy [7].   Kalter – Lebovici have reported 

a risk model designed to determine which women should proceed from initial fasting glucose testing 

to a full OGTT, taking into account other clinical features [19].  However, this model again viewed 

GDM in a dichotomous fashion and the primary outcome considered was GDM diagnosis rather than 

specific pregnancy outcomes. 
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Despite these caveats we believe that the “risk engine” approach as described in this paper offers a 

viable alternative to current dichotomous approaches to diagnosis and management of maternal 

hyperglycaemia in pregnancy and merits further development and evaluation. 
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Table 1: Descriptive statistics for the cohort (N=1248) 

Variable 
Mean Standard 

Deviation 

Gestation at delivery (weeks) 39.8 1.5 

Birthweight (g) 3522 502 

Maternal age (years) 29.4 5.3 

Maternal height (cm) 166 6.1 

Maternal BMI 29.0 5.7 

Basal glucose 4.4 0.4 

One hour glucose 7.4 1.5 

Two hour glucose 6.2 1.2 

 N % 

Parity – 0 680 54.5 

Parity – 1 348 27.9 

Parity – 2 140 11.2 

Parity – 3 80 6.4 

Parity – parous 568 45.5 

Primary Caesarean section 241 19.3 

Birth injury including shoulder dystocia 29 1.6 

Large-for-gestational age 175 14.0 

Adiposity (N=1,000) 100 10.0 

Hyperinsulinemia (N=992) 76 7.7 

Hypoglycaemia (N=695) 73 10.5 
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Table 2: Results of logistic regression analysis including maternal age, maternal height, parity, maternal BMI and individual GTT components for model G 

Outcome Standardised coefficients Median (IQR) Predicted Risk 

Maternal 

Age 

Maternal 

Height 

Parous BMI Fasting 

GTT 

One-hour 

GTT 

Two-hour 

GTT 

Non-

cases 

Cases p-value
#
 

Primary CS 
0.267* -0.165* -0.632* 0.243* 0.074 -0.023 0.088 

13.6% 

(16.6%) 

27.5% 

(21.2%) 
<0.001 

Birth Injury 
-0.101 -0.239 0.042 -0.408 0.541* 0.358 -0.074 

0.5% 

(0.8%) 

1.8% 

(1.9%) 

<0.001 

LGA 
-0.123 0.340* 0.191* 0.247* 0.168* 0.075 0.177* 

11.0% 

(8.8%) 

16.9% 

(13.5%) 
<0.001 

Adiposity 
-0.278* 0.143 0.131 0.206* 0.219* 0.148 0.044 

8.3% 

(6.0%) 

10.4% 

(9.0%) 
<0.001 

Hyperinsulinemia 
0.140 -0.061 0.009 0.063 0.156 

0.255 0.045 6.6% 

(4.4%) 

8.4% 

(5.7%) 

<0.001 

Hypoglycaemia 
-0.045 -0.055 -0.110 -0.119 0.186 

0.091 0.036 10.1% 

(3.2%) 

10.9% 

(4.3%) 

0.032 

* indicates a statistically significant relationship at the 0.05 level with the outcome 

# Mann-Whitney U test 

CS Caesarean section; LGA large-for-gestational age; IQR interquartile range; BMI body mass index; GTT glucose tolerance test 
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Table 3: Statistics and 95% confidence intervals for the primary five models evaluated 

 

Primary CS 

(n=241, 19.3%) 

Birth Injury 

(n=29, 1.6%) 

LGA 

(n=175, 14.0%) 

Model 
Sens Spec 

ROC 

AUC 

n (%) 

classified 
Sens Spec 

ROC 

AUC 

n (%) 

classified 
Sens Spec 

ROC 

AUC 

n (%) 

classified 

IADPSG 

13.3% 

(9.3%-

18.2%) 

90.2% 

(88.2%-

91.9%) 

0.517 

(0.494-

0.541) 

- 

30.8% 

(9.1%-

61.4%) 

89.7% 

(87.9%-

91.4%) 

0.602 

(0.472-

0.733) 

- 

16.0% 

(10.9%-

22.3%) 

90.4% 

(88.5%-

92.1%) 

0.532 

(0.503-

0.561) 

- 

Model C 

(Youden) 

52.3% 

(45.8%-

58.7%) 

64.2% 

(61.1%-

67.1%) 

0.582 

(0.547-

0.617) 

487 

(39.0%) 

84.6% 

(54.6%-

98.1%) 

63.9% 

(61.1%-

66.6%) 

0.743 

(0.640-

0.845) 

457 (36.6%) 

56.0% 

(48.3%-

63.5%) 

67.0% 

(64.1%-

69.8%) 

0.615 

(0.576-

0.655) 

452 (36.2%) 

Model C 

(Diagnostic) 

27.8% 

(22.2%-

33.9%) 

83.5% 

(81.1%-

85.8%) 

0.557 

(0.526-

0.587) 

233 

(18.7%) 

23.1% 

(5.0%-

53.8%) 

85.7% 

(83.7%-

87.7%) 

0.544 

(0.425-

0.664) 

179 (14.3%) 

28.6% 

(22.0%-

35.9%) 

85.3% 

(83.0%-

87.3%) 

0.569 

(0.534-

0.604) 

208 (16.7%) 

Model G 

(Youden) 

67.6% 

(61.3%-

73.5%) 

71.2% 

(68.3%-

74.0%) 

0.694 

(0.661-

0.727) 

453 

(36.3%) 

69.2% 

(38.6%-

90.9%) 

70.5% 

(67.9%-

73.1%) 

0.699 

(0.568-

0.830) 

373 (29.9%) 

85.1% 

(79.0%-

90.1%) 

45.7% 

(42.7%-

48.7%) 

0.654 

(0.624-

0.684) 

732 (58.7%) 

Model G 

(Diagnostic) 

30.3% 

(24.6%-

36.5%) 

90.8% 

(88.8%-

92.5%) 

0.605 

(0.575-

0.636) 

166 

(13.3%) 

30.8% 

(9.1%-

61.4%) 

92.7% 

(91.1%-

94.1%) 

0.617 

(0.487-

0.748) 

94 (7.5%) 

29.1% 

(22.5%-

36.5%) 

88.5% 

(86.5%-

90.4%) 

0.588 

(0.553-

0.623) 

174 (13.9%) 

Sens sensitivity; Spec specificity 
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Adiposity 

(n=100/1000, 10.0%) 

Hyperinsulinemia 

(n=76/992, 7.7%) 

Hypoglycaemia 

(n=73/695, 10.5%) 

Model 
Sens Spec 

ROC 

AUC 

n (%) 

classified 
Sens Spec 

ROC 

AUC 

n (%) 

classified 
Sens Spec 

ROC 

AUC 

n (%) 

classified 

IADPSG 

17.0% 

(10.2%-

25.8%) 

90.1% 

(88.0%-

92.0%) 

0.536 

(0.497-

0.574) 

- 15.8% 90.5% 0.531 - 9.6% 89.1% 0.493 - 

Model C (Youden) 

70.0% 

(60.0%-

78.8%) 

46.3% 

(43.0%-

49.7%) 

0.582 

(0.534-

0.630) 

668 

(53.5%) 

51.3% 

(39.6%-

63.0%) 

70.5% 

(67.5%-

73.5%) 

0.609 

(0.551-

0.668) 

396 

(31.7%) 

69.9% 

(58.0%-

80.1%) 

42.8% 

(38.8%-

46.8%) 

0.563 

(0.507-

0.620) 

750 

(60.1%) 

Model C (Diagnostic) 

28.0% 

(19.5%-

37.9%) 

84.0% 

(81.4%-

86.3%) 

0.560 

(0.514-

0.606) 

209 

(16.8%) 

28.9% 

(19.1%-

40.5%) 

83.7% 

(81.2%-

86.1%) 

0.563 

(0.511-

0.616) 

221 

(17.7%) 

27.4% 

(17.6%-

39.1%) 

78.3% 

(74.8%-

81.5%) 

0.528 

(0.474-

0.582) 

288 

(23.1%) 

Model G (Youden) 

86.0% 

(77.6%-

92.1%) 

35.6% 

(32.4%-

38.8%) 

0.608 

(0.570-

0.645) 

824 

(66.0%) 

36.8% 

(26.1%-

48.7%) 

83.4% 

(80.8%-

85.8%) 

0.601 

(0.545-

0.657) 

227 

(18.2%) 

34.2% 

(23.5%-

46.3%) 

80.5% 

(77.2%-

83.6%) 

0.574 

(0.517-

0.632) 

271 

(21.7%) 

Model G (Diagnostic) 

29.0% 

(20.4%03

8.9%) 

87.7% 

(85.3%-

89.7%) 

0.583 

(0.537-

0.629) 

172 

(13.8%) 

28.9% 

(19.1%-

40.5%) 

86.4% 

(84.0%-

88.5%) 

0.577 

(0.524-

0.629) 

187 

(15.0%) 

27.4% 

(17.6%-

39.1%) 

82.6% 

(79.4%-

85.5%) 

0.550 

(0.497-

0.604) 

242 

(19.4%) 
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Figure 1 

 

 

 

 

Legend Figure 1 

Venn diagram depicting the participants who received gestational diabetes diagnoses by the four sets 

of international criteria 

Abbreviations: ADIPS Australasian Diabetes in Pregnancy Society (ADIPS), IADPSG International 

Association of Diabetes in Pregnancy Study Groups, NICE National Institute for Clinical Excellence, 

ACOG American College of Obstetricians and Gynecologists   
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Figure 2:  

a)  

 

 

 

 

 

 

 

 

 

 

 

 

b)  

  

Hyperinsulinemia 

Hyperinsulinemia 
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c)  

 

  

Hyperinsulinemia 
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Legend Figure 2: 

Comparison of AUC ROC (95% CI) for six key clinical outcomes. Models compared a) existing 

international criteria, b) IADPSG and the five new models using Youden index, c) optimal model 

using Youden index cut-off and the five new models using the diagnostic cut-off 
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Figure 3:  
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Figure 3 Legend: 

Model G ROC curve with point estimates of sensitivity and specificity for each of the four existing 

international GDM diagnosis criteria, as well as models C and G, for a) primary Caesarean section, b) 

birth injury, c) large-for-gestational age, d) neonatal adiposity, e) hyperinsulinemia, f) hypoglycaemia. 

 


