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Abstract: Quantifying rainfall-derived inflow and infiltration (RDII) in a sanitary sewer is difficult when 

RDII and overflow occur simultaneously. This study proposes a novel conductivity-based method for 

estimating RDII. The method separately decomposes rainfall-derived inflow (RDI) and rainfall-induced 

infiltration (RII) on the basis of conductivity data. Fast Fourier transform was adopted to analyze variations in 

the flow and water quality during dry weather. Nonlinear curve fitting based on the least squares algorithm 

was used to optimize parameters in the proposed RDII model. The method was successfully applied to 

real-life case studies, in which inflow and infiltration were successfully estimated for three typical rainfall 

events with total rainfall volumes of 6.25 mm (light), 28.15 mm (medium), and 178 mm (heavy). 

Uncertainties of model parameters were estimated using the generalized likelihood uncertainty estimation 
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(GLUE) method and were found to be acceptable. Compared with traditional flow-based methods, the 

proposed approach exhibits distinct advantages in estimating RDII and overflow, particularly when the two 

processes happen simultaneously.  

Keywords: Conductivity; Inflow; Infiltration; Sanitary sewer overflow; Sewer system  

1 Introduction 

Sewer systems transport municipal wastewater from cities to treatment facilities. Rainfall-derived inflow and 

infiltration (RDII) can cause serious operational problems in sanitary sewer systems and downstream 

wastewater treatment plants. These processes amplify pumping costs, increase the wastewater load, and dilute 

the wastewater. Additionally, RDII increases the probability of sanitary sewer overflows (SSOs) and risk of 

drainage pipe collapse (Vallabhaneni et al. 2008). The inflow and infiltration volumes can reach more than 

100% of the ordinary wastewater quantity, and this characteristic directly decreases the pollutant removal 

efficiency (Ellis and Bertrand-Krajewski 2010). These phenomena seriously threaten infrastructure security 

and wastewater treatment plant (WWTP) operations. Thus, monitoring and assessing the inflow and 

infiltration processes are crucial to solve the problems associated with the operation and management of sewer 

systems. 

Flow information can be readily used to assess inflow and infiltration into a sewerage system. These processes 

are commonly analyzed based on the principle of balancing annual or daily flow rates. For example, the 

“triangle method” ranks all flow values (daily mean values) in ascending order to estimate inflow and 

infiltration (Weiss et al. 2002). Minimum nightly flow was also used to determine infiltration (Franz 2006). 

Moreover, several reformative methods have used filters to extract time series of total flow and determine the 
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quantity of inflow and infiltration (Vaes et al. 2005). These flow-based methods do not accurately quantify 

when sewer overflow occurs as a result of RDII.  

Additionally, water quality monitoring has been adopted to assess inflow and infiltration coupled with flow 

data. Traditional pollutant index such as chemical oxygen demand (COD) (Kracht and Gujer 2005,
 
Bareš et al. 

2009), total nitrogen (TN) (Shelton et al. 2011) and total phosphorus (TP) (Mattsson et al. 2016) were used to 

assess inflow and infiltration. TN and TP were found to be more reliable water quality parameters.  Several 

stable intrinsic tracers have also been applied to assess RDII as alternative to normal water quality indicators. 

Naturally occurring stable isotopes of water (
18

O/
16

O) (Kracht et al. 2007, De Bénédittis et al. 2005, Houhou et 

al. 2010) was successfully used to determine the source and the amount of rainwater or groundwater entering 

an drainage system. These methods can provide accurate information regarding inflow and infiltration, but 

they require intensive measurements. Online collection of such water quality data is difficult, especially in 

large sewer systems.  

Complex models based on hydrological and hydraulic mechanisms have also been applied to simulate inflow 

and infiltration. Distributed hydrological models are generally used to describe surrounding hydrogeological 

processes and their interactions with the sewer network. Sewer flow is commonly assumed to be composed of 

sewage, inflow, and infiltration. Inflow and infiltration can be further separated into three different 

components as follows: i) groundwater infiltration (GWI); ii) rain-induced infiltration (RII); and iii) direct 

storm water inflow, which is also called rain-derived inflow (RDI) (Bennett 1999, Staufer et al. 2012). 

Hydrological models are commonly used to illustrate the transformation of precipitation into runoff at the 

subcatchment scale. Belhadj et al. (1995) proposed a simple multiparameter conceptual model to simulate RII 

in a sewer system using hourly measurements of rainfall and flow rates. Gustafsson et al. (1999) developed 
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the MouseNAM model, in which the fast runoff component from impervious surfaces and the slow runoff 

component caused by infiltration into the sewer system from the surrounding soil were both considered. The 

Run-off Routing (RORB) model is a similar model based on several tanks in series that can be used to 

distinguish various flow components (Laurenson et al. 1990). Karpf and Krebs (2011) presented a method for 

quantifying inflow and infiltration based on a multimodel approach. In the Stormwater Management Model 

(SWMM) and the Sanitary Sewer Overflow Analysis and Planning toolbox, RDII can be presented using the 

so-called RTK method based on a synthetic unit hydrograph. This method assumes that RDII occurs in a 

sewer in response to a specific precipitation volume over a given period based on the sewershed 

characteristics (Lai 2008). Boukhemacha et al. (2015) studied urban groundwater flow using a mathematical 

model with geospatial analysis. Mao et al. (2016) proposed an approximate point source method for 

measuring soil infiltration and verified the method using three soil types in laboratory experiments. However, 

similar to flow-based methods, these hydrologic/hydraulic methods are not suitable for flow situations where 

overflow and/or backflow occur. 

Furthermore, several statistical and probabilistic methods have been introduced to study the relationship 

between RDII and rainfall volume. Zhang (2005) proposed an autoregressive regression framework, in which 

flow and rainfall data were considered to realize reliable estimation of RDII. Pate and Rahman (2010) 

investigated the applicability of Monte Carlo simulation with the RORB model. Mikalson (2011) developed 

two conceptualizations to estimate RDII using a derived probability distribution theory. However, these 

complex statistical and probabilistic models require large computational runtimes and are difficult to 

implement in real-time simulations based on online monitoring.  

This study is performed to develop a simple and cost-effective method to estimate inflow, infiltration, and 
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sewer overflow in a sanitary sewer system based on conductivity data, which are simple and easy to monitor. 

The method facilitates the estimation of RDII as RII and RDI separately not only in normal flow conditions, 

but also when RDII occurs simultaneously with overflow or backflow. The proposed approach enables the 

quantification of overflow by regenerating flow data based on the estimated RDII.  

2 Methods and Materials 

2.1 Field trial and data preparation  

Online wastewater flow and quality data were collected in a sewer system in Wuxi City, China (Figure S1). 

The catchment area of the monitoring site was approximately 0.8 km
2
. This network was mainly a separate 

sanitary sewer system with hidden cross-connections. The pipe diameter at the monitoring site was 600 mm, 

and the dry weather flow varied between 40 m
3
/h and 120 m

3
/h. The flow meter used in the system was a 

HACH FL900AV Flow Meter. The depth was measured using a submerged pressure transducer in the 

flowmeter. Rainfall event was recorded by a Sigma Rain Gauge Tipping Bucket with a Hach FL900 Series 

Flow Logger. Conductivity was measured using a water quality instrument (Product Model: PLOC100, 

independent development) that monitors the conductivity, temperature, oxidation-reduction potential (ORP), 

and pH. Data collection lasted for approximately one year. All data (flow, water level, conductivity, and 

rainfall) were collected at 10-minute intervals. The quality of the monitoring data was assessed using Local 

Regression Smoothing (Hastie and Loader 1993) to remove disturbances and outliers.  

When RDII exceeded the conveyance capacity of the system, the water level in the system increased and 

caused backwater or even overflow. Rainfall events could be grouped into three categories, namely, light, 

medium, or heavy. Light rainfall events were events that raised water level in the sewer system without 
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backwater formation. Medium rainfall events were events that raised the water level and caused backwater to 

form (i.e., the flow decreased but was still positive). These phenomena indicated that the inflow and 

infiltration exceeded the capacity of the sewer, and SSOs occurred. Heavy rainfall events were events that 

raised the water level and caused backflow (i.e., the flow at the monitoring site become negative). Three 

representative rainfall events are shown in Table 1. 

2.2  Variation in flow and conductivity in dry weather  

Dry weather flow and its conductivity can be characterized using spectral analysis and fast Fourier transform 

(FFT) into components of sine functions as follows: 
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where y is the flow rate or conductivity at the monitoring point; and Ai, fi, and ϕi represent the amplitude, 

frequency, and phase of the 
thi sine function, respectively. C is the average value of the diurnal variation in the 

flow rate or conductivity. The major frequencies ( if ) were determined based on the high amplitudes ( iA ) 

generated by the FFT.  

2.3  Model of inflow and infiltration with instantaneous unit hydrograph in wet weather flow  

Inflow and infiltration can be simulated as the final outflow of a series of cascaded linear reservoirs. As 

derived in the Supplementary Information [Equations (S1) and (S2)], the outflow from the cascaded linear 

reservoirs is as follows (Nash 1957):  
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where  tu ,0  is the instantaneous unit hydrograph, which represents the RDII flow as the result of unit, 

instantaneous rainfall. N is the number of linear reservoirs,  N  is the gamma function of N, and K is the 

storage coefficient of the linear reservoir (Supplementary Information).  

Rainfall is always continuous rather than instantaneous. Thus, the instantaneous unit hydrograph should be 

converted to a temporal unit hydrograph, which is used to describe the RDII process produced by per unit 

rainfall in the record time span (  , which is 10 min in our study) as follows: 

     
0
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, 0, 0, -

t t
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u t t u d u t d
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      (3) 

where    is the record time interval of rainfall,         represents the outflow as the result of unit rainfall 

during the period of   .  

Parameter R was used to represent the fractions of rainfall volume that enter the sewer system as RDII. The 

whole monitoring time can be divided into n parts by the record time interval, and i is the ordinal number from 

1 to n. Pi is the rainfall depth per unit time (rainfall record time interval), and the net rainfall entering into the 

sanitary sewer system could be presented as the product of R and Pi in each unit time. F is the sub-catchment 

area upstream of the monitoring site. By summing the ,( )u t t produced by each net rainfall, the discharge of 

RDII can be expressed as follows:  

  
1
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     (4) 

RDI and RII were described using the same principle of cascading linear reservoirs to reduce the 

computational complexity. For the inflow process, RRDI, KRDI, and NRDI were used to substitute for R, K, and N 
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in Equations (2) and (4). Moreover,  ,u t t  in Equation (3), and Q(t) in Equation (4) would be substituted 

by  ,RDIu t t  and QRDI(t), respectively. Similarly, substituting RRII, KRII, and NRII for R, K, and N,  ,u t t  

will be become  ,RIIu t t , and Q(t) will be QRII(t). RRDI and RRII represent the ratio of rainfall that enters the 

sewer system as RDI and RII, respectively, while KRDI and KRII represent the storage coefficients of RDI and 

RII, respectively, while NRDI and NRII represent the number of linear reservoirs of RDI and RII, respectively. 

Then, the wet weather flow QWWF(t) is the sum of the dry weather flow QDWF(t) [from Equation (1)], RDI flow 

QRDI(t), and RII flow QRII(t), as shown by Equation (5) as follows.  

1 1

( ) ( , )) ,( ( )
i i

n n

WWF RDI i RDDWF I RII i RII

i i

F tQ t Q t R P u R ut F P t t
 

           (5) 

2.4 Pollutant balance model in wet weather flow 

Conductivity was chosen as the pollutant indicator in the model. RDI and RII normally decrease the 

conductivity of domestic sewage, as expressed in the material balance equation. The components of wet 

weather conductivity can be combined as Equation (6) as follows: 
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(6) 

WWFc  is the conductivity of the wet weather flow; DWFc , RDIc , and RIIc  are the conductivities of dry 

weather flow, RDI, and RII, respectively. The conductivity of RDI and RII were monitored in a catch-basin 

nearby.  

2.5 Data analysis to determine RDII 

QDWF and CDWF can be described by Equation (1). The parameters related to dry weather would be determined 
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first by the dry weather flow and conductivity. Then, six parameters (RRDI, RRII, KRDI, KRII, NRDI, and NRII) 

related to the wet weather were used in the model. These six parameters were calibrated either by fitting the 

observed wet weather flow [Equation (5)] or by fitting the wet weather conductivity [Equation(6)], which will 

produce two parameter sets to be compared to crosscheck the model applicability in different rainfall 

scenarios. Moreover, the parameter set calibrated by Equation (6) can be substituted into Equation (5) to 

calculate wet weather flow and vice versa. The goodness-of-fit was evaluated using the Nash–Sutcliffe (NS) 

efficiency coefficient [Equation (S3)[. The above data analysis methodology is summarized in Figure 1. 

Nonlinear fitting method based on iterative reweighted least squares algorithm (Holland and Welsch 1977; 

Dumouchel and O'Brien 1991) was performed to optimize the parameters in the model. The weights of each 

iteration were recalculated based on the residual of the observed data of the previous iteration. This 

recalculation mitigated the influence of outliers. Iterations continued until the weights converged. Given that 

RDI represents the direct inflow of runoff, RII represents infiltration, in which rainwater enters into the 

system through soil. Inflow and infiltration can be separated, because they have different flow rates in physics. 

During fitting, the constraints of parameters were determined as RRDI>RRII, KRDI<KRII, NRDI<NRII to guarantee 

the flow rate difference. 

The uncertainty of the model and 90% confidence interval of parameters were evaluated with generalized 

likelihood uncertainty estimation (GLUE) method (Beven and Binley 1992). GLUE adopts the concept of 

equifinality of models, parameters, and variables. This methodology consists of three steps (Jensen 2003). 

First, the prior distribution, which is typically discrete or continuous uniform distribution, of the parameters 

was determined. Second is the stochastic simulation based on the parameters defined previously, with Monte 

Carlo method to evaluate a random sample of the parameter sets. Third, the simulation and the corresponding 
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parameter sets were rated according to which they fit the observed data for every single simulation. If the 

simulated results were close to the observed values, the simulation and this parameter set were accepted as 

having a given likelihood (NS value in our case). Otherwise, this simulation and parameter set would be 

rejected. These three steps were repeated, until iterations reached the set point (5000 iterations in our case). 

The cumulative distribution function (CDF) was calculated for all accepted parameters, and the value 

corresponding to 5% and 95% of the CDF will be the 90% confidence interval of the parameters. The model 

uncertainty was revealed through the CDF of the accepted simulation results. 

3 Results 

3.1 Flow and conductivity variations during dry weather 

Time series of dry weather flow rate and conductivity profiles were analyzed using spectral analysis and FFT. 

The dry weather data before the large rainfall event were analyzed as an example. Spectral analysis was used 

for all seven days of the dry weather flow to obtain an overall fitting. Two major frequencies were extracted 

from the flow and conductivity monitoring data [Figures 2(a)–(d)]. Frequencies of 1/day and 2/day reflected 

periods of 1 day and 0.5 days, and these values correspond to water usage habits with morning and evening 

peaks, as shown by Butler et al. (1995) and Gernaey et al. (2011). The flow amplitude at a frequency of 1/day 

was 62.80 m
3
/h, while the amplitude at 2/day was 37.69 m

3
/h [Figures 2(a) and (b), Table S1]. Thus, the 

diurnal period was more notable than the semidiurnal period. Conductivity also exhibited similar periodic 

characteristics [Figures 2(c) and (d)]. Increasing the number of Fourier series yielded higher NS values. For 

example, the NS values were 0.67, 0.86, and 0.93 using second-order, fifth-order, and tenth-order Fourier 

series, respectively. The fifth-order Fourier series were adopted in our study, because it can meet the 
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requirement to regenerate the dry weather flow and conductivity (Tables S1 and S2). Figures 2(a) and (c) 

show the fitting results of the flow and conductivity data, respectively.  

3.2 RDII determination during a light rainfall event 

A small rainfall event was used to calibrate the model and estimate RDI and RII. In Figure 3(a), the mean dry 

weather flow before the rainfall event was 44 m
3
/h, while the maximum wet weather flow reached 131.4 m

3
/h 

during the rainfall event. The model parameters were determined based on the observed flow data using 

Equation (5) (Table 2). The results indicate that the fraction of rainfall volume converted to inflow was 22.7% 

(RRDI) and the fraction of rainfall volume converted to infiltration was 13.2% (RRII). Therefore, approximately 

35.9% of the rainfall volume entered the sanitary sewerage pipes as RDII. During inflow, 6.8 cascade 

reservoirs were used, and each had a storage coefficient of 5.2. During infiltration, the soil was divided into 

9.6 vertical cascade reservoirs, and each reservoir had a storage coefficient of 6.8. The large value of N 

resulted in slower infiltration than the inflow process as expected. The total RDI, total RII, and total RDII 

volumes were 1135.2 m
3
, 660.7 m

3
, and 1795.9 m

3
, respectively (Table 3). Conductivity simulation based on 

Equation (6) is shown in Figure 3(b), and the parameter values are listed in Table 2. The parameters calculated 

based on the conductivity and flow data were similar (Table 2). Figures 3(c) and (d) show the RDI and RII 

flows determined based on flow and conductivity, respectively. The RDI and RII flows calculated based on the 

conductivity data exhibited good agreement with the result based on flow data [Figures 3(e)-2(f)], confirming 

the suitability of conductivity as a water quality parameter for determination of RDI and RII flows. Using the 

parameters determined by conductivity to predict RDII of other two light rainfall events, the validation results 

are shown in Figure S2. Conductivity of the other two events were good fitted, indicating the parameter set 

can be applied to assess RDII of small rainfall events. 
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3.3 RDII determination during a medium rainfall event  

A medium rainfall event created SSOs in this sanitary sewer system due to high water levels. Figure 4(a) 

shows that the flow increased on the second day and decreased on the third day after this event. However, the 

water level remained high until the third day. These phenomena indicated that some of the water was 

discharged as SSOs in the sewer system. Model parameters were determined based on the flow data for the 

medium rainfall event to test the adaptability of flow-based model. The model parameters and 90% confidence 

interval are listed in Table 2. The NS efficiency coefficient between the observed and simulated flow data was 

only 0.029 (Table 2), suggesting that the flow data were difficult to fit. Figure 4(b) shows that the simulated 

flow was lower than the observed flow. Thus, the flow-based model does not produce a good prediction for 

the observed flow data in this scenario because of backwater. Moreover, the calculated RDI and RII flows 

shown in Figure 4(c) are not reliable estimates of the true inflow and infiltration flows. Substituting the 

calculated RDI and RII flows into Equation (6) shows the modeled conductivity profile [Figure 4(d)]. The 

flow-based model underestimated RDII but overestimated the conductivity. The results indicate that the model 

based on the flow data cannot effectively estimate the inflow and infiltration process for this medium rainfall 

event.  

When the conductivity data was used to estimate the RDI and RII flows for the medium rainfall event, the 

observed and simulated conductivity data (Figure 4(e)) fit well with an NS efficiency coefficient of 0.54 

(Table 2). The fractions of the rainfall volume entering into the sewer system as inflow and infiltration are 

10.1% (RRDI) and 8.2% (RRII), respectively (Table 2). RRDI and RRII were less than those associated with the 

light rainfall event probably because RDII exceeded the capacity of the system. The inflow and infiltration 

profiles are shown in Figure 4(f). Infiltration is considerably slower than inflow rate. The total RDII volume 
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was approximately 4172.4 m
3
, with an RDI and RII volumes of 2302.8 m

3
 and 1869.6

 
m

3
, respectively.  

The actual total wastewater flow was estimated based on the RDII flows and the DWF pattern [Figure 4(g)]. 

Significant difference was found between the simulated and observed flows mainly during the period with 

higher water levels [Figure 4(h)]. The flow difference was likely caused by storage in upstream sewerage 

pipes and overflow discharged from sewerage pipes upstream of the monitoring location. The amounts of 

overflow can be calculated by integrating the difference between the simulated and observed flows, which 

produced a value of 1207.9
 
m

3
 for this event as a result of SSOs (Table 3). The result indicates that the 

conductivity-based model can identify inflow and infiltration flows during medium rainfall events with SSOs. 

The validation results when the parameters of medium rainfall event were used to model conductivity and 

RDII of other medium rainfall events are shown in Figure S3. The good fitting results show that the model 

and parameter set were applicable to predict RDII of medium rainfall events. 

3.4 RDII determination during a heavy rainfall event 

The proposed conductivity-based model was also implemented during a heavy rainfall event. This case 

demonstrated an extreme scenario when flow rate decreased abnormally after the rainfall [Figure 5(a)]. This 

scenario was more complex (Figure S4) than the previous two scenarios. The model simulation results based 

on the dynamic variations of conductivity are shown in Figure 5(b). The NS value between the observed and 

simulated conductivities was 0.59 (Table S1), indicating a good fit. The ratio of rainfall entering into the 

sanitary system as RDI (RRDI) was 8.1%, while the ratio of rainfall transferring into RII (RRII) was 3.5%. The 

estimated RDI and RII flows are shown in Figure 5(c). The total volumes of RDI and RII were 11534.4 m
3
 

and 4984.0
 
m

3
, giving a total RDII volume of 16518.4 m

3
 during the heavy rainfall event. The integration of 
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the difference between the observed and simulated flow data [Figure 5(d)] yielded an estimated SSO volume 

of 39732.2 m
3
 during the rainfall event (Table 3). The results indicate that the conductivity model is suitable 

for estimating inflow and infiltration during extreme and abnormal flow scenarios associated with heavy 

rainfall events. By contrast, the flow-based model is obviously not suitable. The validation of large rainfall 

events are shown in Figure S5. In addition, the method was applied to larger scales from pump station to 

WWTP, and acceptable results were obtained (Figure S6). In larger scale, the method was still applicable 

according to the variation mode of conductivity. 

4 Discussion  

4.1 Choice of timespan for determining dry weather flow and conductivity patterns  

For the proposed approach, determining a proper time scale is important to represent the characteristics of dry 

weather flow and conductivity profiles. Normally, the quantity and quality of domestic wastewater have two 

peaks in the morning and evening, respectively, with late-night and mid-day minima (Butler et al. 1995, 

Gernaey et al. 2011). However, distinct variations in quality and quantity are found in different sewer system 

catchments, and significant seasonal variations are observed. Simple periodic functions with periodicities of 

one day, such as low-order Fourier series, have been proposed in previous studies to describe the diurnal 

variations in dry weather flows and pollutant concentrations (Rodríguez et al. 2013). Generally, dry weather 

period for the studied sewer normally lasts for 1–weeks between two rainfall events (Figure S7). The 

influence of the different time scales of dry weather flow should be evaluated. The parameter distribution of 

dry weather [Equation (1)] was conducted based on different timescales, namely, 1, 2, 3, and 7 days, based on 

spectral analysis (Figure S8). The amplitudes, initial phases, and mean values of flow and conductivity at 
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frequencies of 1/day to 4/day are shown in Figure S9. The results indicate that variations in the given 

parameters decrease as the timescale increases. Moreover, the predictions of dry weather flow and 

conductivity based on 7 days were more accurate than those based only on individual days.  

4.2 Parameter sensitivity and model uncertainty analysis 

The uncertainty of a model is associated with three different sources, namely, the measured data uncertainty, 

parameter uncertainty, and model structure uncertainty (Saltelli et al. 2008). The assumption of cascading 

linear reservoirs for inflow and infiltration processes will introduce uncertainty into the model. The criteria for 

assessing simulation results should be determined based on the uncertainty analysis. Parameter sensitivity and 

uncertainty were analyzed using GLUE (Beven and Binley 1992). The parameters were divided into accepted 

and rejected categories according to NS values higher or lower than a threshold value. In this case, the NS 

threshold was chosen as 0.5 for conductivity and 0.3 for flow to obtain a better fitted result. The lower and 

upper bounds of the output range were obtained by resampling the parameters in the accepted sets. The 

medium rainfall event was chosen to evaluate the model uncertainty and parameter sensitivity. Figure 6 shows 

the 90% confidence regions of the simulated conductivity and calculated RDII, with the distribution of the six 

parameters in the wet weather model shown in Figure S10. Parameters RRDI and RRII exhibited approximately 

normal distributions, NRDI and NRII exhibited skewed distributions, and KRDI and KRII exhibited approximately 

uniform distributions. Two-sample Kolmogorov-Smirnov (KS) test (Wang et al. 2003) was used for the 

accepted and rejected parameter sets to evaluate the sensitivities of the parameters. The test results are shown 

in Table S3. Global sensitivity can be sorted according to the S value of KS test results. The findings show 

that NRDI and NRII had the highest sensitivity, while KRDI and KRII showed the lowest sensitivity. These 

characteristics indicate that NRDI and NRII should be paid more attention, such as giving more reasonable prior 
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distribution according to its physical meaning when calibrating parameters. More intensive online monitoring 

data and higher data quality can also reduce the uncertainty and increase the sensitivity of the parameters.  

4.3  Implication of the proposed method 

Understanding inflow and infiltration is important for sewer operations. Inflow and infiltration can be used as 

potential indicators to evaluate sewer conditions, such as possible cross-connections and pipe leakage/failures. 

Several infiltration models, such as Horton’s Method (Horton 1933, 1945), Green-Ampt equation (Green and 

Ampt 1911), and the Curve Number Method (Rossman 2015) embedded in SWMM, can be used to determine 

the total volume of rainwater that infiltrate into groundwater. Karpf and Krebs (2011) assumed that the 

infiltration rate is a ratio of the difference between the groundwater level and the water level in pipes based on 

Darcy’s law, and SWMM adopted an unsaturated upper zone and a saturated lower zone to describe the 

amount of groundwater entering a sewer system. However, these methods are difficult to apply to our 

monitoring area because of the lack of detailed infrastructure data. By contrast, the model proposed in this 

study first successfully decomposes the dynamic profile of RDII separately based on the conductivity 

monitoring. Compared with these methods, the proposed method use conductivity to evaluate the RDII 

process based on the instantaneous unit pollutograph. This process is advantageous, especially when 

backwater exists and the water level in the sewer system is high. Moreover, conductivity monitoring is simpler 

and easier than measuring COD, NH4
+
-N, or PO4

3−
-P in the sewer system.  

5 Conclusions 

A method for estimating inflow and infiltration flows in sewers was proposed and demonstrated using real-life 

applications. The method was based on conductivity data and an instantaneous unit pollutograph model. The 
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proposed method was successfully implemented to identify the dynamic inflow and infiltration flows 

associated with rainfall entering a sewer system. The proposed method has distinct advantages over traditional 

flow-based methods for estimating inflow and infiltration, especially when the events produce backwater, 

overflow, and abnormal flow data in sewer systems. The method uses very simple conductivity sensors. Thus, 

the proposed approach can be easily implemented for real-life applications.  
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Tables and Figures 

Figure 1. The diagram of the model integration. 

Figure 2. Spectrum analyses of flow and conductivity data. (a) Dry weather flow and model fit using 

second-order and fifth-order Fourier series; (b) Spectrum analysis of flow data; (c) Dry weather conductivity 

and model fit using second-order and fifth-order Fourier series; (d) Spectrum analysis of conductivity data. 

Figure 3. Estimating RDII for the light rainfall event. (a) Simulated and observed flows; (b) Simulated and 

observed conductivity profiles; (c) Inflow and infiltration flows calculated based on flow data; (d) Inflow and 

infiltration flows calculated based on conductivity data; (e) Comparison of RDI flow calculated from flow and 

conductivity data; (f) Comparison of RII flow calculated from flow and conductivity data. 

Figure 4. Estimating RDII using flow data ((a)- (d)) and conductivity data ((e) - (h)) for the medium rainfall 

event. (a) Observed flow and water level in the manhole; (b)Observed and Simulated flow data by fitting flow 

data; (c)RDII calculated based on flow data; (d)Observed and simulated conductivity data by fitting flow data; 

(e)Observed and simulated conductivity data by fitting conductivity data; (f) RDII calculated based on 

conductivity data. (g)Observed and Simulated flow data by fitting conductivity data; (h) Dynamic water level 

and flow difference (     ) between the observed and simulated flow by fitting conductivity data. 

Figure 5. Estimating RDII using conductivity data for the heavy rainfall event. (a) Modeled and observed flow 

data; (b) Observed and simulated conductivity data; (c) RDII calculated based on conductivity data; (d) 

Dynamic water level and flow difference (Δflow) between the observed and simulated flow data. 

Figure 6. Model uncertainty analysis of the medium rainfall event. (a) 90% confidence region of simulated 
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conductivity; (b) 90% confidence region of RDII.  

 

Table 1. Three typical rainfall scenarios used to evaluate the model. 

Table 2. Optimized parameters and 90% confidence interval based on flow and conductivity under different 

rainfall events. 

Table 3. Volume (m
3
) of RDII and SSOs in the three rainfall events 

 

Figure S1. The map of monitoring site and the sewer system. 

Figure S2. Validation of small rainfall events. 

Figure S3. Validation of medium rainfall events. 

Figure S4. The backflow process in the sewer system. (a) Level and velocity. (b) Flow variation at the 

monitoring site and conductivity profiles at an upstream and a downstream location. 

Figure S5. Validation of large rainfall events. 

Figure S6. Fitting result of conductivity in WWTP and pump station. 

Figure S7. Daily rainfall data recorded from 2013 to 2015. 

Figure S8. Four different ways to group the dry weather flow and conductivity to identify parameters. (A) 

Dividing of the seven days of dry weather flow and conductivity into seven parts, each comprising one day; 

(B) Grouping of the seven days of dry weather flow and conductivity every two days; (C) Grouping of the 
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seven days of dry weather flow and conductivity every three days. (D) Treating the seven days’ data as a 

whole. 

Figure S9. Parameter identification of dry weather flow and conductivity on different timescales with spectral 

analysis. (a) Flow amplitude at frequencies of 1 d
-1

 to 4 d
-1

; (b) Initial phase of flow at frequencies of 1 d
-1

 to 4 

d
-1

; (c) Mean value of flow; (d) Amplitude of conductivity at frequencies of 1 d
-1

 to 4 d
-1

; (e) Initial phase of 

conductivity at frequencies of 1 d
-1

 to 4 d
-1

; (f) Mean value of conductivity. 

Figure S10. Distributions of the six parameters of the medium rainfall event with GLUE method. 

 

Table S1. Results of spectrum analysis of dry weather flow 

Table S2. Results of spectrum analysis of dry weather conductivity 

Table S3. KS test for the sensitivity analysis of model parameters 
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Figure 1. The diagram of the model integration. In Section 2.1, the online monitoring of flow and conductivity 

are illustrated. In section 2.2, the basic variation pattern of dry weather flow and conductivity is extracted by 

spectrum analysis. In section 2.3, the hydrograph of RDII is introduced. The wet weather flow is obtained by 

summing dry weather flow and RDII. By fitting the monitored wet weather flow, the parameters are 

determined. In section 2.4, the pollutograph of conductivity is generated with material balance equation. By 

fitting the monitored wet weather conductivity, the parameters are determined. The RDI and RII can be 

estimated by the calibrated parameters. 

 

 



  

 

27 

 

 

 

 

 

  

 (a) (b) 

 

 (c) (d) 



  

 

28 

 

Figure 2. Spectrum analyses of flow and conductivity data. (a) Dry weather flow and model fit using 

second-order and fifth-order Fourier series; (b) Spectrum analysis of flow data; (c) Dry weather conductivity 

and model fit using second-order and fifth-order Fourier series; (d) Spectrum analysis of conductivity data.  
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 (c) (d) 
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Figure 3. Estimating RDII for the light rainfall event. (a) Simulated and observed flows; (b) Simulated and 

observed conductivity profiles; (c) Inflow and infiltration flows calculated based on flow data; (d) Inflow and 

infiltration flows calculated based on conductivity data; (e) Comparison of RDI flow calculated from flow and 

conductivity data; (f) Comparison of RII flow calculated from flow and conductivity data 
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 (a) (b) 

 

  

 (c) (d) 
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 (e) (f) 

 

 

  (g) (h) 

Figure 4. Estimating RDII using flow data ((a) - (d)) and conductivity data ((e) - (h)) for the medium rainfall 

event. (a) Observed flow and water level in the manhole; (b)Observed and Simulated flow data by fitting flow 

data; (c)RDII calculated based on flow data; (d)Observed and simulated conductivity data by fitting flow data; 

(e)Observed and simulated conductivity data by fitting conductivity data; (f) RDII calculated based on 

conductivity data. (g)Observed and Simulated flow data by fitting conductivity data; (h) Dynamic water level 

and flow difference (     ) between the observed and simulated flow by fitting conductivity data. 
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 (a) (b) 

  

 (c)  (d) 

Figure 5. Estimating RDII using conductivity data for the heavy rainfall event. (a) Modeled and observed flow 

data; (b) Observed and simulated conductivity data; (c) RDII calculated based on conductivity data; (d) 

Dynamic water level and flow difference (     ) between the observed and simulated flow data.  
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 (a) (b) 

Figure 6. Model uncertainty analysis of the medium rainfall event. (a) 90% confidence region of simulated conductivity; (b) 

90% confidence region of RDII  
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Table 1. Three typical rainfall scenarios used to evaluate the model  

Event Total rainfall (mm) Duration (h) Peak Intensity (mm/hour) Classification 

1 6.25 15 0.75 light 
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2 28.5 92 3.04 medium 

3 178 59 10.92 heavy 
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Table 2. Optimized parameters and their 90% confidence interval based on flow and conductivity under different rainfall events 

rainfall 

type 

calibration 

data 

RRDI RRII KRDI NRDI KRII NRII NSflow NSCond 

light flow 

22.70% 0.132 5.2 6.8 6.8 9.6 

0.32 0.62 

(20.1%,23.8%) (10.1%,15.4%) (4.04,5.48) (6.06,7.71) (6.28,7.95) (8.49,10.90) 

light Cond. 

0.221 0.138 5.3 6.9 6.7 9.5 

0.28 0.65 

(20.3%,23.8%) (12.3%,15.8%) (4.14,5.75) (6.07,7.80) (6.21,7.92) (8.36,10.89) 

medium flow 

0.062 0.031 2.1 2.9 2.5 4.2 

0.029 0.42 

(4.1%,7.2%) (1.1%,4.4%) (1.06,2.86) (2.05,3.80) (1.19,3.91) (3.12,4.91) 
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medium Cond. 

0.101 0.082 3.8 6.1 5.4 11.2 

-0.09 0.54 

(8.2%,11.7%) (6.2%,9.7%) (3.08,4.84) (5.08,6.85) (4.19,6.86) (10.11,11.90) 

heavy Cond. 

0.081 0.035 4.2 6.4 5.8 10.6 

-7.07 0.59 

(6.2%,9.8%) (2.1%,4.8%) (3.13,5.78) (5.09,6.88) (5.10,6.89) (9.15,11.83) 

 

Calibration data (flow or conductivity) was used to determine the model parameters with nonlinear fitting. The 90% confidence interval of the parameters was 

evaluated with generalized likelihood uncertainty estimation (GLUE) method. RRDI and RRII was the ratio of rainfall entering into the system as RDI or RII. 

KRDI and KRII was the storage coefficient of RDI and RII process. NRDI and NRII was the number of the reservoirs of the RDI and RII process in the 

model. 
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Table 3. Volume (m3) of RDII and SSOs in the three rainfall events  

Volume RDI RII RDII DWF TOTAL SSO  Transported 

light 1135.2 660.67 1795.9 8425.9 10221.8 0 10221.8 

medium  2302.8 1869.6 4172.4 18439.6 22612.0 1207.9 21404.1 

heavy 11534.4 4984.0 16518.4 21220.0 37738.4 39732.2 -1993.8* 

* minus means inverse flow. In this case, the wastewater flow upstream, contributing to SSO.  

 

The total volume of RDI can be calculated with the equation 

             
 

 

             

Where QRDI(t) is the RDI hydrograph, Vrain is the total rainfall volume. In the same way, the volume of RII 

can be calculated. Volume of RDII was the sum of RDI and RII. The volume of DWF was the integral of dry 

weather flow. TOTAL means the sum of DWF and RDII. The volume of SSO is calculated by the integral of 

difference between modelled and observed flow data, as the equation:  

                       
 

 

   

The transported volume was the integral of the observed flow data at the monitoring site. In the medium 

rainfall event, 21404.1 m3 wastewater was transported downstream. In the heavy rainfall event, 1993.8 m3 

wastewater flow upstream as part of the SSO. 
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> A novel pollutograph method was proposed for estimating rain-induced inflow and infiltration 

 

> The inflow and infiltration was decomposed separately based on the conductivity monitoring  

 

> The method was successfully applied to a real-life case study for three typical rainfall events  

 

> The method exhibits distinct advantages in estimating RDII and overflow simultaneously 
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