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Abstract

This article investigates pollution permit auctions that incorporate allowance reserves. In these
auctions the sale of a fixed quantity of permits is supplemented by an additional permit reserve. This
reserve automatically releases permits if a sufficiently high price is triggered. The main justifications
for implementing an allowance reserve are to reduce price volatility as well as assisting in cost
containment. We show—paradoxically—that incorporating an allowance reserve into a permit
auction can decrease firms’ payoffs, increase the clearing price, and increase compliance costs. This
has implications for all major cap-and-trade markets, including the US Regional Greenhouse Gas
Initiative.
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1 Introduction

Cap-and-trade markets are now a common regulatory instrument to control pollution. Behind this
enthusiastic adoption is the core economic rationale of least-cost pollution control: the aggregate costs of
pollution control are minimized by allowing firms to trade a fixed number of pollution permits. Although
regulation is apparently least-cost, current regulators have real concerns about the prohibitive costs to
industry. The potential for price volatility—and therefore increased (and uncertain) industry costs—has
placed the issue of cost containment at the center of policy debates (Tatsutani and Pizer, 2008). Many
regulators have implemented cost-containment procedures to reduce firms’ compliance costs and ensure
strong industry support. One such mechanism is the so-called allowance reserve, which provides the
market with a fixed reserve of permits that can be released if a threshold permit price is triggered (Murray
et al., 2009).1 This mechanism is now common practice in major cap-and-trade markets, which include
the Cost Containment Reserve (CCR) of the US Regional Greenhouse Gas Initiative (RGGI), the Market
Stability Reserve (MSR) of the European Union Emissions Trading Scheme (EU-ETS), and the Allowance
Price Containment Reserve (APCR) of the Californian Cap-and-Trade Program (AB-32).

Within these cap-and-trade markets, a second structural change has been observed; the process of
initial permit allocation is moving away from free allocation towards auctioning. Until very recently,
the auctions that did exist tended to follow a very standard format: a multi-unit auction with a fixed
number of permits. Importantly, however, many of these auction formats have been modified to include
the existence of an allowance reserve. Thus in some schemes—such as RGGI—the auction system now
has endogenity in the supply of permits: firms’ bids can now activate the release of additional permits.2

Given the addition of an allowance reserve, it is a priori unclear how the auction equilibria will change.
Having an additional supply of permits realized on reaching a trigger price may have consequences for
firms’ equilibrium bidding strategies, revenue generation, and the functioning of the permit market.
Given that both the auctioning of permits and the presence of an allowance reserve are prevalent in
contemporary cap-and-trade markets, it is important to consider how these two institutional structures
interact and the implications for cost containment.

In this article we investigate a permit auction under the presence of an allowance reserve. We
model a permit auction in which the supply of permits can be increased if the clearing price reaches
a threshold trigger price. We provide firms’ equilibrium bidding strategies, as well as the implications
for the regulator’s revenue and auction clearing prices. We find that for a class of symmetric subgame-
perfect equilibria, implementing an auction with allowance reserve may, in fact, decrease firms’ expected
payoffs and increase the clearing price relative to an auction without allowance reserve. Intuitively, the
introduction of an allowance reserve distorts firms’ demand schedules. As a result, for clearing prices
below the trigger price, the allowance reserve is not activated. This could lead to a lower level of permit
allocation (and identical price) relative to an standard auction: firms’ payoffs are strictly lower under
the implementation of an allowance reserve. This scenario is very likely to occur: as we prove in this
article, clearing prices above the trigger price do not constitute an equilibrium. Indeed, further support

1This is also known as a ‘soft’ price ceiling (Fell et al., 2012). Other cost containment processes—such as ‘hard’ price ceilings
and price collars—have also been considered. Cost containment can be established by allowing offsets to enter the market as
well as the introduction of banking and borrowing mechanisms (Fell and Morgenstern, 2010).

2This is also similar to the allowance reserve proposed in H.R. 2454 (Waxman-Markey Bill). Other schemes have subtle
differences. As documented in Fell (2015), the European Commission decided to: (i) ‘backload’ permits by reducing the number
of permits for sale at auction in Phase III of the scheme. Allowances were planned to be reduced by 400 million in 2014, 300
million in 2015 and 200 million in 2016, as well as (ii) creating the Market Stability Reserve (MSR). The MSR is triggered
when the number of permits in circulation falls outside a pre-defined range. In particular, allowances are added to the reserve
(taken away from future auctions) if the total surplus of permits is higher than 833 million allowances. Similarly, allowances
are released from the reserve if the total surplus falls below 400 million allowances. In the Californian Cap-and-Trade Program
AB-32, the reserve can be sold to firms for a predetermined (three-tiered) price (Borenstein et al., 2015).
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arises as we additionally show that there exists only one equilibrium where the allowance reserve is
actually used, and this occurs when the clearing price is equal to the trigger price. Interestingly, in
this one equilibrium the allowance reserve is completely exhausted, which suggests we are unlikely to
observe partially used reserves in reality. Our model predictions fit the experiences of the US Regional
Greenhouse Gas Initiative (RGGI).

In our framework the regulator sets a reserve price, quantity of allowance reserve, and a threshold
trigger price: all three parameters are set prior to the auction and are common knowledge to all firms. If
the initial clearing price is larger than the trigger price, then the reserve quantity is released until either
the clearing price becomes equal to the trigger price or the whole reserve exhausts. To investigate this, we
advance the framework of a multi-unit uniform-price auction, where bidders simultaneously submit their
demand schedules. In such a setting the regulator aggregates the demand schedules then determines
the clearing price. This core process is frequently used in the auctioning of financial securities, pollution
permits, and energy products (Ausubel and Cramton, 2004). The popularity of uniform-price auctions
continues even though it is well known that they have inefficient equilibria: bidders’ optimal strategies
may result in a reduction of their actual demand functions and consequently the clearing price is lower
than the equivalent Walrasian equilibrium price (e.g., Wilson, 1979; Back and Zender, 1993; Wang
and Zender, 2002; Ausubel et al., 2014). The majority of literature on multi-unit auctions focuses on
fixed supply, yet a small sub-field now considers variable supply (Hansen, 1988; Lengwiler, 1999; Back
and Zender, 2001; LiCalzia and Pavan, 2005; McAdams, 2007; Montero, 2008; Damianov and Becker,
2010). Although this sub-field of literature allows the auction supply to vary, the choice of quantity is
generally unrestricted and is often chosen to maximize the seller’s payoff. In contrast to this literature,
we provide an alternative framework with two distinct features. First, in our setting the reserve quantity
for sale is restricted due to policy (and political) design. Thus, unlike the existing literature, the choice
of additional supply cannot be determined after the bids have been submitted. Second, the additional
supply is based on conditionality: the additional quantity will only be released for a sufficiently large
aggregate demand schedule. Thus we provide the first analysis of a multi-unit auction with a trigger
price and fixed reserve. Using our framework, we provide a paradoxical result; namely, introducing a
cost containment reserve may actually decrease firms’ payoffs and increase the price of permits and the
associated costs of compliance. As many permit auctions are used for their price-discovery benefits, this
distortion has the potential to generate incorrect price signals to market participants.3

Our model has similar structural characteristics to the auction process of the Regional Greenhouse
Gas Initiative (RGGI).4 This market incorporates 9 Northeastern US states and controls greenhouse gases
emitted from the power sector. Since its inception in 2008, quarterly auctions (with a reserve price)
have initially allocated the permits. From the beginning of 2014, the auction mechanism was augmented
to include a Cost Containment Reserve (CCR) (RGGI, 2013). Initially the allowance reserve was set at 5
million permits then increased and sustained at 10 million permits each year thereafter (the allowance
reserve is not transferable between years). The auction trigger price required to release the permits was
set at $4 per CO2 allowance in 2014 and $6 per CO2 allowance in 2015. This trigger price increases
to $8 and $10 per CO2 allowance for the years 2016 and 2017, respectively, and increases by 2.5%
per annum thereafter. As can be seen from Table 1, the CCR has been fully exhausted in two auctions
with the clearing prices fitting our predictions. The question then arises: how effective is the allowance
reserve in controlling costs within the auction mechanism?

3As explained by Ellerman et al. (2000), the use of annual US EPA auctions for the Acid Rain Program helped to stimulate
the permit market by generating early price signals, which could be used to assist in bilateral trade as well as providing new
entrants with a secure method of permit allocation. Further evidence has been provided—for a range of auction types—that
show permit auction clearing prices track underlying market conditions accurately (Burtraw et al., 2010a).

4For the preliminary auction design of RGGI see Holt et al. (2007).
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Table 1: RGGI auction results 2014-2015.

Auction Permits
offered

CCR released volume
(% of reserve)

Clearing price in $ per
allowance

Auction 30 (Q4 2015) 15,374,274 0 $7.50
Auction 29 (Q3 2015) 15,374,294 10,000,000 (100%) $6.02
Auction 28 (Q2 2015) 15,507,571 0 $5.50
Auction 27 (Q1 2015) 15,272,670 0 $5.41
Auction 26 (Q4 2014) 18,198,685 0 $5.21
Auction 25 (Q3 2014) 17,998,687 0 $4.88
Auction 24 (Q2 2014) 18,062,384 0 $5.02
Auction 23 (Q1 2014) 18,491,350 5,000,000 (100%) $4.00

Source: Adapted from: https://www.rggi.org/market/co2_auctions/results

An extensive debate exists over the effectiveness of allowance reserves. Proponents of these allowance
reserves show that, under the presence of uncertainty, allowance reserves reduce the net present value of
compliance costs. In particular Fell et al. (2012) shows, by using a stochastic dynamic framework, that
an expansion of an allowance reserve reduces net present value of control costs, but at a diminishing
rate.5 Further, on investigating the reserve within the EU-ETS, Fell (2015) finds that a reserve can help
stabilize permit allocation price levels in a more cost-effective manner than scheduled permit allocation
reductions.6 Due to the lowering of the net present value of compliance costs, it has thus been argued—
from a political economy perspective—that an allowance reserve “may be able to bridge differences
between environmental advocates seeking a cap on emissions and industrial interests concerned about
costs” (Murray et al., 2009, p. 90). From this perspective, then, the concept of a reserve has been
developed as a politically viable version of a ‘hard’ price collar (safety valve) (Burtraw et al., 2010b;
Fell and Morgenstern, 2010; Grüll and Taschini, 2011; Fell et al., 2012).7 Yet there continues to be
a controversial debate over the use of a reserve. For example, Borenstein et al. (2014, pp. 86-88)
argues—in the context of the California AB-32 market—that in order to fully control price volatility the
regulator should, instead, be ready to expand the reserve in order to limit the clearing price (akin to
having a ‘hard’ price ceiling).8 Indeed, as seen above in the context of RGGI, the allowance reserve has
been completely exhausted each year, which may not effectively contain costs within the auction.

Throughout this debate, attention has—justifiably—focused on the ability of the allowance reserve to
dampen cost shocks and aggregate compliance costs within the permit market. As such it has abstracted
from the complex interactions between the allowance reserve and the auction mechanism. Yet given that

5An important design issue is the source of permits within the allowance reserve. It is clear that, holding demand constant,
if the permits are sourced from the current cap, then clearing prices may rise under the presence of an allowance reserve
(Schatzki, 2012). Yet as this article proves, demand schedules endogenously change due to the inclusion of an allowance
reserve. Murray et al. (2009) suggests permits can be sourced from future caps (“system borrowing”) or allowing them to
vanish if not used (thus establishing a range of potential long term caps).

6Recently, however, Perkis et al. (2016), Shobe et al. (2014), and Holt and Shobe (2016) conducted laboratory experiments
and found that ‘soft’ ceilings often did not perform well.

7Hybrid approaches were first analyzed by Roberts and Spence (1976) and developed by Pizer (2002). Recent approaches
on price controls have incorporated issues relating to strategic behavior (Stocking, 2012) and compliance (Holland and Moore,
2013; Hasegawa and Salant, 2014).

8For an analysis of price volatility within the California AB-32 market see Borenstein et al. (2015) and for a discussion of
the issues involved within permit auction design see Lopomo et al. (2011).
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auctions provide a major component of information dissemination (such as price discovery) within the
market, it is important to consider the potential impact of an allowance reserve. In this article, then, we
address this gap by focusing our attention on how an allowance reserve has the potential to alter the
auction equilibria.

Our contribution is twofold. First, we establish a novel auction framework that incorporates an
allowance reserve with a trigger price. We add to the literature by incorporating an auction supply
mechanism that is both limited in size and has the characteristics of conditionality. This, therefore,
extends the scope and potential applicability of multi-unit auctions with endogenous supply. Second,
we advance the policy debate on allowance reserves by critically evaluating the potential consequences
of a reserve within a permit auction. This article, then, provides the first theoretical analysis of this
connection. We are thus able to suggest potential auction design improvements for existing cap-and-trade
markets that incorporate allowance reserves.

The article is structured as follows. In Section 2 we provide a formal model of the auction mechanism
with and without an allowance reserve. In Section 3 we detail the relative merits and drawbacks of
an allowance reserve within a permit auction. Section 4 extends the model to asymmetric marginal
valuations as well as decreasing valuations. Section 5 provides some policy implications for the RGGI
auctions. Section 6 provides some concluding remarks. All proofs are provided in the Appendix.

2 The model

2.1 Preliminaries

Consider a cap-and-trade market that consists of an index set of firms I = {1, 2, . . . , n}. The regulator
of this market has an aggregate emissions target of Q ∈ R+ and initially allocates a corresponding number
of pollution permits via a permit auction.9 Suppose firms have a marginal value of v for each pollution
permit, which is common knowledge to all firms but not the regulator.10 This assumption is made for
tractability of the analysis, however we show later in the article (Section 4) that our main results still
hold when we allow for asymmetric permit valuations and decreasing marginal valuations. Although the
regulator does not know v, it knows v is distributed according to some distribution function F(.) with
the support [v, v̄]. F is twice differentiable and has a continuous density f <∞.

The regulator sells the Q permits via an uniform-price sealed-bid auction with a reserve price r > 0.
Similar to existing cap-and-trade markets, the regulator also has an allowance reserve of permits, which
can be released to the auction if the clearing price reaches a certain threshold. Formally, denote the
allowance reserve as Q̆ ≡ Q̄−Q > 0, where Q̄ is the maximum supply of permits. The regulator commits
to the following permit supply schedule: if the clearing price is higher than a trigger price, denoted p̃,
then the regulator releases more permits (up to Q̆ > 0) in order to reduce the market-clearing price
towards p̃.

Our auction game is structured as follows. First, the regulator announces {Q, Q̄, p̃, r}. Second, firms
submit permit demand schedules. There are two possible scenarios that can occur: (i) the clearing price
is p∗ ≤ p̃ and (ii) the clearing price p∗ > p̃. In the first case, all bids higher than the clearing price would

9As our focus here is on how existing institutional auction designs affect participating firms, we abstract from the regulator’s
objective function. We do, however, provide analysis of revenue maximization later in the article.

10The marginal value v is the avoided marginal costs of reducing pollution. We thus follow the realistic construction of
marginal abatement costs (e.g., Mckinsey and Company, 2016) and assume that firms have long-run marginal abatement cost
curves that are globally convex but discontinuous because of alternative technology classes that increase in (marginal) cost. In
other words, the marginal abatement cost function is a step function where marginal costs are constant for specific technology
classes but discontinuously jump when adopting new technologies.
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receive their submitted quantities and pay p∗: the allowance reserve is not utilized. In the second case,
the regulator releases more permits until either the clearing price becomes equal to p̃ or the whole extra
permits exhausts.

2.2 An auction mechanism without an allowance reserve

Each firm i ∈ I submits a demand schedule di(p, v) : [r,∞)→ [0,Q], which is decreasing and left
continuous. The aggregate demand is the sum of individual demand functions, such that D(p, v) =
∑n

i=1 di(p, v). Given demand schedules and a quantity of permits Q for sale in auction, the clearing price
is,

p∗ =max
§

p|D(p)≥Q; p ≥ r
ª

. (1)

If there is no price higher than r that satisfies the above condition, then the clearing price becomes the
reserve price r. In this case, at least some of the total supply of permits will not be allocated. Now it is
possible that the aggregate demand becomes discontinuous or flat at some points including p∗. If the
demand is flat at p∗ then we have excess demand at the clearing price and the extra demand must be
rationed. In particular, a discontinuity in each firm’s demand at any price p can be defined by∆di(p, v)≡
di(p, v)− limp′↓p di(p′, v), where p′ is any price greater than p. Aggregating over all firms determines
this discontinuity for the total demand schedule, which we denote by ∆D(p, v)≡

∑n
i=1∆di(p, v). Using

this we can derive firm i’s permit allocation,

q∗i (p
∗, v) = di(p

∗, v)−
�

D(p∗, v)−Q
�∆di(p∗, v)
∆D(p∗, v)

. (2)

Firm i’s equilibrium initial allocation of permits equals their permits received from their individual
demand schedule at the clearing price di(p∗, v) minus the pro rata reduction of permits due to excess
demand (if any). That is, the ratio on the right hand side is the total excess demand (D(p∗, v) −Q)
multiplied by the proportion of discontinuity (excess demand) for firm i relative to all firms ∆di(p∗,v)

∆D(p∗,v) .
Given the clearing price and the equilibrium quantity, each firm pays the total amount of p∗q∗i (p

∗, v) for
all permits received. Therefore, the payoff function for firm i ∈ I , given a clearing price p∗, is

πi = (v − p∗)q∗i (p
∗, v). (3)

We first begin by analyzing the equilibrium demand schedules when the supply of permits is fixed
at the level Q. For a fixed supply of permits, if the regulator sets a reserve price r ≤ v, then there are
equilibria of the uniform-price auction in which the regulator could do the same by canceling the auction
and setting a fixed price v for all units (Back and Zender, 1993). To avoid such equilibria we focus on
those cases with r > v. The following proposition is adapted from Back and Zender (1993).

Proposition 1 (Back and Zender (1993)). For any price p∗ ∈ [r, v], there is a symmetric pure-strategy
subgame-perfect equilibrium with a clearing price p∗ in which firms have the following demand schedule,

di(p) =















0 if p > p†,

Q (p†−p)
n(p†−p)+p−p∗ if p∗ < p ≤ p†,

Q
n−1 if r ≤ p ≤ p∗,

(4)

where p† = (n−1)v̄
n + p∗

n and each firm receives Q
n permits.
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Proposition 1 suggests that there exists a continuum of equilibrium prices that can lie between the
reserve price and v. There are some notable points about this result. First, as shown in Back and Zender
(1993), even if each bidder has her own independent private signal regarding the marginal value v, we
still have the same set of equilibria and the result remains unchanged. Indeed, this class of equilibria
is independent of bidders private signals. Second, since any price between [r, v] could characterize an
equilibrium with the same final permit allocation Q

n , any rational firm prefers to pay less.11 Therefore,
the most likely prediction is the lowest possible price, that is, the reserve price r. In fact, a clearing price
equal to r is Pareto dominant equilibrium for all firms. The last point raises a major concern for those
auctions without a reserve price (or a small reserve price) as the clearing price can potentially end up
very low. We now turn to consider how these classes of equilibria change when a regulator implements
an allowance reserve.

2.3 An auction mechanism with an allowance reserve

Suppose the regulator announces their target level Q of permits for the auction followed by the
commitment to increase the supply with the allowance reserve Q̆ if the clearing price is greater than
p̃. This mechanism design is similar to the mechanism within the Regional Greenhouse Gas Initiative
(RGGI). One clear observation is that if p̃ is greater than or equal to v, nothing will change: firms would
never pay a price above their marginal valuations. From this point forward we suppose p̃ < v unless it is
explicitly stated otherwise.

Figure 1: Aggregate submitted demand and the allowance reserve

permits

$

D(p)

Q̄Q

p∗

pl

p̃m

p̃h

(a)

$

permits

D1(p) D(p)

D2(p)

Q̄Q

p∗

p∗∗

p̃

v

¯̄v

r

(b)

As shown in Figure 1(a) suppose the aggregate demand is D(p). Then given the permits Q, a clearing
price exists at p∗. There are three possibilities for where p̃ lies with respect to p∗. If p̃ is above p∗ (for

11Our aim in this article is to focus on the consequences for the clearing price when an allowance exists, as such our focus is
not on the individual firm permit allocation. If it was, then it would be possible to incorporate financial capacity constraints for
all firms, which would generate asymmetric post-auction permit holdings.
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example, p̃h), then no further supply would be released and firms with bids higher than the clearing price
would receive their permits and pay p∗. If p̃ is below p∗, two possible cases can happen: (i) pl ≤ p̃ < p∗

(for example, p̃m), where pl is the price in which the aggregate demand is equal to Q̄ and (ii) p̃ < pl . In
the first case, the quantity of permits sold in the auction increases to a point within the interval [Q, Q̄]
and the clearing price becomes p̃. Note that if p̃ = pl the allowance reserve is fully exhausted at Q̄. In
the second case, the quantity of permits sold will increase to Q̄ (the reserve is fully exhausted) but the
reserve quantity is not enough to reduce the clearing price to p̃ and the clearing price becomes greater
than p̃. This illustrates the potential complexity of this supply scheme.

To further assist in our understanding of the supply scheme, observe Figure 1(b), which depicts a
number of potential demand schedules. As shown in Figure 1(b), D(p) is the case where submitted
demand and supply intersect at a point above p̃, but below v, D1(p) is a case where demand is “too low”
with a clearing price p∗ below p̃, and D2(p) is a case where demand is “too high”. As can be observed,
p∗∗ is the highest threshold price in which the addition of an allowance reserve can reduce the clearing
price to p̃. It is important to mention that p∗∗ can be larger than v but as long as v is above p̃ the analysis
remains the same. When the demand is “too high”, such as D2(p), then ¯̄v is the highest threshold price
in which the addition of an allowance reserve would result in the clearing price being equal to firms’
valuations v. Of course, for prices above ¯̄v firms’ demands are zero.

We now provide an equilibrium characterization of the auction with allowance reserve.

Theorem 1. Suppose the regulator commits to a pair (r, p̃) such that, r < p̃, and a supply of Q permits
which can increase up to Q̄ >Q, if the initial clearing price is greater than p̃. For any price p∗ ∈ [r, p̃] there
exists a symmetric pure-strategy subgame-perfect equilibrium in which the final clearing price is p∗ and each
firm has the following demand schedule:

di(p) =







































0 if p > ¯̄v,

Q̄
n
(n−1)v̄+p∗∗−np
(n−1)v̄+p−np if p∗∗ < p ≤ ¯̄v,

Q†

n if p̃ ≤ p ≤ p∗∗,

Q
n
(n−1)v̄+p∗−np
(n−1)v̄+p−np if p∗ < p < p̃,

Q
n−1 if r ≤ p ≤ p∗,

(5)

where Q† =Q+λ(Q̄−Q) with λ ∈ (0, 1], ¯̄v is the highest price in which buyers have positive demand, and
p∗∗ is the maximum price in which the allowance reserve permits are enough to reduce the clearing price to
p̃. Also firm i receives Q

n if p∗ < p̃ and Q̄
n if p∗ = p̃.

Theorem 1 characterizes a continuum of equilibria that includes any clearing price between [r, p̃].
There are numerous demand functions that can characterize equilibria like the one in (5). In fact, one can
show any decreasing left continuous function γ(p) with γ(p∗∗) = Q̄

n , can characterize similar symmetric
equilibria as long as the residual supply left for a bidder is flat enough for prices greater than p∗∗ and
steep enough for prices lower than p∗∗. Such characterization can be observed in Section 4 where we
extend the model to asymmetric values. However, for all these functions the set of equilibrium clearing
prices and the quantity each firm receives would remain the same.

Comparing Theorem 1 with Proposition 1 highlights the structural differences when an allowance
reserve is incorporated into the auction. The introduction of the allowance reserve augments the firms’
demand schedules in such a way as to separate between the emissions target Q and the allowance reserve
Q̆. Further, Theorem 1 proves that p∗ > p̃ cannot constitute an equilibrium in the current setting. To
observe a clearing price greater than p̃, it must be the case that the whole reserve quantity is released
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and is not enough to reduce the price to p̃. Such cases would happen for clearing prices above p∗∗—the
maximum price in which the extra permits are enough to reduce the clearing price to p̃ — which are too
high for firms to increase their payoffs.12

According to Theorem 1, each firm i receives Q
n for p∗ < p̃ and Q̄

n for p∗ = p̃. The implication of
this result is significant. This shows that—in any equilibria—if we observe a clearing price of p̃ then
it is the case that all the extra quantity is used. Indeed, in all other equilibria, the allowance reserve
is left completely unused with a clearing price below p̃. Consider, for a moment, the observable real
world outcomes of the RGGI auctions with an allowance reserve. As we have seen in Table 1, Auction 23
(Q1 2014) and 29 (Q3 2015) resulted in the CCR being released. In both cases, the CCR was entirely
exhausted and the clearing price is in line with our predictions (i.e., equal to the trigger price). This
is, in a sense, good news for the regulator: the aim of the allowance reserve is to prevent prices being
greater than p̃. However, as we will prove in Section 3, obtaining this target via an allowance reserve is
not necessarily desirable. The result in Theorem 1 gives us an important clue to analyze when there is a
higher chance of observing a clearing price equal to p̃ or below.

Lemma 1. Given a value v, if there exists a p̂ ∈ [r, p̃) such that p̂ < v − Q̄
Q (v − p̃), then an equilibrium

clearing price p̃ is Pareto dominated for firms by any clearing price less than or equal to p̂.

The intuition of Lemma 1 suggests even when the reserve is released there are conditions where firms’
payoffs are lower. Given firms’ payoffs are lower under a released allowance reserve it suggests firms
bid in such a way to avoid activating the allowance reserve. This then means that we are more likely to
observe equilibria with smaller clearing prices, which makes the extra supply schedule analogous to an
auction without an allowance reserve.

There are some comparative statics of this result which are important to mention. First, it is clear
that the greater the p̃, the higher the chance that the extra supply becomes unused. However, when
Q̄
Q becomes larger, then there is a greater chance of having a clearing price equal to p̃ and the whole
reserve supply being used. This obviously holds for the case with v > p̃. Remember, however, that v is
not known to the regulator who sets p̃ and it is possible to have p̃ greater than v. In that case it is clear
that the equilibrium is p∗ ∈ [r, v] and the extra supply would never be used.

3 Evaluating the relative merits of allowance reserves in permit auctions

In this section we compare the outcomes of auctions with and without an allowance reserve. We
begin analyzing if the auction with an allowance reserve and trigger price could potentially reduce
the cost to firms, given the current setting. As our aim is to consider how the existing institutional
auction design may affect firms, there is no requirement to model the objective function of the regulator.
Indeed, in reality, it is unclear as to the regulator’s objective. There can be a host of possible objectives,
for example, to maximize revenue (to provide public goods or in the case of RGGI, energy efficiency
schemes), to maximize social welfare, improve allocative efficiency or to simply contain abatement costs
(e.g., Cramton and Kerr, 2002). To provide some highlight, we do consider the optimal auction design
for a regulator that is concerned about revenue maximization.

12It is important to mention that since p̃ is exogenous and is set by the regulator without the knowledge of v it can be set
greater than v. Then the equilibrium demand will be identical to the case without the allowance reserve.
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3.1 Cost containment

The primary goal of an allowance reserve is to contain firms’ cost within a cap-and-trade market.
Due to unexpected cost shocks in the economy, the permit market may experience levels of increased
price volatility and potentially higher levels of compliance costs. Our purpose in this subsection is to
consider the implications of the allowance reserve on firms’ cost (payoffs) within the auction. To do this
we want to hold target-level environmental stringency constant and compare firms’ payoffs when they
can obtain Q̄ permits without an allowance versus an allowance reserve that first distributes Q then Q̆
if the initial clearing price reaches the trigger price.13 The following proposition shows that, in many
cases, the allowance reserve actually reduces firms’ payoffs.

Proposition 2. For a permit allocation of Q̄, there exists a class of symmetric equilibria in which the auction
without an allowance reserve is Pareto superior for firms relative to the auction with an allowance reserve.

Proposition 2 shows that any equilibria with p∗ ∈ [r, p̃) are Pareto superior to the auction with an
allowance reserve. Thus Proposition 2 holds for a large class of equilibria. The only class of equilibria in
the auction that remains to be discussed is p∗ ∈ [p̃, v]. Note that, for an auction without an allowance
reserve, Proposition 1 suggests the most likely prediction is the Pareto superior clearing price p∗ = r.
Thus even for a potentially large continuum of prices, the equilibrium clearing price is likely to be pushed
down towards the reserve price: Proposition 2 is therefore still applicable. Only if the equilibrium
clearing price in the auction remains Pareto inferior for firms (i.e., p∗ ∈ [p̃, v]) will payoffs be higher
under an auction with allowance reserve. As we will illustrate in Section 5, the evidence from RGGI
auctions appears to confirm our predictions in Proposition 2.14

One possible explanation for Proposition 2 is that the permit supply in the auction is larger than or
equal to the supply in the allowance reserve regime; thus, firms’ payoffs are higher (prices are lower).
There is a problem with such intuition: it implicitly assumes that firms’ demand schedules are invariant
to changes in the supply schedule. Yet this is incorrect. We have shown in Theorem 1 and Proposition 2,
that the demand schedules endogenously change when an allowance reserve is included. To highlight
these differences further, we can compare regimes with potentially different environmental stringency
(Q̄ (Q) for an auction with(out) an allowance reserve).

Corollary 1. For every p̂ ∈ [r, p̃) such that p̂ < v− Q̄
Q (v− p̃), an auction with an allowance reserve is weakly

dominated by an auction without an allowance reserve and quantity Q.

We now show for the same class of equilibria discussed above, the impact of an allowance reserve on
the aggregate cost of pollution reduction, which is derived by calculating the area under the demand
schedule and to the right of Q̄.

Corollary 2. For a permit allocation of Q̄, there exists a class of symmetric equilibria in which the auction
with an allowance reserve has higher aggregate pollution abatement costs relative to an auction without an
allowance reserve.

Corollary 2 shows that for our class of symmetric equilibria, pollution reduction costs are lower when
no allowance reserve is implemented. The inclusion of an allowance reserve may therefore not contain
costs within a permit auction.

13We also provide conditions in Corollary 1 under which the auction with tighter environmental stringency Q < Q̄ weakly
dominates the auction with an allowance reserve and emissions Q̄.

14We abstract from introducing exogenous shocks (uncertainty) to the demand schedule. The inclusion of cost shocks is
common practice in the cost-containment literature, as without cost shocks there would be no requirement for an allowance
reserve. Note, however, that introducing cost shocks here will not alter our results. For an objective comparison, regimes with
and without allowance reserves should be subject to identical cost shocks. As such, this has the consequence of altering the
demand schedules for both cases in an identical manner.
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3.2 Clearing prices and maximizing auction revenue

The regulatory objective of cost containment is clearly important for the development of cap-and-trade
markets. Yet the generation (and maximization) of auction revenue is also another objective that we
must consider. Indeed, the generation of periodic and stable revenue is becoming increasingly important:
one can observe from many permit markets that auction revenues are earmarked to provide investment
in new clean technologies, energy efficiency programs, and so on (see, for example, RGGI, 2015).

The next proposition characterizes a condition under which the regulator could guarantee a minimum
clearing price.

Proposition 3. If r > v̄ − Q̄
Q (v̄ − p̃) then there exists a class of symmetric equilibria where:

• in the auction with an allowance reserve the clearing price p̃ is Pareto superior for firms,

• in the auction without an allowance reserve the clearing price of r is Pareto superior for firms.

Therefore, there is a higher probability to observe larger clearing prices in an auction with an allowance
reserve compared to an auction without an allowance reserve with all available units Q̄.

For the allowance reserve regime, Proposition 3 shows that there are two effects on firms’ payoffs
when the equilibrium clearing price is p̃. First, there is a negative effect because firms pay a higher
price. Second, there is a positive effect, which is the release of the extra quantity of permits and thus a
larger share for each firm. Proposition 3 shows a class of equilibria under which the net effect on payoffs
is positive: accordingly, firms prefer a clearing price of p̃. Also the above proposition suggests that
the regulator can implement {r, p̃,Q, Q̄} in such a way—even with incomplete information on v—that
encourages firms to increase their submitted demands in an auction with an allowance reserve. In this
case, unlike the auction without allowance reserve, where the seller has no instruments except the
reserve price, the regulator would expect a higher clearing price and therefore larger revenue if the
marginal value is greater than a threshold ṽ, which is determined by r = ṽ − Q̄

Q (ṽ − p̃).
The above result investigates the conditions where the regulator—by choice of an appropriate reserve

price—can generate a larger clearing price with the inclusion of an allowance reserve. This result,
however, can be interpreted from a broader perspective. As in most permit auctions, the reserve price
(and any per annum increase) is usually fixed at the beginning of auction design. For example under
RGGI the reserve price was set at the outset and increases at 2.5% per annum indefinitely. In absence
of any routine review process, there will exist inertia within the regulatory system, where the value of
reserve price is not always desirable.15 Thus it is feasible that the inequality r > v̄ − Q̄

Q (v̄ − p̃) may hold
due to adjustments and shocks to v (and its bounds [v, v̄]) rather than deliberate regulatory design.
Thus it is perfectly feasible to observe higher clearing prices when an allowance reserve is implemented
simply by the existence of an ‘unresponsive’ reserve price. For the RGGI application, the 2016 variables
are p̃ = $8 per CO2 allowance, r = $2.10 per CO2 allowance, Q̆ = 10 million allowances, and Q ≈ 15
million allowances. Thus using the above inequality, shows that if v̄ > $16.85 per CO2 allowance then
the results in Proposition 3 hold. This, in the current institutional context, is quite plausible.

Although the choice of reserve price is the most obvious transmission mechanism that alters the
clearing price, the regulator can also adjust the allowance reserve without changing the maximum level
of permits Q̄.

Corollary 3. For any positive quantity Q̄ and p̃ < v̄, the regulator can adjust the size of the allowance
reserve such that r > v̄ − Q̄

Q (v̄ − p̃).

15Review processes, of course, exist but inertia will continue until the process is complete and recommendations are
implemented. Even then, market conditions will continually alter.
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Corollary 3 shows the importance of the allowance reserve level, or the ratio of Q̄
Q , in this environment.

In fact, if the regulator wants to maximize revenue, it—only with the adjustment of the reserve quantity—
can generate the conditions for a larger clearing price. Again, using the RGGI application for the 2016
parameters, it can be easily shown that the regulator can obtain the desired outcome if Q̄

Q >
v̄−2.10

v̄−8 . As

the current ratio is Q̄
Q ≈ 1.67, it is quite plausible that the results in Corollary 3 could hold in this context.

3.2.1 Optimal trigger price

One of the key instruments in the current setting is the trigger price. In fact, in reality, trigger prices
may be more adjustable than any other variable from the regulator’s perspective. An interesting question
is what would be the optimal trigger price if the regulator wanted to maximize revenue? Although
there are several possibilities for the equilibrium clearing price in the current setting, we use a max-min
approach to identify the optimal trigger price. In particular, we consider the worst possible clearing
price in the event that the extra supply is not released and then maximize the seller’s objective function.
When the extra supply is released there is only one equilibrium clearing price which is p̃. The following
proposition characterizes an optimal trigger price, given the current reserve allowance scheme.

Proposition 4. Suppose the regulator’s objective is to maximize revenue under the reserve allowance scheme.
Then the optimal trigger price is the one that satisfies

1− F(M)
f (M)

= M , (6)

where M = Q̄p̃−Qr
Q̆

.

Proposition 4 shows that to maximize revenue the optimal trigger price should be set such that

the allowance reserve Q̆ is equal to the hazard rate, where M = Q̄p̃−Qr
Q̆

. Note that from RGGI 2016

parameters (Q = 10, Q̆ = 10, r = 2.10), if we suppose v̄ = $28 per ton of CO2 allowance and v is
distributed uniformly on [0, 28], then the optimal trigger price becomes p̃ ≈ $8. Thus, it is feasible that
the actual optimal trigger price in RGGI is maximizing the regulator’s auction revenue. Further note that
the condition in Proposition 3 is also satisfied with these numbers and therefore, the regulator not only
optimizes the trigger price to maximize revenue but also sets the parameters such that p̃ becomes the
Pareto superior clearing price for firms. Here we fix a reserve price and derive the optimal condition for
the trigger price. Now, however, consider a case where the trigger price is set together with the reserve
price to maximize the regulator’s revenue.

Proposition 5. Suppose the regulator’s objective is to maximize revenue under the reserve allowance scheme,
then the reserve price must be set equal to the trigger price, and the condition in (6) becomes,

p̃ =
1− F(p̃)

f (p̃)
. (7)

Proposition 5 is intuitive. First, the reserve price cannot be larger than the trigger price. Second, as
the reserve price increases then the higher the chance that the extra quantity would be released and
the clearing price becomes the trigger price. Therefore, a reserve price equal to the trigger price is
the optimal choice of the regulator to increase revenue. This result appears to be out of line with the
experiences in RGGI. Note that both the reserve price and the trigger price were set at different stages of
the regulation process: the reserve price was set at the creation of the scheme and the trigger price was
chosen approximately seven years later. Thus, in this case, Proposition 4 provides the realistic experience
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of RGGI where the trigger price is set given a fixed reserve price. We now provide further discussion on
the RGGI auctions.

4 Asymmetric valuations

In this section we investigate how sensitive our results are to the assumption of symmetric values
among firms. First, let us start by assuming that there are two types of firms, low type and high type.
Each low-type firm has a marginal value equal to vl while each high-type firm has a marginal value
equal to vh for permits with 0 < vl < vh < v̄. Types and values are common knowledge among firms
but the regulator only knows l number of firms are low type and the rest are high types. The following
Proposition extends the result of Proposition 1.

Proposition 6. When there are two types of firms,

• for any price p∗ ∈ [0, vl], there is a class of symmetric equilibria where both types demand permits.

• for any price p̂∗ ∈ (vl , vh], there is a class of symmetric equilibria where only high-type firms demand
permits and low-type firms demand zero.

As in Proposition 1, we continue to observe that demand reduction still exists, and there are equilbria
in which the clearing price is very low. However, there is a class of equilibria where the price is too high
for low-type firms, and they exit the auction. One can still show the condition under which the demand
reduction equilibrium remains Pareto dominant for all firms.

We now want to extend the results of Theorem 1 to a case with asymmetric values. Suppose the
regulator chooses a trigger price p̃ and an allowance reserve Q̆ as we defined earlier in the article. Since
the regulator does not know vl and vh, there are three possibilities for which p̃ could be compared to vl
and vh. First, if p̃ > vh, then nothing changes compared to a case without allowance reserve. Second, if
vl < p̃ < vh, then obviously low-type firms would never receive any amount of the extra supply. In this
case, the class of equilibria with clearing prices lower than vl exist and is similar to the one in Proposition
6. For prices above vl the result of Theorem 1 remains unchanged but with one difference that only
high-type firms are active. Finally, if p̃ < vl < vh the following Proposition characterizes the new set of
equilibria.

Proposition 7. If p̃ < vl < vh then, for any price p∗ ∈ [0, p̃], there exist a class of symmetric equilibria such
that:

• for equilibrium prices p∗ < p̃ no allowance reserve is used,

• for an equilibrium price p∗ = p̃, the allowance reserve is completely exhausted.

This section extends the assumption of the original model to a case where firms have asymmetric
values for permits. As results show, there are no significant changes in the set of equilibria. In particular,
the introduction of allowance reserve would not change the result of Theorem 1. Therefore, the allowance
reserve is used in only one instance (and fully exhausted), where the equilibrium clearing price is equal
to the trigger price. It is important to note that this analysis can easily be extended to more than than
two types without any loss in results. One major point is that with many asymmetric types, the result of
Theorem 1 still holds and the allowance reserve is only used in an equilibrium price equal to the trigger
price.

Another major implication is to note that even if firm’s marginal values are not constant for all units,
we can extend the result of Theorem 1. To see this, suppose firms have access to multiple abatement
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technologies in the short term and therefore their demand for permits are diminishing but in a discrete
fashion. This demand can be shown as an step function, and each step of this function can be treated as
a separate firm with a different type. Therefore, even if firms have decreasing marginal values, the set of
equilibria with the maximum clearing price equal to the trigger price remains unchanged. In particular,
the only instance where the allowance reserve is used, is the one with a clearing price equal to the trigger
price and the reserve allowance is used completely. This is also intuitive: if firms increase their demand
beyond p̃, they have incentives to increase it up to a point where the entire allowance reserve is released
because the price they pay is not affected while they receive more permits and consequently higher
payoffs.

5 Policy implications: RGGI auction prices

In this section we further relate our results and predictions to the US Regional Greenhouse Gas
Initiative (RGGI). As discussed earlier in this article, RGGI has a similar structure to what we have
modeled here. In fact, it can be readily stated that for 2016: p̃ = $8 per CO2 allowance, Q̆ = 10 million
allowances, and r = $2.10 per CO2 allowance. Figure 2 provides the reserve and clearing prices for all
30 RGGI auctions from 2008-2015 (inclusive). Also, as indicated in Figure 2, the Cost Containment
Reserve (CCR) was established after Auction 22. As can be observed from Figure 2, the clearing price
was identical to the reserve price from Auction 9 to 18 (inclusive). In many of these cases there was
excess supply of permits in the auction. However, there did exist instances in which the clearing price
was equal to the reserve with no excess supply (for example, auction 11). Our analysis appears to be
consistent when the Cost Containment Reserve (CCR) was established: when the CCR was used, the
entire reserve was exhausted and the clearing price was consistent with the regulator’s threshold trigger
price (Theorem 1).

Figure 2: Auction clearing prices for RGGI
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Note that from Figure 2 a dramatic increase in the price of permits was observed from Auction
21 onwards. The establishment of the CCR is in an ideal position for us to consider the true cost
containment feature of an allowance reserve. Simple observation shows that even when the CCR was
active, prices continued to rise exponentially. Factors that may have affected the clearing price within
this time-frame are, for example, US legislation on regulating greenhouse gases, the realization of any
potential aggregate shocks as well as the tightening of the cap (reduced in 2014 and reducing by 2.5%
per annum for 2015-2020). 16 Further, other possible explanations do exist. For example, if the trigger
price is reached, this may indicate that prices are likely to be at least as high in future auctions. Thus
firms may have an incentive to ‘hoard’ permits and, as a result, the entire CCR is exhausted.

Given our predictions in Theorem 1, another possible factor can be suggested for the increase in
clearing prices. Along with the tightening of the aggregate cap by 2.5% per annum, the regulator has
also established a precedent of significant increases in the trigger price: fixed percentage increases of the
trigger prices were set at 50% (2014-2015), 33% (2015-2016), 25% (2016-2017), then 2.5% thereafter.
Thus our analysis suggests that such large increases in the trigger price are potentially placing upward
pressure on the clearing price. Observing the regulator’s choice of increasing trigger prices, it illustrates
the potential for a paradoxical result: the regulator, in an attempt to contain costs may, in fact, increase
auction compliance costs. As Proposition 3 shows, under realistic conditions, the regulator’s choice of
a high trigger price will turn out to be the firms’ Pareto superior clearing price and this is likely to be
higher than a corresponding clearing price in an auction without allowance reserve.

We would advocate, given our predictions, that the regulator either set Q or Q̄ but discontinue the
allowance reserve in its current format. As we proved earlier, setting a cap of Q̄ is likely to be more
effective in reducing the clearing price than setting Q with an allowance reserve Q̆. If the regulator’s
main objective is to strictly control prices, then we suggest that focus is placed on choosing an optimal
reserve price. An alternative method is to provide an unlimited allowance reserve. A major drawback,
however, is that an unlimited reserve is void of any quantitative restriction on pollution.

6 Concluding remarks

The purpose of this article is to investigate permit auctions with allowance reserves. A permit
allowance reserve is a fixed stock of permits that can be released by the regulator if the clearing price
reaches a threshold trigger price. Allowance reserves are justified due to their apparent assistance in
reducing price volatility within the permit market and, as a consequence, reducing the net present value
of compliance costs (e.g., Murray et al., 2009; Fell et al., 2012).

In this article we model a uniform-price multi-unit auction with and without a permit allowance
reserve. We show that there is a class of symmetric subgame-perfect equilibria in which all firms have
lower payoffs when the auction format includes a permit allowance reserve. Consequentially, and
paradoxically, an allowance reserve with the aim of reducing firms’ costs (increasing payoffs) may
actually do the opposite. The existence of the allowance reserve distorts firms’ equilibrium bidding
strategies in such a way that it is entirely possible that the market clearing price is higher under the
inclusion of an allowance reserve. This suggests that the justifications for using a cost containment
reserve may have to be revised in light of our results. In terms of the US Regional Greenhouse Gas
Initiative (RGGI), our results suggest that the Cost Containment Reserve (CCR), should, in many cases,
be discontinued in its current format. As the auction mechanism provides the market with price signals,
a distortion within these prices may have substantial consequences for the RGGI auction and secondary
market.

16For a comprehensive analysis of factors affecting RGGI emissions and clearing prices see Murray et al. (2014).
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We do not call for the complete disbandment of all cost containment reserves. Indeed, a point to
note is that our analysis has focused on the auction. Thus it may, in the vein of Murray et al. (2009),
still be feasible to justify cost containment reserves within the market. However, we suggest that any
regulator be wary of the potential side effects of an allowance reserve within the auction mechanism.
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Appendix

Proof of Proposition 1

Proof. See Back and Zender (1993) Theorem 1.

Proof of Theorem 1

Proof. Suppose all other firms except firm i follow the demand schedule in (5). Then the residual supply
for firm i is the difference between the total available quantity and the sum of demands of all other
(n− 1) firms. We know that the total quantity could be any amount greater or equal to Q and up to Q̄,
depending on the initial clearing price. If the clearing price is less than p̃, then the total quantity would
be Q, and if the clearing price is greater but still less than p∗∗ then a proportion of the extra quantity
would be released. Finally, if the clearing price is greater or equal to p∗∗ then the total quantity Q̄ would
be released. Given this supply schedule the residual supply for firm i, x i(p), is as follows.

x i(p) =























































Q̄ if p > ¯̄v,

Q̄
n

�

v̄−p∗∗

v̄−p

�

if p∗∗ < p ≤ ¯̄v,

Q†

n if p̃ ≤ p ≤ p∗∗,

Q
n

�

v̄−p∗

v̄−p

�

if p∗ < p < p̃,

Q
n if p = p∗,

0 if r ≤ p < p∗.

(8)

If the price is higher than ¯̄v, no other firm demands any quantity and therefore the residual quantity for
firm i is the whole quantity. This is because even if the reserve quantity is released the final price never
falls below v. If the price is between p∗∗ and ¯̄v then the residual supply shown above is the result of the
subtraction of the demand on (n− 1) bidders (line two of (5)) from the total quantity Q̄ for such prices.
Firm i’s payoff is therefore,

πi = (v − p)
Q̄
n

�

v̄ − p∗∗

v̄ − p

�

,

which is decreasing in p for prices above p∗∗. Therefore, this term is maximized at p = p∗∗, where each
firm receives a quantity of Q̄

n . The final clearing price would also fall to p̃.
For prices between p̃ and p∗∗, the reserve quantity will be released and always reduces the final

clearing price to p̃. In fact, in this scenario firm i can submit a demand anywhere between [0, Q̄
n ], but

quantity Q̄
n is the most desirable quantity. Now if p∗ < p < p̃ the calculation for residual supply left for

bidder i gives us the equation in line four of (8). Then firm i’s payoff is,

πi = (v − p)
Q
n

�

v̄ − p∗

v̄ − p

�

.

Again one can show firm i’s payoff is decreasing in p and the term is maximized at p = p∗. When p = p∗

firm i’s best response is to capture up to its share Q
n . Firm i can demand any quantity between [0, Q

n ], but
since the price is p∗ for any quantities, the firm obtains the maximum quantity, which is, Q

n . At any price
lower than p∗ all permits would be demanded and no extra unit is available. Therefore, there are two
possible equilibria with final clearing prices of p∗ and p̃ and each firm receives Q

n and Q̄
n respectively.
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Proof of Lemma 1

Proof. The condition in this Lemma is the result of the comparison of the firms’ payoffs with a clearing
price less than p̃ and the best possible scenario that can happen with the release of the extra permits
(the full permit supply Q̄ to be released with the clearing price of p̃). So we need to have

(v − p̂)
Q
n
> (v − p̃)

Q̄
n

,

and therefore, if

p̂ < v −
Q̄
Q
(v − p̃),

then the buyers’ payoffs are higher for all clearing prices less or equal to p̂.

Proof of Proposition 2

Proof. From Theorem 1 we know when there is an allowance reserve with a trigger price p̃, there exists
a p∗ ∈ [r, p̃] that characterizes the equilibrium, and the allocated quantities are Q

n if p∗ < p̃ and Q̄
n if

p∗ = p̃. Now if the regulator advertises all the permits, that is, to advertise Q̄ from the beginning with a
reserve price r and no trigger price, then we can change the quantity in Proposition 1 to Q̄ and the same
result applies but with a Q̄ instead of Q. Therefore, we have the following demand function with each
firm receiving Q̄

n and the clearing price equal to p∗.

di(p) =















0 if p > p†,

Q̄ (p†−p)
n(p†−p)+p−p∗ if p∗ < p ≤ p†,

Q̄
n−1 if r ≤ p ≤ p∗,

(9)

where p† = (n−1)v̄
n + p∗

n .
Since for this equilibrium the only condition for p∗ is to be larger than r and smaller than v, then for

any trigger price p̃ greater than r there exist a class of equilibrium clearing prices greater than r and
smaller than p̃ with equilibrium quantities of Q̄

n for each firm. We focus on this class of equilibria and
show they are Pareto superior to the set of equilibria with an allowance reserve for firms. First, consider
a firm who pays a price p and receives a quantity Q with the following payoff:

πi = (v − p)
Q
n

. (10)

Clearly this payoff is increasing in the quantity a firm receives and decreasing in the price she pays.
Let us now consider the auction with an allowance reserve. There are two kinds of equilibria for the

allowance reserve case. One with a p∗ lower than p̃ and a quantity of Q
n for each firm. The other is with

clearing price p̃ and a quantity Q̄
n . The first kind is dominated by the auction with no allowance with the

total quantity of Q̄ because the set of clearing prices are the same but sold permits are strictly larger for
the auction with no allowance. Therefore, firms payoffs are larger. The second kind is also dominated by
the auction with no allowance equilibria because the permits sold are the same but the clearing prices of
the auction with no allowance is strictly less therefore, buyers payoffs are larger. Thus, there exist a class
of equilibria for an auction with no allowance reserve where it is strictly better for firms compared to
those equilibria of the auction with allowance reserve.
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Proof of Corollary 1

Proof. Consider two possible equilibria for the auction with an allowance: (i) p∗ ∈ [r, p̃) and (ii)
p∗ = p̃. In case (i) the allowance reserve is not activated and both clearing price and quantity of
permits are identical to the auction without an allowance reserve. For case (ii) when p̂ ∈ [r, p̃) such that
p̂ < v− Q̄

Q (v− p̃) is satisfied, using Lemma 1 we can conclude that firms have larger payoffs in an auction
without an allowance reserve even though they receive lower quantities.

Proof of Corollary 2

Proof. First, focus on the class of equilibria of Proposition 2 for an auction without an allowance reserve.
Denote D(0, v) as the aggregate demand of the unconstrained level of emissions. From Proposition 2 if
p∗ ∈ [r, p̃), then total emissions released would be equal to Q in an auction with an allowance reserve,
and Q̄ in an auction without an allowance reserve. Given D(0, v) and the demand schedule is downward
sloping, it follows that the aggregate pollution abatement costs are higher under an auction with an
allowance reserve. If p∗ = p̃ in an auction with an allowance reserve then equilibria of both auctions
would result in the same total quantity of Q̄. However, in an auction without the allowance reserve the
class of equilibria we discuss constitutes a clearing price strictly lower than p̃. Therefore, given D(0, v)
and the demand schedule is downward sloping, it follows that the aggregate pollution abatement costs
are higher under an auction with an allowance reserve.

Proof of Proposition 3

Proof. First, rewrite the condition in Lemma 1 for the smallest possible equilibrium clearing price, the
reserve price, which is the worst outcome for the regulator:

r < v −
Q̄
Q
(v − p̃). (11)

Now fix p̃ and quantities, then the right hand side would reach its minimum at v̄ − Q̄
Q (v̄ − p̃). So if the

regulator sets the reserve price such that it becomes greater than the minimum then by continuity, there
must be some v < v̄, which also makes the right hand side less than r. Therefore, if r > v̄ − Q̄

Q (v̄ − p̃),
then there exist a ṽ < v̄ such that we have,

r = ṽ −
Q̄
Q
(ṽ − p̃). (12)

For any value v ∈ [ṽ, v̄], firms prefer the clearing price p̃ with the share of Q̄
n permits. So there is a higher

chance of observing p̃ as the clearing price compared to any other clearing price p∗ ∈ [r, p̃). For the case
without allowance reserve, it has already been shown that for p∗ ∈ [r, v], the Pareto superior clearing
price is r.

Proof of Corollary 3

Proof. The reserve quantity by definition is Q̄ −Q. If the regulator keeps almost all quantities as the
reserve then Q̄

Q goes to infinity. Since v̄ is a positive finite number then we must have r > v̄ − Q̄
Q (v̄ − p̃)

for any positive r. Now by continuity, there exists a Q̂ < Q̄, such that r = v̄ − Q̄
Q̂
(v̄ − p̃). Therefore, the

regulator can set the reserve quantity to any amount greater than Q̄− Q̂ and guarantee the condition in
Proposition 3.
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Proof of Proposition 4

Proof. Given than the lowers clearing price is r in the even that the extra supply is not released we can
write the following objective function for a revenue maximizing regulator.

max
p̃

UR = Prob
�

r > v −
Q̄
Q
(v − p̃)

�

p̃Q̄+
�

1− Prob
�

r > v −
Q̄
Q
(v − p̃)

��

rQ. (13)

We can rewrite the above objective function as,

UR = Prob
�

v >
Q̄p̃−Qr

Q̆

�

p̃Q̄+
�

1− Prob
�

v >
Q̄p̃−Qr

Q̆

�

rQ
�

(14)

This is equal to,

UR = (1− F(
Q̄p̃−Qr

Q̆
))p̃Q̄+ F(

Q̄p̃−Qr

Q̆
)rQ. (15)

Then the first-order condition becomes,

(1− F(
Q̄p̃−Qr

Q̆
))Q̄−

Q̄

Q̆
f (

Q̄p̃−Qr

Q̆
)p̃Q̄+

Q̄

Q̆
f (

Q̄p̃−Qr

Q̆
)rQ = 0. (16)

This gives us,

(1− F( Q̄p̃−Qr
Q̆
))

f ( Q̄p̃−Qr
Q̆
)

=
Q̄p̃−Qr

Q̆
. (17)

Proof of Proposition 5

Proof. According to the objective function in (14), the derivative with respect to r is always positive.
Thus, r must be set as large as possible, that is, equal to p̃.

Proof of Proposition 6

Proof. For any price p∗ ∈ [0, vl], imagine a demand schedule γ(p) with following three conditions:

(I) γ(p∗) = Q
n

(II) {γ(p)|x(p)> (vh − p)x ′(p) for p > p∗}

(III) {γ(p)|x(p)< (vl − p)x ′(p) for p < p∗}

where x(p) is the residual supply left for a given firm when all other firms follow γ(p). We claim γ(p)
characterizes the class of equilibria according to the first part of the Proposition.

One can easily check a demand schedule similar to the one in Proposition 1 satisfies all three
conditions. The payoff of a representative firm is,

πi(p) = (vi − p)x(p). (18)

Differentiating this payoff with respect to p yields,
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π′i(p) = −x(p) + (vi − p)x ′(p). (19)

According to condition (II), the above term is negative for prices higher than p∗ and positive for
prices lower than p∗. Thus p∗ is the best response of firm i. Remember that we did not limit the type of
firm i and this proof works for both types.

The proof of the second part is quite similar but now for prices above vl low-type firms leave the
market. Therefore, in equilibrium, the quantity share for each firm becomes Q

h , where h is the number of
high type firms. Also condition (III) can now change to {γ(p)|x(p)< (vh − p)x ′(p) for p < p̂∗}.

Proof of Proposition 7

Proof. The first part of the proof is similar to Proposition 6 given that p̃ is less than vl . So each firm
receives a quantity equal to Q

n in equilibrium. Now imagine a case where the price goes above p̃.
According to the rules of the game the allowance reserve or the extra supply would increase until either
the price goes back to p̃ or the extra supply finishes. With a similar argument to the one in Theorem 1
we can argue that a demand schedule that results in releasing only a part of the extra supply cannot
be an equilibrium. The argument is based on the fact that if firms increase their demands marginally
then the price would remain the same but the quantity they receive increases. Thus their total payoff
increases if they increase the demand. Define p∗∗ as the highest price such that the extra supply can
reduce the price to p̃. A demand schedule γ(p) constitutes an equilibrium if,

(I) γ(p∗∗) = Q̄
n

(II) {γ(p)|x(p)> (vh − p)x ′(p) for p > p∗∗}

Rewrite the payoff function for a representative firm

πi(p) = (vi − p)x(p). (20)

Differentiating this payoff with respect to p yields,

π′i(p) = −x(p) + (vi − p)x ′(p). (21)

A representative firm i would have no incentive to deviate from γ(p). According to (II), for prices higher
than p∗∗ their payoff is decreasing and for prices below p∗∗ their payoff is increasing.
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