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Abstract 

In this study, three-layered feedforward-backpropagation artificial neural network 

(BPANN) model was developed and employed to evaluate COD removal in upflow 

anaerobic sludge blanket (UASB) reactor treating industrial starch processing wastewater. 

At the end of UASB operation, microbial community characterization revealed satisfactory 

composition of microbes whereas morphology depicted rod-shaped archaea. pH, COD, 

NH4
+
, VFA, OLR and biogas yield were selected by principal component analysis and used 

as input variables. Whilst tangent sigmoid function (tansig) and linear function (purelin) 

were assigned as activation functions at the hidden-layer and output-layer, respectively, 

optimum BPANN architecture was achieved with Levenberg-Marquardt algorithm (trainlm) 

after eleven training algorithms had been tested. Based on performance indicators such as 

mean squared errors, fractional variance, index of agreement and coefficient of 

determination (R
2
), the BPANN model demonstrated significant performance with R

2 

reaching 87%. The study revealed that, control and optimization of an anaerobic digestion 

process with BPANN model was feasible.  

Keywords: Industrial starch processing wastewater; Upflow anaerobic sludge blanket; 

Feedforward backpropagation artificial neural network; Microbial community 

characterization; Anaerobic digestion 
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1 Introduction 

Agricultural and industrial and activities in recent years have been the main source of 

pollutants (organic and inorganic) which find its way into waterbodies that subsequently 

lead to water pollution (Schweitzer & Noblet, 2018; Wu et al., 2017). For instance, potatoes 

cultivation, production and processing have increased exponentially in recent years. 

However, processing potato into starch and related products mostly yields huge volumes of 

wastewater (Antwi et al., 2017a; Przetaczek-Rożnowska, 2017) which is characterized by 

high level of organic pollutants (Table 1). Such wastewater emanating from potatoes starch 

processing may contribute to water pollution particularly when discharged untreated. That 

notwithstanding, anaerobic digestion (AD) process, a potential feasible process proposed 

for solving waste problems has successfully been employed over the years to treat 

wastewater that emerges from sectors including domestic, industrial and agriculture fields 

(Barua & Dhar, 2017). Besides treatment, AD has also been successful in: (1) bioenergy 

generation; (2) production of stabilized materials used as organic composting; and (3) 

destruction of pathogens (Lloret et al., 2013; Lizama et al., 2017). Upflow anaerobic sludge 

blanket (UASB), a high-rate AD reactor is one the most competitive and preferred AD 

technology that has the tendency to treat industrial effluents. 

The efficacy of AD process however depends mainly on complex biological activities 

of functional population. Biological activities consequently turn out to be challenging when 

enhancement of the AD digestion is required through process optimization and control. 

However, mathematical modelling (process simulations and predictions) has been suggested 

as a means to optimize and control the performance of an AD process (Revilla et al., 2016) 

could learn the complex and non-linear relationships existing in an AD process. Developed 
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math models such as neural networks were successful when employed to capture the non-

linear relationships existing in AD process (Podder & Majumder, 2016; Antwi et al., 

2017c). ANN have been trained to perform complex functions in various fields of 

application including pattern recognition, identification, classification, speech, vision, and 

control systems. Other models such as anaerobic digester model 1 (ADM1 of IWA) which 

was initially developed purposely for continuous stirred tank reactor (CSTR) has been 

modified severally by many other researchers besides the main developers. So far, the 

ADM1 have been a successful model when employed in expanded granular sludge blanket 

(EGSB) or UASB reactor. On the contrary, ADM1 requires kinetic parameters to achieve 

optimality. Thus, the model requires about 26 or more dynamic state variables and many 

other parameters as well as all related processes under practical conditions. Acquiring these 

kinetic parameters is very challenging as extensive, laborious and relatively expensive 

experiments are needed to be conducted (Lee et al., 2016; Xie et al., 2016). The ADM1 

have been simplified in recent years by reducing state variables and parameters (López & 

Borzacconi, 2011) where the identification of parameter is more straightforward. But the 

simplified model: (1) could not depict the complexity of anaerobic process; and (2) cannot 

be applied to other reactors or conditions. 

Compared with ADM1, artificial neural network (ANN) modelling could simulate and 

predict complex relationship between independent and dependent variables associated with 

AD process with high efficiency without requiring detailed mechanisms of anaerobic 

process. Thus, provided model building parameters such as number of layers, type training 

function, number of neurons assigned in the hidden layer, initial adaptive value, minimum 

gradient, maximum fail, maximum number of epochs, initial weights/biases and training 
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goal are optimized to achieve a robust ANN architecture (Rosales-Colunga et al., 2010; 

Yusof et al., 2014). Hu Yi-Fan and coworkers developed a ANN model to predict the 

performance of an expanded granular sludge bed (EGSB) reactor and their study indicated 

that the proposed ANN model exhibited superior predictive accuracy for the forecast of 

chemical oxygen demand (COD) removal performance by EGSB system (Yi-Fan et al., 

2017). In another work, a new configuration of an electrically-enhanced membrane 

bioreactor was introduced to treat medium strength wastewater to reduce wastewater 

contaminant concentrations. Artificial neural networks (ANNs) based ensemble model was 

used to model the experimental findings of COD, PO4
3−

-P and NH4
+
-N removal given the 

initial mixed liquor compositions. Comparison between the model results and experimental 

data set gave high correlation coefficients for COD (r = 0.9942), PO4
3−-

P (r = 0.9998) and 

NH4
+
-N (r = 0.9955) (Giwa et al., 2016). Although in relevant literature, significant amount 

of experimental and numerical analysis has been conducted on pollutant removal in 

wastewater treatment, an ANN-based prediction model presented in this study to evaluate 

COD removal efficiency within an UASB treating industrial starch processing wastewater 

has not been developed so far.  

This study seeks to describe the application of artificial neural networks for modeling 

wastewater treatment processes within an UASB. In this study, the feasibility of an ANN 

model to estimate, predict and simulate experimental results obtained from a mesophilic 

UASB treating industrial starch wastewater was investigated. Herein, a novel three layered 

feedforward backpropagation artificial neural network (BPANN) model (6:NH:1) was 

developed with anaerobic process parameters for the estimation of chemical oxygen 

demand (COD) removal in a mesophilic UASB treating potato starch processing wastewater 
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(PSPW). Six anaerobic process parameters such as influent COD, Ammonium (NH4
+
-N), 

influent pH, organic loading rate (OLR), effluent volatile fatty acid (VFA) and biogas yield 

were selected based on principal component analysis and used as input variables for the 

model development. Furthermore, the network architecture parameters including number of 

neurons, initial adaptive value and initial value of weights/biases were initially optimized 

using response surface methodology in order to achieve optimum performance of the 

proposed model. Microbial communities and sludge morphology within activated sludge 

obtained after startup period and end of UASB operation were also probed to comprehend 

the performance of the UASB in COD removal.   

2 Materials and methods 

2.1 Wastewater characteristics and experimental setup  

PSPW was collected from a local starch factory and stored under 4
o
C in a deep freeze 

refrigeration unit (XINGX BD/BC-142CH, Guangdong Xingxing Refrigeration Equipment 

Co., Ltd., China). Characteristics associated with the raw wastewater after characterization 

is presented in Table 1. The UASB reactor with a gas-liquid-solid separator was constructed 

with Plexiglas material (Fig.1A). Height, working volume and total volume of the reactor 

was 120 cm, 7 L and 8.8 L, respectively, with 5 sampling ports spaced at 25 cm interval. 

Activated sludge (mixed liquor suspended solid of 11.5 g/L and mixed liquor volatile 

suspended solid of 5.6 g/L) was collected from a local treatment plant and used to inoculate 

the UASB (Antwi et al., 2017d). Peristaltic pump (BT10032J, Langer Instruments, United 

Kingdom) was used to feed wastewater to the UASB. Mesophilic condition (35±1°C) of the 

reactor was maintained with a thermistor and a controller (Fig.1A). pH of the raw feed was 

adjusted to about 6±1 with sodium bicarbonate (NaHCO3) prior to feeding. 
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HRT of 36 h followed by a 24 h was implemented at the startup phase. After the startup 

period had obtained stability (83 days), the main operation of the UASB was initiated under 

9 different stages (Table 1). Each phase had a unique combination of HRT (stage 1, 4 and 7: 

72 h; stage 2, 5 and 8: 48 h and; stage 3, 6 and 9: 36 h) and organic loading rates (OLR) 

ranging from 2.7 – 3.75, 5.24 – 7.16 and 6.7 – 13.2 kgCOD/m
3
.d under phases I, II and III 

(Table 1).  At each stage, a steady state in the performance was obtained to warrant another 

set of HRT and OLR to be introduced. Biogas yield from the UASB was collected by the 

gas-solid-liquid separator and measured daily using wet gas meter (LML31, Changchun 

Filter Co., Ltd., China). 

2.2  Analytical methods 

All physical and chemical analysis  presented in Table 1 were conducted in accordance 

with Standard Methods for the Examination of Water and Wastewater (APHA, 2012). 

NH4
+
-N was determined by Nessler method and the final solution was measured with a 

spectrophotometer (UV-1800 UV-VIS, Shimadzu Corporation, Japan) at a wavelength of 

420nm. TP was determined by ascorbic acid method as prescribed in the manual of the 

Standard Methods for the Examination of Water and Wastewater. pH was determined with 

a pH meter (DELTA 320, Mettler Toledo, USA). Carbohydrate was measured by the 

phenol-sulfuric acid method using glucose standard. Protein was analyzed by Lowry’s 

method using bovine serum albumin as standard (Antwi et al., 2017a). Volatile fatty acids 

(VFAs) were measured by a chromatograph (SP6890, Shandong Lunan Instrument Factory, 

China) equipped with an RTX-Stabilwax glass column (30 m×0.32 mm×1 μm) and a flame 

ionization detector. Detailed protocol is described in our previous report (Antwi et al., 

2017a; Liu et al., 2015; Shi et al., 2016). Biogas fractions were determined as done 
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previously by another gas chromatograph (SP-6800A, Shandong Lunan Instrument Factory, 

China) equipped with a thermal conductivity detector (TCD) and a 2 m stainless column 

packed with Porapak Q (60/80 mesh) (Antwi et al., 2017b). Temperatures of the gas 

chromatograph’s injector, column and the TCD were 80°C, 50°C and 80°C, respectively.  

2.3  Selection of input and output variables for BPANN model   

Anaerobic parameters to be used as input variables were first filtered by examining 

their contribution on COD removal (output variable). COD removal was set at a target of 

80-95% against the input variables. Input variables above the targeted limits (80-95%) were 

easily identified with scatter plots. Variables which fitted better with the targeted COD 

removal were considered for further scrutiny by principal component analyses (PCA) to 

further reduce number of variables. PCA was conducted within the MATLAB workspace 

(Matrix Laboratory R2014a, version 8.3 by MathWorks, Inc., USA) and principal 

components that contributed less than 0.1% to the variation in the data set were eliminated 

(Yetilmezsoy & Sapci-Zengin, 2009). PCA revealed pH, COD, ammonium (NH4
+
), OLR, 

volatile fatty acids (VFAs) and biogas yield as variables that had optimum effect on the 

targeted COD removal (Table 2). The input and target data set given in matrices [IP] and 

[TP] (Table 2) were normalized using prestd algorithm code. The mean input data, mean 

target data, standard deviations of input data, standard deviations of target data, transformed 

input vectors and principal component transformation matrix were given clear definitions as 

meanIp, meanTp, stdIp, stdTp, Iptrans and transMat, respectively, before commencement 

of the training (Antwi et al., 2017b). 

2.4  Description of the artificial neural network architecture  
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Feed forward backpropagation (BP) algorithm was employed in the development of the 

ANN model on the MATLAB platform. The ANN model with an input vector (6×218) and 

target vector (1×218) had its architecture comprised of neurons ordered in 3 layers (input, 

hidden and output) as illustrated in Fig.1B. Whilst the input and output neurons represented 

the independent variables and dependent variables, respectively, the hidden layer was 

tasked to transformed the input information (Beltramo et al., 2016). The BP learning rule 

defined a method to adjust the weights of the networks (Cheng et al., 2016). The structure 

of the network was designed to render hidden neurons outputs to be used as an input to the 

output neuron after hidden layers output had undergone transformation in the process. 

Output of the BPANN was estimated with Eq.1. Tangent sigmoid transfer function (tansig) 

(Eq.2) and linear transfer function (purelin) (Eq.3) were introduced at the hidden and output 

layer, respectively.  

                   
  
            

 
                                       (1) 

     
 

          
                                                         (2) 

                                                                                 (3) 

Where:          output of BPANN (COD removal efficiency);  WHij, weight of the link 

between the i
th
 input and the j

th
 hidden neuron; m, number of input neurons; WOj, weight of 

the link between the j
th
 hidden neuron and the output neuron; fh, hidden neuron activation 

function; fo, output neuron activation function; bj, bias of the j
th
 hidden neurons; bo, bias of 

the output neuron; Xit, input variable; HN, number of hidden neurons; and x, vector of 

inputs. 
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Three functions viz., dividerand, divideblock and divideint established on the 

MATLAB platform were tested to unraveled at the most efficient method for dividing 

dataset. Dividerand was employed to randomly divide the entire data set into three subsets 

viz., training, validation and testing data set in this study based on its low MSE observed. 

Out of 218 data set points, 15% each, comprising 33 data points were selected to represent 

the validation and testing subsets, respectively. On the other hand, 70% (152 data points) 

was assigned for the training subset. The efficacy of the BPANN learning was validated 

with mean square error (MSE) (Eq.4). Besides MSE, index of agreement (IA) and fractional 

variance (FV) as given in Eq.5 and Eq.6 was also used for further validation. 
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                                              (5) 

   
        

       
                                                                                   (6) 

Where: N, number of data point; Ti, network predicted value at the i
th
 data; Ai, experimental 

value at the i
th
 data and i is an index of the data; O, P,   and m indicates experimental data, 

predicted values, standard deviation and arithmetic mean of the observed data points, 

respectively. 

2.5  Optimization of the BPANN Training algorithm  

A benchmark comparison was carried out to facilitate the selection of the optimum 

neural networks in the ANN modeling process. The mean square error (MSE) was used to 

justify the learning effects of the BP-ANN. The hidden layer was firstly assigned with two 
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neurons as an initial assumption. As neuron numbers were increased stepwisely, the 

corresponding MSEs obtained were used for the comparison. The training continued until 

the MSEs were below some tolerance level. 10 neurons were finally set as default number 

of neurons at the hidden layer for each training algorithms. Networks selection was 

primarily centered on the highest performed training algorithm.  

2.6  Optimization of BPANN model topology for optimum performance 

After the optimum training algorithm was identified, other model parameters including 

initial value of weights and biases, initial adaptive value and number of neurons in the 

hidden layer were also optimized by response surface methodology (RSM) to help achieve a 

relatively optimal performance of the BPANN model, thus [X1] number of neurons in the 

hidden layer, [X2] initial adaptive value and [X3] initial weights and biases were 

investigated for optimum values. First, Box Behnken Design (BBD) methodology proposed 

a set of 15 experimental runs to be conducted (Table 3). MSE obtained from the 

experimentation was used as response [Y] for the optimization process. Further evaluation 

of the significance of the model building parameters [X1], [X2] and [X3] was examined 

with multiple nonlinear regression models (MnLRM) by residual analysis with MINITAB 

(version 17). The general form of the MnLRM used is given in Eq.7.  

                     
 
          

    
   

 
            

 
                          (7) 

where x1, x2, and xk represented terms for quantitative predictors, b0, bi, bii, bij represents 

constant, linear, quadratic and interaction coefficients, respectively, and ɛ is random error. 

Statistical assumptions such as linearity, independence among errors, non-

multicollinearity, homoscedasticity, non-autocorrelation and normal distribution of errors 
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were considered during regression analyses (Wold et al., 2001). The efficiency of MnLR 

model was validated with coefficient of determination (R
2
) (Eq.8), adjusted coefficient of 

determination (Adj-R
2
) (Abdul-Wahab et al., 2005) (Eq.9), residual average (RA) (Eq.10), 

sum of squared residuals (SSR) (Eq.11), standard error of the estimate (SEE) (Xu et al., 

2015) (Eq.12), variance inflation factor (VIF) (Eq.13), Durbin-Watson statistics (d)(Antwi 

et al., 2017b) (Eq.14) and p-value (Yetilmezsoy et al., 2013).  
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where, Yo, Yp and    denotes experimental data, predicted values and arithmetic mean of the 

observed data; n and m is the number of data points and parameters in the regression model, 

respectively; k is the number of independent regressors excluding the constant term; 

         , and yi and     were, respectively, the observed and predicted values of the 
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response variable for individual i; TS is random variable associated with the assumed 

distribution; ts is the test statistics calculated from sample, and cdf is the cumulative density 

function of the assumed distribution. 

2.7 Microbial community analysis by high-throughput sequencing 

2.7.1  Sampling, DNA extraction, PCR amplification and analysis of sequences 

To establish the performance of the reactor, sludge samples were taken from the UASB 

at the following periods: (1) end of the startup phase (83 days) of the UASB; and (2) end of 

main operation (218 days) of the UASB and their microbial communities and morphology 

were characterized and compared. Sampled activated sludge was stored at -20ºC until DNA 

extraction was due. Extraction and purification of the total DNA of the samples were 

carried out with bacteria DNA Isolation Kit (Power Soil DNA Isolation Kit-MOBIO 

Laboratories, Inc., Carlsbad, CA) in accordance with the man fact rer’s man al. Agarose 

gel electrophoresis was conducted to check the integrity of extracted DNA (Antwi et al., 

2017a). Qubit 2.0 DNA kit (Qubit ssDNA Assay Kit, Life Technologies) was used to 

quantify Genomic DNA for the PCR reaction. Details of PCR amplification protocol is 

reported in our previous research (Antwi et al., 2017b). Amplicons were finally sequenced 

on an Illumina Miseq sequencing platform (Sangon Biotech Shanghai Co. Ltd, China). 

After sequencing, statistical analysis was conducted on the obtained sequences as reported 

in our previous work (Antwi et al., 2017b).  

2.8 Characterization of sludge morphology 

Morphology of sampled sludge was examined with scanning electron microscopy 

(SEM). Samples were taken in 10 mL aliquots, washed three times with ultra-pure water to 

remove impurities and then fixed overnight at 4ºC with 2.5% vol/vol glutaraldehyde (pH of 
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6.8). Rinsing was performed again after which dehydration was conducted with ethanol 

solutions at 25, 50, 70, 80, 90 and 100% (Wu et al., 2010; Ding et al., 2015) and dried till 

full dehydration. Morphology of sludge was finally observed with SEM (FEI Quanta-200). 

3 Results and discussion 

3.1 Pollutant removal within the UASB   

The employed UASB for treating the industrial starch processing wastewater was 

operated under different organic loading rates (Table 1) and the performance in terms of 

COD removal rate was investigated. Organic loading rates (OLR) ranging between 1.5–4.23 

kgCOD/m
3
·d was introduced at the start-up period of the UASB operation. Highest COD 

removal observed within the startup period was about 96%. The observed pH determined in 

the effluent reached an average of 8.08 suggesting reactor stability. No major washout or 

inhibition phenomenon was noticed. Sludge granules were observable on the 63
rd

 day after 

startup indicating the effectiveness of the proposed HRT and upflow velocity. The stability 

could also be ascribed to the effective acclimatization of the sludge irrespective of culturing 

conditions (Luo et al., 2016). 

Besides the startup period, the UASB was further operated in accordance with the 

treatment scheme presented in Table 1. As illustrated in Fig.2, COD removal encountered 

transient decline during the early periods of each stage (16
th
, 35

th
, 57

th
, 71

st
, 100

th
, 132

nd
, 

159
th
, 188

th
 day). Thus, anytime OLR was increased, COD removal declined to some 

threshold but subsequently regained higher efficiencies after time had elapsed for a while. 

The observed reduction in COD removal could be ascribed to possible shock loading effect 

on the functional population. On the other hand, COD removal was stable when employed 

OLR was low particularly during the startup phase. For the avoidance of such shock loading 
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effect and effective acclimatization of the activated anaerobic sludge, a higher HRT of 72 h 

accompanied with an OLR of 2.7 kg COD/m
3
·d was first introduced in stage (1). At the 

commencement of stages (2) and (3), thus, when OLR was elevated from 2.7 kg COD/m
3
·d 

in stage (1) to 3.73 kgCOD/m
3
·d and 5.02 kgCOD/m

3
·d, respectively, COD removal 

declined to about 86% and 74%, respectively (Fig.2). Phase (I) as presented in Table 1 

lasted for about 56 days and COD removal achieved could reach about 97%. Similarly in 

stages (5), (6), (8) and (9), an abrupt decline in COD removal was also observable when 

OLR was further elevated to a range of 5.27-7.16 kgCOD/m
3
·d and 9.88-13.27 

kgCOD/m
3
·d (Table 1). Notably, COD removal declined to about 42.1, 58.1, 64.5 and 

70.1%, in in stages 5, 6, 8 and 9, respectively. However, the UASB recovered from the 

suspected shock loading effects and subsequently elevated the COD removal to about 

93.69, 95.6, 95.1 and 92.0%, respectively. 

The highest COD removal rate was recorded in stage 4 (97.7%) when OLR of 3.65 kg 

COD/m
3
·d was introduced. On the contrary, stage 9 with HRT of 36 h and OLR elevated to 

13.27 kg COD/m
3
·d recorded the lowest COD removal of 92.0% (Fig.2). The relatively low 

performance at higher OLR could also be attributed to the high starch or polysaccharide 

content in the PSPW. Lu et al., had reported that, starch becomes sticky upon contact with 

heated water and that may bind to the surfaces of anaerobic granules and lower the mass 

transfer rate (Lu et al., 2015). Therefore, higher OLRs was suspected to have high 

proportion of starch which bound sludge particle together to lower mass transfer.  

3.2 Characterization of sludge and microbial communities at the end of startup 

and main operation 

3.2.1 Sludge morphology as revealed by scanning electron microscopy 
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The morphology of the anaerobic sludge sampled at the end of startup and main 

operation of the UASB was characterized and compared using scanning electron 

microscopy (SEM). Granular sludge was sampled at the middle belt of the UASB after 

startup (83 days) and main operation (218 days) and their respective micrographs are 

presented in the supplementary information. The average size of sludge granules obtained 

after startup ranged 1-3 mm whereas that observed after the main operation of the UASB 

ranged between 2-5 mm. Granules observed in the sludge obtained after startup were 

predominantly irregular in shape with some few having an elliptical shape. On the other 

hand, sludge at the end of the main operation was predominantly elliptical in shape with 

quite a few having irregular shape. However, granules in both samples revealed cavities on 

their surfaces indicating an escape route for biogas produced. 

Among the sludge samples, randomly intertwined cell morpho-types were observable, 

except their shape and structure that varied from the startup period through to the end of the 

UASB operation. Again, the morphology as revealed by the micrographs indicated the 

presence of Methanosaeta-like cells, Methanosarcina-like cells, rods and cocci colonies at 

both periods as observed and indicated in other reports (Lu et al., 2016). Acetoclastic 

methanogen such as Methanosaeta are often identified by its bamboo-shaped filament, 

fluorescence-emitting, rod shaped shell (0.6-0.8 × 2.0-3.5µm) with flat ends, and an 

ultrastructure with outer and inner cell walls (Subramanyam & Mishra, 2013). 

Notably, the predominance of congeries of rod-shaped archaebacterial and cocci-shaped 

archaea were more visible in the sludge obtained at the end of the UASB operation as 

opposed to that of the startup period. Similar to this study, rod-shaped archaebacterial and 
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cocci-shaped archaea belonging to Methanothrix and Methanosarcina were reported by 

Nizami and Murphy, respectively (Nizami & Murphy, 2011).  

3.2.2 Microbial communities as revealed by high throughput sequencing 

Microbial community analysis was conducted to elucidate their functionalities to the 

anaerobic digestion process within the UASB. Three genera including Methanosaeta, 

Methanosarcina and Methanobacterium belonging to phylum Euryarchaeota was the most 

noticeable genera within the archaeal kingdom (Fig 3). It has been established that, 

Methanosaeta, Methanosarcina and Methanobacterium with acetoclastic- hydrogenotrophic 

functionalities is suggested to have played a major role in metabolizing VFAs produced 

during acetogenesis phase in the UASB treating PSPW (Kundu et al., 2012). No 

accumulation of VFA was observed suggesting the ratio of abundance of acetoclastic- 

hydrogenotrophic and methanogens were in good agreement to produce and consume VFAs 

to balance pH and acidity in the reactor.  

At the end of the startup period (Fig 3), genus Methanosaeta (10.06%) was dominant 

followed by unclassified_Anaerolineaceae (8.76%), Incertae_Sedis (6.41%), 

unclassified_Porphyromonadaceae (6.12%), Longilinea (5.42%) and Syntrophomonas 

(4.98%). Compared with the startup sludge, growth was observed in microbial communities 

in sludge sampled at the end of UASB operation. Genus Methanosaeta still dominated the 

population with 18.19% followed by unclassified_Anaerolineaceae (15.31%), Longilinea 

(9.26%), Acinetobacter (6.88%), Incertae_Sedis (6.72%), Syntrophomonas (5.46%), 

unclassified_Veillonellaceae (5.3%) and unclassified_Porphyromonadaceae (5.09%) (Fig 

3). It has been reported that, genera affiliated to phylum Firmicutes such as 

Syntrophomonas, unclassified_Veillonellaceae, unclassified_Christensenellaceae, 
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unclassified_Porphyromonadaceae and vadinBC27_wastewater-sludge_group are some of 

the main bacteria with protein and/or amino acid degradation functionalities (Forchhammer, 

2007). Therefore, these genera observed in this study may have contributed to the 

successful degradation of the protein available in the PSPW.  

Again, the presence of Longilinea, unclassified_Anaerolineaceae, Leptolinea, 

Anaerolinea and Ornatilinea affiliated to Chloroflexi could be attributed to cellulose and 

glucose degradation in the PSPW since it has hydrolytic fermentative functionalities (Hagen 

et al., 2014). The synergistic coexistence of Chloroflexi and Firmicutes is suggested to have 

mainly contributed to the hydrolysis and acidogenesis phase of the AD process. 

Acinetobacter and Incertae_Sedis belonging to Proteobacteria is also believed to have 

performed heterotrophic functionalities (Fig 3). The overall observation suggested that, 

sludge sampled at the end of the UASB operation was composed with microbes that 

contributed effectively to hydrolysis, acidogenesis, acetogenesis and methanogenesis as 

opposed to that sampled at the end of the startup.  

3.3 Optimization of the BPANN architecture  

3.3.1 Selection of backpropagation algorithm by benchmark comparison 

The effectiveness, speed and accuracy of a BPANN architecture depend on factors such 

as selection training algorithm, characterization of data set, number of neurons specified in 

the network, initial adaptive value and initial values of weights and biases (Hu et al., 2017). 

A benchmark comparison was conducted based on the mean squared errors (MSE) to select 

optimum training algorithm (Table 4). Eleven training algorithms were tested for efficacy 

and Levenberg-Marquardt (trainlm) training algorithm manifested as best so far as COD 

removal prediction and simulation are concern (Table 4). Compared with the other 10 
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algorithms, smaller MSE of 0.131 was obtained with the Levenberg-Marquardt (trainlm) 

algorithm whereas the worst performed algorithm was the batch gradient descent (traingd). 

The poor performance associated with the other 10 algorithms may be ascribed to their 

inability to explain variation that exists in the data set (Antwi et al., 2017c). Comparison 

made between predicted and experimental output values show that ANN is a successful 

technique to predict COD removal from an UASB.  

3.3.2 Optimizing BPANN model building parameters 

The number of neurons to be assigned in the hidden layer required optimization based 

on MSE recorded when different nodes were assigned (Cheng et al., 2016). As a result, 

neurons in the hidden layer (X1), initial adaptive value (X2) and initial weights and biases 

(X3) were optimized by RSM. Multiple nonlinear regressions (MnLR) modelling was 

conducted with MSE (Table 3) as response (Y) to evaluate the precision and significance of 

the model and variables, respectively.  The MnLR equation (Eq.16) in uncoded units was 

fitted as a second-order response.  

                                                                  
                                                                                      (16) 

The operations (negative and positive) associated to the coefficient indicated the impact of 

each factor on the response variable (Y = MSE). ANOVA revealed that, P-value was < 0.05 

and R
2
 was 0.972 indicating high significance of the model. The percentage contributions 

(PC) for individual term estimated based on sum of squares revealed variable X1
2
 showing 

the highest level of significance with a contribution of 53.21% (Table 5). 

Optimized values estimated by response optimizer indicated that, number of neurons, 

initial adaptive value and initial value of weights/biases were 11.4 approximated at 12, 3.75 
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approximated at 4 and 1.05, respectively. The experimental value of MSE was about 

0.0115, whilst that obtained as predicted value under the optimized conditions was 0.011. 

With number of neurons set at 3, 14 and 25, initial adaptive value set at 0.5, 4 and 7.5, and 

initial values of weight/biases set at 0.2, 1 and 1.8,  3D response surface plots were also 

employed to highlight how input parameters interacted and influenced MSE (Fig.4A, B and 

C). The number of neurons in hidden layer demonstrated quadratic effects on the response. 

Notably, when the number of neurons assigned at the hidden layer was < 11 or > 12, MSE 

increased significantly to about 0.02. The interactions observed among the selected 

independent variables were also found to be insignificant herein. 

3.4 Performance of the BPANN model during COD removal simulation 

To avoid possible overfitting as a result of large size of nodes in a hidden layer 

(Srivastava et al., 2014), early stopping methodology was employed in this study to 

evaluate underfitting and overfitting and thereby resolving them accordingly. It was 

observed that, the estimated errors associated with the training set and validation set 

decreased at the initial training phase. However, error of the validation set increased as the 

network began to overfit the data. In this regard, whilst the validation error increased with a 

specified number of iterations, the training was pulsed to initiate the weights and biases at 

the minimum of the validation error to be returned. As a result, overfitting or underfitting 

tendencies were resolved. Again, BPANN predictions had negative operations irrespective 

of the fact that a linear transfer function (purelin) was engaged at the output layer. 

As illustrated in Fig.5, the corresponding visual agreement and correlations between the 

experimental data and the BPANN output was presented. The proposed BP-ANN model 

demonstrated very satisfactory performance during COD removal predictions and 
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simulation. The performance was demonstrated with the correlation plots (Fig.5B, Fig.5D, 

and Fig.5F) where coefficient of determination (R
2
) achieved in the training, validation and 

testing subset reached 0.86, 0.93 and 0.83, respectively, indicating the efficacy of the 

BPANN capable of explaining over 93% of the variation existed in the entire COD removal 

data set. This phenomenal performance could be attributed to the ability of the BPANN 

model to capture complex behavior or trend existed among the variables obtained from the 

anaerobic digestion process (Giwa et al., 2016). Again, the performance efficacy of the 

BPANN could be ascribed to the advantage of the ANNs capability in explaining complex 

interactions between inputs and output parameters. 

The overall performance of the BPANN was further demonstrated with another visual 

agreements and correlations as illustrated in Fig.5G and Fig.5H, respectively. Notably, the 

overall data set (experimental) could agree well with the predicted data set (Fig.5G) with an 

R
2
 of 0.87 as revealed with the correlation plot in Fig.5H. Notably, only 13% of the total 

variation existing in COD removal data sets was not explained by the BPANN model. 

Besides the coefficient of determination (R
2
), the prediction accuracy of the BPANN 

models was further validated with index of agreement (IA) and the fractional variance (FV) 

(Table 6). The index of agreement (IA) obtained with the BPANN model was 0.9117, 

suggesting BPANN model could make reliable prediction. As reported earlier, fractional 

variance (FV) will yield 1 when explanatory variables (x) reveal nothing about the 

dependent variable (Y). On the other hand, FV will be zero (0) when explanatory variables 

(x) are able to make perfect predictions of variable Y (Antwi et al., 2017c). In this study 

therefore, relatively lower FVs were associated with the BPANN model. At COD removal 

predictions, the evaluated FV yielded 0.00113 confirming satisfactory efficiency of the 
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BPANN model. The overall performance of the models in terms of R
2
, IA and FV 

suggested that, the BP-ANN model had a stronger predictive power during COD removal 

predictions and simulations.  

4 Conclusion 

Three-layered-BPANN model was developed to estimate COD removal in an UASB 

treating PSPW. Microbial community and sludge characterization revealed hydrolytic 

bacteria and methanogens in good ratio to achieve optimum COD removal during UASB 

operation. Levenberg-Marquardt algorithm emerged the best tested algorithm. Optimum 

number of neurons, initial adaptive value and initial value of weights/biases were 12, 4.0 

and 1.0, respectively, in accordance to RSM optimization. Only 13% (R
2
=0.87) of the 

variation in the COD removal data set could not be explained by BPANN model. Result 

from modelling and optimization showed high forecast accuracy by the BPANN model. 

E-supplementary data for this work can be found in e-version of this paper online. 
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Figure captions 

Fig.1 Schematic diagram of an UASB (A); flowchart of the feedforward BPANN architecture (B) 

Fig.2 Performance of UASB at various HRTs: COD removal with respect to organic loading rate 

Fig.3 Comparison of functional population at genus level between end of startup phase and end of UASB 

operation 

Fig.4 3D curvature plots from RSM showing interaction effects of:  initial adaptive value and number of 

neurons on MSE (A); initial values of weights and biases and number of neurons on MSE (B); initial values of 

weights and biases and  initial adaptive value on MSE (C) 

Fig.5 Performance of the BPANN model predicting COD removals: Visual agreements between experimental 

and predicted data sets (train set [A], validation set [C], testing set [E] and overall data set [G]); correlations 

between experimental and predicted data sets (train set [B], validation set [D], testing set [F] and overall data 

set [H]) 
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Tables  

Table 1  

Characteristics of raw wastewater and UASB operation after startup 

Wastewater characteristics Operation of the UASB after startup 

Parameters Mean 
Stage 
(HRT) 

Influent COD 
(g/L) 

Average OLR 
(kgCOD/m3.d) 

Period 
(days) 

TCOD (mg/L) 26385 1-(72h) 
7.5-8.0 

(Phase I) 

2.70 1-15 

NH4
+-N (mg/L) 349 2-(48h) 3.73 16-34 

pH (mg/L) 5 3-(36h) 5.02 35-56 

ALK (mg CaCO3/L) 2945 4-(72h) 
10.5-12 

(Phase II) 

3.65 57-70 

TP (mg/L) 96 5-(48h) 5.27 71-99 

Protein (mg/L) 6322 6-(36h) 7.16 100-131 

Carbohydrate (mg/L) 7834 7-(72h) 
19-20 

(Phase III) 

6.70 132-158 

Total solids (g/L) 24.63 8-(48h) 9.88 159-187 

Volatile solids (g/L) 19.6 9-(36h) 13.27 188-218 
 h, hours 
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Table 2  

Input and output variables and related descriptive statistics 

Statistical 

parameter 

Input variables Output variable 

[Ip1] [Ip2] [Ip3] [Ip4] [Ip5] [Ip6] [Y] 

 Inf. COD 

(mg/L) 

NH4+-N 

(mg/L) 

Inf. pH  OLR  

(Kg COD/m3/d) 

 Eff.VFA 

(mg/L) 

Biogas yield 

(L/d) 

COD removal  

(%) 

Mean 13579.52 136.2511 6.60 6.994177 311.5052 18.02061 84.06073 

Median 11198.96 134.1396 6.61 6.581633 314.694 18.60063 87.46304 

Minimum 5099.502 90.03433 6.05 2.411714 29.28911 2.6 42.1783 

Maximum 21806.85 181.4866 7.1 13.8322 626.247 32.7561 97.72828 

Counts 218 218 218 218 218 218 218 
Ip, input variable; Inf, influent; Eff, effluent 
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Table 3   

Experimental runs from Box Behnken Design (BBD) 

Runs Variables Mean squared errors 

Number of 

neurons (X1) 

Initial adaptive 

value (X2) 

Initial value of w and 

b (X3) 

Uncoded Coded Uncoded Coded Uncoded Coded Experimental Predicted 

1 14 0 7.5 1 0.2 -1 0.0245 0.0226 

2 25 1 4 0 1.8 1 0.0321 0.0311 
3 25 1 4 0 0.2 -1 0.0311 0.0312 

4 25 1 7.5 1 1 0 0.0286 0.0303 

5 14 0 7.5 1 1.8 1 0.0203 0.0195 

6 14 0 0.5 -1 1.8 1 0.0182 0.0200 

7 3 -1 7.5 1 1 0 0.0203 0.0211 

8 3 -1 4 0 0.2 -1 0.0227 0.0236 

9 14 0 4 0 1 0 0.0114 0.0115 

10 25 1 0.5 -1 1 0 0.0297 0.0288 

11 14 0 4 0 1 0 0.0121 0.0115 

12 14 0 4 0 1 0 0.0112 0.0115 

13 14 0 0.5 -1 0.2 -1 0.0191 0.0197 

14 3 -1 0.5 -1 1 0 0.0221 0.0203 
15 3 -1 4 0 1.8 1 0.0211 0.0209 

w, weights; b, bias, RSM, response surface methodology 
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Table 4  

Benchmark comparison of backpropagation training algorithms 

Backpropagation algorithm 
Training 

function 

Target sets (COD removal %) 

used in the ANN study 

 R2 IN MSE 

BFGS quasi-Newton trainbfg 78.2 138 12.42 

Powell–Beale conjugate gradient traincgb 49.24 146 1.047 

Fletcher–Reeves conjugate gradient traincgf 12.50 201 56.92 
Polak–Ribi’ere conj gate gradient traincgp 66.91 98 5.231 

Batch gradient descent traingd 19.89 172 67.98 

Batch gradient descent with momentum traingdm 7.12 181 15.96 

Variable learning rate traingdx 36.09 128 3.015 

Levenberg-Marquardt trainlm 85.76 143 0.131 

One step secant trainoss 81.65 211 3.451 

Resilient trainrp 39.87 152 6.013 

Scaled conjugate gradient trainscg 56.81 102 1.782 
IN - number of iterations;  
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Table 5  

Performance statistics of multiple nonlinear regression model of model building parameters  

Term Effect Coef SE Coef T-Value SS PC (%) P-Value   

X1 0.008825 0.004412 0.000674 6.55 0.000156 22.807 0.001   

X2 0.001175 0.000587 0.000674 0.87 0.000003 0.4385 0.423   
X3 -0.001400 -0.000700 0.000674 -1.04 0.000004 0.5847 0.347   

X1*X1 0.019858 0.009929 0.000992 10.01 0.000364 53.216 0.000   

X2*X2 0.007358 0.003679 0.000992 3.71 0.000050 7.309 0.014   

X3*X3 0.010508 0.005254 0.000992 5.29 0.000102 14.912 0.003   

X1*X2 0.000350 0.000175 0.000953 0.18 0.000000 0.001 0.862   

X1*X3 0.001300 0.000650 0.000953 0.68 0.000002 0.292 0.526   

X2*X3 -0.001700 -0.000850 0.000953 -0.89 0.000003 0.438 0.413   

Constant  0.01157 0.00110 10.51       0.000 
*, multiplication function; p-values<0.05 were considered significant; Coef, coefficient; X1, neurons in the hidden layer; 
X2, initial adaptive value; and X3, initial weights and biases 
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Table 6  

Performance summary of the BP-ANN model  

Performance indicators 
Testing data set 

COD removal 

Coefficient of determination(R2) 0.87 

Index of agreement (IA): 0.9117 

Fractional Variance (FV): 0.00113 
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Figures 

 

Fig.1 Schematic diagram of an UASB (A); flowchart of the feedforward BPANN architecture (B) 
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Fig.2 Performance of UASB at various HRTs: COD removal with respect to organic loading rate 
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Fig.3 Comparison of functional population at genus level between end of startup phase and end of UASB 

operation 
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Fig.4 3D curvature plots from RSM showing interaction effects of: initial adaptive value and number of 

neurons on MSE (A); initial values of weights and biases and number of neurons on MSE (B); initial values of 

weights and biases and initial adaptive value on MSE (C) 
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Fig.5 Performance of the BPANN model predicting COD removals: Visual agreements between experimental 

and predicted data sets (train set [A], validation set [C], testing set [E] and overall data set [G]); correlations 

between experimental and predicted data sets (train set [B], validation set [D], testing set [F] and overall data 

set [H])  
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Highlights:   

 COD removal process was predicted with feedforward artificial neural networks. 

 Training algorithm and model building parameters were optimized before employed. 

 Model performance suggested feasibility to control and optimize AD process with 

BPANN. 

 Microbial communities coexisted without evidence of inhibition on the AD process.   
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Schematic diagram of: (A) an UASB operated under mesophillic condition; (B) flowchart of the feedforward 

BPANN architecture 
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