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Highlights 

 Four error metrics were tested across 2000 simulations of repeat measurements (g-op) 

 With large error, intraclass (ICC) and Pearson’s correlation coefficients (r) were high 

 t-tests resulted in insignificant P-values when errors were normally-distributed 

 Technical error of measurement (TEM) intuitively increases with increasing error 

 TEM is the preferred error metric in contrast to r, ICC and P-value result 
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Abstract 

For measurements to be accurate and precise, measurement errors should be small.  In the 

anthropometry and craniofacial identification literature, four methods are commonly used for 

assessing measurement error: Pearson’s product moment correlation coefficient (r), intra-class 

correlation coefficients (ICC), statistical significance tests (often reported by P-values) and the 

technical error of measurement (TEM; also known as Dalberg’s error/ratio).  In this paper, the 

performance of all four of these statistics were evaluated using maximum cranial lengths (g-

op) from Howells (n = 2524), by duplicating the dataset and mathematically adding known 

degrees of error to the second set. This was repeated under a broad array of trials (2000 total) 

each with slightly different amounts of error simulation to comprehensively assess the four 

error metrics in terms of descriptive power and utility, using the same data for each of the four 

error assessment methods.  Data simulations included the addition of random and systematic 

errors of different sizes with absolute differences ranging from 1–50 mm (or in relative terms, 

28 % of the original measurement). Two sample sizes (n = 25 and 2524 individuals) were 

explored and all analyses were conducted in R. P-values from Student’s t tests only showed 

significant differences (P < 0.05) for the larger sample size when the error was systematic.  

Small samples, and/or any with random error, did not yield low or significant P-values (P < 

0.05).  When raw differences were < 4 mm for 95 % of the sample (n = 2524), the ICC and r 

were high (> 0.97) and remained so even after tripling the error, such that 95 % of the sample 

possessed raw differences up to 12 mm (r = 0.8).  In contrast, the TEM was low initially (< 2 

mm or r-TEM < 1 %), and then increased (< 4.5 mm and 2.5 % corresponding to TEM and r-

TEM respectively).  These data show that P-values, ICC and r values hold substantial limits 

for error description as they do not always flag error well.  In contrast, TEM appears to covary 

with error more saliently and holds the advantage that changes are reported in the units of the 
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original measurement.  For these reasons, TEM is recommended in favour to P-values, ICC 

and r. 

 

Keywords: Forensic science; Error statistics; Measurement error; Intraobserver error; Inter-

observer error; Anthropometry 

 

Introduction 

The term ‘measurement error’ is used to describe inaccuracies in measurement that may be 

manifested by differences between repeated measurements of the same object. These 

differences can communicate important information of the data accuracy (correctness) and 

precision (tightness of cluster addressing reliability/repeatability/reproducibility depending on 

the context). While the standardization of data collection procedures is vital to ensure 

correctness and consistency of measurement [1-4], measurement error is a fact of real world 

practice that is essentially impossible to eliminate [5]. Thereby, any measurement can be 

considered as the sum of the measurement’s true value and the error component [6].   

 

Before proceeding it is worth defining basic terms used to describe error in a dataset. Accuracy 

refers to how correct the data are. Precision refers to consistency, and is also called reliability.  

Note here that accurate data may not be precise and precise data may not be accurate. 

Repeatability is the similarity of repeat measurements taken by the same investigator, i.e., the 

intra-observer error [6].  If an investigator does not deviate from a particular measurement 

method, it is important to note that intra-observer error can still result from instrument error 

and/or a change in the investigator’s measurement technique, i.e., the style in which a specific 

measurement instruction is executed [7].  Reproducibility is similar to repeatability, but refers 
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to measurements taken by different investigators and thereby describes the inter-observer error 

[6].  

 

Prime sources of error in anthropometry and craniometrics not only include ability to 

accurately and reliably locate skeletal landmarks [1-4], but also the ability to correctly read and 

record measurements taken from instruments [7]. Here factors such as proper technique, 

specimen stands, and well-lit and comfortable laboratory conditions can be vital. In terms of 

measurements, it is important to note that some measurements/landmarks may be metrically or 

instrumentally determined, not anatomically defined [4, 8, 9]. 

 

As part of anthropometry research practice or forensic casework, it is crucial for the 

measurement error to be determined and explicitly documented to communicate the 

trustworthiness of the data [10-12].  The statistics used to describe the measurement error 

should thereby be carefully chosen so that they clearly communicate the amount of error 

present in an easy to appreciate manner. Error statistics that cryptically encode the data or 

encourage misleading interpretations should be avoided. Four commonly used statistics to 

report error in anthropometry and craniofacial identification are: Pearson’s product-moment 

correlation coefficients (r), P-value results from statistical significance tests (commonly 

Student’s t-test), intraclass correlation coefficients (ICC), and technical error of measurement 

(TEM) [11, 13-16].  

 

Pearson’s Product-Moment Correlation Coefficient 

Pearson’s product-moment correlation coefficient, r, is a measurement of the linear 

relationship between two variables [13, 17].  The calculation for r in a sample of n paired 
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observations is outlined below, where xi and yi are paired measurements indexed by i, and 𝑥̅ 

and 𝑦̅ are the sample mean [18]: 

 

𝑟 =  
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√(∑(𝑥𝑖 − 𝑥̅)2)( ∑(𝑦𝑖 − 𝑦̅)2)  
 

The r ranges from -1.00 to 1.00, with an r value of 1.00 indicating a perfect positive linear 

relationship, -1.00 a perfect negative linear relationship, and 0.00 indicating no relationship 

[17].  The main shortcoming of r, lies in its assessment of the consistency between samples 

while disregarding agreement [10, 17, 19, 20].  For instance, r calculates whether two 

observers/instruments gave values that ‘ranked’ the sample in the same order (consistency), 

disregarding whether the values are of the same magnitude (agreement).  This makes r unable 

to differentiate errors between samples where a repeated measurement is consistently higher 

or lower than its paired value [13, 17] (Fig. 1).   This may be identified by scatterplots, however 

r itself cannot provide the differentiation.  Further to this, the choice of dependent variable in 

calculating r is entirely arbitrary in a repeated measures design, and samples with a large data 

range are likely to give higher r values than data with a smaller range, even if the residuals 

about the regression line are similar [10] (Fig. 1).  

 

 

In reporting r, there appears to be little agreement for an appropriate threshold to differentiate 

large from small r values, further complicating this metric’s dimensionless nature.  Atkinson 

and Nevill [13] suggest when r > 0.8 and statistically significant, reliability is high. Goto and 

Mascie-Taylor [21] state r > 0.95 reflect only small errors.  While Harris and Smith [10], 

without specifying any numbers, indicate r is always high unless measurement error is large.  

While these reports are not necessarily conflicting, it is evident that there is no commonly 
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agreed interpretative scale for r with regards to measurement error.  Also problematic for r is 

its sensitivity to outliers which may skew r values to provide misleading results. 

 

Intraclass Correlation Coefficient 

Intraclass correlation coefficient (ICC) demonstrates the strength of relationship between two 

variables and was initially developed to help overcome some of the limitations associated with 

r [16, 19].  To assess reliability, labelled p, we can determine the proportion of true variance to 

total variance within a sample (see below). 

𝑝 =
𝑡𝑟𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑡𝑟𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 +  𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

As the true variance of a sample is not known, the ICC estimates this proportion using results 

from analysis of variance (ANOVA) [19].  Therefore, from McGraw and Wong [22], ICC can 

be thought of as the proportion of variance attributable to the objects being measured (between-

subject).  If this proportion is high, the objects themselves can be seen to explain most of the 

variability in the sample, conversely indicating that error yields relatively little influence.  

Hence, ICC indicates reliability by splitting variance into between- and within-subject 

variability and identifying these relative to whole-sample variability [19, 23].   

 

There are several different ICC types, each suitable for specific study designs and research 

questions (see Weir [24] for an excellent guideline).  From Shrout and Fleiss [25] and McGraw 

and Wong [22], there are ten different ICC types, each differing in fundamental ways.  

Summarized by Weir [24], ICC type depends on whether: 

a) One- or two-way ANOVA should be used; 

b) Fixed or random-effects should be modelled (i.e., should the reliability score generalize 

to a larger group of observers); 
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c) Systematic error should be included (i.e., whether consistency or agreement should be 

identified); and 

d) Mean or single values be taken as final measurements. 

 

As an example, we can identify the reproducibility of measurements from the same sample 

taken by two randomly selected analysts.  Defining a single measurement to be taken as true, 

and considering agreement between observers to be important, an ICC that can reasonably 

generalize reliability to any similarly-skilled analyst is required.  This indicates ICC(2,1), given 

below where, obtained from a two-way ANOVA table, BMS is the between-subject mean 

square, EMS the mean square of the residual component of within-subject, JMS the mean 

square of the between-observer component of within-subject, n is the number of subjects and 

k the number of observers [16].   

𝐼𝐶𝐶(2,1) =  
𝐵𝑀𝑆 − 𝐸𝑀𝑆

𝐵𝑀𝑆 + (𝑘 − 1)𝐸𝑀𝑆 +
𝑘
𝑛

(𝐽𝑀𝑆 − 𝐸𝑀𝑆)
 

 

The ICC(2,1) formula can be thought of as the proportion of true variance in the sample (that 

is, variance only due to differences between the objects measured) to total sample variance, 

which includes all possible sources of error (that is, both random and systematic errors, and 

error associated with the random sampling of observers) .  Weir [24] highlights that the use of 

ICC(2,1) is interchangeable for test-retest and inter-observer study designs when assessing 

agreement (i.e., including systematic error), and thus the ICC(2,1) model will be used in this 

study.   

 

By using the mean square of partitioned within-subject error (between-observer and residual 

[error] variance), ICC can identify systematic and random errors, overcoming shortcomings 
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seen with r.  However, ICC is calculated relative to sample heterogeneity, meaning 

heterogeneous samples will give a higher ICC value simply due to the smaller level of error 

relative to total variability [13, 19].  Essentially, ICC normalizes measurement error relative to 

total sample heterogeneity, a weakness for an error metric when used to identify absolute error 

information [24].  For repeat measures, it is important to recognize that while a low ICC value 

indicates low reliability, the ICC value may reflect low heterogeneity and/or small sample size 

not just a large error value [26, 27].  

 

Even further, both calculation and interpretation of ICC values depend on study design and 

ICC type [16, 27].  The dimensionless nature of ICC makes its interpretation subjective and 

difficult in similar ways to r [26]. This is reflected in the marked differences seen in reported 

values for interpreting reliability based on ICC (Fig. 2).  For example, in a review of statistical 

methods used in medical instrument reliability tests, Zaki et al [28] identified that ICC is the 

most common statistic used, however only 28 % of studies report ICC type and confidence 

intervals.  In this review, most studies were seen to use only one method to assess reliability, 

and inappropriate application of statistical methods was identified in 19 % of studies [28].  Koo 

& Li [16] and Müller and Büttner [29] further highlight that different forms of ICC yield 

different results, even when applied to the same dataset. 

 

 

Caution should be exercised when interpreting ICC values from previously published studies, 

or making comparisons between them, and even more so when drawing conclusions in 

association with ICC results.  As with r, ICC is unable to give direct information regarding raw 

differences between repeat measures, making comparison between studies and interpretation 

of true measurement error extremely difficult. 
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Significance Tests 

P-values tell the probability of the data under the assumption that they are due to chance.  

Significance tests are thereby used to identify rare events, typically, by a P-value threshold set 

at 0.05 [33]. Student’s t-tests are used in continuous, normally distributed datasets and are 

classified as paired in instances of repeat measurements.  Paired t-tests compare measurement 

differences against the null hypothesis of zero (i.e., repeat measurements being the same).  This 

is done by calculating a t-score and comparing against the t-distribution for n-1 degrees of 

freedom.  Then, by assuming measurement differences are zero, a probability of the observed 

data is reported as a P-value.  The t-score for a paired t-test is given by the formula below, 

where Xd is the average paired difference, Sd is the standard deviation of paired differences and 

n is the number of pairs [34].  Here, the numerator can be considered to represent signal, and 

the denominator noise within the sample. 

𝑡 =  
𝑋̅𝑑

(
𝑆𝑑

√𝑛
)
 

The limitations of using t-tests when assessing measurement error are twofold.  Firstly, should 

error be randomly and normally distributed, with a mean equal to the true sample mean, 

negligible differences between means would exist and thus, t-tests would be unable to identify 

any errors.  Secondly, t-tests tend to exaggerate small differences in large samples, as any 

difference manifests with low P-values, even extremely small uninformative differences [35-

37].   

 

Technical Error of Measurement 

Given by the formula below, the technical error of measurement (TEM) is an average of paired 

measurement differences [10, 15, 38]. 
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𝑇𝐸𝑀 = √
∑ (𝑥1𝑖 − 𝑥2𝑖)2𝑛

𝑖=1

2𝑛
 

Here, x is the first and second measurement result for the ith subject, and n is the sample size. 

 

TEM is reported in the same units as the original measurements, making interpretation straight 

forward [15, 38].  As small mean measurement error may have more practical consequences 

for overall smaller measurements than larger ones, the relative TEM (r-TEM) can also be 

calculated by dividing TEM by the mean measurement to convert to a percentage value [15]. 

It is worth noting here that TEM appears to be unaffected by measurement size [38]. 

 

Each study, dependent on its design and objective, will have different levels of acceptable error, 

and thus no common threshold of TEM, or any other metric, can be definitively outlined.  

However, Perini et al [15] have suggested that for beginner and skilled analysts, acceptable 

intra-observer r-TEM to be 1.5 and 1 % respectively, with inter-observer r-TEM as 2 and 1.5 

%.   

 

In the anthropological literature, and more specifically in the literature concerning skulls as 

relevant to craniofacial identification, there has been a wide range of error statistics employed 

and no consensus as to which is ideal.  Additionally, there is a large disparity in both the 

reporting and analysis of measurement error in craniometrics, with some studies reporting only 

one statistic and others reporting upwards of four [14, 30, 39].  This study aims to explore the 

utility of all the above-mentioned error metrics and determine which one performs best across 

multiple simulated error scenarios and thereby should be the statistic of choice for future 

reporting. 

Materials and Methods 
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Maximum cranial lengths (g-op) used in this study were drawn from Howells’ craniometric 

dataset (mean = 179 mm, interval = 151 to 206 mm, n = 2524) [40]. While any cranial cord 

length could be used; we chose maximum length as it represents a familiar and basic 

craniometric measurement relevant to craniofacial identification.  It is also one that all 

physical/biological anthropologists should be familiar. 

 

To examine how the error metrics described above perform in a sample with known error, we 

duplicated Howells’ data to create a second dataset to which known degrees of artificial error 

could be added.  This was done by adjusting the raw data values in specific and purposeful 

ways, so that they differed to the starting ‘ground truth’ measurements. The standard error 

metrics (described above) were then calculated using the two samples, and under a large array 

of simulated error scenarios (including some with extreme error amounts), to see how the error 

metrics performed. As a large number of calculations were required across multiple error 

evaluation methods, including samples of two different sizes (n = 25 and n = 2524), R [41] was 

employed to automate routines. The smaller sample was specifically set to be on the smaller 

side for which the t-test was derived (n  30), and equivalent to small samples commonly used 

in craniofacial identification practice where constraints on sample accessibility restrict 

numbers. For example, samples used for calculating craniometrics or facial soft tissue depths 

in craniofacial identification are routinely in the vicinity of 25 individuals (see e.g., [42-45]). 

 

Random Error 

To add random error, a normally distributed set, with a mean of zero and pre-determined 

standard deviation, was created and added to a duplicate set of Howells’ original 

measurements.  These error simulations were run for standard deviations ranging in error at 

whole point integer values from 1 to 10 mm (representing 1.8 to 18 % of the mean measurement 
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respectively; Table 1).  These simulations represented error randomly spread across all 

measurements (Fig. 3). 

 

Systematic Error 

Firstly, Howells’ original measurements were duplicated and ranked in ascending order.  This 

duplicate data was then split into ten different groups (henceforth referred to as quantiles), each 

containing roughly 10% of the sample (i.e., deciles).  To add systematic error, three normally 

distributed sets were created and each respectively added to the 8th, 9th or 10th quantile of a 

duplicate set of Howells’ original measurements, so that error increased as the g-op 

measurement increased.  These datasets were of increasing mean size and spread, where both 

the mean and standard deviation increased by whole point integer values between the three 

generated sets.  The error dataset of the smaller mean and spread was added to the 8th quantile, 

and the error dataset with the largest mean and spread added to the 10th quantile, reflecting 

increasing error with increasing g-op measurement (Fig. 4).  The addition of these three error 

datasets to the 8th, 9th and 10th quantiles of a duplicate set of Howell’s original measurements 

represented one systematic error simulation.  These simulations were then run for average 

standard deviations of error (i.e., the average of the three added error datasets) from 1 to 10 

mm, with the mean of the dataset added to each quantile remaining constant between the 

different simulations (Table 2). 

 

 

 

Error Metrics 

One-hundred simulations of each error type (random and systematic) and magnitude (ranging 

from 1 to 10 mm at every whole point integer value for standard deviation) were generated. 
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This resulted in 2000 error simulations conducted for each error statistic and since four error 

metrics were analyzed in each simulation (r, ICC, P-value [t-test], and TEM), a grand total of 

8000 error calculations were conducted.  

 

Howells’ original data and the artificial repeat samples showed differences in means of < 1 

mm, but included raw differences of up to 50 mm in some simulations, corresponding to 28% 

of mean measurement (Fig. 5), thereby providing an interval of error that more than adequately 

covered realistic error amounts. 

 

 

For small sample tests, 25 measurements from Howells’ dataset were randomly selected once, 

with error then added to this sample in the same process as previously described.  Again, 100 

artificial repeat samples for each error type and magnitude were generated (bootstrapped), and 

the mean of these 100 replicates taken as the final statistic of interest.  

 

Results 

For most error scenarios, many of the statistics explored in this study remained high, 

misleadingly indicating reliable results, when in fact error was large (Fig. 6).   

 

 

 

Random Error 

TEM 

TEM displays a roughly linear trend for samples with random error.  The value of TEM 

increased as random error increased (positive trend), ranging from 1 to 7 mm.  Up to 4 mm of 
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error randomly added to 95 % of the sample (2 mm standard deviation of error), gave TEM < 

2 mm.  After tripling this error (up to 12 mm differences in 95 % of sample), TEM increased 

to > 4 mm.  Negligible differences were seen between TEM results from small and large 

samples. 

 

r 

Following a mostly linear trend, r values decreased as added error increased in random error 

simulations (negative trend).  For up to 2 mm error added to 95 % of the sample (1 mm standard 

deviation of error), r values lie close to 1.  With fourfold more error (4 mm standard deviation 

of error) r decreased to slightly below 0.9, and was approximately 0.5–0.6 for simulations with 

the largest added error (10 mm standard deviation of error).  Simulations from the large sample 

gave consistently higher r values than those from the smaller sample under the same conditions, 

with this difference becoming larger as error increased.   

 

ICC 

ICC values were approximately 1 for the lowest added error simulations (1 mm standard 

deviation of error).  When added error was tripled, ICC remained above 0.9, and at up to 12 

mm added error in 95 % of the sample (6 mm standard deviation of error), ICC values were 

approximately 0.8 in the large sample and 0.7 in the small sample.  As with r, ICC values were 

consistently higher in the large sample under the same added error conditions; with the largest 

added error (10 mm standard deviation of error) resulting in an ICC of approximately 0.6 and 

0.45 for the large and small sample respectively.  

 

P-values from paired t-tests 
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All random error simulations resulted in P-values near 0.5, with negligible differences seen 

between sample sizes. 

 

Systematic Error 

TEM 

Similar to random error, TEM displays a positive linear trend for simulations of systematic 

error with negligible differences between sample sizes.  Ranging from 1 to 5 mm, TEM 

increased as the average standard deviation of systematic error increased, although this increase 

was less pronounced than that seen under random error.  Under systematic error, an average 

standard deviation of 2 mm gave TEM < 2 mm.  Tripling this error (6 mm average standard 

deviation of error), TEM increased to < 4 mm.  With the largest systematic error added (10 mm 

average standard deviation), TEM was approximately 5 mm. 

 

r 

Under simulations of systematic error, r values decreased as added error increased, however 

this decrease was less pronounced than that seen for random error.  In systematic error 

simulations with an average standard deviation of 1 mm, r values were close to 1.  Increasing 

the average standard deviation of error six-fold (i.e., 6 mm) resulted in r values above 0.9.  With 

the largest added error (10 mm average standard deviation of error), r values were 

approximately 0.8 and above 0.7 for the large and small sample respectively.  Simulations from 

the large sample again gave consistently higher r values than those from the smaller sample 

under the same conditions, with this difference becoming larger as error increased.   

 

ICC 
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ICC values decreased as error increased in simulations of systematic error, however this decline 

was less pronounced than that seen under random error.  ICC values were close to 1 for 

systematic error with an average standard deviation of 1 mm, and remained above 0.9 when 

error was increased fourfold (4 mm average standard deviation of error).  In large samples, ICC 

values remained higher than respective small sample ICC values, with this difference 

increasing as error increases.  For the largest added systematic error (10 mm average standard 

deviation), the large and small sample showed ICC values of approximately 0.75 and 0.65 

respectively. 

 

P-values from paired t-tests 

Systematic error in large samples always resulted in P-values < 0.05, while only 1 mm average 

standard deviation of systematic error gave a P-value < 0.05 in the smaller sample. P-values 

for the smaller sample then increased as error increased, finishing around 0.5 for the largest 

average standard deviation of systematic error (10 mm). 

 

Discussion 

TEM 

Under the simulations in this study, the only error metric that showed intuitive trends across 

all error scenarios and displayed negligible differences between sample sizes and error types, 

was TEM.  Only error of up to 2 and 4 mm added to 67 % and 95 % of the sample respectively 

(1.1 % and 2.2 % of mean measurement), resulted in TEM < 2 mm.  Although TEM cannot 

indicate the directionality or frequency of error, it gives a clear indication of the error 

magnitude because it is in the same units as the measurement itself, and the statistic moves in 

the same direction as the error (i.e., TEM increases as error increases). This latter aspect does 

not apply to all error metrics examined here. 
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For small error magnitudes, TEM was almost proportional to the error magnitude; that is, 

standard deviation of error of 1 and 2 mm gave an approximate TEM of 1 and 2 respectively.  

While TEM values are lesser for scenarios of larger error, this proportionality in instances of 

lower error, as expected given the calculation, is extremely useful for direct interpretation of 

raw differences.  Further, by simply reporting the most likely raw difference between two 

repeat measurements for a given investigation, TEM remains unaffected by differences in size 

and/or spread between different samples, making it suited to direct comparison between 

studies.  Overall, TEM is easy to interpret, directly related to raw error magnitude in a repeat 

sample, intuitively increases as error increases, is unaffected by differences in sample size, and 

can easily be compared between studies.  From this, TEM overcomes many of the limitations 

seen in the other error metrics investigated in this study as described below. 

 

ICC and r 

While ICC overcomes some of the shortcomings of r in capturing systematic error, both values 

remained high when error was substantial (> 3 mm standard deviation of error).  An ICC > 0.8 

represented data with up to 10 mm of error added to 95% of the sample (standard deviation 5 

mm).  From Jamaiyah et al [30], Koo and Li [16] and Rosner [32], this indicates that these 

samples have almost perfect, good/excellent, or perfect reliability respectively.  In this study, 

10 mm of error corresponds to 5.6 % of the mean measurement - almost certainly too high to 

be considered a reliable value in most scientific or forensic contexts of anthropometry. 

 

There is also clear disparity between ICC values from samples of different sizes, indicating 

error magnitude may be concealed in larger samples and thus may require more stringent 

criteria than in smaller samples.  Further to this, as with most craniometrics studies, the data 

ACCEPTED M
ANUSCRIP

T



18 

 

used was highly heterogeneous, which may have contributed to ICC values remaining high 

despite substantial added error.  

 

With ICC and r values decreasing as raw error increases, the interpretation of these statistics 

becomes somewhat counterintuitive, and gives no directly relatable information indicating the 

size of raw error in a repeat sample (for example, for a large sample with 1 mm standard 

deviation of random error ICC is approximately 1, but at 3 times this error ICC decreases to 

only 0.95).  Given ICC and r values are difficult to interpret and fundamentally rely on the 

variance of the sample from which they are calculated, these metrics should be cautiously 

approached when making comparisons between studies.  

 

P-values from paired t-tests 

As a statistic that is widely known to be frequently misinterpreted [37, 46, 47], the trends seen 

in P-values from the paired t-tests in this study are particularly interesting.  As artificially added 

error was normally distributed with a mean of zero for random error, the mean of differences 

between repeat measurements was effectively zero.  Because of this, no matter how varied the 

differences between repeat measurements, signal in the dataset (t-statistic numerator) would 

still be considered zero as the t-statistic formula only employs a mean paired difference.  In 

every case, this leads to a t-statistic of zero, and thus a statistically insignificant P-value (> 

0.05) indicating no difference between datasets, despite practically significant raw differences 

of up to 50 mm in some repeat simulations.  From this, it is even more apparent that paired t-

tests are fundamentally unable to identify instances of random error, at any magnitude, when 

the means of paired differences are zero.  This is particularly concerning when calculating 

intra-observer error, as, by design, error from one observer who uses the same measurement 
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method and tools is likely to be normally distributed with a similar mean between repeat sets 

and raises red flags for the use of t-tests for error assessment. 

 

For systematic error however, the means of repeat datasets change slightly due to the deviation 

of added error from a mean of zero in the largest 30 % of data.  In the large sample, the signal 

to noise ratio of the t-statistic shows a significant difference between repeat datasets at all error 

magnitudes, likely due to the low denominator (noise) value given when n is large.  This leads 

to a large t-value, resulting in a low P.  In the smaller sample however, only systematic error 

with an average standard deviation of 1 mm resulted in P < 0.05.  This is likely because less 

noise (low average standard deviation of error) permits small differences between dataset 

means (means of added error datasets: 1, 2, 3 in three uppermost quantiles) to yield large t-

values.  While P < 0.05 for 1 mm average standard deviation of error shows statistical 

significance, here little practical significance may exist, particularly relative to the larger error 

scenarios, and the result is at risk of being wrongly interpreted.  In application, higher error 

magnitudes commonly have a larger impact on study outcomes, and thus the lack of significant 

P-values in the smaller sample for large average standard deviations of systematic error is not 

ideal. 

 

It should be noted here that t-tests are likely to be more effective when addressing error that 

involves constant differences between measurements (e.g., where a repeat measurement is 

always 20 mm above a previous measurement); however, the true presence of such an effect 

would likely be indeterminable from paired t-tests if undertaken with a large sample size.  With 

this, paired t-tests cannot, by design, identify random error (with a mean of zero) of any 

magnitude and are likely to show statistical significance in all large samples.  These are 
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shortcomings of this error metric, and such limitations should be well understood by any 

practitioner wishing to apply or interpret P-values as an indicator of error embedded in samples. 

 

General 

This study investigated the performance of a several commonly used error metrics in instances 

of known measurement error using, as an example, maximal cranial length.  While the rational 

for the use of maximum cranial length measurements was based on popularity of cranial length 

as a cornerstone craniometric, in practice any linear dimension of similar size could have been 

used and comparable results would have been obtained. A pronounced range of error was added 

to the data in a controlled manner to highlight the trends of these error metrics under both 

practically small and impractically large errors (e.g., up to 50 mm in some cases).  While some 

of these values may be unrealistic in practice, it is important to consider these trends, to 

appreciate the error metric performance across the full range of error magnitudes. 

 

There are many other statistics, different to those investigated in this study, that can be 

employed to assess reliability.  For example, Cohen’s kappa can be used to identify 

repeatability and reproducibility by identifying the percent of measurement agreement, 

accounting for chance [48-50].  Kappa is most commonly used to identify inter-observer 

reliability, but it is worth noting that this metric has limitations due to its dimensionless nature 

and subjective interpretation much the same as those seen with r and ICC [48, 49].  Further to 

this, kappa assesses percent agreement by identifying the number of times observers did not 

agree on a given measurement, but gives no weight to the amount by which they disagree [48-

50].  Weighted kappa has been developed to help overcome this issue, however both kappa and 

weighted kappa are more suited to qualitative/ordinal data than continuous data [49, 50]—thus 

the reason why Kappa was not evaluated in this study of continuous data for cranial lengths.  
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Note here that Fleiss and Cohen [50] highlight that in some situations, particularly those 

identifying systematic error such as ICC(2,1), weighted kappa and intraclass correlation 

coefficient are equivalent. 

 

All the error metrics explored herein aim to conveniently define one value indicative of 

reliability.  While  such an overarching value is important, the frequency and direction of error 

are additional important factors to consider [12].  Almost all error metrics explored in this study 

have an average calculation in their formula, and while helpful for estimating error size and to 

some extent frequency, such calculations may be sensitive to outliers.  Therefore, it is always 

an important step to visualize error within a repeat sample by plotting as per approaches of 

exploratory data analysis [51].    Bland-Altman plots are common for such visualization [52-

54], and are highly recommended as a helpful addition to error assessment. 

 

It is also worth noting here, that with regards to r values, Spearman [55] developed a post-hoc 

correction that attempts to account for attenuation as a result of the measurement error. This 

results in strengthening (upwards revision) of all raw r-values [56] and means that the r-value 

becomes an estimate (with associated confidence intervals) [57].  Whether this approach should 

be employed is a matter of some controversy [56-58] as point estimates of r-values become 

unreliable with small samples and large errors such that the disattenuated values may not offer 

much improvement or, even worse, may be misleading. In the end, there is ultimately no 

substitute for high-quality error free data and should defective sets be encountered, then 

investigators should seriously consider whether they should be disregarded. 

 

From the common statistics and their associated limitations highlighted in this study, 

practitioners should be aware that high r values, ICCs or non-significant P-values do not 
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necessarily mean ‘tight’ data with little error.  For direct error information and comparability 

between studies, a single TEM, or r-TEM, value is very useful. In some circumstances, a 

combination of measurement error values may be useful or necessary, e.g., correlations 

between repeated measurements will be required if calculating disattenuated r-values, however, 

TEM should be reported as a standard statistic in any analysis given its more intuitive 

covariation with error and documentation of the error in the units of the measurements subject 

to investigation. 

 

 

Conclusion 

In the simulations run here, and compared to other r, ICC and paired t-tests evaluated, the TEM 

is the most generically useful error indicator under differing sample sizes and error types. The 

t-tests are unable to identify most normally distributed raw error, while both ICC and r remain 

high when raw error is substantial.  In addition, ICC, r, and P-values from t-tests are both 

difficult to interpret and difficult to compare between different investigations.  Comparatively, 

TEM intuitively increases as error increases, is easily understood and interpreted and can be 

directly compared between studies for measurements collected in the same units (e.g., mm for 

craniometrics).  For tests conducted herein, TEM was the most robust and therefore useful 

statistic for assessing measurement error in craniometrics. We suggest it should be reported as 

a standard for error assessment in craniofacial identification, including facial soft tissue 

thickness values, and if not reported in favour of P-values, ICC and r, it should at least 

accompany these other statistics. 
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Berücksichtigung der anthropologischen Methoden für Studierende, Ärzte und 
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Figure 1:  Some limitations of r for error measurement: (A) r cannot differentiate differences of error magnitude 

between sets of repeated measurements – both datasets illustrated in (A) hold the same r value (0.941), even 

though the data illustrated by closed triangles for Measurement 2 are vastly different to that of Measurement 1. 

(B/C) Illustrate that closeness of data to the regression line (small residuals) is not the only information influencing 

r. (B) the same data represented by circles in (A) with the slope y = x plotted (dotted line) has r = 0.941; and (C) 

new data with the same raw differences about the line y = x (shown as a dotted line) as Graph B, over a larger 

range of measurements; in (C) r = 0.997.  To force (C) to hold the same r value for data as (B), the residuals from 

the regression line would need to be magnified by a factor of 5.  
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Figure 2: Reported ICC thresholds and their associated reliability interpretations.  From left to right, ICC 

interpretations are from Jamaiyah et al [30], Koo & Li [16], Chinn [31] and Rosner [32]. 

 

Figure 3: Mean differences in each decile of Howells’ original measurements for the random error set.  Differences 

represent raw differences between Howells’ dataset and a duplicated set with random error added using a standard 

deviation of 10 mm.  The results of one simulation are shown. 

 

Figure 4: Mean differences in each decile of Howells’ original measurements for the systematic error set.  

Differences represent raw differences between Howells’ dataset and a duplicated set with systematic error added 

using an average standard deviation of 10 mm.  The results of one simulation are shown. 
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Figure 5: Boxplot of true measures and repeat samples with added error. Random error refers to normally 

distributed (mean: 0, standard deviation: 10mm) error added to true measures, while systematic error refers to 

normally distributed (mean: 1, 2, 3; standard deviation: 9, 10, 11, respectively) error added to the three upper 

quantiles of true measurements.  Boxplot represents one simulation of added error, note here that for the study 

such protocols were run 100 times to generate 100 error simulations for each error type. 
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Figure 6: Performance of error metrics under random and systematic error.  Unfilled circles (○) indicate the large 

sample (N=2524) and pluses (+) indicate the smaller sample (n=25).  Columns indicate the application of random 

or systematic error, with units indicating the standard deviation (SD) of random error (left), or the average standard 

deviation of the three datasets added for systematic error (right).  From top to bottom, performance of the 

following error metrics is shown: Pearson’s product-moment correlation coefficient (r), intraclass correlation 

coefficient (ICC), P-value from Student’s t-test, and technical error of measurement (TEM). 
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Table 1: Table of specifications for added random error.  These error datasets were each added to a duplicate set 

of Howells’ original g-op measurements to give an artificial repeat sample. 

 

Error Type Sample Size 

Added Error Values 

Mean (mm) 

Standard 

Deviation 

(mm) 

Number of 

simulations 

Random 25 0 

1 100 

2 100 

3 100 

4 100 

5 100 

6 100 

7 100 

8 100 

9 100 

10 100 

Random 2524 0 

1 100 

2 100 

3 100 

4 100 

5 100 

6 100 

7 100 

8 100 

9 100 

10 100 
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Table 2: Table of specifications for added error datasets generated to simulate systematic error.  Each error dataset 

generated was added to a respective quantile of a duplicate set of Howells’ original g-op measurements to 

represent increasing error with an increase in measurement value.   The entire duplicate set of measurements (7 

quantiles with no added error, 3 quantiles with error of increasing mean size and spread added to each) represents 

an artificial repeat sample, with error metrics then run in each of these simulations. 

Error Type 
Sample 

Size 

Error Adjustment Details 

Error 

added to 

Quantile  

Mean 

(mm) 

Standard 

Deviation 

(mm) 

Number of 

simulations 

Systematic 25 

7 1 0 

100 8 2 1 

9 3 2 

7 1 1 

100 8 2 2 

9 3 3 

7 1 2 

100 8 2 3 

9 3 4 

7 1 3 

100 8 2 4 

9 3 5 

7 1 4 
100 

 8 2 5 

9 3 6 

7 1 5 

100 8 2 6 

9 3 7 

7 1 6 

100 8 2 7 

9 3 8 

7 1 7 

100 8 2 8 

9 3 9 

  7 1 8 

100   8 2 9 

  9 3 10 

  7 1 9 
100 

  8 2 10 
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  9 3 11 

Systematic 2524 

7 1 0 

100 8 2 1 

9 3 2 

7 1 1 

100 8 2 2 

9 3 3 

7 1 2 

100 8 2 3 

9 3 4 

7 1 3 

100 8 2 4 

9 3 5 

7 1 4 

100 8 2 5 

9 3 6 

7 1 5 

100 8 2 6 

9 3 7 

7 1 6 

100 8 2 7 

9 3 8 

7 1 7 

100 8 2 8 

9 3 9 

7 1 8 

100 8 2 9 

9 3 10 

7 1 9 

100 8 2 10 

9 3 11 
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