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Top Left: Culvert outlet in operation beneath Canungra-Tamborine Road on 31 March 2017 

Top Right: Sketch of experimental channel with rough bed and rough left sidewall 

Bottom: Secondary flow patterns in a culvert barrel with rough bed and rough left sidewall 
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ABSTRACT 

The hydrodynamics of box culverts configured with smooth, unequal and singular roughness were 

investigated numerically with three-dimensional (3D) computational fluid dynamics (CFD) 

modelling. Validation tests were conducted systematically against detailed physical data sets, for 

flow conditions corresponding to less-than-design flows. Results showed that free surface profiles 

were reasonably replicated with little mesh-dependence. The models were more successful at 

reproducing the most important flow features than to yield quantitative matches to the 

experimentally obtained velocity profiles, because of inaccuracies in grid settings and wall 

modelling. Nonetheless, the models were most informative to assess distinctive roughness 

behaviours responsible for the generation of low velocity zones (LVZs) for fish passage. These 

included corners, confluence between secondary flow cells and wakes behind singular obstacles. A 

visual assessment of low velocity regions for each culvert barrel boundary configuration 

underscored size and contiguity as the most desirable traits for upstream fish passage, particularly 

for weak swimmers. Overall, the present experience suggests a hybrid approach combining both 

numerical and experimental methods for future optimisations of culvert design for fish navigability. 

A comprehensive verification and validation of the CFD modelling model is most critical, requiring 

a detailed physical data set to compare systematically physical and numerical quantities of interest. 

 

Keywords: Computational fluid dynamics CFD, Cavity ventilation, Fish passage, Large eddy 

simulation LES, Numerical modelling, Open channel flow, RANS, Roughness, Standard box 

culvert, Triangular baffle, Validation, Low velocity zones (LVZs). 
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LIST OF SYMBOLS 

The following symbols are used in this report: 

Cij convection tensor (m2/s3); 

CSmag Smagorinsky constant (=0.2); 

Cu a constant (= 0.09); 

Cw a constant (= 0.15); 

Cε1 a constant (= 1.44); 

Cε2 a constant (= 1.92); 

C1
’ a constant (= 0.5); 

C2
’ a constant (= 0.39); 

DL,ij laminar diffusion contribution to Tkij (m
2/s3); 

DT,ij turbulent diffusion contribution to Tkij (m
2/s3); 

d water depth (m); 

E a constant (= 9.793); 

f dimensionless boundary shear stress, expressed in the form of Darcy-Weisbach friction 

factor; 
( , )G r x  filter function used in large eddy simulation; 

g gravitational acceleration (m/s2); 

hb baffle height (m); 

hmax maximum cell edge length (m); 

hwn wall-normal grid spacing (m); 

k turbulent kinetic energy (m2/s2); 

kp turbulent kinetic energy at a near-wall point P (m2/s2); 

ks equivalent sand roughness (m); 

ks
* dimensionless roughness; 

L length (m); 

Lb baffle spacing (m); 

Nz number of cells in the z-direction; 

nk the xk component of the unit normal to the wall; 

P time-averaged static pressure (Pa); turbulent production (m2/s3); 

Pij production tensor (m2/s3); 

p instantaneous pressure (Pa); 

Q discharge (m3/s); 

Q an arbitrary field quantity defined as a function of space and time; 
( , )tQ x  an arbitrary field quantity defined as a function of space and time, filtered with G; 

q unit discharge (m2/s) 

Rij pressure-rate-of-strain tensor 

S  rate-of-strain tensor (1/s); 

Sq source term for phase q (kg/m3/s); 
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ijS  filtered rate-of-strain tensor (1/s); 

Tkij Reynolds stress flux (m2/s3); 

Tu turbulence intensity; 
'

T


 turbulent energy flux (m2/s3); 

t time (s); tangential coordinate (m); 

U x component of time averaged velocity (m/s); 

Umax maximum time-averaged streamwise velocity in a vertical profile (m/s); 

Umean bulk velocity (m/s); 

Up time-averaged velocity at a near-wall point P (m/s); 

U* dimensionless velocity (section 2.2.1); 

u’ fluctuating streamwise velocity (m/s); 

urms root-mean-square of streamwise velocity fluctuations (m/s); 

ui ith component of instantaneous velocity (m/s); 

u  ith component of instantaneous velocity (m/s), filtered with G; 

u


 instantaneous mixture velocity (m/s); 

V time-averaged spanwise velocity (m/s); 

v’ fluctuating spanwise velocity (m/s); 

vrms root-mean-square of spanwise velocity fluctuations (m/s); 

W 1- time-averaged bed-normal velocity (m/s); 

 2- channel width (m); 

w’ fluctuating bed-normal velocity (m/s); 

wrms root-mean-square of bed-normal velocity fluctuations (m/s) 

x streamwise coordinate (m); 

xb streamwise coordinate of baffle (m); 

x position (m); 

y spanwise coordinate (m); 

y+ distance from the wall normalised by the viscous length scale; 

y* dimensionless distance from wall ; 

z bed-normal coordinate (m); 

zUmax location of maximum streamwise velocity in a vertical profile (m); 

zurms,max location of maximum streamwise velocity fluctuations in a vertical profile (m); 

 

 

αq volume fraction of phase q; 

 characteristic length that accounts for grid anisotropies in LES model (m); 

 wall roughness function; 

x grid spacing in x-direction (m); 

y grid spacing in y-direction (m); 

x grid spacing in z-direction (m); 
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ij  Kronecker delta; 

Ε turbulent dissipation (m2/s3); 

  von Kármán constant; 

ν kinematic viscosity (m2/s); 

T  eddy viscosity dependent on k and ε (m2/s) 

t  subgrid-scale turbulent viscosity (m2/s); 

ρw water density (kg/m3); 

σk turbulent Prandtl number for kinetic energy (= 1.0); 

σε turbulent Prandtl number for dissipation (= 1.3); 
R
ij  subgrid-scale stress tensor (Pa); 

0  wall shear stress (Pa); 

Ω vorticity (1/s); 

Ø diameter (m); 

 

Subscripts 

a air; 

in inlet; 

rms root mean square; 

w water; 

 

Abbreviations 

DNS direct numerical simulation; 

LES large eddy simulation; 

LVZ low-velocity zone; 

NVD normalised variable diagram; 

RANS Reynolds-averaged Navier-Stokes; 

rms root-mean-square; 

RSM Reynolds stress model; 

SGS sub-grid scale; 

VOF volume of Fluid; 

WMLES wall-modelled LES; 

2D two-dimensional; 

3D three-dimensional. 
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1. INTRODUCTION 

A culvert is a relatively short hydraulic conduit designed to pass floodwater through an 

embankment (Fig. 1.1). Culvert designs require considerations of potential hydraulic, structural, 

geotechnical engineering implications onto the surrounding environment and eco-systems. Efficient 

culvert designs based on economical and hydraulic engineering considerations yield the smallest 

barrel size while achieving inlet control operation (Chanson, 2000, 2004). This often leads to 

excessive barrel velocities, which may hamper the upstream passage of targeted fish species during 

rainfall and runoff events. For example, the characteristic endurance speed of small-bodied 

Australian native fish species is typically less than 0.6 m/s (Hurst et al., 2007; Rodgers et al., 2014). 

The recent recognition of the ecological impacts of culverts on fish passage led to reconsiderations 

of culvert design guidelines (Behlke et al., 1991). In particular, roughness-induced effects on fish 

swimming performance have been investigated by a number of recent studies (Lacey and Rennie, 

2012; Baki et al., 2014; Cassan et al., 2014). These flow features are often trackable and taken 

advantage of by the fish (David et al., 2012; Johnson and Rice, 2014). New evidences on the role 

which roughness plays are often conflicting. While several studies have associated upstream 

navigability in certain fish species with an increase in roughness (e.g. Heaslip, 2015), others 

reported minimum benefit to fish swimming performance (e.g. Nikora et al., 2013). Despite these 

inconsistencies, the common view remains that low velocity zones are favoured swimming zones by 

fish (Lupandin, 2005; Cotel, 2006), which often swim next to the sidewall and in the corners (Wang 

et al., 2016b; Cabonce et al., 2017; Wang and Chanson, 2017).  

A number of culvert design options were developed to provide low velocity zones, to improve fish 

passage. Of particular interest, an asymmetrically roughened barrel was investigated by Wang et al. 

(2016a,b), and a simple small corner baffle system was tested by Cabonce et al. (2017). The first 

configuration involved the effects of both bed and sidewall roughness, and the interactions between 

multiple roughened sections. Such a design favours fish passage along the roughened side of the 

channel, in lieu of equal provisions on both sides in a smooth barrel. The installation of baffles, on 

the other hand, has been reviewed extensively as an alternative to reduce excessive barrel velocities 

to improve fish passage (Larinier, 2002; Olsen and Tullis, 2013; Duguay and Lacey, 2014; Chanson 

and Uys, 2016; Cabonce et al., 2017). The baffles generate recirculation zones in their rears, thus 

reducing the required effort to negotiate the obstacles. Baffles might drastically decrease the 

hydraulic capacity of culverts at certain range of discharges (Larinier, 2002; Olsen and Tullis, 

2013). Yet a recent study (Chanson and Uys, 2016) has reported little hydraulic impact by a small 

triangular corner baffle system, implemented in a flat barrel. To date, the reconciliation between the 

economic and ecological aspects of culvert design remains a most significant challenge for the 
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development of national guidelines (Fairfull and Witheridge, 2003; Hunt et al., 2012). 

 

(a) Culvert outlet beneath Canungra-Tamborine Road QLD (Australia) on 31 March 2017 

 

(b) Culvert system as part of an irrigation and flood control system on Tungkang River (Taiwan) on 

27 December 2015 

 

(c) Culvert inlet in operation on Norman Creek, Brisbane (Australia) on 25 February 2018 for a 

relatively small discharge 

Figure 1.1 – Standard box culverts with multicell arrangement. 



3 

 

The combination of geometric and roughness factors in the barrel governs the hydrodynamic 

behaviours of a culvert system. A detailed characterisation of the hydrodynamics thereof is of 

paramount importance to any study, as significant deviations in behavioural responses may be 

induced to some fish (Papanicolaou and Talebbeydokhti, 2002). This calls for the ability to measure 

and quantify the three-dimensional flow features in a culvert barrel, which extends beyond a typical 

characterisation of velocity fields towards an inclusion of both turbulence quantities and secondary 

flow patterns. Properly validated Computational Fluid Dynamics (CFD) models provide a means 

for understanding the fundamental processes driving the hydrodynamic responses of each barrel 

configuration, which might dictate fish behaviours in turn. The numerical approach provides 

increased data fidelity and level of description in terms of flow parameters of key importance to the 

migrating fish, while keeping the study cost moderate (Pavlov et al., 2000; Hotchkiss, 2002; Nikora 

et al., 2003). For example, Feurich et al. (2012) used CFD models to check the effectiveness of 

spoiler baffle configurations on improving the upstream passage of small fish species, as well as 

their associated adverse impact on culvert conveyance, thus allowing informed design decisions to 

be made. In addition, filtered models (e.g. Large Eddy Simulation (LES)) provide further advantage 

by simulating the flow unsteadiness, which may be exploited by some fish species to allow an 

easier passage (Wang et al., 2010; Tarrade et al., 2011).  

The present work extends the works of Wang et al. (2016a) and Cabonce et al. (2017) to investigate 

different roughness effects in a straight culvert barrel, using a numerical approach based upon three-

dimensional (3D) computational fluid dynamics (CFD). Hydrodynamic characteristics were 

assessed for three boundary configuration scenarios, including: (1) a smooth barrel; (2) a barrel with 

roughened bed and left sidewall; (3) barrels with corner baffles at different combinations of baffle 

sizes and spacings; (4) a ventilated baffle with a circular opening through its centroid. The 

numerical results provide a comprehensive database for understanding the mechanisms associated 

with a strong compatibility with upstream fish passage, for flow conditions corresponding to less-

than-design flows, and a reference to guide future optimisations of culvert design. Based the results, 

recommendations on the CFD modelling methods are provided in the conclusion. 
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2. NUMERICAL MODELLING 

2.1 OVERVIEW 

The hydrodynamics in box culverts are affected by a broad spectrum of turbulent motions with 

characteristic sizes ranging from the barrel cell's internal width down to the Kolmogorov scale. The 

interactions between these turbulent features and the main flow produce characteristic flow patterns 

which are unique to each boundary configuration and discharge. The objective herein is to 

reproduce reliably the velocity field, deemed as the most important quantity for fish passage, 

induced by each boundary configuration. Different methods may be warranted, with increasing 

computation times (1), since the nature of velocity field is influenced by additional complexities 

such as roughness asymmetry and transitory behaviours. 

Considering the simplest case of a smooth barrel (2), it may be sufficient to solve the governing 

equations for a few mean quantities since the flow is statistically stationary. The flow is governed 

by the boundary layer originating from the bottom invert provided that the channel is sufficiently 

wide. Secondary circulations should have minor effects, and the results are expected to be 

comparable to a simplified 2D (x-z plane) model (3). Therefore, it is the case herein that the 

simplest turbulence model (i.e. standard k-ε model) is deemed sufficient for the purpose of the 

present investigation (Launder and Spalding, 1972). In narrow smooth culvert channels, sidewall 

effects become increasingly important, as the channel width reduces and 3D modelling must be 

conducted. The relative increase in sidewall to bed flow wetted perimeters alters the secondary 

currents in an open channel cross-section, which would result in more pronounced 'dips' in velocity 

contours and cause a downshift in the location where the maximum velocity occurs (Schlichting; 

1979; Nezu and Rodi, 1986; Apelt and Xie, 2011). Further, the change may cause a breakdown in 

the standard wall model as the bed-normal velocity component increases in effect. It would be 

expected that the standard k- model decreases gradually in effectiveness, as the channel width 

reduces. 

For the second, slightly more complicated case involving a rough bottom and a rough left side wall, 

the standard k-ε model is unlikely to yield satisfactory results because of its simplistic assumptions. 

Whilst stationarity is still assumed, the roughness asymmetry results in some turbulence anisotropy 

and strong secondary flow patterns which may have a substantial impact on the main flow. 

                                                 
1 Computations were conducted on a DellTM Precision T5810 workstation with Xeon® Processor E5-2620 v4 

(8C, 2.1GHz, 3.0GHz Turbo, 2133MHz, 20MB, 85W) and 128 GB RAM. 
2 Considering a multi-cell box culvert (Fig. 1.1), this study focuses on a single cell as a basic element. 
3 Also called 2DV model. 
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Consequently, the present study adopts the Reynolds stress model (RSM) to address the principal 

limitation of the standard k-ε model, namely an isotropic turbulent diffusivity, by solving six 

additional transport equations for each of the Reynolds stresses, in addition to an equation for the 

dissipation rate ε. The RSM has greater potential to accurately predict more complex flow types, 

including those involving turbulence anisotropy, streamline curvature, swirl, rotation, and rapid 

changes in strain rate, than standard one- or two-equation turbulence models (Pope, 2000). 

For the last configuration which incorporates small triangular corner baffles, a traditional Reynolds-

averaged Navier-Stokes (RANS) equations-based approach is unlikely to be sufficient as the flow 

becomes dominated by the separation zone behind each baffle which exhibits transitory behaviours. 

As such, the velocity field becomes time-dependent which stipulates the simulations be performed 

in a correspondent manner. A large eddy simulation (LES) becomes more suitable in this case as the 

largest eddies, being most important for momentum transport, are directly resolved, and it captures 

the full transient behaviours, without being nearly as taxing as a direct numerical simulation (DNS) 

(Rodi et al., 2013). 

The abovementioned approaches are either turbulence model-based (i.e. k-ε and RSM) or 

simulation-based (LES). The turbulence model-based approaches involve solving the RANS 

equations to obtain mean quantities of interest (i.e. velocity) by either hypothesising a turbulent 

viscosity (k-ε) or solving modelled transport equations for the Reynolds stresses directly (RSM). 

The large eddy simulation directly recovers the time-dependent behaviours of the large scale 

motions whilst approximating the small scale motions by suitable models. The following 

subsections detail the basic equations and assumptions employed by each approach adopted in the 

present study (4). 

 

2.2 RANS MODELS 

2.2.1 Standard k-ε model 

For the simplest smooth barrel configuration, a RANS-based approach is required in view of the 

required level of description, computational complexity, and computational resources. However, the 

RANS method gives rise to additional stress terms arising from a fluctuating velocity field, which 

leads to a closure problem (Chanson, 2009,2014). 

The unknowns in the RANS equations (i.e. Reynolds stresses) may be determined either via the 

turbulent viscosity hypothesis or from modelled transport equations (Pope, 2000). The present study 

                                                 
4 Herein the software ANSYSTM FLUENT version 18.0 was used and references to the turbulence modelling 

implementation in the software are included. 
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represents a case of simple turbulent shear flow, in which the mean velocity gradients and 

turbulence characteristics change relatively slowly following the mean flow. Thus the Reynolds 

stress balance is governed by local mean velocity gradients and the simple turbulent viscosity 

hypothesis may become reasonable. The standard k-ε model (Launder and Spalding, 1972) is the 

simplest and most widely incorporated complete turbulence model (i.e. flow dependent 

specification not required). It is adopted herein for benchmark purposes. 

The selection of geometries and turbulence models for the preliminary simulations represents a 

compromise between the level of description and computational efficiency. A combination of 2D 

and 3D simulations using the standard k-ε model provided the simplicity required to examine 

ANSYSTM FLUENT's capabilities within a reasonable amount of time. The chosen approach also 

provides length and time scale information to be used as a basis for future investigations. These 

models are widely accepted and incorporated into most CFD codes (Pope, 2000), and are well 

validated for 2D thin shear flows with small pressure gradient. 

The standard k-ε model belongs to a family of two-equation models, in which the model transport 

equations for the turbulent kinetic energy k and dissipation ε are solved respectively. The exact 

transport equation for k is (Pope, 2000): 

 
'k

u k T P
t


        



 
  

where P is the production, ε is the dissipation, and 
'

T


 is the energy flux modelled with a gradient 

diffusion hypothesis: 

 
'

T

k

T k



  


  

where σk is the turbulent Prandtl number for kinetic energy, and νT is the eddy viscosity supposed to 

depend only on k and ε: 

 
2

T

k
C


   

where Cμ = 0.09 is a model constant. Since the exact equation of ε pertains to the smallest scale 

motions in the dissipation range, an empirical treatment is adopted for its model equation (Pope, 

2000): 

 
2

1 2
T P

u C C
t k k 



   

 

           


  

where the standard model constants are Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, and σε = 1.3 (Launder and 

Spalding, 1972). 
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Wall treatment 

A challenge in CFD is the numerical treatment of the near wall sublayer, where viscous effects are 

important and large gradients are present. As the adoption of a fine grid can be very expensive, 

most industrial models have incorporated wall functions as an immediate solution. The present 

study adopts the standard wall functions implemented in the software ANSYSTM FLUENT based 

upon the work of Launder and Spalding (1974). For pipes and channels, experiments indicate the 

existence of a semi-logarithmic near wall layer of the form: 

 
0

1
* *

p pU U U y
ln( E ) B

/


   

    

where Up is the time-averaged velocity at a near-wall point P, τ0 is the wall shear stress, E = 9.793 is 

an empirical constant, B  is a function of the form and size of the roughness, and U* is a 

dimensionless velocity defined as: 

 1 4 1 2* / /
pU C k  

where Cμ = 0.09 and kp is the turbulent kinetic energy at the point P. The logarithmic law was valid 

for 30 < y* < 300, where: 

 
*

p* U y
y




  

For y* < 11.225, FLUENT applies the laminar stress-strain relationship such that: 

 
0

*
p *U U

y
/ 

  

When y* > 11.225, the log-law is employed (ANSYS). 

FLUENT models the wall roughness effects (i.e. B ) in three distinct regimes, depending on the 

dimensionless roughness height: 

 
*

* s
s

k U
k




  

 2 25*
sk .  (hydrodynamically smooth) 

 2 25 90*
s. k   (transitional) 

 90*
sk   (rough) 

where ks is the equivalent sand roughness height. 

 

2.2.2 Reynolds stress model 

The Reynolds stress model (RSM) is the most elaborate RANS-type turbulence model available in 

ANSYS. The RSM addresses the greatest limitation of the standard k-ε model, by solving six 
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additional transport equations for each of the Reynolds stress components, in addition to an 

equation for the dissipation rate ε. Thus, the RSM has greater potential to accurately predict more 

complex flow types, including those involving turbulence anisotropy, streamline curvature, swirl, 

rotation, and rapid changes in strain rate, than standard one- or two-equation turbulence models 

(ANSYS).  

The exact transport equations for the Reynolds stresses may be deduced from the Navier-Stokes 

equations as follows (Pope, 2000): 

 ' '
i j ij kij ij ij ij

k

u u C T P R
t x

 
    

 
  

where Cij is the convection tensor: 

 
' '
i j

ij k
k

u u
C U

x





  

where Tkji is the Reynolds stress flux: 

  , ,kij T ij L ij
k

T D D
x


  


  

where DT,ij and DL,ij are the components of Tkij respectively attributed to turbulent and molecular 

diffusion: 

 ' ' ' ' ' ' '
,

1 1
T ij i j k i jk j ik

k

D u u u u p u p
x

 
 

 
      

  

 
' '

,

i j

L ij
k k

u u
D

x x

   
   

  

Pij is the production tensor: 

 ' ' ' 'j i
ij i k j k

k k

U U
P u u u u

x x

 
  

 
  

Rij  is the pressure-rate-of-strain tensor: 

 
''

'1 ji
ij

j i

uu
R p

x x
 

     
  

and εij is the dissipation tensor: 

 
''

2 ji
ij

k k

uu

x x
 




 
  

where the instantaneous velocity is decomposed into its mean and fluctuating components i.e. 

'
i i iu U u  , 'p  is the fluctuating pressure, δij is the Kronecker delta, ρ is the density and ν is the 

kinematic viscosity. 



9 

In FLUENT, the turbulent diffusion tensor DT,ij is modelled based on a simplification (Lien and 

Leschziner, 1994) of the generalised gradient-diffusion model due to Daly and Harlow (1970): 

 
' '

,

i jT
T ij

k k k

u u
D

x x




   
   

  

where σk = 0.82 and νT is computed similarly to the standard k-ε model: 

 
2

T

k
C


   

where Cμ = 0.09. 

The pressure-rate-of-strain term Rij is modelled with an ε-based linear approach due to Gibson and 

Launder (1978), Fu et al. (1987), and Launder (1989). The classical approach decomposes Rij into a 

fast, a slow, and a harmonic component: 

 ( ) ( ) ( )r s h
ij ij ij ijR R R R     

The rapid term ( )r
ijR  responds immediately to a change in the mean velocity gradients and is 

modelled as: 

    ( )
2

1

3
r

ij ij ij ij kk kkR C P C P C       
  

where C2 = 0.60. 

The slow term ( )s
ijR  is modelled as: 

 ( ) ' '
1

2

3
s

ij i j ijR C u u k
k

     
 

  

where C1 = 1.8. 

The harmonic term ( )h
ijR  is responsible for redistribution of stresses from the normal to the 

tangential direction next to the wall, which is modelled as: 

 

3/2
( ) ' ' ' ' ' ' '

1

3/2
' ( ) ( ) ( )
2

3 3

2 2

3 3

2 2

h l
ij k m k m ij i k j k j k i k

n

r r r l
km k m ij ik j k jk i k

n

C k
R C u u n n u u n n u u n n

k y

C k
C R n n R n n R n n

y

 





    
 

    
 

  

where '
1C  = 0.5, '

2C  = 0.3, nk is the xk component of the unit normal to the wall, yn is the normal 

distance to the wall, and 3/4 /lC C   with κ = 0.4187 (ANSYS). 

The dissipation tensor εij is modelled as: 

 
2

3ij ij     

where the scalar dissipation rate ε is computed similarly to the standard k-ε model.  
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The boundary conditions required for the individual Reynolds stresses ' '
i ju u  and dissipation rate ε 

are obtained from the turbulence intensity and characteristic length. Using a local coordinate 

system, the Reynolds stresses at the wall-adjacent cells may be computed from the standard wall 

functions: 

 
'2 '2 '2 ' '

1.098, 0.247, 0.655, 0.255
t n t nu u u u u

k k k k
      

where t is the tangential coordinate, n is the normal coordinate, λ is the binormal coordinate, and k 

is obtained from solving its transport equation globally. 

 

2.3 LARGE EDDY SIMULATION 

The large-eddy simulation (LES) method conceptually involves applying a low-pass filter function 

to the governing conservation equations so that only the most energetic motions are directly 

resolved. The general filtering operation is defined as (Leonard, 1974; Pope, 2000): 

 ( , ) ( , ) ( , )t G t d Q x r x Q x r r   

where the integral is performed over the entire flow domain, and the filter function G satisfies the 

normalisation condition: 

 ( , ) 1G d  r x r   

In FLUENT, the finite-volume discretisation implies an implicit filtering operation: 

 
1/ ,

( , )
0, otherwise

V V
G


 


r
r x   

where V is the volume of a computational cell. 

For an incompressible flow, the filtered continuity equation and equations of motion and Navier-

Stokes equations can be written as (Pope, 2000): 
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where ijS  is the filtered rate-of-strain tensor: 
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and R
ij  is the subgrid-scale stress tensor: 

 R
ij i j i ju u u u     



11 

Closure of the filtered equations for ui may be achieved by representing the residual stress tensor 

R
ij .with appropriate choices of subgrid-scale (SGS) models. 

 

Subgrid-scale (SGS) models 

Turbulent flows are characterised by eddies encompassing a wide range of length and time scales 

(Hinze, 1959). Large eddies are crucial in terms of the transport of momentum and energy, and are 

typically problem specific. Small eddies tend to be more isotropic and are increasingly likely to 

satisfy a universal model. In LES, large and small eddies are respectively resolved and modelled. 

Thus, the approach falls in between DNS and RANS in terms of computational complexity and 

resolution of flow features. Since the large eddies reduce significantly in size in the near-wall 

region, the LES solution becomes Reynolds number dependent and its computational cost increases 

drastically to properly resolve wall-bounded flows. FLUENT adopts subgrid-scale (SGS) models 

based upon the Boussinesq hypothesis, such that: 

 
1

2
3

R R
ij kk ij t ijS        

where t  is the SGS turbulent viscosity, and τkk is the isotropic part of SGS stresses absorbed in the 

filtered pressure term in the governing LES equations. 

A typical SGS model does not resolve the Reynolds number dependency of LES and hence requires 

an unrealistically fine mesh near wall. To overcome this limitation, the present study adopts the 

Algebraic Wall-Modelled LES Model (WMLES) (Shur et al., 2008), which activates a RANS 

portion in the inner part of the logarithmic layer, near the wall. In conjunction, the model provides a 

modified LES formulation for the outer part of the boundary layer. The original Algebraic WMLES 

computes the eddy viscosity using a hybrid length scale: 

       322
min , 1 exp / 25t w Smagv d C y S            

  

where dw is the wall distance, S is the strain rate, κ = 0.41, CSmag = 0.2, and y+ is the normal to the 

wall scaled by inner variables, and Δ accounts for the grid anisotropies in the LES model: 

  max maxmin max , , ,w w wnC d C h h h       

where hmax is representative of the maximum cell edge length, hwn is the wall-normal grid spacing, 

and Cw = 0.15 is a constant. This model vastly improves the Reynolds number scalability, with the 

following resolution requirement (ANSYS) for a typical boundary layer volume (δ3): 

 , , 30 40
10 20x y zN
 

        

where x, y and z align with the streamwise, spanwise and normal directions respectively. The 
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formulation allows for substantial reductions of several orders of magnitude in the number of 

required cells as well as the associated computational cost. One deficiency of the original WMLES 

formulation is that the model could overestimate eddy-viscosities in separating shear layers (e.g. 

behind baffles). ANSYS provides an enhancement of the original formulation by computing the 

LES portion of the model using the difference S   instead of S, where Ω is the vorticity 

magnitude. This enhancement was adopted by the present work. 

 

2.4 FREE SURFACE MODEL 

When the culvert barrel is not flowing full, a free surface flow problem occurs, which consists of a 

flowing secondary phase (i.e. water) with a primary phase (i.e. air) above it. The two fluids are 

immiscible, and the interfacial length is significantly greater than the computational grid size. Hirt 

and Nichols (1981) proposed a Volume of Fluid (VOF) method that is advantageous under these 

conditions.  

The VOF model adopted herein solves the governing continuity and momentum equations for the 

mixture, which results in a velocity field shared by both phases. The mixture density, viscosity, and 

velocity are calculated as sums of the component phases weighted by their respective volume 

fractions (αq), the local values of which are also used to assign the appropriate fluid properties to 

each control volume in the domain.  An interface exists for 0 < αq < 1, which is tracked by solving 

the volume fraction equation corresponding to one or more secondary phases: 

 
   

1

n
q q

q q q pq
p

u S m
t

 
 




   

 


   

where ρq is the density of phase q, u


 is the mixture velocity, Sq is a source term, and pqm  is the 

mass flux from phase p to q. The interface shape is assumed to be piecewise linear and can be 

modelled by computing a set of surface normals i pin 


 such that the volume fraction of phase q 

in each cell i bounded by the interface is αqi. 

The VOF simulations have been performed in a time‐accurate (i.e. transient) manner, where 

velocity and pressure were specified at the inlet and outlet respectively. Stability issues were 

observed frequently for steady-state simulations likely due to numerical diffusion of the free 

surface. 

 

2.5 CONVERGENCE CRITERIA 

The numerical package adopted herein solves all governing equations using a finite-volume 

approach. The associated discretisation and solution processes inevitably produce numerical 
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imbalances throughout the computational domain. In FLUENT, the residual R  for a general 

conserved variable ϕ is computed as the sum of the imbalances in all cells P through the domain: 

 nb nb P P
P nb

R a b a       

where the absolute-value-signed term is the imbalance in cell P. To facilitate a better comparison, 

FLUENT scales the residual by a factor representative of the flow rate of ϕ through the domain: 

 S
P P

P

R
R

a








  

where P  is the centre coefficient, and P  is the value of the variable ϕ at cell P. 

For the RANS simulations (i.e. smooth barrel & rough bed and left sidewall), the solution residuals 

(e.g. continuity, Ui, k, ε, α2, ' '
i ju u ) were monitored constantly through iterations until the scaled 

residuals for all variables decreased by three orders of magnitude (i.e. 10-3). Upon achieving this 

condition, the mass flux report was examined to ensure that the overall mass imbalance remained 

below 0.2%. All results presented in the following subsections conform to the abovementioned 

convergence criteria. 

For the LES simulation (i.e. smooth barrel with baffles), the number of inner iterations for each 

initial timestep was adjust so that the scaled residuals for continuity and momentum equations 

decreased by three orders of magnitude (i.e. 10-3). Each subsequent time step was iterated for up to 

20 times terminating upon the scaled residuals reaching 10-3. No mass imbalance was present as the 

mass flow rate was enforced as a boundary condition. 



14 

3. BOX CULVERT WITH SMOOTH BED AND SIDEWALLS 

3.1 PRESENTATION 

Numerical simulation was performed for a domain measuring 9.35 m × 0.5 m × 0.3 m (length × 

width × height), as a 1:1 model of the physical set up of Wang et al. (2016a) detailed in Figure 3.1. 

Figure 3.1 shows two upstream and downstream screens, used to prevent fish injuries. The channel 

dimensions would correspond to a single cell box culvert beneath a small countryside road or a 

single cell of a multi-cell culvert structure seen in Figure 1.1a. The streamwise extent of the domain 

was constrained by the locations of measurements available from Wang et al. (2016a), for flow 

conditions corresponding to less-than-design flows. In addition, a 2DV comparison case was 

constructed for the 3D effects in the base case to be reviewed, referred to as 2D model thereafter. 

 

 

Figure 3.1 – Definition sketch of smooth channel used by Wang et al. (2016a). 

 

The cuboid domain of the 3D base case is sketched in Figure 3.2. Note that the inlet and outlet faces 

were each divided into two smaller quadrilaterals – done to enforce the desired mass flow for the air 

and water phases respectively. The experimental data of Wang et al. (2016a) were used to size the 

water inlet i.e. the inlet is of the same height as the upstream physical measurement, which was 

mirrored by the outlet configuration due to meshing requirements. The same setup was preserved in 

the 2D comparison case after a domain reduction in the spanwise direction. As for all 

configurations, the mesh validation is herein undertaken mainly by experimental comparison. 
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Figure 3.2 – Numerical domain for smooth channel - Flow direction from left to right. 

 

The simplicity of the domain geometry allowed a mapping with structured hexahedral cells. The 

streamwise (x) and spanwise (y) directions were uniformly partitioned into 500 and 25 segments, 

respectively. On the inlet side, the bottom and top quadrilaterals (i.e. water and air inlets) were both 

divided into 50 partitions. This resulted in a much finer mesh resolution at the water inlet face, 

which was of primary interest. A growth factor of 1.2 was applied to ensure a smooth transition of 

vertical mesh sizes between the two regions. The resultant mesh was projected onto the outlet faces. 

The final mesh comprised 1,287,500 hexahedral cells. 

The 2D domain of the comparison case was similarly mapped with structured quadrilateral cells. 

The mesh resolution was increased, to compensate for the substantial reduction in domain size. The 

streamwise and cross-stream resolutions of the air inlet were doubled, i.e. 1,000 and 100 divisions 

respectively, compared to the 3D case. The water inlet edge was divided into 1 mm segments, 

corresponding to an approximately four-time increase in resolution. The transition between the air 

and water inlet edges was adapted with a growth factor of 1.2. The procedure produced a final cell 

count of 303,000. 

The boundaries of the respective numerical domain pertaining to the 3D and 2D models were 

classified into inlet, outlet, wall and far-field zones, as shown in Figure 3.2. The inlet velocity 

conditions were imposed on both the air and water inlet faces, the transition between which denoted 

the free-surface elevation. A pressure boundary condition was specified on the outlet faces (edges) 

to represent the experimentally-observed free surface level. The side and bottom boundaries were 

modelled as fixed solid walls, with an equivalent sand roughness of ks = 1.5 × 10-6 m, corresponding 

physically to a smooth turbulent flow condition. The far-field was treated as a symmetrical 

boundary. The model configurations and flow conditions are summarised in Tables 3.1 and 3.2. 

 



16 

Table 3.1 – Summary of configurations for smooth channel (3D) 

 

Class Item Configuration Notes 
Geometry Model type 3D - 
 Length (x) 9.35 m - 
 Height (z) 1.0 m - 
 Width (y) 0.5 m - 
Mesh Number of divisions (x) 500 hard*1 
 Number of divisions:  

air inlet (z) 
50 soft*1; primary phase inlet; 

growth factor = 1.2 
 Number of divisions:  

water inlet (z) 
50 hard; secondary phase inlet 

 Number of divisions (y) 25 hard 
 Smallest cell size  18.7 x 3.94 × 20 mm Qw = 0.0556 m3s-1 
 Total cell count 1,287,500 hexahedral 
Model Turbulence model Standard k-ε Launder and Spalding (1972) 
 Free surface model One fluid VOF Hirt and Nichols (1981) 
Boundary condition Top Symmetry far-field; no-flux 
 Bottom Wall ks = 1.5 × 10-6 m 
 Sidewalls Wall ks = 1.5 × 10-6 m 
 Inlet (air) Velocity Ua,in = 0 m/s 
 inlet(water) Velocity Uw,in = 0.5645 ms-1,  
Solution Type Transient - 
 Scheme Coupled - 
 Momentum 2nd order upwind - 
 Turbulent kinetic energy 2nd order upwind - 
 
Notes: *1 – In ANSYS, a hard constraint forbids the mesher from changing the mesh if it concludes a higher quality 
mesh could be produced; a soft constraint permits such adjustments; 
 *2 – In a two-component VOF, the primary phase is the phase with the lighter density 
 

Table 3.2 – Summary of configurations for smooth channel (2D comparison scenario) 

 

Class Item Configuration Notes 
Geometry Model type 2D - 
 Length (x) 9.35 m - 
 Height (y) 1.0 m - 
Mesh Number of divisions (x) 1,000 hard 
 Number of divisions:  

air inlet (z) 
100 soft; primary phase inlet;  

growth factor = 1.2 
 Element size:  

water inlet (z) 
1 mm hard; secondary phase inlet; 

 Smallest element size 9.35 × 1 mm  
 Total cell count 303,000 quadrilateral 
Model Turbulence model Standard k-ε Launder and Spalding (1972) 
 Free-surface model One fluid VOF Hirt and Nichols (1981) 
Boundary condition Top Symmetry far-field; no-flux 
 Bottom Wall ks = 1.5 × 10-6 m 
 Inlet (air) Velocity Ua,in = 0 m/s 
 inlet(water) Velocity Uw,in = 0.5645 m/s, qw = 0.1112 m2/s 
Solution Type Transient - 
 Scheme Coupled - 
 Momentum 2nd order upwind - 
 Turbulent kinetic energy 2nd order upwind - 
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3.2 VALIDATION AND RESULTS 

The numerical results were validated against the experimental data of Wang et al. (2016a). Figure 

3.3 shows the experimental and simulated free-surface profiles along the channel centreline, where 

L is the channel length (L = 12 m herein). All approaches predict a subcritical flow (i.e. d/dc > 1) 

over the full length of the channel. The flow is thus controlled from the downstream boundary 

conditions, producing an H2 backwater profile for the horizontal bed slope (Bresse, 1860; Chow, 

1959; Chanson, 2004). All results indicate a small decrease in free-surface elevation over the 

channel length, reflecting a small amount of energy loss caused by the smooth boundaries' friction. 

Both numerical models (2D and 3D) overpredict the water level by up to 7%, in comparison to the 

physical measurements in laboratory. Such a level of agreement is deemed reasonable, as the 

laboratory data could be affected by operator/instrumentation errors and free-surface perturbations. 

A comparison between the 2D and 3D cases indicates a slight increase in the free-surface levels, 

induced by the presence of the sidewalls. 

Figure 3.4 presents a comparison between modelled and experimental centreline mean x-velocity 

profiles for both the developing (x = 2.15 m) and fully developed (x = 7.35 m) flow regions. In 

Figure 3.4, both the Pitot tube and ADV data recorded by Wang et al. (2016a) are reported. In the 

developing flow region (Fig. 3.4a), all data highlight a developing boundary layer characterised by 

steep velocity gradients, above which an approximately constant velocity profile is identified. A 

closer inspection reveals steeper near-wall velocity gradients in the experimental data than the 

simulated values. This discrepancy may be caused by multiple sources, including: (a) the uniform 

velocity profile specified at the upstream boundary; (b) the near wall treatment sensitive to the mesh 

resolution next to the wall; (c) instrument blockage next to the bottom boundary. In comparison to 

the 2D case, the 3D case data exhibit slightly larger velocities overall and observable effects due to 

interactions with the air phase, i.e. smaller velocities near the free-surface. Such larger centreline 

velocities correspond to a reduction in streamwise velocities next to the sidewalls, while the reason 

for the latter observation requires further investigation. In the fully developed region (Fig. 3.2b), a 

closer agreement between all data is observed. The 3D model results show an excellent agreement 

with the Pitot tube data, notably in the lower flow column. A slight overshoot in the 3D velocity 

profile is identified near z = 0.10 m, which is a consequence of the symmetry condition (top 

boundary). The 2D simulation reasonably reproduces the steep velocity gradients up to z ≈ 0.06 m, 

and interactions with the upper air layer are barely noticeable. 

Figure 3.5 presents the computed wall shear stresses τo along the channel centreline. The numerical 

data display a qualitative agreement with the physical data of Wang et al. (2016a), based upon the 

momentum integral method (Schlichting, 1979; Chanson, 2009). The largest discrepancies occur 

near the upstream boundary where the largest streamwise gradients are present, with the data 
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agreement improving towards the fully developed flow region. At the downstream end, the 

experimental result reveals a slight increase that may be attributed to the presence of the 

downstream grid mesh (Fig. 3.1). A comparison indicates that the 2D model slightly underestimates 

the wall stresses because the sidewall effects were not modelled. All data are close in magnitude to 

the analytical solution for a zero-pressure-gradient turbulent boundary layer above a smooth plate 

(green line), with differences reflecting the variations in free-surface elevation as well as the 

presence of the meshes and sidewalls. 
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Figure 3.3 – Comparison between experimental and simulated free-surface profiles. 
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(a) x = 2.15 m 
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(b) x = 7.35 m 

Figure 3.4 – Comparison between experimental and CFD numerically calculated velocity profiles in 

the developing (x = 2.15 m) and fully developed (x = 7.35 m) flow regions on the channel 

centreline. 
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Figure 3.5 – Comparison between experimental and CFD numerically calculated bed shear stress 

profiles flow regions on the channel centreline. 

 

3.3 SUMMARY 

The flow patterns in a smooth barrel were examined in both 3D and 2D numerical configurations. 

The standard k-ε model and the one-fluid VOF model were adopted for turbulence modelling and 

free-surface tracking. A comparison with detailed physical data (Wang et al., 2016a) showed that 

the free-surface profile was reproduced reliably, with all data remaining within 7%. The 

experimental and computed centreline velocity profiles displayed an excellent agreement in the 

fully developed flow region, while some small difference was observed in the developing flow, 

likely caused by differences in inflow conditions. The numerical and experimental bed shear stress 

data also compared well in general, except at the downstream end of the channel, because of the 

presence of the downstream mesh in the physical channel. 

The systematic comparison between 3D and 2D results showed that the 3D configuration yielded 

superior results, by accounting for the sidewall roughness, despite a reduction in the near wall mesh 

resolution. The standard k-ε model yielded acceptable predictions on the channel centreline, though 

more sophisticated models might be warranted if subtle features such as secondary flow cells are of 

importance. 

Overall, the present experience suggests that a simple 3D RANS model may be sufficient for 

characterising the centreline properties in a smooth rectangular channel. In addition, a 2D model 

may yield a good approximation of the centreline free surface profile, when small sidewall effects 

are expected. Importantly, the case study highlights the importance of high-quality experimental 

data for calibration and validation of the numerical model. 
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4. BOX CULVERT WITH ROUGH BED AND LEFT SIDEWALL 

4.1 PROBLEM SETUP 

Some three-dimensional (3D) numerical simulation was performed for a domain measuring 12 m × 

0.5 m × 0.5 m (length × width × height), with a very-rough invert, very rough left sidewall and 

smooth right sidewall, as sketched in Figure 4.1. The physical setup was studied by Wang et al. 

(2016a), testing boundary roughness as a remedial measure to assist upstream fish passage for less-

than-design flows. 

The domain length was twice the extent of data available (i.e. x = 2 m and x = 8 m at the upstream 

and downstream boundaries respectively), so that a buffer zone could be provided and uncertainties 

induced by the boundary conditions may be resolved outside the test section of interest. A velocity 

inlet was specified for the upstream boundary and a pressure outlet (i.e. water level) was defined for 

the downstream boundary in accordance with the data by Wang et al. (2016a). Detailed geometry 

and mesh statistics are summarised in Table 4.1. The bed and sidewall roughness (ks = 0.020 m) 

corresponded to experimentally observed roughness height. 

 

 

Figure 4.1 – Definition sketch of experimental channel with rough bed and rough left sidewall used 

by Wang et al. (2016a). 
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Table 4.1 – Summary of configurations for channel with rough bed and rough left sidewall 

 

Class Item Configuration Notes 
Geometry Model type 3D - 
 Length (x) 12.0 m - 
 Height (z) 0.5 m - 
 Width (y) 0.5 m - 
Mesh Number of divisions 

(x) 
300 – 500 Table 4.2. 

 Number of divisions 
(z) 

50 – 200 Table 4.2. 

 Number of divisions 
(y) 

25 – 100 Table 4.2. 

 Total cell count 375,000 – 
5,000,000 

hexahedral 

Model Turbulence model 7-equation 
Reynolds 

stress model 

Chou (1945), Rotta (1951) 

 Free-surface model one fluid VOF Hirt and Nichols (1981) 
Boundary condition Top symmetry far-field; no-flux 
 Bottom & Wall (left) wall ks = 2.0 × 10-2 m 
 Sidewall (right) wall ks = 2.0 × 10-4 m 
 Inlet velocity velocity and volume fraction data from 

Wang et al. (2016a) 
 Outlet pressure water level data from Wang et al. (2016a) 
Solution Type Transient - 
 Scheme SIMPLE - 
 Momentum 2nd order 

upwind 
- 

 Turbulent kinetic 
energy 

2nd order 
upwind 

- 

 

Table 4.2 – Summary of meshes used for the sensitivity tests 

 

ID Cells (x): bias*1 Cells (y): bias Cells (z): bias Total 
1 300: 0 50: 12.38 25: 10 375,000 
2 500: 0 100: 12.38 25: 10 1,250,000 
3 500: 0 200: 12.38 25: 10 2,500,000 
4 500: 0 50: 12.38 50: 10 1,250,000 
5 500: 0 100: 12.38 100: 10 5,000,000 

 

Note: *1 – ratio of largest to smallest cell sizes 
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4.2 VERIFICATION AND VALIDATION 

As a direct consequence of the discretisation process, the numerical solution accuracy is heavily 

dependent upon the quality of the numerical domain mesh. Thus, solutions were computed for 

several meshes to verify the grid size effects on the primary numerical quantities. A summary of the 

grids is provided in Table 4.2. Herein the mesh validation is done mainly by experimental 

comparison. Typical results are presented in Figure 4.2. 

Figure 4.2a compares the computed free-surface profiles at the channel centreline (z = 0.25 m) with 

the data of Wang et al. (2016a) for the five different meshes, specified in Table 4.1. All data show a 

very good agreement overall, and an H2 backwater profile is seen. The experimental data display 

small streamwise undulations, likely a result from the roughness-induced surface waves as well as 

the wake of the upstream screen in the physical channel. The results suggest that the free surface 

profiles exhibit a mesh-independent solution, within the investigated conditions (Tables 4.1 and 

4.2). 

Figure 4.2b illustrates the computed centreline longitudinal velocity profiles at the downstream end 

of the test section (x = 8 m), for five different meshes. The physical ADV velocity data on the 

channel centreline and at two adjacent transverse locations are shown for reference. The results 

indicate a difference of 5% to 10% between the simulated velocity profiles, as a result of both mesh 

count and aspect ratio. The latter appears to be of particular importance since the roughness 

configuration is asymmetrical. In absence of a mesh independent solution, mesh #5 (1) is adopted 

herein as a reference, since it features the largest cell count and smallest aspect ratio in the cross-

sectional plane. A comparison between the numerical and experimental datasets highlights 

substantial underestimations of the channel velocities in the numerical models. It remains unclear 

whether the inability to completely resolve the roughness surface geometry could have been a 

cause. Careful continuity checks confirmed that both the numerical and experimental results satisfy 

mass conservation. 

Figures 4.2c to 4.2e show the computed distributions of dimensionless boundary shear stress along 

the bed and sidewalls. Herein the dimensionless boundary shear stress was expressed in the form of 

Darcy-Weisbach friction factors (2). Low boundary shear stresses are observed in the bottom 

corners due to formations of small eddies. The boundary shear stress distribution is approximately 

uniform across the rough bed, with localised peaks at y/W = 0.2 – 0.3 and 0.8 – 0.9, and a dip at y/W 

≈ 0.6, both of which arise from secondary flow motions, in response to the boundary roughness 

                                                 
1 with 5,000,000 cells. 
2 The relationship between boundary shear stress o and Darcy-Weisbach friction factor f is: f = 8o/(Umean

2), 

where Umean is the cross-sectional averaged velocity (Chanson, 2004). 
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configuration. Further the boundary shear stresses vary along the sidewalls, with lower values next 

to the free-surface and bottom corner, compared to the mid-flow region. Lower boundary shear 

stresses are observed along the right smooth sidewall, as expected. The results are moderately 

sensitive to the transverse mesh resolution which could affect the ability to resolve secondary 

motions adjacent to the sidewall. A further inspection shows that best mesh configurations (#4 and 

#5) agree within 5% - 10% of one another, despite a lack of evidence for mesh independence. 

Herein mesh #5 is adopted as the reference case whilst its limitations are acknowledged.  

Lastly, it is worth nothing that Wang et al. (2016a) estimated the cross-sectional averaged Darcy 

frictions factor, based on the centreline free-surface profiles. Their analysis yielded dimensionless 

boundary shear stress f between 0.07 and 0.08 (3). However, the standard wall function produced 

notably smaller values using the experimentally determined ks. This could be a result from the wall-

normal flow motions breaking down the logarithmic layer near wall. A further examination shows 

that the first layer of boundary cells lie close to the upper bound of the applicable range of the log-

law (i.e. y+ ≈ 300), where the wake component becomes increasing important. These discrepancies 

highlight the importance of the selection of an appropriate wall function and having a properly 

resolved mesh in the near-wall region. 
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(a) Free-surface profiles at channel centreline (z = 0.25 m) 

                                                 
3 corresponding to ks = 20 – 25 mm (Wang et al., 2016a). 
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(b) Centreline longitudinal velocity profiles at outlet (x = 8 m) 
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(c) Lateral distributions of bed friction factor at outlet (x = 8 m) 
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(d, Left) Friction factor distributions on left rough wall at outlet (x = 8 m) 

(e, Right) Friction factor distributions on right smooth wall at outlet (x = 8 m) 

Figure 4.2 – Mesh sensitivity test results of primary flow quantities in a culvert barrel channel with 

rough bed and rough left sidewall. 
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4.3 RESULTS 

The rough left sidewall and bed produce an asymmetry in boundary shear stresses, which results in 

skewed longitudinal velocity contours, as shown in Figure 4.3 where the longitudinal U-velocity 

contours are computed at three cross-sections, for which measurements were performed by Wang et 

al. (2016a). The asymmetry in longitudinal velocities develops within the initial stage of boundary 

layer growth, resulting in noticeably lower velocities close to the rough (left) sidewall (y = 0.5 m, 

Fig. 4.3). At the downstream end of the test section (x = 8 m), the flow becomes fully developed as 

reported by Wang et al. (2016a). Approximately 40% of the flow area is rendered below U/Umean = 

1, comparable to the observation of Wang et al. (2016a). 

 

 

(a) x = 2 m 

 

(b) x = 8 m 

Figure 4.3 – Contour plots of longitudinal velocity component U at selected cross-sections in a 

culvert barrel channel with rough bed and rough left sidewall. 
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Figure 4.4 presents the lateral distributions of maximum longitudinal velocity Umax and its elevation 

zUmax at several transverse locations y at the outlet (x = 8 m). The Umax, z and y data are respectively 

normalised by the cross-sectional average velocity Umean, the water depth d and the channel width 

W. The results (Figure 4.4a) indicate that the low velocity zones next to the boundaries result in a 

velocity increase in the central part of the channel. These peak velocities occur at much lower 

elevations next to the boundaries than on the channel centre because of secondary flow motion. The 

data of Wang et al. (2016a) displayed similar trends, except that they showed larger Umax data 

occurring at lower elevation zUmax in the central part of the channel. The difference is likely due to 

differences between the computed secondary circulations and those existing in the physical model. 

For 3D channels, both Xie (1998) and Wang et al. (2016a) commented on the locations of zUmax and 

suggested a coincidence between these locations and those of minimum u’(zu’max) away from the 

sidewall. Figure 4.4b shows that this is only seen for a small region towards the left sidewall (i.e. 

y/W = 0.8 – 0.9). The existence of local minima in u’ is a consequence of complex secondary 

circulations beneath the free surface and highlights the complicated processes occurring therein. 
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(a) Transverse distribution of Umax    (b) Transverse distribution of zUmax 

Figure 4.4 – Transverse distributions of magnitudes and locations of maximum longitudinal 

velocity component Umax at x = 8 m 

 

The lateral perturbation induced by the channel corners and boundary roughness leads to the 

formation of secondary currents (Nezu and Rodi, 1985; Nezu and Nakagawa, 1993). These are 

evident from the dips in velocity contours, seen in Figure 4.3, which become more pronounced as 

the flow develops downstream. Wang et al. (2016a) observed these velocity dips and attempted at 
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visualising the secondary flow patterns by dye injection. They reported both bottom and free-

surface recirculation cells next to the rough sidewall, at the corner between the rough bed and 

sidewall, near the channel bed, and underneath the free-surface on the left side. The computed 

secondary flow vectors at x = 2, 5 and 8 m are presented in Figure 4.5, where the recirculation cell 

centres are highlighted by red arrows. Figure 4.5 presents vector descriptions of the secondary 

current motions in the y-z plane (4). The numerical results suggest five recirculation cells as the 

flow evolves from upstream to downstream. In particular, the recirculation zones next to the left 

rough sidewall and the small vortex at the corner between the right smooth wall and the bed are 

successfully reproduced in the CFD modelling. An additional recirculation zone is observed on the 

bottom left corner with its centre at y/W  0.9 and z/d  0.05, which mirrors the rough sidewall 

recirculation about an imaginary line highlighted in yellow in Figure 4.5. This division introduces a 

soft boundary that limits the spread of corner-induced secondary cells due to difference between 

frictions on the bed and on the sidewall. Several researchers proposed a characteristic value z/y ≈ 

0.8 (Tracy, 1965; Yang et al., 2012), whereas the present data yields z/y between 1.0 and 1.3. The 

difference might be attributed to the different rates of growth of the boundary layers originating 

from the left and right sidewalls. Finally, some significant recirculation is observed next to the right 

smooth wall (y = 0), which was not visualised by Wang et al. (2016a). It might have been possible 

that the large stress imbalance between the right smooth wall and the rough bed led to strong 

velocity gradients causing the dye to be dispersed too quickly.  
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(a) x = 2 m 

                                                 
4 That is, the (V, W) velocity vector. 
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(b) x = 8 m  

Figure 4.5– Vector description of secondary flow (V, W) patterns in  in a culvert barrel channel with 

rough bed and rough left sidewall at selected cross-sections. 

 

Figure 4.6 presents the contour plot of dimensionless secondary current strength, defined as 

(V2+W2)0.5/U, where V is the time-averaged transverse velocity component and W is the time-

averaged transverse velocity component. The results indicate strong wall-tangent motions of the 

order of 10% of the main flow next to the right smooth wall (Fig. 4.6). Further, significant 

secondary motions of dimensionless strength about 5% are observed next to the boundaries and 

along the soft boundaries that divide pairs of corner-induced eddies. The asymmetrical boundary 

roughness configuration tends to produce secondary patterns in specific regions which substantially 

exceed typical values (i.e. 1 – 2%) reported for open channel flows (Liggett, 1994). 

The relationship between turbulent shear stress and the production of secondary flow may be 

demonstrated by simplifying and integrating the x-momentum equation along the bed, which yields 

(Yang et al., 2012): 

 ' ' 0
U

UV u v
t

 
  


 

For a turbulent flow, the secondary flow (spanwise) velocity V is inversely proportional to the 

longitudinal velocity U and does balance the Reynolds stress ' 'u v , which originates from the 

spanwise velocity gradient ∂U/∂y. Figure 4.7 presents the lateral distribution of ' 'u v  along the 

rough bed at the outlet (x = 8 m). Three regions of large ' 'u v  are identified, which respectively 

correspond to the three bottom vortices illustrated in Figure 4.6. The directions of the secondary 

currents directly correspond to the signs of ' 'u v . The zero-crossings in Figure 4.7 coincide with 
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the locations where the wall-tangent motions diminish. The results corroborate with the analysis of 

Yang et al. (2012) and suggest that both the bed and the sidewall boundaries play a role in 

producing the complicated secondary flow patterns observed in the present configuration.  

 

 

Figure 4.6 – Secondary flow strength (V2+W2)0.5/U at outlet (x = 8 m) of culvert barrel channel with 

rough bed and rough left sidewall 
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Figure 4.7 – Distribution of turbulent Reynolds shear stress ' 'u v  on the bottom at outlet (x = 8 

m) of culvert barrel channel with rough bed and rough left sidewall. 

 

Turbulence intensity contours are presented in Figure 4.8, where the turbulence intensity is defined 

as Tu = urms/U, where urms is the root-mean-square (rms) of the longitudinal velocity component. 

The data are shown at three longitudinal locations, corresponding to those measured by Wang et al. 

(2016a). The results indicate strong turbulent fluctuations next to the rough bed and rough sidewall, 
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with Tu values up to 0.5 next to the rough boundaries. The turbulence intensity next to the right 

smooth wall remains constant at approximately 15%, except in the corner region. In the fully 

developed region (i.e. x = 8 m), Tu is dominantly above 10% in most parts of the channel. 

 

 

(a) x = 2 m 

 

(b) x = 8 m 

Figure 4.8 – Turbulence intensity contours at selected cross-sections in a culvert barrel channel with 

rough bed and rough left sidewall. 

 

The turbulence intensity contours display dips similar to the longitudinal velocity contour plots. The 

similarity may be linked to a combination of secondary flow patterns and turbulence anisotropy. 

Figure 4.9 presents contours of ratios of pairs of turbulent velocity components at the downstream 

end of the test section (x = 8 m). The anisotropy ratio /rms rmsw u  is maintained at approximately 0.5 

near the channel bed and increases towards the free surface, almost reaching unity at the interface 

between the free surface and the sidewalls, where vrms is the root mean square of the spanwise 

velocity component. Such large /rms rmsw u  values are linked to upward motions induced by the 
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sidewall secondary circulations, shown in Figure 4.5. Similarly, the ratio /rms rmsv u  is close to unity 

next to the channel bed due to the bottom vortex pair, seen in Figure 4.5, and decreases to 

approximately 0.5 along the sidewalls towards the free surface. Next to the boundaries, the wall-

normal velocity fluctuations are significantly damped as seen in the contours of the ratio /rms rmsw v  

in Figure 4.9c. Nezu (1977, 2005) proposed universal functions of u’, v’ and w’ based on self-

similarity and a simplified k-ε model, which yields: 

 0.71rms

rms
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 0.55rms
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A review of Figure 4.9 shows that Nezu's values are only representative of a small region in the 

core of the flow. Significant turbulence anisotropy exists next to the boundaries and the free 

surface, leading to complicated secondary flow patterns. 

 

4.4 SUMMARY 

3D CFD models were used to study the flow in a box culvert with rough bed and rough left 

sidewall. The RSM and VOF models were employed to achieve turbulence closure and free surface 

tracking. The results demonstrated the ability of CFD models to provide a high-fidelity database, 

useful for understanding the mechanisms responsible for improving fish passage in an 

asymmetrically roughened channel. 

The effects of grid mesh on the primary flow quantities were examined between five different 

configurations – with a more than 10-fold increase in cell count from 375,000 to 5,000,000 (Table 

4.2). The comparison suggested that the free surface profiles were non-sensitive to the grid and 

exhibited mesh independence even for the coarsest mesh. The velocity profiles agreed within 5 – 10 

% between the configurations and appeared more sensitive to the aspect ratio than the cell count. 

The largest discrepancies were observed in the friction factors, despite all cases generating 

qualitatively similar results. The disagreement between the two finest meshes was between 5 – 10 

%. As a further increase in cell count was infeasible, the margin of error for the finest mesh was 

deemed acceptable with small mesh effects on the results being acknowledged. 
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(a) Contours of /rms rmsw u  

 

(b) Contours of /rms rmsv u  

 

(c) Contours of /rms rmsw v  

Figure 4.9 – Turbulence anisotropy at outlet (x = 8 m) of culvert barrel channel with rough bed and 

rough left sidewall. 
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Comparisons between numerical and experimental data sets showed a good agreement in terms of 

free surface profiles for all configurations. Significant discrepancies were found in the velocity 

profiles which appeared to be linked to some inappropriate modelling of the surface roughness. This 

highlighted the limitation of the numerical model, but should not prevent the results from being 

interpreted in a more qualitative manner. 

A review of numerical results highlighted complicated secondary flow patterns that were 

qualitatively consistent with the physical observations of Wang et al. (2016a). These secondary 

motions were responsible for multiple dips in the velocity contours and were substantially stronger 

than those in typical open channel flows, reaching up to 5-10% of the main flow next to the 

boundaries. A further analysis revealed a relationship between secondary motions and the 

distribution of wall-tangent Reynolds stress, which indicated that both bed and sidewall boundaries 

play a role in producing the desired flow patterns for fish passage.  

In summary, the present numerical results provided valuable information on the evolution of flow 

patterns and secondary current generation mechanisms despite that mesh influence could have 

accounted for up to 10% of the velocity and boundary friction profiles. The experience underlined 

challenges to match experimental and numerical datasets in presence of complex surface 

geometries. Nevertheless, the numerical model was sufficient at providing supportive information 

which assists with the interpretation and diagnosis of lab data. Whilst itself insufficient, the 

complementary nature of numerical and physical models may allow a 'hybrid approach' to be 

formed which helps facilitate understandings and guide improvements of future designs. 
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5. BOX CULVERT WITH SMALL TRIANGULAR BAFFLES 

5.1 PROBLEM SETUP 

LES simulations were performed for a horizontal rectangular channel equipped with small 

triangular baffles in the bottom left corner. Four scenarios were tested for different combinations of 

flow rates and baffle heights. The flow conditions pertaining to the individual cases are summarised 

in Table 5.1, where Q is the volumetric flow rate, hb is the side length of the isosceles triangular 

baffle, and Lb is the streamwise interval between two adjacent baffles. The full numerical results are 

reported in Appendix B. For Scenarios SC1 to SC3, Cabonce et al. (2017) performed detailed 

experiments in a 12 m long physical channel illustrated in Figure 5.1. Their results are used to 

validate the respective numerical models. Scenario SC4 was derived from SC3 by adding a 13 mm 

hole through the centroid of the baffle, to ventilate the recirculation zone (Cabonce et al., 2018). 

The provision of ventilation was introduced as a means to alleviate the disorienting effect of large 

negative velocities on small fish navigating the obstacle. 

 

 

Figure 5.1 – Definition sketch of 12 m long channel equipped with small triangular corner baffles 

used by Cabonce et al. (2017) – Note the upstream and downstream mesh screens. 
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Table 5.1 – Summary of flow conditions for investigated scenarios 

 

Scenario Q (l/s) hb (m) Lb (m) d (m) Remark 
SC1 26.1 0.067 0.67 0.100 - 
SC2 55.6 0.067 0.67 0.165 - 
SC3 55.6 0.133 0.67 0.173 - 
SC4 55.6 0.133 0.67 0.173 with 13 mm hole*1 

 

Note: *1 – the hole on each baffle is centered at 40 mm from its edges 

 

A mass flow rate is imposed on the periodic boundaries in accordance with the water flow rate 

through domain. At each time step, the mass flow is maintained by the correct pressure gradient 

which Fluent solves by iteration. Gravity is disabled and as such only the static pressure term was 

modelled (initially set to the gauge pressure). The simulations were performed on a custom-built 

Dell Precision T5810 workstation configured with an Intel® Xeon® E5-1680 v4 CPU and 128 GB 

RAM. The time discretisation was bounded second order implicit. The pressure-velocity coupling 

was solved using the SIMPLE solver. The spatial discretisation of the momentum equations is 

handled by a modified central differencing scheme based on the normalised variable diagram 

(NVD) approach (Leonard, 1991) to achieve second-order accuracy. This is a composite scheme 

that consists of a pure central differencing, a blend of the central differencing and the second-order 

upwind scheme, and the first-order upwind scheme (ANSYS). The hybrid formulation retains the 

low numerical diffusion and reduces the instability due to central differencing, and falls back onto 

the first-order scheme if unbounded solutions are produced.  

Cuboid domains with a footprint of 0.67 m × 0.5 m were selected for the simulations. The vertical 

extent of each domain was determined from the free surface data of Cabonce et al. (2017). They 

observed experimentally that the free surface remained largely flat between two successive baffles 

in the fully developed region, albeit a localised dip immediately downstream of each baffle 

noticeable only for a large relative baffle hb/d, where d is water depth. Since effects due to free 

surface perturbations were expected to be small, representing a flat free surface by a symmetry 

condition permitted a substantial increase in computational speed with minimum impact on 

reproduction of the bulk flow features. The longitudinal extent of the domain (0.67 m) was set to 

equal one baffle spacing (Lb), and preliminary simulations found that the fully developed flow field 

was very close to periodic (Appendix A). Figure 5.2 illustrates the final computation domain as well 

as the boundary conditions applied. A single isosceles triangular baffle was placed midway between 

the periodic inlet and its shadow outlet. The side and bottom walls as well as the baffle surfaces 

were set up as no-slip walls. The symmetry condition on the top face imposes a zero normal 
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gradient for all fluid variables.  

Each numerical domain was discretised into an unstructured hexahedral mesh. The resulting mesh 

configurations are summarised in Table 5.2. The resolution requirements of WMLES were used as a 

guide to specify the element sizes on the bounding edges non-contacting with the baffle, with the 

domain height assumed as δ. The sides of the baffle are discretised into 2 – 3 mm segments, and no 

constraint was specified for the contacting edge with the baffle. Herein relatively coarse meshes 

were selected with the goal to keep the computation time manageable (5) while preserving the most 

relevant flow features. The inability to specify the first layer of wall cells in the proximity of y+ = 1 

would result in under-characterisation of the boundary layers originating from the no-slip walls. The 

discrepancy was deemed to be acceptable as the separation created by each baffle was expected to 

have a dominating effect on the flow redistribution. 

 

 

Figure 5.2 – Definition sketch of computational domain. 

 

                                                 
5 The computational time was influenced by a number of factors. The reduction in domain length, from 12 m 

down to 0.6 m, allowed computational resources to be allocated more efficiently (e.g. increase the cell count 

around feature of interest). 
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Table 5.2 – Summary of mesh configurations used for the sensitivity tests 

 

Scenario No. Cells Min. Cell 
Vol. (mm3) 

Max. Cell Vol. 
(mm3) 

Max. Aspect 
Ratio 

SC1 549,917 5.82 × 10-2 3.83 × 102 66 
SC2 277,509 1.66 × 10-1 1.06 × 103 33 
SC3 567,517 4.81 × 10-2 4.78 × 102 112 
SC4 704,826 5.68 × 10-2 3.85 × 102 21 

 

5.2 VALIDATION AND RESULTS 

5.2.1 Presentation 

Each simulation started with an initial assumption of uniform velocity field and iterated until the 

correct pressure gradient was achieved such that the mass flow rate was consistent with that 

specified. After the settlement of the initial numerical instability, the solution was run for 

approximately 10 s before time-averaged statistics were sampled for a further 10 s at an interval of 

0.001 s. For each time step, the solution was deemed to have converged once the normalised 

residuals for continuity and momentum equations decreased below 10-3. It is expected that the 

numerical behaviour becomes reasonably stationary after several flow resident times (~ 1 s). 

The numerical results for Scenarios SC1 to SC3 are validated in the following subsections against 

the detailed experimental measurements performed by Cabonce et al. (2017). The full results are 

reported in Appendix B. Note that the comparability between numerical and experimental results 

may be limited by the relatively short sampling window of 10 s chosen to keep computational time 

manageable (6). 

 

5.2.2 Scenario 1 (SC1) 

The numerical investigation of Scenario 1 (SC1) entails the examination of the hydrodynamic 

effects of regularly-spaced medium-size triangular baffles (hb = 0.067 m, hb/Lb = 0.1), in presence 

of a relatively small discharge (Q = 26.1 l/s), resulting in a moderate submergence (hb/d = 0.67). 

Figure 5.3 presents the streamwise velocity (U) contours at several distances downstream of the 

baffle. The results correspond to the locations where physical measurements in the fully developed 

region were conducted by Cabonce et al. (2017). In Figure 5.3, (x – xb) is the downstream distance 

from the baffle and Lb is the spacing between two baffles (Lb = 0.67 m). The velocity contours are 

visually comparable to those reported by Cabonce et al. (2017), showing a slow-flowing region 

induced by the corner baffle and a fast-flowing zone on the opposite side of the channel, next to the 
                                                 
6 For comparison, the physical data were sampled for 90 s at each sampling location. 
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smooth sidewall. Negative velocities are observed in the immediate wake of the baffle, and extend 

to approximately (x-xb)/Lb = 0.3 (not shown) – consistent with the observations of Cabonce et al. 

(2017). The velocity contours next to the smooth wall appear to overestimate the local velocities, 

compared to the experimental data, largely due to the under-specification of the mesh resolution 

near the sidewall. The numerical model also did not account for the transverse pressure gradient due 

to free-surface inlination towards the smooth wall observed in the experimental data, which might 

have some effect on the flow redistribution across the channel. Some kinks are observable locally in 

the contours which could be an artifact owing to the relatively short sampling duration.  

Typical velocity profiles at various transverse locations are compared with experimental data in 

Figure 5.4. The data indicate large flow disturbance induced by the baffle for y > 0.335 m, and 

some flow concentration about y ≈ 0.165 m. The quantitative agreement is less satisfactory, with the 

numerical model showing a systematic overestimation than the experimental data. Since the mass 

flow rate was fixed for the numerical model, this likely implies a slightly over-reported flow rate by 

the experimental study. The agreement between physical and numerical data is generally better at 

the centre of the channel (i.e. 0.25 < y < 0.42 m), than next to the sidewall boundaries. The disparity 

was also exacerbated by measurement difficulties in the vicinity of the baffle, linked to geometric 

confinement, negative velocities and strong streamline curvature, in addition to the challenge of 

maintaining an adequate near-wall mesh resolution. The intrusive presence of the Prandtl-Pitot tube 

may also disturb the experimental flow, noticeably when inserted into the corner behind baffle. 

Generally, the difference between data was not satisfactory, albeit expected.  

 

  

(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.235 
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(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure 5.3 – Velocity contours behind baffle – Flow conditions: Q = 26.1 l/s, hb = 0.067 m, Lb = 

0.67 m, d = 0.1 m. 
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(b) (x-xb)/Lb = 0.765 

Figure 5.4 – Velocity profiles at different transverse locations across channel in a culvert barrel 

channel equipped with small triangular corner baffles – Flow conditions: Q = 26.1 l/s, hb = 0.067 m, 

Lb = 0.67 m, d = 0.1 m – Notes: *1 – Experimental data by Cabonce et al. (2017); *2 – Large Eddy 

Simulation (present study). 

 

The combination of aforementioned experimental and numerical constraints makes achieving 

satisfactory agreement in terms of the local velocity profiles a significant challenge, although it is 

still of much benefit for the numerical model to remain capable of reproducing local characteristic 

properties, in absence of a more comprehensive agreement. Figure 5.5 presents typical comparisons 

of transverse distributions of maximum streamwise velocity per vertical profile (Umax) between 

numerical and experimental data. Overall a good agreement is achieved regardless of the 

streamwise location relative to the baffle. A further inspection reveals a slight overestimation of 

Umax by the numerical model, more noticeable towards the smooth wall, which results from the 

limited mesh resolution. The discrepancy remains below 10% and the results demonstrate that the 

general flow redistribution is adequately reproduced. The results show that velocity maxima occur 

below the free surface, as a consequence of strong secondary circulations that span the full width of 

the channel. The flow is most concentrated in the range of 0.5 < y/d < 0.8, though the limited 

amount of experimental data prevents more meaningful comparisons. Typical distributions of the 

vertical elevations of velocity maxima data (numerical and experimental) are shown in Figure 5.6. 
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(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.235 

Figure 5.5 – Transverse distributions of streamwise velocity maxima – Flow conditions: Q = 26.1 

l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.1 m. 
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(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.765 

Figure 5.6 – Transverse distributions of elevations of streamwise velocity maxima – Flow 

conditions: Q = 26.1 l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.1 m. 

 

5.2.3 Scenario 2 (SC2) 

Scenario SC2 investigates the blockage effects of regularly-spaced medium-size baffles (hb = 0.067 

m, hb/Lb = 0.1) subject to a moderately high discharge (Q = 56.6 l/s). The relative size of the 

blockage is substantially reduced, compared to Scenario SC1 (hb/d = 0.4). Figure 5.7 presents the 
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streamwise velocity (U) contours at various distances downstream of the baffle, corresponding to 

those reported for the fully developed region by Cabonce et al. (2017). The velocity contours 

compare closely to those in Cabonce et al. (2017), except next to the smooth wall where the 

numerical boundary layer appears underdeveloped. Remarkably, the numerical model correctly 

predicts the velocity dips about y/W = 0.3, which is linked to large secondary flow cells occupying 

both halves of the channel cross-section. Both physical and numerical data highlight a recirculation 

zone, in the wake of the baffle, that extends up to approximately (x – xb)/hb = 3. The numerical 

model yields notably smaller negative velocities (up to -0.2 m/s) than the experimental data (up to -

0.8 m/s), which could be susceptible to strong streamline curvatures, which pose a significant 

measurement challenge. The area of velocity concentration on the smooth side of the channel 

appears to decay faster for the experimental data than for the numerical data, which could be on 

account of the under-modelled skin friction. In general, the numerical model is able to reproduce 

the flow patterns satisfactorily despite a relatively coarse mesh. 

Figure 5.8 shows a typical comparison of vertical profiles of longitudinal velocity at various 

transverse locations between numerical and experimental results. The comparison shows basically 

that the baffle impact is most noticeable on the velocity profiles immediately adjacent to the left 

(baffled) wall (y = 0.46 and 0.48 m). The numerical model overestimates the velocity by up to 20% 

on the smooth half the channel, which could be linked to the mesh resolution. Overall, the 

numerical model reproduces the experimental data qualitatively, although achieving quantitative 

agreement locally still appears to be a significant challenge. Figure 5.9 presents typical comparisons 

of transverse distributions of streamwise velocity maxima between the numerical and experimental 

results. The agreement is very good for all locations downstream of the baffle. The numerical model 

yields slightly larger results than the experimental data, which might be in consequence of the 

limited mesh resolution. In general, the results demonstrate the model capability to satisfactorily 

reproduce the flow redistribution. The corresponding distributions of the elevations of the 

longitudinal velocity maxima for both numerical and experimental results are illustrated in Figure 

5.10. Both datasets indicate that velocity maxima frequently occur below the free surface, with 

substantial variations across the channel. A direct comparison cannot be made as the large scatter 

implies significant uncertainties in both data. 
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(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.235 

  

(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure 5.7 – Velocity contours behind baffle – Flow conditions: Q = 55.6 l/s, hb = 0.067 m, Lb = 

0.67 m, d = 0.165 m. 
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(b) (x-xb)/Lb = 0.765 

Figure 5.8 – Velocity profiles at different transverse locations across channel equipped with small 

triangular corner baffles – Flow conditions: Q = 55.6 l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.165 m – 

Notes: *1 – Experimental data by Cabonce et al. (2017); *2 – Large Eddy Simulation (present 

study). 
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(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.765 

Figure 5.9 – Transverse distributions of streamwise velocity maxima – Flow conditions: Q = 55.6 

l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.165 m. 
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(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.765 

Figure 5.10 – Transverse distributions of elevations of streamwise velocity maxima – Flow 

conditions: Q = 55.6 l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.165 m. 

 

5.2.4 Scenario 3 (SC3) 

Scenario SC3 extends Scenario SC2 by enlarging the baffles to twice of their original size (hb = 

0.133 m), thus achieving a significant reduction in the relative spacing between baffles (hb/Lb = 

0.2). The close proximity between adjacent baffles promotes their interactions, and their 

compounding effects might result in a more complex flow field. Figure 5.11 presents the 

streamwise velocity (U) contours at several locations downstream of the baffle. The results are 

comparable to those in Cabonce et al. (2017). The underdevelopment of the boundary layer next to 

the smooth wall is noticeable, as in both Scenarios SC1 and SC2 because of insufficient mesh 

resolution. Both physical and numerical results show a recirculation zone generated by the baffle 

blockage, with negative velocities up to -0.3 m/s and -1 m/s for the numerical and experimental data 

respectively. The negative velocity zone is approximately equal in size with the baffle, and decays 

rapidly with increasing distance downstream. The physically-measured negative velocities appear 

very large (i.e. exceeding the bulk velocity), possibly because of measurement challenges using a 

Prandtl-Pitot tube. Both numerical and physical results identify the bulk of the flow occurring 

within y < 0.35 m, as well as a large dip in the velocity contours between 0.1 < y < 0.3 m caused by 

the baffle influence. The numerical model appears to overestimate the velocities further 

downstream of the baffle, i.e. (x-xb)/Lb > 0.5, which could be linked to the relatively coarse mesh. 

Occasionally, the computed velocity contours exhibit some local undulations, which might vanish 

with a longer sampling duration. Overall, the numerical model appears to be sufficiently detailed for 
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establishing the major flow features, despite with a relatively coarse mesh. 

 

  

(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.235 

  

(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure 5.11 – Velocity contours behind baffle – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 

0.67 m, d = 0.165 m 

 

Figure 5.12 shows some comparison in terms of velocity profiles at various transverse locations 

between numerical and experimental results. The ful results are presented in Appendix B. Close to 

the baffle, i.e. (x-xb)/Lb = 0.05, experimental and numerical results generally agree within 10 % 

everywhere, except in the recirculation region, which might be some metrology issue. The 

difference increases with increasing distance downstream of the baffle up to (x-xb)/Lb = 0.765, with 

the numerical model typically producing larger velocities near the smooth wall and smaller 

velocities next to the left (baffled) wall. The observation might be linked to some inadequately 

resolution of the boundary layers originating from smooth walls. Overall, the quantitative 
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agreement between velocity profiles appear to be improved compared to Scenario SC1, although 

still less than satisfactory.  

Figure 5.13 compares typical transverse distributions of streamwise velocity maxima between 

numerical and experimental results. A basic agreement is observed at all locations downstream of 

the baffle. The numerical results exhibit some local oscillations, which are expected to be dampened 

by increasing the sampling duration. Both physical and numerical data are consistent, showing a 

flow slowdown below the bulk velocity for y/W > 0.8, which is of substantially larger extent than in 

Scenarios SC1 and SC2. Overall, the numerical model satisfactorily replicates the major flow 

features reflecting the selected size and spacing of the baffles. The corresponding distributions of 

the elevations of the velocity maxima for both numerical and experimental results are illustrated in 

Figure 5.14. All the data show a clear trend where the maximum velocity is found closer to the free 

surface near the walls than in the middle of the channel. The agreement between data is satisfactory 

and noticeably improved compared to Scenarios SC1 and SC2 despite the similar mesh adopted. 

The observation suggests that the validation might be more dependant on the flow conditions than 

on the mesh. 
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(b) (x-xb)/Lb = 0.765 

Figure 5.12 – Velocity profiles at different transverse locations across channel equipped with small 

triangular corner baffles – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m – 

Notes: *1 – Experimental data by Cabonce et al. (2017); *2 – Large Eddy Simulation (present 

study). 
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(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.765 

Figure 5.13 – Transverse distributions of streamwise velocity maxima – Flow conditions: Q = 55.6 

l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m. 
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(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.765 

Figure 5.14 – Transverse distributions of elevations of streamwise velocity maxima – Flow 

conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m. 

 

5.3 APPLICATION 

5.3.1 Presentation 

The above validations (Section 5.2) suggest that the numerical models can replicate qualitatively the 

major flow features, even with a relatively coarse mesh. Yet, achieving quantitative agreement 

everywhere remains a significant challenge. Overall the numerical models are deemed useful for 

assessing changes in the bulk flow features when geometric changes are introduced. Herein the 

model used for Scenario SC3 is modified to assess the hydrodynamic effects of a 13 mm ventilation 

hole, located at 40 mm from the baffle edges as illustrated in Figure 5.15. The numerical model was 

run for 10 s prior to time statistics being sampled for a further 10 s at an interval of 0.001 s. The 

basic findings are reported in the following subsections and compared to the physical observations 

of Cabonce et al. (2018). The full numerical results are reported in Appendix B. 

 



50 

 

Figure 5.15 – Specification of baffle with hole. 

 

5.3.2 Numerical results 

The immediate effects of the ventilated corner baffle (Figure 5.15) are observed in Figure 5.16, 

presenting the streamwise velocity contours on xz-planes next to the left baffled wall ((W – y)/W = 

0.01) and through the hole centre ((W – y)/W = 0.08). The velocities are exactly zero on the 

upstream face of the baffle, preceded by a small recirculation region due to upstream flow 

stagnation. A much stronger recirculation zone exists in the immediate wake of baffle with a 

streamwise extent of approximately three times the baffle size – consistent with the observations for 

Scenarios SC1 to SC3. The centre of the downstream recirculation zone is located at approximately 

(x-xb)/hb = 1, where negative velocities up to -0.4 to -0.5 m/s are identified. A concentration of high 

velocities up to 0.5 m/s is observed immediately downstream and above the baffle, which is due to 

flow detachment from the baffle edge. At the transverse position of the hole, the upstream 

recirculation zone diminishes drastically in size and occupies only a small portion upstream of the 

baffle toe. The downstream wake is of a similar extent to that adjacent to the wall, centred at 

approximately (x-xb)/hb = 1 with negative velocities up to -0.3 m/s. A fast jet of velocities reaching 

0.7 m/s develops immediately downstream of the hole and quickly dissipates into the surrounding 

recirculatory motion, while drawing also some fluid from above. The persisting recirculation 

motions indicate strong streamline curvature, which could imply a non-hydrostatic pressure 

gradient. Figure 5.17 shows the contours of streamwise velocity fluctuations urms for the same 

locations as in Figure 5.16. The strongest velocity fluctuations are found near the jet exiting the hole 

attributed to the large velocity differentials with the surrounding fluid. Significant fluctuations up to 

0.2 m/s are also identified in the upstream stagnation zone and for a substantial region downstream 

of the baffle from channel mid-height up to the free surface, which may have some contributions 
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from the flow unsteadiness. Overall, the present observations suggest that a single hole provides 

insufficient ventilation behind the baffle; while the jet due to its presence increases the surrounding 

turbulence although to a rather limited extent. 

The presence of the baffle divides the channel into a fast-flowing region and a slow recirculation 

region on each side. At the first downstream location ((x-xb)/Lb = 0.05), the negative velocity zone 

is identified to be similar in size and shape compared to Scenario SC3.Figure 5.18 illustrates typical 

contours of streamwise velocity and velocity fluctuations immediately downstream of the baffle. 

The projection of high velocities due to the hole results in slightly more pronounced velocity dips 

towards the corner of the baffle, although the effect is restricted to a very small region. The velocity 

concentration on the opposite side of the channel is close in both shape and magnitude to Scenario 

SC3, suggesting that the ventilation provided by the hole is insufficient to penetrate the bulk flow. 

The recirculation zone occupies gradually smaller sizes with increasing distance downstream of the 

baffle, and a global positive flow is restored approximately for (x-xb)/Lb > 0.5. From the re-

attachment point, the initial flow concentration becomes reduced in size, and the boundary layer 

originating from the baffled wall appears much more developed compared to those next to the 

bottom and smooth wall, possibly because of the insufficient near wall mesh resolution (7). In 

general, the velocity contours at all locations behind baffle largely resemble those for the same 

configuration without the ventilation hole, suggesting that a larger opening may be warranted for 

introducing meaningful modifications to the recirculation flow field behind the baffle. 

In general, much larger velocity fluctuations are identified on the baffled side of the channel than on 

the smooth side. The baffle edge and the ventilation hole induce regions with the strongest 

fluctuations, up to 0.2 m/s, immediately downstream of the baffle, similar in magnitude to those 

next to the left baffled sidewall (Figure 5.17). The sizes of turbulent cores evolve significantly with 

increasing distance downstream of the baffle, while large velocity fluctuations of approximately 0.1 

m/s persist throughout. In contrast, the smooth half of the channel cross-section appears to 

experience much less turbulent fluctuations with magnitudes of at least an order less. Overall, whilst 

difficult to ascertain the individual contribution of the hole to any turbulence modification behind 

the baffle, it appears limited in extent as the flow dynamics remain dominated by the flow 

separation initiated by the baffle edge. 

 

                                                 
7 as observed in Scenario SC3. 
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(a) (W – y)/W = 0.01 (wall) 

 

(b) (W – y)/W = 0.08 (hole) 

Figure 5.16 – Longitudinal velocity contours at various distances from the baffled wall – Flow 

conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m,  = 13 mm	hole. 

 

 

(a) (W – y)/W = 0.01 (wall) 
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(b) (W – y)/W = 0.08 (wall) 

Figure 5.17 – Contours of streamwise velocity fluctuations at various distances from the baffled 

wall – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m,  = 13 mm	hole. 

 

The velocity contour data (Fig. 5.18a and App. B) imply strong secondary motions within the 

channel. Herein the maximum streamwise velocity within a vertical profile and its corresponding 

elevation are found to be a function of the transverse position y/W for a given cross-section. The 

transverse distributions of maximum streamwise velocities and their corresponding locations at 

different locations downstream of the baffle are presented in Figure 5.19. The baffle is seen to have 

induced a strong flow deceleration on the baffled side of the channel for approximately y > 0.7, and 

a corresponding flow concentration on the opposite side. The maximum velocity peaks at 

Umax/Umean = 1.4 near the smooth wall, and decreases steadily to about y/W = 0.7 – 0.8. For y/W > 

0.7 – 0.8, the maximum velocity decreases rapidly towards the wall because of interactions with the 

wake behind baffle. The ratio Umax/Umean gradually decreases as the initial accelerating fluid past the 

baffle slows down with increasing downstream distance. Figure 5.19 reveals that the flow 

concentration around baffle edge is indeed the cause of the maximum velocities in that region. For 

the central portion of the channel (0.2 < y/W < 0.7), the maximum velocities occur near the channel 

mid-height rather than the free surface due to secondary currents. The present observations are 

qualitative and quantitatively similar to the numerical and experimental results for Scenario SC3, 

with no obvious effects due to the ventilation hole. 

For completeness, the transverse distributions of maximum streamwise velocity fluctuations urms,max 

and their corresponding elevations show maximum turbulent fluctuations above 10% of Umean 

everywhere within the channel, which increases steadily towards y/W = 1. The baffle induces a 

significant spike in urms,max/Umean for y/W < 0.6, peaking at urms,max/Umean ≈ 0.4 at y/W = 0.8 and (x-

xb)/Lb = 0.05. The increase in turbulence levels reduces gradually with increasing distance 

downstream of the baffle, and becomes unnoticeable at (x-xb)/Lb = 0.765. Further the maximum 
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velocity fluctuations occur next to the wall for the most part of the channel, and occasionally near 

the free surface. For y > 0.6 and (x-xb)/Lb ≤ 0.5, the locations of maximum urms,max/Umean coincide 

with the baffle edge, where no effects due to the hole is ascertained. 

 

  

(a) Streamwise velocity    (b) Streamwise velocity fluctuations 

Figure 5.18 – Contours of time-averaged longitudinal velocity and velocity fluctuations 

immediately behind ventilated baffle – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d 

= 0.173 m,  = 13 mm	hole, (x-xb)/Lb = 0.05. 
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(a) Distributions of Umax    (b) Distributions of zUmax 

Figure 5.19 – Transverse distributions of maximum streamwise velocities Umax and corresponding 

locations zUmax – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m,  = 13 mm	

hole. 
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5.4 SUMMARY 

Three-dimensional large eddy simulations were performed with a commercial package for several 

box culvert configurations equipped with small triangular corner baffle system. The initial design 

was proposed by Chanson and Uys (2016) with the intention to instigate slow velocity zones to 

facilitate upstream passage of fish with small body mass. Their performances in terms of fish 

passage and endurance were subsequently evaluated in a near-prototype scale facility by Cabonce et 

al. (2017,2018). The present study has succeeded in determining a feasible numerical configuration 

that achieves an acceptable balance between accuracy and efficiency, to gain further understanding 

of the hydrodynamic modifications introduced by the baffle system. 

Validation tests were undertaken in terms of key flow parameters for three scenarios involving 

different combinations of discharge, baffle size and spacing. Comparisons with experimental data 

established the capacity of the numerical models to satisfactorily replicate the major flow features 

associated with the baffle albeit a relatively coarse mesh used. It was also recognised that achieving 

acceptable quantitative agreement everywhere in terms of the velocity profiles could be more 

challenging than previously perceived. Differences are often noted next the bed and behind the 

baffle, i.e. zones of interest in terms of fish passage. The implications are discussed in terms of low-

velocity zones (LVZs) in section 6 (Fig. 6.1). Of the observed discrepancies, some were attributable 

to limitations of the measurement technique, including susceptibility to streamline curvatures and 

geometric confinement. In general, the present models were deemed fit for purpose to assess 

qualitatively the flow redistributions arising from installation of the baffle system. 

Furthermore, one of the validated models was modified to assess the hydrodynamic effects of a 

circular opening of 1/10th the baffle size through its centroid. The hole was believed to reduce the 

severity of negative circulation behind the baffle by providing ventilation to the area, which reduces 

the chance of fish becoming disoriented while navigating the baffle (Cabonce et al., 2018). The 

results revealed a high-velocity jet exiting the hole, which quickly vanished into the surrounding 

fluid and caused an increase in local turbulence levels. The bulk of the recirculation zone remained 

largely unaffected, in comparison to the original model without hole. The observations warranted 

larger openings to provide adequate cavity ventilation for improved fish navigability. 

In summary, the present work highlighted the relevance of numerical models for understanding 

open channel flows involving complex geometries. The present configuration established a means 

to achieve a substantial reduction in computational effort by modelling the free surface as a plane of 

symmetry and replacing the domain inlet and outlet with periodic boundaries. The configuration is 

applicable to fully developed culvert flows with flow patterns that are expected to be streamwise-

periodic. A further improvement in efficiency was achieved by adopting a relatively coarse mesh 

together with a WMLES model since the flow redistributions were primarily governed by flow 



56 

separation from the baffle edge. It is worth noting that the technique may not be very useful in 

situations where the free surface dynamics is of prime importance or the free surface elevation is 

not known beforehand. With the complexity of flow description and computational resource 

constraint combined, it is proposed that similar numerical models be applied as an assistive rather 

than predictive measure for optimising the design of derivatives of the present baffle system.  
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6. DISCUSSION 

Research showed that low velocity zones (LVZs) are favoured swimming zones for fish (Lupandin, 

2005; Cotel et al., 2006). In particular, small-bodied fish (8) prefer to swim next to the sidewall and 

in the channel corner during upstream passage (Wang et al., 2016b; Cabonce et al., 2017), basically 

to minimise their rate of works and energy expenditure (Wang and Chanson, 2018). Whilst fish 

swimming behaviours are relatively easy to observe, a good hydrodynamic assessment of LVZs 

generally requires complete characterisations of the cross-sections of interest, involving careful and 

extensive data acquisition under carefully-controlled flow conditions in laboratory. Properly 

validated numerical models may conveniently convey such information at an unparalleled level of 

details, compared to more traditional methods. This section aims to provide a comprehensive 

characterisation of the low velocity zones associated, for  less-than-design flow conditions, with 

each roughness configuration, using the numerical models described in the previous chapters. More 

details are presented in Appendix C. 

The quantitative extents of low velocity regions are calculated and the results are compared with 

detailed laboratory data in Figure 6.1. Figure 6.1 compares the extent of low velocity zones (LVZs) 

generated by culvert barrels with smooth walls, with rough bed and rough left sidewall, with small 

corner baffles and with ventilated baffles. Only flow regions with U/Umean < 1 are considered. In 

Figure 6.1, the vertical axis represents the fraction of flow cross-sectional area associated with 

U/Umean less than the characteristic value of the horizontal axis. Whilst all roughness configurations 

experience at least 30% of the flow area with U/Umean < 1, their abilities to provide regions with 

lower longitudinal velocities, i.e. U/Umean < 0.75 and U/Umean < 0.5, vary drastically. The roughened 

channel exhibits a clear advantage over the smooth flume for 0.5 < U/Umean < 0.85 (Fig. 6.1a). The 

trend implies a more gradual transition between high and low velocity zones in the channel with a 

rough bed and rough left sidewall, which may be easier for the fish to adjust. Figure 6.1b shows low 

velocity zones associated with medium-size baffles (hb = 0.067 m, Lb = 0.67 m). The data show 

streamwise variations induced by the flow separation at each baffle. The flow is most disturbed at 

the first cross-sections behind the baffle, i.e. (x-xb)/Lb = 0.05 and 0.235, producing approximately 

30%, 15% and 5% of flow areas with U/Umean < 1, U/Umean < 0.75 and U/Umean < 0.5, respectively. 

The flow expansion during 0.5 < (x-xb)/Lb < 0.765 has seen a substantial decrease in the flow area 

for U/Umean < 0.5 and a corresponding increase for U/Umean > 0.5. This change might be detrimental 

to weak swimmers, as the negotiable region decreases in size even though the total area classified as 

                                                 
8 The characteristic endurance speed of small-bodied Australian native fish specie is typically less than 0.6 

m/s (Hurst et al., 2007; Rodgers et al., 2014). 
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low velocity (i.e. U/Umean < 1) increases. The noticeable streamwise variations could also imply 

non-contiguous regions which may be non-traversable by certain fish species.  
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(c) hb = 0.133 m, Lb = 0.67 m    (d) hb = 0.133 m, Lb = 0.67 m,  = 13 mm	hole 

Figure 6.1 – Fractions of low velocity regions produced by different barrel configurations – Flow 

conditions: Q = 55.6 l/s – Comparison with experimental data (black symbols) (Wang et al., 2016a; 

Cabonce et al., 2017). 

 

Figure 6.1c illustrates the amount of velocity reduction due to large baffles (hb = 0.133 m, Lb = 0.67 

m). The different configuration results in a 50% decrease in the relative spacing Lb/hb, compared to 

Figure 6.1b, and could limit the extent of streamwise variations, as previously discussed. The 

results confirm some improvement at all cross-sections downstream of the baffle. For (x-xb)/Lb < 
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0.235, the configuration renders approximately 15%, 20% and 30% of flow area below 50%, 75% 

and 100% of the bulk velocity Umean, respectively. As the flow expands for (x-xb)/Lb > 0.5, a gradual 

decrease is observed for the slowest flowing areas with U/Umean < 0.5, corresponding to an increase 

in area for U/Umean > 0.5. It is worth noting that about 10% of the flow area remains below 0.5Umean 

at the most remote location downstream of the baffle ((x-xb)/Lb = 0.765), which significantly 

surpasses all other configurations. The result benefits from both an increase in relative size hb/d and 

a decrease in relative spacing of the baffles. Figure 6.1d illustrates the effects of the same baffles 

ventilated with a 13 mm hole, showing no distinct advantage over the standard configuration. 

A comparison between CFD and experimental data was systematically conducted, in terms of the 

percentage of flow cross-section area where the time-averaged longitudinal velocity U was less than 

Umean, 0.75Umean and 0.5Umean (
9). Graphical results are presented in Figures 6.1a to 6.1c. Overall 

the normalised coefficient of correlation between physical and numerical results was 0.675 with a 

standard error of 0.145. A good agreement was achieved with the smooth barrel and asymmetrical 

rough channel configurations, with a coefficient of correlation of 0.942 and standard error of 0.072, 

between experimental and CFD data. 

Fish navigability also depends on the connectivity between the LVZ areas, in addition to the total 

relative size of low velocity zones (LVZs). Namely, a long, contiguous stretch of low velocity zone 

which meets certain velocity criteria is naturally more traversable than multiple, separate patches of 

LVZs. A single, large slow region is more suitable than multiple slow areas of smaller sizes. 

Consequently, one may aim to improve cross-sectional asymmetry, while minimising streamwise 

variations, to favour the development of a large contiguous stretch of traversable area, instead of 

smaller, discontinuous slow regions on either side of the channel. Figure 6.2 presents three-

dimensional visualisations of low velocity zones (U < 0.5Umean) for several boundary 

configurations. More results are presented in Appendix C. 

In the smooth barrel, two equal-sized small LVZs occupy the sides and bottom of the channel, as 

expected from symmetry (Fig. 6.2a). The only traversable regions in this case are the bottom 

corners of the channel. Passage is impossible for species which require U < 0.5Umean as the 

compliant regions lie extremely close to the physical boundaries of the barrel. The channel with one 

rough sidewall and rough bed improves the passage ability significantly for U < Umean, by inducing 

a large slow region on the roughened side of the channel. In addition to the corner circulations, an 

additional low velocity zone is identified above the channel bed at approximately y/W = 0.2 where 

                                                 
9 A tabular comparison between CFD and experimental data is presented in Appendix C, in terms of the 

percentage of flow cross-section area where the time-averaged longitudinal velocity U was less than Umean, 

0.75Umean and 0.5Umean (Table C.1). 
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two large secondary flow cells meet. The observation suggests that such mechanisms may be 

utilised to create additional regions of slow flow. For the slowest flow areas with U < 0.5Umean, the 

roughness asymmetry improves navigability slightly by favouring the rough side of the channel. 

The small corner baffle can be effective at producing a slow-velocity region immediately behind the 

triangular baffle (Fig. 6.2c to 6.2e), although small baffles in high flows show a lack of streamwise 

connectivity in terms of low velocity zones (Fig. 6-2d). Though the baffle provides a seemingly 

obvious option for fish passage, caution must be taken where the strong recirculation may disorient 

the fish before they are able to adjust (Cabonce et al., 2017). The disorientating effect in the 

immediate wake of the baffle remains a major limitation, which may be reduced by providing 

ventilation to the recirculation region. An implementation of a single 13 mm circular opening 

through the centroid of the baffle reduced the recirculation strength, with successful improvement in 

upstream fish passage (Cabonce et al., 2018). However the present CFD study suggested that a 

more effective baffle ventilation strategy would be relevant. 

In summary, the present investigation demonstrated the effects of various roughness configurations 

on the generation of LVZs. Both asymmetric roughness and small corner baffles are conducive to 

fish passage in distinguishing ways. Transverse asymmetry and streamwise uniformity are 

identified as desirable geometric traits which benefit the generation of large, contiguous traversable 

zones (Fig. 6.2). Corners, confluence of secondary flow cells and direct obstructions are highlighted 

as factors which help generate additional slow areas. The present observations may serve as 

guidelines for future optimisations of the geometric design of channels for improved fish passage. 

 

                   

(a, Left) Smooth barrel channel 

(b, Right) Rough bed and rough sidewall channel 
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(c) Barrel channel with triangular baffle configuration: Q = 0.0261 m3/s, hb = 0.067 m, Lb = 0.67 m 

 

(d) Barrel channel with triangular baffle configuration: Q = 0.0556 m3/s, hb = 0.067 m, Lb = 0.67 m 

 

(e) Barrel channel with triangular baffle configuration: Q = 0.0556 m3/s, hb = 0.133 m, Lb = 0.67 m 

Figure 6.2 - Three-dimensional flow visualisations of low-velocity zones (U < 0.5Umean) in box 

culvert channels: CFD modelling results - Flow direction is from bottom right to top left, passage 

ability increases with darker colour shades. 
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7. CONCLUSION 

Numerical 3D CFD investigations were undertaken to study the hydrodynamics of box culverts, 

with different types of boundary roughness configurations, for hydrodynamic conditions 

corresponding to less-than-design flows. The effects of smooth walls, rough bed and sidewall, and 

small triangular baffles were examined. The results offered insights onto how such boundary 

configurations may affect upstream fish passage and fostered the development of new apertures. 

The numerical results were benchmarked against existing detailed physical datasets. A number of 

similarities and differences were noticed. Amongst the primary flow quantities, the free surface 

profile was the least sensitive to grid settings, with good agreement between numerical and 

experimental datasets. The streamwise velocity profile was well validated for the simple smooth 

barrel, while moderate to large differences were found in all other boundary configurations. The 

mesh-dependence of the streamwise velocity was evident for the asymmetrically roughened barrel, 

with up to 10% of uncertainties, in the final results. Present experience suggests that additional 

calibration might be warranted if the wall roughness entails a complex geometry which might 

degrade numerical predictions made by standard wall models. Whilst the validation outcomes 

pointed out to significant challenges in matching numerical and experimental data at levels of 

details beyond the most basic, the numerical modelling was successful at emulating the major flow 

features associated with bulk flow motion. The distributions of characteristic velocities and their 

locations characterising cross-sectional flow redistributions were well replicated, hinting the best 

use of the present models as a complementary tool to the physical experimental counterparts. 

Present numerical databases must be considered as a limited aid for dissecting experimental 

observations and devising future options. 

With the associated limitations in mind, several recommendations may be proposed: 

1. The standard k-ε model, when used in conjunction with the VOF model, adequately 

replicates the free surface and velocity profiles in a smooth culvert barrel; 

2. More elaborate turbulence models such as RSM are required when secondary flow patterns 

are of importance; 

3. LES simulations with relatively coarse grids without full wall resolution may be used to 

establish main flow features, when flow redistribution is governed by singular obstacles; 

4. Periodic boundary conditions may be used to speed up substantially computations for fully 

developed flows; 

5. Substituting the free surface with a symmetrical boundary further improves computation 

speed with minimum impact onto the result. 

It is acknowledged that the numerical modelling was developed based upon validation data sets 
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limited to small to moderate flow conditions, with unit discharges within 0.05 m2/s < q < 0.11 m2/s. 

Detailed physical data sets for larger flow conditions would bring benefits to the research. 

All in all, the present study highlighted the usefulness and limitations of different CFD numerical 

models and provided useful insights into the application to fish-friendly box culvert design. 

Importantly, a comprehensive verification and validation of the CFD modelling models is most 

critical. This step requires a complete and detailed physical data set, to compare systematically 

physical and numerical quantities of interest and to ensure that the basic flow physics is correctly 

reproduced in the CFD numerical model, as recommended by the American Institute of Aeronautics 

and Astronautics (Rizzi and Vos, 1998; Roache, 1998a). Further it is essential to have the high-

quality physical data as references when validating numerical models, because "validation […] 

should be approached with great respect for the subtlety of nature" (Roache, 1998b). In other 

words, the absence of basic "experimental data means no validation" (Roache, 2009; Chanson and 

Lubin, 2010). 

Herein the CFD models were able to uncover distinct mechanisms responsible for generating low 

velocity zones (LVZs) by each type of roughness; these include channel corners, confluence 

between secondary flow cells and wakes. Further visualisation of the results helped to establish 

optimum size and spacing, as the most desirable traits for improving fish navigability. The findings 

underscore size and contiguity of LVZs as the most desirable traits for upstream fish passage, 

particularly for weak swimmers. The observations demonstrate the potential of future use of CFD 

numerical methods alongside physical studies for optimisation of box culvert barrel designs suitable 

for upstream fish passage. 
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APPENDIX A. PRELIMINARY INVESTIGATIONS 

A.1 PRESENTATION 

Prior to the present work, a preliminary investigation was performed to test the feasibility of LES 

applied to the full 12 m long channel. The flow conditions corresponded to Scenario SC1 detailed in 

Section 5.2. The computational domain was represented by a cuboid measuring 12 × 0.15 × 0.5 m 

(length × height × width), and a row of isosceles triangular baffles were inserted into the bottom left 

corner of the channel as shown in Figure 0.1 (not to scale). Compared to a typical wall-bounded 

open channel flow, the baffles create separation zones for which additional meshing requirements 

are essential. Ideally, a pure hexahedral mesh is desirable so as to minimise the potential numerical 

diffusion due to the presence of a free-surface. However, this might be difficult due to the rapid 

changes in geometry surrounding the corner baffles. As ANSYS Meshing experienced difficulties 

maintaining a structured hexahedral mesh around the baffles, the final mesh consisted of two 

adjoining blocks of tetrahedral and hexahedral elements sharing the same nodes on their interface. 

The meshing procedure produced a relatively fine tetrahedral mesh around the baffles and a uniform 

but coarser hexahedral grid in the adjacent block, with a total cell count of 622,111. Note that the 

mesh did not satisfy the resolution requirements of WMLES S-Omega and hence was only used for 

preliminary purposes. 

 

 

Figure 0.1 – Long channel setup for preliminary study. 
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A.2 FREE SURFACE TRACKING 

The free-surface flow problem consists of a flowing secondary phase (i.e. water) with a primary 

phase (i.e. air) above it. The two fluids are immiscible and the interfacial length is significantly 

greater than the computational grid size. The Volume of Fluid (VOF) method originally described 

by Hirt and Nichols (1981) was adopted in light of these considerations.  

The FLUENT implementation of VOF adopts a one-fluid model by solving the governing 

continuity and momentum equations for the mixture, which results in a velocity field shared by both 

phases. The mixture density, viscosity, and velocity are calculated as sums of the component phases 

weighted by their respective volume fractions (αq), the local values of which are also used to assign 

the appropriate fluid properties to each control volume in the domain.  An interface exists for 0 < αq 

< 1, which is tracked by solving the volume fraction equation corresponding to one or more 

secondary phases: 
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where ρq is the density of phase q, u


 is the mixture velocity, Sq is a source term, and pqm  is the 

mass flux from phase p to q. The interface shape is assumed to be piecewise linear and can be 

modelled by computing a set of surface normals i pin 


 such that the volume fraction of phase q 

in each cell i bounded by the interface is αqi. 

 

A.3 NUMERICAL RESULTS 

The triangular baffles lining the left sidewall create a simulation challenge as the rapid geometry 

variations at the baffle edges induce flow separation and transient behaviours. True stationary 

behaviours are difficult to achieve due to the close interactions between adjacent baffles. Herein the 

simulation was run for approximately two flow resident times (approximately 50 s) prior to data 

sampling to reduce the effects of flow instationarity. The data presented in the following paragraphs 

were sampled over 22 s, equalling to approximately one flow resident time. 

The simulated time-averaged free-surface profiles at different transverse locations are presented in 

Figure 0.2. The physical data acquired by Cabonce et al. (2017) are provided for comparison (y = 

0.25 m). The comparison reveals a systematic overestimation by the numerical model of the order 

of 10%, which could be due to the low vertical grid resolution (Δz = 0.01 m). Both models predict a 

decrease in free-surface elevation along the channel, resembling an H2 backwater profile (Chow, 

1959). A small increase in water level is however observed in the experimental data which was 

likely caused by the upstream disturbance associated with the presence of the downstream screen. 

The numerical results show increasing levels of free-surface undulations towards the left sidewall (y 
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= 0.5 m), in phase with the baffles. Cabonce et al. (2017) also observed localised dips and rises in 

water level in response to the baffle arrangement, though this is not evident in their data possibly 

due to measurement difficulties.  

Figure 0.3 illustrates the near-wall velocity and pressure fields between two successive baffles. The 

x-coordinates are centred at the first baffle location (xb = 8.12 m) and both the x- and z-axes are 

normalised by the baffle height (hb = 0.067 m). The data reveal a stagnation zone and a recirculation 

zone respectively upstream and downstream of each baffle, resulting in deviations from a 

hydrostatic pressure distribution. Visual inspections indicate that the recirculation zone behind each 

baffle has a length of approximately 3hb, consistent with the observations of Cabonce et al. (2017). 

A concentration of large velocities is identifiable directly above and behind each baffle, caused by 

vortex shedding from the baffle edge. The similarity of velocity and pressure contours between two 

successive baffles ((x-xb)/hb = 0 and 10) suggest that the presence of the upstream baffle does not 

substantially alter the flow field around the downstream baffle. 
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Figure 0.2 – Simulated free-surface profiles at different transverse locations – comparison with 

Cabonce et al. (2017) (y = 0.25 m). 
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(A) Velocity contours 

 

(B) Pressure contours 

Figure 0.3 – Near-wall velocity and pressure contours (xb = 8.12 m, y = 0.499 m). 

 

Typical vertical distributions of time-averaged streamwise velocity U and fluctuations urms behind a 

baffle (xb = 8.12 m) are presented in Figure 0.4. The flow appears fully developed and the velocity 

profiles display large variations across the channel width due to the baffle influence, which quickly 

attenuates away from the baffle. A large zone of flow reversal is evident near wall (y/W = 0.96), 

extending up to approximately 40% of the flow depth with peak negative velocities in excess of -0.1 

m/s. The reduction in velocity behind the baffle results in noticeably greater velocities towards the 

smooth side of the channel. The velocity fluctuations are strongest next to the wall (y/W = 0.96), 

which remain significant throughout the water depth with a peak at approximately the baffle height. 

The magnitude of the velocity fluctuations quickly reduces away from the baffle, by up to an order 

of magnitude (~0.01 m/s) reaching the smooth sidewall. The results are in response of some 

complex flow patterns generated by the baffles that create a significant degree of asymmetry in the 
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flow field. This is more evident in Figure 0.5, which illustrates time-averaged streamwise velocity 

contours at several longitudinal locations behind a baffle (xb = 8.12 m). Some jaggedness may be 

seen at the interface between the tetrahedral and hexahedral meshes (x = 0.35 m) due to 

interpolation errors. The data reveal a significant reduction in mean velocity behind the baffle, and a 

corresponding flow concentration towards the smooth side of the channel. Negative velocities due 

to flow reversal are still observable at (x-xb)/hb = 2.4, but completely disappear by (x-xb)/hb = 5.0. 

The velocity contours display significant dips in the central part of the channel, which were not 

reflected in the experimental data of Cabonce et al. (2017). It remains unclear whether this reflects 

true physical behaviour or has been a result of modelling limitations (e.g. meshing).  

Cabonce et al. (2017) alluded to secondary motions and transverse momentum exchange as being 

responsible for the dips in the streamwise velocity contours. The baffles are largely liable for the 

generation of these secondary circulations, which are illustrated in Figure 0.6. The data indicate the 

presences of very complex secondary flow structures that evolve as the flow propagates between the 

baffles, which have noticeable effects on the redistribution of momentum between slow and fast 

flowing regions (Hinze, 1967; Schlichting, 1979; Montes, 1998). Figure 0.7 shows the distributions 

of the cross-sectional maximum velocity Umax/Umean and their corresponding locations as functions 

of the transverse distance from the smooth wall (y/W = 0). The data suggest that the presence of 

baffles results in a flow concentration in the central part of the channel, producing maximum 

velocities significantly greater than the bulk velocity spanning most of the channel width 

(Umax/Umean ≈ 1.5 for 0.2 < y/W < 0.8). The ratio Umax/Umean exhibits sharp decreases next to the 

walls (y/W = 0 and 0.5), with an accelerated rate of decay towards the baffled side of the channel 

(y/W = 0.5). Whilst the results appear qualitatively consistent with the data of Cabonce et al. (2017), 

the numerical results significantly overestimate Umax/Umean for 0.5 < y/W < 0.9 which might be due 

to the relatively coarse mesh resolution adopted for the preliminary simulation. A review of the data 

indicate that Umax occurs slightly below the surface, typically between z/d = 0.7 and 0.9. These 

values are close to the smooth chute observations by Cabonce et al. (2017) but exceed their baffle 

results by a considerable margin. The discrepancy between numerical and experimental data 

highlights some limitations in the present study.  

The effect of a baffle on the distribution of wall shear stress in the surrounding region is illustrated 

in Figure 0.8. Large concentrations of wall stress are observable immediately above and beside the 

baffle caused by flow contraction. The flow reversal also appears to be responsible for a zone of 

relatively large wall stress a short distance behind the baffle. The range of wall stress magnitudes 

appears to be consistent with measurements by Cabonce et al. (2017), performed with a Prandtl-

Pitot tube. Their results however did not reveal the stress concentrations due to flow contraction, 

possibly due to the instrument not performing well in regions characterised by large streamline 
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curvature or transient behaviours (e.g. around and behind a baffle). 
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Figure 0.4 – Vertical distributions of mean and RMS velocity distributions behind a baffle (xb = 

8.12 m). 

 

  

(A) (x-xb)/hb = 0.5     (B) (x-xb)/hb = 2.4 
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(C) (x-xb)/hb = 5.0     (D) (x-xb)/hb = 7.6 

Figure 0.5 – Velocity contours behind a baffle (xb = 8.12 m). 

 

Figure 0.6 – Secondary flow patterns behind a baffle (xb = 8.12 m). 
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(C) (x – xb)/hb = 2.4, Umax/Umean  (D) (x – xb)/hb = 2.4 m, zUmax/d 
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(E) (x – xb)/hb = 5.0, Umax/Umean  (F) (x – xb)/hb = 5.0, zUmax/d 

y/W

U
m

ax
/U

m
ea

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

numerical (LES)
Cabonce et al. (2017)

 y/W

z U
m

ax
/d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05
numerical (LES)
Cabonce et al. (2017)

 

(G) (x – xb)/hb = 7.6, Umax/Umean  (H) (x – xb)/hb  = 7.6, zUmax/d 

Figure 0.7 – Distributions of maximum cross-sectional velocities and corresponding locations – xb = 

8.12 m, hb = 0.067 m. 
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Figure 0.8 – Wall shear stress contours around a baffle (xb = 8.12 m). 

 

Discussion: low-velocity zones (LVZs) 

In a baffled barrel, the rapid changes in wall geometry induce significant secondary flow motions 

which are responsible for intense momentum redistributions within the cross-section. The resulting 

flow field consists of various zones characterised by higher or lower velocities than the bulk 

velocity Umean. Table 0.1 and Figure 0.9 summarise present observations of velocity reduction at 

several streamwise locations behind a baffle (xb = 8.12 m). Such locations are believed to be 

conducive to fish passage as reported by Lupandin (2005) and Cotel et al. (2006). The data suggest 

that the baffles were capable of rendering approximately 40% of the entire flow area under the bulk 

velocity Umean, which should create favourable swimming conditions for small-bodied fish species. 

Similarly, a moderate reduction in velocity was registered over approximately 20% of the flow area, 

with velocities below 0.75Umean. Great velocity reductions below 0.5Umean were recorded for 

approximately 20% of the flow area immediately behind the baffle, which decreased to below 5% 

beyond midway between two successive baffles. It appears that the zones with the least and most 
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significant velocity reductions (i.e. U < Umean and U < 0.5Umean) respectively increased and 

decreased in size with increasing distance downstream of the leading baffle, while the flow area 

where U < 0.75Umean remained approximately constant in size. The present data are compared with 

those reported by Cabonce et al. (2017) and the agreement is reasonable. A scrutiny of Figure  

shows that the numerical model tends to over-predict and under-predict the sizes of the flow regions 

where U < Umean and U < 0.5Umean respectively with increasing distance downstream of the baffle. 

Importantly, both the experimental and numerical results highlight a considerable increase in the 

sizes of extremely-low velocity areas relative to a smooth chute (i.e. 5-10% of flow area with U < 

0.5Umean) but did not show substantial performance increase above a chute with a rough bottom and 

a rough sidewall (i.e. 17% of flow area with U < 0.5Umean). 

 

Table 0.1 – Observations of low velocity regions behind a baffle 

 

Numerical*1 (% area with U > than) Experimental*2 (% area with U > than) (x-xb)/hb Umax 

(m/s) Umean 0.75Umean 0.5Umean Umean 0.75 Umean 0.5 Umean 
0.5 0.67 37.5 24.1 19.5 39.6 17.3 14.9 
2.4 0.67 42.6 20.8 10.4 30.5 20.6 14.3 
5.0 0.67 48.7 17.5 3.1 43.7 18.3 12.1 
7.6 0.67 46.7 19.8 4.9 30.7 19.3 10.3 

 

Notes: *1 – xb = 8.12 m, hb = 0.67 m; 
 *2 – Experimental results of Cabonce et al. (2017). 
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Figure 0.9 – Observations of low velocity zones downstream of a baffle (xb = 8.12 m). 
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APPENDIX B. BOX CULVERT WITH SMALL TRIANGULAR 
BAFFLES: NUMERICAL RESULTS 

B.1 PROBLEM SETUP 

LES simulations were performed for a horizontal rectangular channel equipped with small 

triangular baffles in the bottom left corner. The boundary and flow conditions are summarised in 

Table B.1, where Q is the volumetric flow rate, hb is the side length of the isosceles triangular 

baffle, and Lb is the streamwise interval between two adjacent baffles. Scenarios SC1 to SC3, 

Cabonce et al. (2017) performed detailed experiments in a 12 m long physical channel. Their results 

are used to validate the respective numerical models. Scenario SC4 was derived from SC3 by 

adding a 13 mm hole through the centroid of the baffle, to ventilate the recirculation zone (Cabonce 

et al., 2018). 

 

Table B.2 – Summary of flow conditions and mesh configurations for investigated scenarios 

 

Scenario Q 
(l/s) 

hb 
(m) 

Lb 
(m) 

d (m) Remark No. Cells Min. Cell 
Vol. (mm3) 

Max. Cell 
Vol. 

(mm3) 

Max. 
Aspect 
Ratio 

SC1 26.1 0.067 0.67 0.100 - 549,917 5.82 × 10-2 3.83 × 102 66 
SC2 55.6 0.067 0.67 0.165 - 277,509 1.66 × 10-1 1.06 × 103 33 
SC3 55.6 0.133 0.67 0.173 - 567,517 4.81 × 10-2 4.78 × 102 112 
SC4 55.6 0.133 0.67 0.173 with 13 

mm hole*1 
704,826 5.68 × 10-2 3.85 × 102 21 

 

Note: *1 – the hole on each baffle is centered at 40 mm from its edges 

 

The simulations were performed on a custom-built Dell Precision T5810 workstation configured 

with an Intel® Xeon® E5-1680 v4 CPU and 128 GB RAM. The time discretisation was bounded 

second order implicit. The pressure-velocity coupling was solved using the SIMPLE solver. The 

spatial discretisation of the momentum equations is handled by a modified central differencing 

scheme based on the normalised variable diagram (NVD) approach (Leonard, 1991) to achieve 

second-order accuracy. This is a composite scheme that consists of a pure central differencing, a 

blend of the central differencing and the second-order upwind scheme, and the first-order upwind 

scheme (ANSYS). The hybrid formulation retains the low numerical diffusion and reduces the 

instability due to central differencing, and falls back onto the first-order scheme if unbounded 

solutions are produced.  

Cuboid domains with a footprint of 0.67 m × 0.5 m were selected for the simulations. The vertical 

extent of each domain was determined from the free surface data of Cabonce et al. (2017). They 
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observed experimentally that the free surface remained largely flat between two successive baffles 

in the fully developed region, albeit a localised dip immediately downstream of each baffle 

noticeable only for a large relative baffle hb/d, where d is water depth. Since effects due to free 

surface perturbations were expected to be small, representing a flat free surface by a symmetry 

condition permitted a substantial increase in computational speed with minimum impact on 

reproduction of the bulk flow features. The longitudinal extent of the domain (0.67 m) was set to 

equal one baffle spacing (Lb), and preliminary simulations found that the fully developed flow field 

was very close to periodic (Appendix A). A single isosceles triangular baffle was placed midway 

between the periodic inlet and its shadow outlet. The side and bottom walls as well as the baffle 

surfaces were set up as no-slip walls. The symmetry condition on the top face imposes a zero 

normal gradient for all fluid variables.  

Each numerical domain was discretised into an unstructured hexahedral mesh. The resulting mesh 

configurations are summarised in Table B.1. The resolution requirements of WMLES were used as 

a guide to specify the element sizes on the bounding edges non-contacting with the baffle, with the 

domain height assumed as δ. The sides of the baffle are discretised into 2 – 3 mm segments, and no 

constraint was specified for the contacting edge with the baffle. Herein relatively coarse meshes 

were selected with the goal to keep the computation time manageable while preserving the most 

relevant flow features. The inability to specify the first layer of wall cells in the proximity of y+ = 1 

would result in under-characterisation of the boundary layers originating from the no-slip walls. The 

discrepancy was deemed to be acceptable as the separation created by each baffle was expected to 

have a dominating effect on the flow redistribution. 

Each numerical simulation started with an initial assumption of uniform velocity field and iterated 

until the correct pressure gradient was achieved such that the mass flow rate was consistent with 

that specified. After the settlement of the initial numerical instability, the solution was run for 

approximately 10 s before time-averaged statistics were sampled for a further 10 s at an interval of 

0.001 s. For each time step, the solution was deemed to have converged once the normalised 

residuals for continuity and momentum equations decreased below 10-3. It is expected that the 

numerical behaviour becomes reasonably stationary after several flow resident times (~ 1 s). Note 

that the comparability between numerical and experimental results may be limited by the relatively 

short sampling window of 10 s chosen to keep computational time manageable. For comparison, the 

physical data were sampled for 90 s at each sampling location. 
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B.2 RESULTS 

B2.1 Scenario 1 (SC1) 

 

  

(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.235 

  

(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.1 – Velocity contours behind baffle – Flow conditions: Q = 26.1 l/s, hb = 0.067 m, Lb = 

0.67 m, d = 0.1 m. 

 



78 

U (m/s)

z 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.02

0.04

0.06

0.08

0.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.02

0.04

0.06

0.08

0.1 y = 0.48 m (*1)
y = 0.46 m (*1)
y = 0.42 m (*1)
y = 0.335 m (*1)
y = 0.25 m (*1)
y = 0.165 m (*1)
y = 0.08 (*1)

y = 0.48 m (*2)
y = 0.46 m (*2)
y = 0.42 m (*2)
y = 0.335 m (*2)
y = 0.25 m (*2)
y = 0.165 m (*2)
y = 0.08 m (*2)

 

(a) (x-xb)/Lb = 0.05 

U (m/s)

z 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.02

0.04

0.06

0.08

0.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.02

0.04

0.06

0.08

0.1 y = 0.48 m (*1)
y = 0.46 m (*1)
y = 0.42 m (*1)
y = 0.335 m (*1)
y = 0.25 m (*1)
y = 0.165 m (*1)
y = 0.08 (*1)

y = 0.48 m (*2)
y = 0.46 m (*2)
y = 0.42 m (*2)
y = 0.335 m (*2)
y = 0.25 m (*2)
y = 0.165 m (*2)
y = 0.08 m (*2)

 

(b) (x-xb)/Lb = 0.235 

U (m/s)

z 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.02

0.04

0.06

0.08

0.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.02

0.04

0.06

0.08

0.1 y = 0.48 m (*1)
y = 0.46 m (*1)
y = 0.42 m (*1)
y = 0.335 m (*1)
y = 0.25 m (*1)
y = 0.165 m (*1)
y = 0.08 (*1)

y = 0.48 m (*2)
y = 0.46 m (*2)
y = 0.42 m (*2)
y = 0.335 m (*2)
y = 0.25 m (*2)
y = 0.165 m (*2)
y = 0.08 m (*2)

 

(c) (x-xb)/Lb = 0.5 
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(d) (x-xb)/Lb = 0.765 

Figure B.2 – Velocity profiles at different transverse locations across channel in a culvert barrel 

channel equipped with small triangular corner baffles – Flow conditions: Q = 26.1 l/s, hb = 0.067 m, 

Lb = 0.67 m, d = 0.1 m – Notes: *1 – Experimental data by Cabonce et al. (2017); *2 – Large Eddy 

Simulation (present study). 
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(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.235 

Figure B.3 – Transverse distributions of streamwise velocity maxima – Flow conditions: Q = 26.1 

l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.1 m. 
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(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.4 – Transverse distributions of elevations of streamwise velocity maxima – Flow 

conditions: Q = 26.1 l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.1 m. 

 

B.2.2 Scenario 2 (SC2) 

 

  

(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.235 
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(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.5 – Velocity contours behind baffle – Flow conditions: Q = 55.6 l/s, hb = 0.067 m, Lb = 

0.67 m, d = 0.165 m. 
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(b) (x-xb)/Lb = 0.235 
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(d) (x-xb)/Lb = 0.765 

Figure B.6 – Velocity profiles at different transverse locations across channel equipped with small 

triangular corner baffles – Flow conditions: Q = 55.6 l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.165 m – 

Notes: *1 – Experimental data by Cabonce et al. (2017); *2 – Large Eddy Simulation (present 

study). 
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(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.7 – Transverse distributions of streamwise velocity maxima – Flow conditions: Q = 55.6 

l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.165 m. 
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(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.8 – Transverse distributions of elevations of streamwise velocity maxima – Flow 

conditions: Q = 55.6 l/s, hb = 0.067 m, Lb = 0.67 m, d = 0.165 m. 
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B.2.3 Scenario 3 (SC3) 

 

  

(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.235 

  

(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.9 – Velocity contours behind baffle – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 

0.67 m, d = 0.165 m 
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(c) (x-xb)/Lb = 0.5 
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(d) (x-xb)/Lb = 0.765 

Figure B.10 – Velocity profiles at different transverse locations across channel equipped with small 

triangular corner baffles – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m – 

Notes: *1 – Experimental data by Cabonce et al. (2017); *2 – Large Eddy Simulation (present 

study). 
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(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.11 – Transverse distributions of streamwise velocity maxima – Flow conditions: Q = 55.6 

l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m. 
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(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.12 – Transverse distributions of elevations of streamwise velocity maxima – Flow 

conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m. 

 

B.2.4 Scenario 4 (SC4) 

 

 

Figure B.13 – Specification of baffle with hole. 
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(a) (W – y)/W = 0.01 (wall) 

 

(b) (W – y)/W = 0.08 (hole) 

Figure B.14 – Longitudinal velocity contours at various distances from the baffled wall – Flow 

conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m,  = 13 mm	hole. 

 

 

(a) (W – y)/W = 0.01 (wall) 
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(b) (W – y)/W = 0.08 (wall) 

Figure B.15 – Contours of streamwise velocity fluctuations at various distances from the baffled 

wall – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m,  = 13 mm	hole. 

  

(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.235 

  

(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.16 – Velocity contours behind baffle – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 
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0.67 m, d = 0.173 m,  = 13 mm	hole. 

 

  

(a) (x-xb)/Lb = 0.05     (b) (x-xb)/Lb = 0.235 

  

(c) (x-xb)/Lb = 0.5     (d) (x-xb)/Lb = 0.765 

Figure B.17 – Velocity contours of streamwise velocity fluctuations behind baffle – Flow 

conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m,  = 13 mm	hole. 
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(a) Distributions of Umax    (b) Distributions of zUmax 

Figure B.18 – Transverse distributions of maximum streamwise velocities Umax and corresponding 

locations zUmax – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 0.173 m,  = 13 mm	

hole. 
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(a) Distributions of urms,max    (b) Distributions of zurms,max 

Figure B.19 – Transverse distributions of maximum streamwise velocity fluctuations urms,max and 

corresponding locations zurms,max – Flow conditions: Q = 55.6 l/s, hb = 0.133 m, Lb = 0.67 m, d = 

0.173 m,  = 13 mm	hole. 
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APPENDIX C. ON LOW VELOCITY ZONES PRODUCED BY 
DIFFERENT CULVERT CONFIGURATION SYSTEMS 

C.1 PRESENTATION 

Research showed that low velocity zones (LVZs) are favoured swimming zones for fish (Lupandin, 

2005; Cotel, 2006), and small-bodied fish like to keep next to the wall and in the flume corner while 

swimming (Wang et al., 2016b; Cabonce et al., 2017; Wang and Chanson, 2017). Whilst fish 

swimming behaviours are relatively easy to observe, a good assessment of low velocity zones 

generally requires complete characterisations of the cross-sections of interest involving careful and 

extensive data acquisition under carefully-controlled flow conditions in laboratory. On the other 

hand, properly validated numerical models conveniently convey such information at an unparalleled 

level of detail compared to traditional methods. This appendix aims to provide a comprehensive 

characterisation of the low velocity zones associated with each roughness configuration using the 

numerical models described in the previous chapters. 

Table C.1 compares the low velocity regions' relative area for culvert barrels with smooth walls, 

with rough bed and rough left sidewall, with small corner baffles and with ventilated baffles. The 

CFD results are compared to experimental observations, presenting the cross-sectional average 

velocity Umean, the cross-sectional maximum water velocity (Umax)M , as well as the percentage of 

flow cross-section area where the time-averaged longitudinal velocity U was less than Umean, 

0.75Umean and 0.5Umean (Table C.1, last three columns). In the smooth boundary channel, both 

physical and numerical results indicate that 5-10% of the flow area experience time-averaged 

velocities less than 0.5Umean. This relative surface area is considerably higher in both rough channel 

and triangular baffle channel, with about 5-25% of the flow area experiencing U < 0.5Umean, 

depending upon the configuration. 

Beyond the total size of low velocity zones (LVZs), it is reasonable to infer that fish navigability 

also depends on the connectivity between LVZs. Namely, a long, contiguous stretch of low velocity 

zone which meets certain velocity criteria is naturally more traversable than multiple, separate 

patches of low-velocity. A single, large slow region is more suitable than multiple slow areas of 

smaller sizes. Consequently, one may wish to improve cross-sectional asymmetry while minimising 

streamwise variations to favour the development of a large contiguous stretch of traversable area 

instead of smaller, equal-sized slow regions on both sides of the channel. 

Figures C.1 to C.5 illustrate how the nature of the low velocity zones depends on the roughness 

type. Areas meeting and failing the specified velocity criteria are highlighted in black and grey, 

respectively. In the smooth barrel (Fig. C.1), two equal-sized small LVZs occupy the sides and 

bottom of the channel, as expected from symmetry. The only traversable regions in this case are the 
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bottom corners of the channel. Passage is impossible for species which require U < 0.5Umean as the 

compliant regions lie extremely close to the physical boundaries of the barrel. 

Figure C.2 shows that the channel with one rough sidewall and rough bed improves the passage 

ability significantly for U < Umean, by inducing a large slow region on the roughened side of the 

channel. In addition to the corner circulations, an additional low velocity zone is identified above 

the channel bed at approximately y = 0.2 where two large secondary flow cells meet. The 

observation suggests that such mechanisms may be utilised to create additional regions of slow 

flow. For the slowest flow areas with U < 0.5Umean, the roughness asymmetry improves navigability 

slightly by favouring the rough side of the channel. 

A review of Figure C.3 indicates that even the smallest corner baffle can be effective at producing a 

slow-velocity region immediately behind the obstruction. Though the baffle provides a seemingly 

obvious option for fish passage, caution must be taken where the strong recirculation may disorient 

the fish before they are able to adjust (Cabonce et al., 2017, 2018). More, the disadvantage of a 

singular obstacle becomes noticeable further downstream. For (x – xb)/Lb = 0.765, the low velocity 

regions appear significantly altered from those upstream. The availability for U < 0.5Umean is nearly 

depleted, which attributes to the inability of the channel configuration to maintain contiguous slow 

regions for certain criteria.   

Figure C.4 shows that the caveats of the previous system may be avoided by upsizing the corner 

baffle. The equivalent reduction in relative spacing limits the streamwise flow variation by 

increasing the mutual sheltering between adjacent elements, whereas the increase in relative 

submergence immediately results in a larger slow area. For a criterion U < 0.5Umean, the baffled 

corner remains traversable for the full distance between adjacent baffles. The disorientating effect in 

the immediate wake of the baffle remains the principal limitation of this configuration, which may 

be reduced by providing ventilation to the recirculation region. An implementation of this strategy 

with a single 13 mm circular opening through the centroid of the baffle is shown in Figure C.5. The 

results are largely similar to those of Figure C.4, suggesting that a more effective ventilation 

strategy would be relevant. 
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Table C.1 - Comparison between CFD and experimental observations of cross-sectional maximum 

velocities and percentage of wetted cross-section with time-averaged velocity range in the fully-

developed flow region of a box culvert channel (x ~ 8 m) 

 

Ref. So W Q hb Lb d Umean X (Umax)M % flow area with U < 
          Umean 0.75Umean 0.5Umean 

  (m) (m3/s) (m) (m) (m) (m/s)  (m/s)    
Present study            

Smooth   0.0556 N/A N/A 0.192 0.686 N/A 0.641 48.5% 8.9% 5.1% 
Rough 
bed and 
sidewall 

0 0.5 0.0556 N/A N/A 0.1743 0.638 N/A 0.855 42.0% 15.7% 5.0% 

Baffles 0 0.5 0.0261 0.067 0.67 0.1 0.606 0.05 0.679 66.8% 20.6% 7.6% 
        0.235 0.679 67.3% 25.2% 7.9% 
        0.5 0.677 68.6% 28.4% 5.1% 
        0.765 0.676 69.1% 31.3% 4.5% 
   0.0556 0.067 0.67 0.165 0.674 0.05 0.828 32.6% 13.6% 4.6% 
        0.235 0.829 33.8% 14.1% 4.1% 
        0.5 0.824 39.0% 11.2% 0.7% 
        0.765 0.822 41.0% 13.3% 0.6% 
   0.0556 0.133 0.67 0.173 0.643 0.05 0.929 32.0% 18.5% 14.0% 
        0.235 0.935 33.1% 19.8% 12.9% 
        0.5 0.898 39.3% 20.5% 11.6% 
        0.765 0.921 43.7% 23.6% 7.7% 

Baffles 0 0.5 0.0556 0.133 0.67 0.173 0.643 0.05 0.880 29.2% 16.6% 13.6% 
with hole        0.235 0.882 30.8% 17.5% 12.6% 

        0.5 0.876 37.8% 20.1% 10.8% 
        0.765 0.870 41.4% 21.3% 7.6% 

Wang et al. (2016a)           
Rough 0 0.4785 0.0261 N/A N/A 0.129 0.423 N/A 0.755 45% 30% 17% 
bed and 
sidewall 

  0.0556 N/A N/A 0.1743 0.667 N/A 0.957    

Cabonce et al. (2017)           
Smooth 0 0.5 0.0261 N/A N/A 0.096 0.544 N/A 0.569 70.8% 36.4% 5.3% 

   0.0556 N/A N/A 0.162 0.686 N/A 0.714 72.7% 25.9% 10.4% 
Baffles 0 0.5 0.0261 0.067 0.67 0.121 0.431 0.048 0.642 39.6% 17.3% 14.9% 

        0.235 0.640 30.5% 20.6% 14.3% 
        0.500 0.602 43.7% 18.3% 12.1% 
        0.765 0.649 30.7% 19.3% 10.3% 
   0.0556 0.067 0.67 0.1625 0.684 0.048 0.767 43.8% 20.9% 13.5% 
        0.235 0.754 59.1% 24.8% 13.8% 
        0.500 0.774 63.0% 22.0% 11.5% 
        0.765 0.741 58.7% 31.5% 9.7% 
   0.0556 0.133 0.67 0.173 0.643 0.048 0.858 51.9% 26.3% 17.5% 
        0.235 0.861 38.8% 22.5% 16.6% 
        0.500 0.817 67.9% 31.5% 26.1% 
        0.765 0.835 54.2% 28.9% 14.4% 
   0.0261 0.133 1.33 0.1035 0.504 0.048 0.786 35.7% 29.9% 22.7% 
        0.235 0.774 44.1% 30.5% 24.0% 
        0.500 0.741 55.0% 35.1% 16.3% 
        0.765 0.744 48.1% 30.7% 16.2% 



98 

 

  

(a) U/Umean < 0.75     (b) U/Umean < 0.5 

Figure C.1 – Low velocity regions in smooth barrel (no baffle)– Flow conditions: Q = 55.6 l/s, ks = 

0.2 mm. 

 

  

(a) U/Umean < 0.75     (b) U/Umean < 0.5 

Figure C.2 – Low velocity regions in barrel with rough bed and rough left sidewall – Flow 

conditions: Q = 55.6 l/s, ks = 0.2 mm (smooth), ks = 20 mm (rough). 
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(a) U/Umean < 0.75, (x – xb)/Lb = 0.05   (b) U/Umean < 0.5, (x – xb)/Lb = 0.05 

  

(c) U/Umean < 0.75, (x – xb)/Lb = 0.765  (d) U/Umean < 0.5, (x – xb)/Lb = 0.765 

Figure C.3 – Low velocity regions in barrel with triangular baffles – Flow conditions: Q = 55.6 l/s, 

hb = 0.067 m, Lb = 0.67 m. 
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(a) U/Umean < 0.75, (x – xb)/Lb = 0.05   (b) U/Umean < 0.5, (x – xb)/Lb = 0.05 

  

(c) U/Umean < 0.75, (x – xb)/Lb = 0.765  (d) U/Umean < 0.5, (x – xb)/Lb = 0.765 

Figure C.4 – Low velocity regions in barrel with triangular baffles – Flow conditions: Q = 55.6 l/s, 

hb = 0.133 m, Lb = 0.67 m. 
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(a) U/Umean < 0.75, (x – xb)/Lb = 0.05   (b) U/Umean < 0.5, (x – xb)/Lb = 0.05 

  

(c) U/Umean < 0.75, (x – xb)/Lb = 0.765  (d) U/Umean < 0.5, (x – xb)/Lb = 0.765 

Figure C.5 – Low velocity regions in barrel with triangular baffles – Flow conditions: Q = 55.6 l/s, 

hb = 0.133 m, Lb = 0.67 m,  = 13 mm	hole. 

 

C.2 DISCUSSION 

The present investigation demonstrated the effects of various roughness configurations on the 

generation of LVZs. Both asymmetrical boundary roughness and small corner baffles are conducive 

to fish passage in distinguishing ways. Asymmetry and streamwise uniformity are identified as 

desirable geometric traits which benefit the generation of large, contiguous traversable zones (Fig. 

C.6). Figure C.6 presents three-dimensional zone plots of low-velocity zones (LVZs) for several 

boundary configurations. Corners, confluence of secondary flow cells and direct obstructions are 

highlighted as factors which help generate additional slow areas. The present observations may 
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serve as guidelines for future optimisations of the geometric design of channels for improved fish 

passage. 

 

              

(a1) U < 0.75Umean    (a2) U < 0.5Umean 

(a) Smooth barrel channel 

 

              

(b1) U < 0.75Umean     (b2) U < 0.5Umean 

(b) Rough bed and rough sidewall channel 
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(c1) U < 0.75Umean – Q = 0.0261 m3/s, hb = 0.067 m, Lb = 0.67 m 

 

(c2) U < 0.5Umean – Q = 0.0261 m3/s, hb = 0.067 m, Lb = 0.67 m 
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(c3) U < 0.75Umean – Q = 0.0556 m3/s, hb = 0.067 m, Lb = 0.67 m 

 

(c4) U < 0.5Umean – Q = 0.0556 m3/s, hb = 0.067 m, Lb = 0.67 m 
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(c5) U < 0.75Umean – Q = 0.0556 m3/s, hb = 0.133 m, Lb = 0.67 m 

 

(c6) U < 0.5Umean – Q = 0.0556 m3/s, hb = 0.133 m, Lb = 0.67 m 
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(c7) U < 0.75Umean – Q = 0.0556 m3/s, hb = 0.133 m, Lb = 0.67 m, Ø 13 mm hole 

 

(c8) U < 0.5Umean – Q = 0.0556 m3/s, hb = 0.133 m, Lb = 0.67 m, Ø 13 mm hole 

(c) Culvert barrel channel with triangular baffle configurations 

Figure C.6 - Three-dimensional flow visualisation of low-velocity zones (LVZs) in box culvert 

channels: CFD modelling results - Flow direction is from bottom right to top left, passage ability 

increases with darker colour shades. 
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