
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace
Accepted Manuscript

Formal Analysis of a Calculus for WSNs from Quality Perspective

Xi Wu, Huibiao Zhu

PII: S0167-6423(17)30166-1
DOI: http://dx.doi.org/10.1016/j.scico.2017.08.007
Reference: SCICO 2130

To appear in: Science of Computer Programming

Received date: 30 April 2016
Revised date: 16 August 2017
Accepted date: 16 August 2017

Please cite this article in press as: X. Wu, H. Zhu, Formal Analysis of a Calculus for WSNs from Quality Perspective, Sci. Comput.
Program. (2017), http://dx.doi.org/10.1016/j.scico.2017.08.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://core.ac.uk/display/156882594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.scico.2017.08.007

Highlights

• We extend our previous CWQ calculus to be a parametric framework, making it more flexible for modeling and reasoning about
wireless networks with different topological structures.

• We develop a SAT-based robustness analysis for supporting the calculus to check whether some error configurations, caused by the
unreliable communications in WSNs, will be reached. We also use the efficient SMT solver Z3 to check the satisfiability of program
interesting points.

• We propose a data-driven probabilistic trust analysis to decouple the probability of receiving data from the probability of data trustwor-
thiness, which makes more flexible probabilistic analysis possible.

• We give a real-world case study with the scenario of refueling a car to illustrate the applicability of the extended calculus and these
two analysis approaches.

Formal Analysis of a Calculus for WSNs from Quality Perspective 1

Xi Wua,b, Huibiao Zhu2a,c

aShanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China
bSchool of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

cCollege of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

Abstract

In viewing the common unreliability problem in wireless communications, the CWQ calculus (a Calculus for
Wireless sensor networks from Quality perspective) was recently proposed for modeling and reasoning about WSNs
(Wireless Sensor Networks) and their applications from a quality perspective. The CWQ calculus ensures that sensor
nodes, even though in an unreliable communication network, can still behave in a reasonable manner using default
values. Nevertheless, the topological structure in CWQ calculus is considered at the network level and it is tightly
coupled with the processes and other configurations; this may limit its flexibility. In this paper, we extend our previous
CWQ calculus to be a parametric framework to make it more flexible to be able to model and reason about networks
of different topological structures. In the parametric framework, we extract the topological structure of a network and
make it to be a configuration so that all topological structure changes can be captured by this framework.

Besides, under the guide of program analysis, in this paper, we propose two analysis approaches for the extended
CWQ calculus: 1) We develop a SAT-based analysis to check whether default values can always be available, so
that some error configurations (e.g., deadlock processes), caused by unreliable communications in WSNs, will not
be reached; 2) We also propose a data-driven probabilistic trust analysis to decouple the probability of receiving the
expected input data from the probability of the trustworthiness of the data, so that the overall trustworthiness of the
system decision is determined by performing a relational analysis to combine these two probability distributions.
Finally, we give a real-world case study with the scenario of refueling a car to demonstrate the applicability of the
extended calculus and these two analysis approaches on the extended calculus for WSNs.

Keywords: Process Calculus, Formal Analysis, WSNs, Unreliability, Probabilistic Trustworthiness

1. Introduction

WSNs (Wireless Sensor Networks), one of the key components of CPS (Cyber Physical Systems) [20], have drawn
more and more attention recently from both academia and industry. Significant examples range from distributed
computing to high trustworthy medical systems, traffic control and traffic security management systems, emergency
rescue missions and to disaster recovery. One important feature of wireless systems is broadcast, and many process
algebras have been proposed to study it at the modeling level. For example, broadcasting systems are specified by
calculi [8, 33, 34], in which broadcast messages can reach every node in the network. However, this may not be well
suit for wireless local broadcast in which only limited nodes that are in the transmission area of the sender can receive
the messages broadcasted by the sender. Therefore, research efforts are made to define a formal process calculus
for modeling and reasoning about the wireless local broadcast. In these models, different manners are defined to
handle the neighborhood relationship (e.g., define it either as a part of the syntax [21] or as a part of the semantics
[9, 19, 24, 26]). Nevertheless, none of the above models takes the service quality offered by the system into account.

In reality, communications in WSNs are often unreliable, which may be caused by deployment constraints and/or
communication modalities; this may result in abnormalities and thus decrease the quality of service provided by the
system. Therefore, it is of significant importance to ensure that wireless sensor nodes can still behave in a reasonable

1A short version of this paper appeared in FTSCS 2015: 4th International Workshop on Formal Techniques for Safety-Critical Systems [42].
2Corresponding author. Email address: hbzhu@sei.ecnu.edu.cn

Preprint submitted to Science of Computer Programming August 24, 2017

manner even though they are in an unreliable communication network (e.g., by using approximate values to continue
their work when the ideal behavior of a node fails). As a first step in this very important direction, Nielson et al.
proposed a Quality Calculus [32]. It enforces robustness consideration on software components executed in an open
and error prone environment, and specifies the behavior when communication links break down. Later, Vigo et al.
[37] extended the Quality Calculus by considering broadcast communication. However, Vigo’s work focuses on the
process level and they want to consider “enriching the framework with a notion of network topology and spatially-
bounded broadcast” in their future work.

The CWQ Calculus. To be taken one step further, the CWQ calculus [41] was recently proposed for modeling and
reasoning about WSNs and applications based on WSNs. The CWQ calculus combines the wireless local broadcast
together with quality predicate that is inherited from Nielson’s Quality Calculus, so that it can not only capture the
feature of WSNs, but also consider the communication quality of WSNs at the same time. Specifically, the topological
structure is considered at the network level and different node behaviours are represented by processes. Broadcast
actions and unicast actions are distinguished via different kinds of channels, and a distance function is given to check
whether one node is inside the transmission area of another one or not. Moreover, default values (of the same type as
the expected ones) are given to deal with the situations that the ideal behavior of a sensor node fails due to unreliable
communications. Nevertheless, in the CWQ calculus, the topological structure is considered at the network level and
it is tightly coupled with the processes and other configurations, which may limit its flexibility.

Besides, the CWQ calculus includes an input guard, binder, to specify the input to be performed before continuing.
It makes the CWQ calculus have the flexibility that not all input data in a binder need to be received in order for the
process to continue (e.g., when the quality predicate of a binder is ∃, details can be found in Section 2). System
decision may have different levels of trustworthiness depending on which input data have actually been received.
That is, different input data has different levels of trustworthiness (i.e., the trust of a data, which can be regarded as
the utility of the data in the decision of the entire system, details can be found in Section 6). Specifically, the decision
about a system of WSNs is expected to be made based on the data with the highest level of trustworthiness among
data received from all network nodes in WSNs, and the system decision may have the highest level of trustworthiness
if data from all its constituent network nodes are received and considered. In other words, from the perspective of a
single network node, its locally stored data may not be sufficient for making the best decision about a system. In the
literature, Nielson et al. [31] developed a novel probabilistic trust analysis for supporting the Quality Calculus [32] to
indicate the trust that a user can have in the overall robustness of a system. However, it is not applicable to the CWQ
calculus for WSNs because of the above characteristic of CWQ and WSNs.

Contributions. In this paper, to make the CWQ calculus more flexible for modeling and reasoning about networks
of different topological structures, we extend it by modifying and simplifying it to be a parametric framework. In the
parametric framework, we use an undirected graph to describe the topology of the entire network as a configuration,
such that all topological structure changes can be easily captured by this framework. Instead of distinguishing between
broadcast channels and unicast channels, we use two partial functions to illustrate the different transmission areas of
different nodes when using different channels.

Furthermore, two formal analysis approaches are proposed. 1) We develop a SAT-based analysis to support the
extended calculus by detecting whether some error configurations, caused by the unreliable communications in WSNs,
can be reached or not. In our approach, all the interesting program points are characterized and represented by
propositional formulae. To perform the analysis, we use an existing efficient SAT [22] and SMT [6] solver, Z3 [5],
to check whether the formulae are satisfied or not; that is, the program points cannot be reached if and only if the
corresponding formulae are not satisfied. 2) We also propose a data-driven probabilistic trust analysis for the CWQ
Calculus. Instead of only giving the channel a trust value to illustrate the probability of receiving the expected data,
we assume that the data received from the channel also have a trust value, where the trust value of a data represents the
trust of the system decision made solely based on that data. Thus, we decouple the probability of receiving expected
input data from the probability of trustworthiness levels of the receiving data. The overall trustworthiness of the system
decision is determined by performing a relational analysis to combine these two probability distributions. Finally, to
illustrate the applicability of the extended calculus and these two analysis approaches, we present a real-world case
study with the scenario of refueling a car.

This paper combines and extends our previous work at TASE 2015 [40] and FTSCS 2015 [42]. In order to make
the CWQ calculus more flexible for modeling and reasoning about WSNs, a parametric framework is proposed in the
previous work [40] and a SAT-based analysis as an enforcement mechanism is developed to check whether default

2

values in CWQ calculus can always be available, in case that the expected data is lost, to provide meaningful behaviors.
However, even though a better quality of service may be obtained when making decisions on default or old data, rather
than simply stopping in an error state, default data is not as useful as the expected data (i.e., the trustworthiness level
of default data is not as high as the one of expected data), which may affect the trustworthiness of the final decision
of WSNs. The work [42] focuses on a data-driven probabilistic trust analysis, which decouples the probability of
receiving expected input data from the probability of the trustworthiness level of the receiving data. Through this
approach, it is possible to observe the effect of the data trustworthiness produced on the system decision. Thus, we
put these two approaches together in this paper to make a general and useful analysis framework for CWQ calculus
and WSNs. The framework does not only capture the feature of the network, but also take the communication quality
into consideration. More intuitive and detailed explanations about these two analysis approaches are added and a more
comprehensive related work is given from four perspectives in this paper. We believe that this analysis framework can
give a better guide for the design of WSNs and the implementation of their applications.

Organization. The paper is organized as follows. In the next section we present the parametric CWQ calculus
from the process level and network level by introducing an undirected topology graph as configurations. The corre-
sponding parametric Labeled Transition Semantics (LTS) is given in Section 3. In Section 4 we illustrate a motivating
example with the scenario about refueling a car by modeling it using our calculus. A SAT-based analysis of the calcu-
lus is given in Section 5, in which the analysis of the motivating example is also presented. In Section 6, a data-driven
probabilistic trust analysis is proposed and the need for this analysis approach is illustrated through the motivating
example. Finally, Section 7 discusses related work, and Section 8 refers to the conclusion of this paper and presents
future directions of our research.

Table 1: The Syntax of Parametric CWQ Calculus

Processes:

P ::= 0 | Act.P | A(x̃) | case e of some(y) : P1 else P2

Act ::= b | c!d b ::= c?x | &q(b1, ..., bn)

d ::= c | v | y e ::= x | some(d) | none

Networks:

Network N has the form: n1[P1] || n2[P2] || ... || nk[Pk]

2. Syntax of the Parametric CWQ Calculus

In this section, we extend the CWQ calculus by modifying and simplifying it. We propose a two-level syntax for
interpreting processes and networks of the extended calculus. We follow the standard definition of process calculi for
the process part, but omit name restriction for simplicity.3 We employ P, Q to range over the set of all processes, and
N the set of all nodes. We also use the set In to denote the node identities (e.g., names together with IP addresses and
port numbers), where n1, n2, ... range over In.

The syntax of our calculus is illustrated by the Backus-Naur form in Table 1. 0 stands for the terminated process.
c!v denotes an output of a value v, while the corresponding reception of an output is represented by c?x which receives
a value via channel c and binds it to the variable x. A(x̃) denotes a process with the (possibly recursive) definition of

A(x̃)
d f
= P, where A is a process constant and x̃ contains all free variables that appear in P.

3Name restriction can be considered as a future extension to our calculus. So we in this paper do not have any process like (νx)P which denotes
a process with the bounded name x.

3

One interesting and important thing in the calculus is the binder b, which is used to specify that the process will
continue after the quality predicate being satisfied. The binder is first proposed in the Quality Calculus [32] with the
form of &q(b1, ..., bn), where n is the total number of inputs and q is a quality predicate to be satisfied, indicating
to continue the process which sufficient inputs have to be received. Here, q ∈ {∀,∃,∃!,m/n} and the corresponding
meanings of the four notations are as follows:

• ∀: all inputs are required, e.g., &∀(c1?x1, c2?x2, c3?x3) requires three sufficient inputs and it has the same effect
as &q(c1?x1, c2?x2, c3?x3) if q(r1, r2, r3) amounts to r1 ∧ r2 ∧ r3.

• ∃: at least one of the inputs is required, e.g., &∃(c1?x1, c2?x2, c3?x3) requires one sufficient input to continue
and it has the same effect as &q(c1?x1, c2?x2, c3?x3) if q(r1, r2, r3) amounts to r1 ∨ r2 ∨ r3.

• ∃!: only one input is required, e.g., &∃!(c1?x1, c2?x2, c3?x3) requires just one sufficient input to continue, other-
wise, it stops.

• m/n: m sufficient inputs of all n inputs are required to be accepted, e.g., &2/3(c1?x1, c2?x2, c3?x3) requires at
least two sufficient inputs from the channels.

Moreover, nested binders are also allowed in this paper, such as &∀(&∃(c1?x1, c2?x2), c3?x3), which represents
that input must be received both over the channel c3 and over either the channel c1 or c2. However, it is possible
that some variables in the binder do not get proper values, due to that the corresponding inputs have not occurred.
Therefore, we distinguish between data and optional data. We use term d (including channel constant c, value v and
variable y) to denote data, which actually contains values inside the variables. Note that, because we do not have any
operation to create a new channel in our syntax, we just regard the channel names as part of constants which exist in
advance. Thus, in our syntax, constants can be divided into channel constants c and values v. We use expression e

(including variable x and two special expressions) to stand for optional data, which may not get proper values inside
the variables; in particular, the expression some(d) represents the presence of some data d and none the absence of
data. If the variable x actually receives value v from a channel, it can be evaluated into some(v); otherwise, it will be
evaluated into none. We use ξ to stand for the evaluation function and the evaluation rules for terms and expressions
are shown in Table 2.

Table 2: The Evaluation of Terms and Expressions

ξ(c) = c ξ(v) = v ξ(none) = none

ξ(d) = v

ξ(some(d)) = some(v)

ξ(x) =
{

some(d) if x receives value via channel
none if otherwise

Due to we cannot make sure which variable has actually received values at some time, there comes a construct
case e of some(y) : P1 else P2 in the process part. It is used to check whether an expression e evaluates to some data
or not; that is, if the variable in the expression receives a value, then it can be evaluated into some(d). If it does, then
we bind it to y and continue with P1; otherwise, we continue with P2.

Networks are collections of nodes running in parallel.4 Each node, written as n[P], is assigned a unique identity n

and runs a process P. The topology T of a network is specified by an undirected graph G and a radius constraint Rad,

4Fixed network form is given because of no restriction in process level.

4

Table 3: The Semantics for Processes

(SEND) c!v.P
c!v−−→ P (RECV) c!v � c?x→ [some(v)/x]

(CSE1) case some(v) of some(y) : P else Q → P[v/y]

(CSE2) case none of some(y) : P else Q → Q (REC) A(x̃)
d f
= P

A(ỹ)→ P[ỹ/x̃]

(QSD1)
c!v � b→ b′ b′ ::ff θ

b.P
c?x−−→ b′.P

(QSD2)
c!v � b→ b′ b′ ::tt θ

b.P
c?x−−→ Pθ

(QREC)
c!v � bi → b′i

c!v � &q(b1, ..., bi, ..., bn)→ &q(b1, ..., b
′
i , ..., bn)

(JDG1) [some(v)/x] ::tt [some(v)/x] (JDG2) c?x ::ff [none/x]

(SAT)
b1 ::σ1 θ1..bi ::σi θi..bn ::σn θn

&q(b1, .., bi, .., bn) ::σ θ1...θi...θn
where σ = [{q}](σ1, .., σi, .., σn)

where the graph G consists of a finite set of nodes Node and the set of edges Edge between these nodes, as shown
below.

T = (G,Rad) G = (Node,Edge)

We denote the graph in a given topology T and the set of nodes in a given graph G by G(T) and Node(G), respectively.
Rad describes the transmission radius of a node in G, which does not only depend on the node itself, but also is related
to the current channel the node uses. It is defined as a partial function of:

Rad : Chan ∗ Node ↪→ R+0

Chan is a finite set of channels. We can use this partial function to distinguish between different kinds of channels;
for example, Rad(c1, n1) = 0 means that channel c1 is used for the unicast communication between n1 and local
computers, while Rad(c2, n2) = 3 denotes that channel c2 is used for the communication between n2 and other nodes
that are inside the transmission range of n2 with a radius 3.

Edge : Node ∗ Node ↪→ R+0

Edge is also a partial function which assigns distances to node-pairs (ni, n j) in G, which satisfies symmetry:

∀ni, n j ∈ Node Edge(ni, n j) = Edge(n j, ni),

and the triangle inequality:

∀ni, n j, nk ∈ Node

Edge(ni, n j) > |Edge(ni, nk) − Edge(n j, nk)|
Edge(ni, n j) < |Edge(ni, nk) + Edge(n j, nk)|

3. Labeled Transition Semantics

In our simplified CWQ calculus, as the processes and networks are interpreted separately by a two-level syntax,
the labeled transition system is also divided into two levels: transition for processes and transition for networks. The

5

rules for processes have two forms: P→ P′ and P
λ−→ P′. The former one represents the rules for the internal actions,

while the latter one is used for the communication actions. The syntax of the signal λ in the form P
λ−→ P′ is defined

as follows:
λ ::= c!v | c?x

Here, c!v stands for sending a data v via channel c, while c?x represents the corresponding receiving and then assigning
the value to the variable x. Some auxiliary relations are also used, as shown below:

c!v � b → b
′

and b ::σ θ where σ ∈ {tt,ff}
The former one specifies that the binder b is changed to b′ after receiving an output c!v. The later one is used to
check whether the required inputs in binder b have already been satisfied (::tt) or not (::ff). If all the required inputs are
satisfied, a substitution θ is constructed to replace all the variables with the receiving values, i.e., c?x ::tt [some(v)/x]
and c?x ::ff [none/x]. Here, we give an id to each θ to identify the execution order of these substitutions; thus, the
composition (θ1θ2)(x) is equivalent to θ2(θ1(x)) for all x.

Table 3 contains the labeled transition semantics for processes. Rules (SEND) and (RECV) refer to the primitive
output and input of values respectively. After receiving a value via channel c, a substitution θ is constructed as
[some(v)/x]. Rules (CSE1) and (CSE2) are standard for the case construct case e of some(y) : P else Q, which
evaluate the expression e to a constant with the form some(c) and none, respectively. Rule (QSD1) defines that after
the binder b receiving an output, the required inputs in b still cannot be satisfied, thus more inputs are required, while
the Rule (QSD2) denotes that no more inputs are needed. A more complicated situation is given in the rule (QREC)
and the general idea is to record the binding of the value received in the appropriate position. For these three rules,
they stand for the synchronization with quality binder, that is, the original binder is replaced by a new one recording
the output just performed. Besides, as we mentioned before, the auxiliary relation b ::σ θ is defined to evaluate the
binder b for checking whether or not a sufficient number of inputs has been performed (i.e., recorded in σ) and for
computing the associated substitution θ, which is shown by the rules (JDG1), (JDG2) and (SAT). The semantics of
the example quality predicates are listed below:

• [{∀}](σ1, ..., σn) = (|{i | σi = tt}| = n) = σ1 ∧ ... ∧ σn

• [{∃}](σ1, ..., σn) = (|{i | σi = tt}| ≥ 1) = σ1 ∨ ... ∨ σn

• [{∃!}](σ1, ..., σn) = (|{i | σi = tt}| = 1)

• [{m/n}](σ1, ..., σn) = (|{i | σi = tt}| ≥ m)

|X| denotes the cardinality of the set X. Formally, &∃(x1, . . . , xn) equals to x1 ∨ · · · ∨ xn and &∀(x1, . . . , xn) equals
to x1 ∧ · · · ∧ xn. Here, we also allow to write the quality predicate as &[0∧(1∨2)](x1, x2, x3) which is equivalent to
x1 ∧ (x2 ∨ x3). Rule (REC) is a standard one for recursion. Finally, transitions can take place in contexts C by rule
(CON) and the replacement in C is also allowed which is shown as follows:

(CON)
P
λ−→ P′

C[P]
λ−→ C[P′]

where C ::= [] | C|P | P|C

We now use a parameterized operational semantics to define the formal transitional rules for the networks of our
calculus. Transitions are of the form T � N

α−→ N′, where the action α is defined as:

α ::= c!v c©n | c?x c©n | τ
The parameter T refers to the topology of the entire network at some moment and N refers to the network composed
by the nodes inside the given topology T . For the actions, c!v c©n denotes that a node identified n sends a message v

to its neighbors using channel c; while c?x c©n refers to the corresponding receiving from a node identified n; τ is an
internal action inside a network.

The labeled transition semantics for networks is defined in Table 4. Either one node can perform an internal
action in rule (INT1) or it can keep unchanged in rule (INT2). Rule (BRO) denotes that a node, identified n, can send

6

Table 4: The Semantics for Networks

(INT1)
P → P′

T � n[P]
τ−→ n[P′]

(INT2) T � n[P]
τ−→ n[P] (BRO)

P
c!v−−→ P′

T � n[P]
c!v c©n−−−−−→ n[P′]

(REC1)
P

c?x−−→ P′ ∧ n,m ∈ Node(G(T)) ∧ Rad(c, n) ≥ Edge(n,m)

T � m[P]
c?x c©n−−−−−→ m[P′]

(REC2)
n,m ∈ Node(G(T)) ∧ Rad(c, n) < Edge(n,m)

T � m[P]
c?x c©n−−−−−→ m[P]

(REC3)
n,m ∈ Node(G(T)) ∧ P

c?−−�−−→
T � m[P]

c?x c©n−−−−−→ m[P]

(BSYN)

i, j ∈ {1, ..., k} ∧ k ∈ N ∧ n1, ..., nk ∈ Node(G(T)) ∧ ∀ j � i •
T � ni[Pi]

c!v c©ni−−−−−→ ni[P′i] T � n j[Pj]
c?x c©ni−−−−−→ n j[P′j]

T � n1[P1] || ... || ni[Pi] || ... || nk[Pk]
c!v c©ni−−−−−→ n1[P′1] || ... || ni[P′i] || ... || nk[P′

k
]

(τSYN)
∀i ∈ {1, ..., k} ∧ k ∈ N ∧ n1, ..., nk ∈ Node(G(T)) • T � ni[Pi]

τ−→ ni[P′i]

T � n1[P1] || ... || ni[Pi] || ... || nk[Pk]
τ−→ n1[P′1] || ... || ni[P′i] || ... || nk[P′

k
]

a message v via channel c and the executing process P evolves into P′. Three corresponding receivings are listed in
rules (REC1), (REC2) and (REC3). Taking local broadcast into account, only the nodes that are located inside the
transmission area of the sending node can receive the message according to rule (REC1). The other nodes, which are
outside the transmission area of the sender or cannot execute receiving actions, will remain unchanged, based on rule

(REC2) and (REC3), respectively. Note that the notation P
c?−−�−−→ in rule (REC3) represents that the process P cannot

execute the receive action from channel c currently. Rule (BSYN) specifies the parallel composition of the entire
network when the nodes execute the sending action, as well as the rule (τSYN) describes the parallel composition of
the entire network when the nodes execute the internal action.

Figure 1: The Architecture of the Motivating Example

7

User

BS BBS A

BS E
BS C

BS D

Figure 2: The Local Broadcast Communication in Motivating Example

4. Motivating Example

In this section, we present a case study to demonstrate the applicability of the proposed calculus in real-world
applications. In our case study, we concentrate on the scenario that a car is running out of gas and the driver wants to
find the nearest gas station to refuel the car. The architecture of the motivating example is shown in Figure 1.

The request of finding the closest gas station (GS) is accomplished by broadcasting the request in a wireless
network and then receiving replying messages that contain locations of GSs. The wireless network consists of a set
of base stations (BSs), where the user (e.g., the driver together with the car) can also be regarded as a BS. Each BS
has a transmission area constraint (e.g., illustrated as dotted circles in Figure 2). That is, when a BS broadcasts a
message, only other BSs that are within its transmission area (i.e., within a certain distance) can receive the message.
We assume that each BS stores some information of GSs (i.e., locations of a subset of GSs) so that the location of a
GS is stored in the local cache of the closest BS (or several closest BSs).

To find the closest GS to the location of the user, the user broadcasts a request to BSs in a wireless network and
then waits for replies. Ideally, if every BSs in the wireless network replies its locally stored GSs to the user, then
the user can obtain the closest GS by iterating through all the replied GSs. However, in real wireless networks, a BS
cannot (or may not) send its stored GSs to the user due to several reasons. For example, 1) the BS does not receive the
request since it is not in the transmission area of the user (e.g., BS D in Figure 2); 2) the user is not in the transmission
area of the BS even if the BS receives the request (e.g., BS E in Figure 2); 3) although the BS sends its replying
message to the user and the user is in its transmission area, the message may be lost in the transmission process due
to unreliable wireless communications. Consequently, the user has to make a decision based on the locations of a
subset of GSs it received, and the GSs stored at each BS have a probability to contain the closest GS to the user. In the
worst case, the user may not even receive any replies. Therefore, we assume the user has a local computer (or other
electronic devices) which caches previously searched closest GSs, and the user will choose the closest one among
these locally cached GSs as a candidate if it receives no replies.

Network
d f
= User || (

∏
i∈Z

BSi ||
∏
k∈Z

GSk)

User
d f
= n11[Puser] || n12[Localuser] || n13[Timeruser]

BSi
d f
= n2i[Pbs]

GSk
d f
= n3k[Pgs]

8

The whole Network consists of the User, several BS and several GS. The User stands for the driver together with
his car in the motivating example, which is composed of three nodes n11, n12 and n13. Each of these nodes runs its
own process inside. The process Puser is the main process of the subnetwork User, and it may be triggered by the
actions (e.g., touching the screen or pressing the button) of the driver to start the communications. While the process
Localuser and Timeruser play the roles of local computer and a counter, respectively. Note that, the rule for naming
the node identification here is that, the first number represents the part this node belongs to and the second number
denotes the index of the node. For example, node n11 means that this node belongs to the first part User of the whole
network and it is the first node in this part. The overall scenario modeled by CWQ calculus is shown above.

Puser
d f
= us!req.local!req.timer!(t1, t2).

&∀(timer?xt1 ,&∃(us?xrepA
, us?xrepB

, us?xrepC
, local?xrep′)).

case xrepA
of some(yrepA

) :
case xrepB

of some(yrepB
) :

case xrepC
of some(yrepC

) :1 use(m̂in(yrepA
, yrepB

, yrepC
))

else2 use(m̂in(yrepA
, yrepB

))
else

case xrepC
of some(yrepC

) :3 use(m̂in(yrepA
, yrepC

))
else4 use(yrepA

)
else

case xrepB
of some(yrepB

) :
case xrepC

of some(yrepC
) :5 use(m̂in(yrepB

, yrepC
))

else6 use(yrepB
)

else
case xrepC

of some(yrepC
) :7 use(yrepC

)
else

&∀(timer?xt2 ,&∃(us?xrepA
, us?xrepB

, us?xrepC
, local?xrep′)).

case xrepA
of some(yrepA

) :
case xrepB

of some(yrepB
) :

case xrepC
of some(yrepC

) :8 use(m̂in(yrepA
, yrepB

, yrepC
))

else9 use(m̂in(yrepA
, yrepB

))
else

case xrepC
of some(yrepC

) :10 use(m̂in(yrepA
, yrepC

))
else11 use(yrepA

)
else

case xrepB
of some(yrepB

) :
case xrepC

of some(yrepC
) :12 use(m̂in(yrepB

, yrepC
))

else13 use(yrepB
)

else
case xrepC

of some(yrepC
) :14 use(yrepC

)
else

case xrep′ of some(yrep′) :15 use(yrep′)
else16 0

Figure 3: The Model of the Process Puser in the Network User

Firstly, we give the details about the main process Puser inside the node n11 in Figure 3. There are three channels:
us is used to communicate (i.e., broadcast and receive) with the base stations; while local and timer are used to
communicate with the local computer and timer, respectively. We use 16 labels to mark 16 interesting points in the

9

process model for the following analysis.5 The driver initiates the process by broadcasting the request for finding the
closest gas station to base stations through the wireless network. Note that, only the base stations within the driver’s
transmission area can receive the request. Here, we assume that the driver only has three neighbor base stations BS A,
BS B and BS C, who are located inside the driver’s transmission area.

At the same time, the driver also sends the request to its local computer which will return a historical record; this
record will serve as the default value if the driver gets no reply from base stations when the timeout is reached. Then,
the driver starts a timer and waits for at least t1 time units but at most t2 time units. Comparing with the transmission
time between the driver and its local computer, the time for the message transmission between the driver and the base
station is longer. Due to the historical record as a default value is not as useful as the fresh data from base stations,
thus we enforce the driver to wait at least t1 time units to leave enough time for the message transmission between the
driver and the base stations.

When t1 time units are reached, the driver will check the received replies. If at least one reply is received (maybe
several replies), then the driver will check all the gas stations in the replies and choose the closest one to refuel the car,
and the process continues; otherwise, the process still needs to wait t2 − t1 time units. Once t2 time units are reached,
the driver will check all the gas stations in the replies and choose the closest one to refuel the car; note that, if there is
still no reply received, then the driver will use the gas station in the historical record, otherwise, the process will stop.
More details of the definition for function m̂in() can be found in the end of this section. The meaning of the function
use() is quite straightforward, which means that the process will take this reply message and perform some further
actions.

The process Localuser in node n12 is used to search the previously computed closest gas station based on the driver’s
current location as a default value. Node n12 is the local computer of User.

Localuser
d f
= local?xreq.case xreq of some(yreq) : local!m̂in(search(yreq)).Localuser

else 0

Timeruser is the process of node n13, which is a counter of User. It will return a special signal � when the timeout
is reached. The meaning of the function count() is also quite straightforward, which is used to count a time interval.
The process Timeruser is defined as follows:

Timeruser
d f
= timer?(xt1 , xt2).case xt1 of some(yt1) :

count(yt1 − 0).timer!�.case xt2 of some(yt2) :
count(yt2 − yt1).timer!�.Timeruser

else 0

Once a base station (e.g., BS A) receives the request, it checks the gas stations stored in its local cache. If there
are any gas stations stored, then the base station chooses among all these gas stations the closest one to the driver that
issues the request, and the position of the gas station is returned to the driver. Otherwise, the base station ignores the
request. The BS is defined as follows.

BS
d f
= n2[Pbs]

Pbs
d f
= us?xreq.case xreq of some(yreq) :

us!m̂in(search(yreq)).Pbs

else 0

Here, search() is a function in the process for searching some records based on the request. Besides, we also
define a new function m̂in() for choosing the minimal value from several values instead of using the traditional min-
imal choosing function min(). We want to distinguish these two functions by the different type of their signatures.

5Interesting points for analysis can either be chosen by designers or be generated automatically by some codes.

10

The traditional function min() is usually applied for numbers, whereas the new function m̂in() is used on tuples, be-
cause the reply may contain several elements in one message (e.g., reply = < send.receiver.distance >). We give
the definition of function m̂in() below and we use a special function Ξ(rep)() to get the distance element from the reply.

m̂in(rep1, rep2, ..., repk)
d f
=

⎧⎪⎪⎨⎪⎪⎩ rep1, Ξ(rep1) ≤ Ξ(m̂in(rep2, ..., repk)) ∨ k = 1;

m̂in(rep2, ..., repk),Ξ(rep1) > Ξ(m̂in(rep2, ..., repk))

5. A SAT-Based Robustness Analysis

As we mentioned before, the ideal behavior of wireless sensor nodes may fail due to unreliable communications
in WSNs. The CWQ calculus claims that it can provide a default value to ensure that the nodes can always behave in a
reasonable manner even if they are in unreliable communication networks. However, the calculus does not enforce it;
that is, we cannot ensure that whether default values can always be available or not. Thus, in this section, we provide
an enforcement mechanism, which is a SAT-based analysis for CWQ calculus to check whether or not variables over
optional data do indeed contain default data when the expected data is lost. All the interesting points of the program
(or network) are described as propositional formulae which characterize the combinations of optional data. Default
value would always be required to be available at some critical point in the program, thus we translate the formulae
into the certain logical formulae and check whether they are satisfied by a SMT-solver Z3.

Optional data is encoded as a boolean formula, i.e., some(·) is coded as tt and none is coded as ff. For example,
the formula xrep1 ∧ (xrep2 ∨ xrep3) represents that both xrep1 and either xrep2 or xrep3 are available; the variables range
over booleans.

Table 5: A SAT-Based Analysis Rules

� tt@(n1[P1] || ... || nk[Pk])

� ϕ@(n1[P1] || ... || nk[Pk])

� ϕ@P1
· · · · · · � ϕ@(n1[P1] || ... || nk[Pk])

� ϕ@Pk

� ϕ@(case e of some(y) : P1 else P2) � e � ϕe

� ϕ ∧ ϕe@P1

� ϕ@(case e of some(y) : P1 else P2) � e � ϕe

� ϕ ∧ ¬ϕe@P2

� ϕ@(c!v.P)

� ϕ@P
� x � x � none � ff � some(v) � tt

� c?x � x
� ϕ@b.P � b � ϕb

� ϕ ∧ ϕb@P

� b1 � ϕ1 · · · � bk � ϕk

� &q(b1, . . . , bk) � [{q}](ϕ1, . . . , ϕk)

5.1. The Judgements

The main judgement of our analysis takes the form as follows:

� ϕ@N

11

Table 6: Boolean Formulae for the Motivating Example

1: xt1 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ xrepA

∧ xrepB
∧ xrepC

2: xt1 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ xrepA

∧ xrepB
∧ (¬xrepC

)
3: xt1 ∧ (xrepA

∨ xrepB
∨ xrepC

∨ xrep′) ∧ xrepA
∧ (¬xrepB

) ∧ xrepC

4: xt1 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ xrepA

∧ (¬xrepB
) ∧ (¬xrepC

)
5: xt1 ∧ (xrepA

∨ xrepB
∨ xrepC

∨ xrep′) ∧ (¬xrepA
) ∧ xrepB

∧ xrepC

6: xt1 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ (¬xrepA

) ∧ xrepB
∧ (¬xrepC

)
7: xt1 ∧ (xrepA

∨ xrepB
∨ xrepC

∨ xrep′) ∧ (¬xrepA
) ∧ (¬xrepB

) ∧ xrepC

8: xt2 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ xrepA

∧ xrepB
∧ xrepC

9: xt2 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ xrepA

∧ xrepB
∧ (¬xrepC

)
10: xt2 ∧ (xrepA

∨ xrepB
∨ xrepC

∨ xrep′) ∧ xrepA
∧ (¬xrepB

) ∧ xrepC

11: xt2 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ xrepA

∧ (¬xrepB
) ∧ (¬xrepC

)
12: xt2 ∧ (xrepA

∨ xrepB
∨ xrepC

∨ xrep′) ∧ (¬xrepA
) ∧ xrepB

∧ xrepC

13: xt2 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ (¬xrepA

) ∧ xrepB
∧ (¬xrepC

)
14: xt2 ∧ (xrepA

∨ xrepB
∨ xrepC

∨ xrep′) ∧ (¬xrepA
) ∧ (¬xrepB

) ∧ xrepC

15: xt2 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ (¬xrepA

) ∧ (¬xrepB
) ∧ (¬xrepC

) ∧ xrep′

16: xt2 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′) ∧ (¬xrepA

) ∧ (¬xrepB
) ∧ (¬xrepC

) ∧ (¬xrep′)

N stands for the whole program (or network) in our calculus, while the formula ϕ specifies the program point just
before N. Intuitively, this judgement can be used to describe that under which situation (specified by ϕ), the whole
program will reach the program point which is immediately before N. Here, we do not consider the situation of mul-
tiple occurrences of the same subprogram in the system. The semantic interpretation of the judgement is shown below:

if � ϕ@n1[P1] || n2[P2] || ... || nk[Pk] and
n1[P1] || n2[P2] || ... || nk[Pk]→∗ n1[C[P1θ1]] || n2[C[P2θ2]] || ... || nk[C[Pkθk]]

then (θ1 |= ϕ) ∨ (θ2 |= ϕ) ∨ ... ∨ (θk |= ϕ)

As we mentioned in the previous section, θ is the substitution constructed to replace the variables with the receiving
values. Thus, θ is the mapping obtained by pointwise application of the encoding · and θ |= ϕ denotes the truth of ϕ
under the interpretation θ.

Besides, we also have two auxiliary judgements for binders and expressions respectively, as follows:

� b � ϕ and � e � ϕ
The formula ϕ in the former one describes the bindings of the variables that correspond to successful passing the
binder b and the semantic interpretation is:

if � b � ϕ and b ::tt θ then θ |= ϕ

The formula ϕ in the later one denotes the result of evaluating the expression e and the semantic interpretation is:

if � e � ϕ and e � v then |= (ϕ = v)

12

Table 7: Satisfiability Results of the Motivating Example Using Z3

1: [xt1
→ tt; xrepA

→ tt; xrepB

→ tt; xrepC

→ tt; xrep′
→ tt]

2: [xt1
→ tt; xrepA

→ tt; xrepB

→ tt; xrepC

→ ff; xrep′
→ tt]

3: [xt1
→ tt; xrepA

→ tt; xrepB

→ ff; xrepC

→ tt; xrep′
→ tt]

4: [xt1
→ tt; xrepA

→ tt; xrepB

→ ff; xrepC

→ ff; xrep′
→ tt]

5: [xt1
→ tt; xrepA

→ ff; xrepB

→ tt; xrepC

→ tt; xrep′
→ tt]

6: [xt1
→ tt; xrepA

→ ff; xrepB

→ tt; xrepC

→ ff; xrep′
→ tt]

7: [xt1
→ tt; xrepA

→ ff; xrepB

→ ff; xrepC

→ tt; xrep′
→ tt]

8: [xt2
→ tt; xrepA

→ tt; xrepB

→ tt; xrepC

→ tt; xrep′
→ tt]

9: [xt2
→ tt; xrepA

→ tt; xrepB

→ tt; xrepC

→ ff; xrep′
→ tt]

10: [xt2
→ tt; xrepA

→ tt; xrepB

→ ff; xrepC

→ tt; xrep′
→ tt]

11: [xt2
→ tt; xrepA

→ tt; xrepB

→ ff; xrepC

→ ff; xrep′
→ tt]

12: [xt2
→ tt; xrepA

→ ff; xrepB

→ tt; xrepC

→ tt; xrep′
→ tt]

13: [xt2
→ tt; xrepA

→ ff; xrepB

→ tt; xrepC

→ ff; xrep′
→ tt]

14: [xt2
→ tt; xrepA

→ ff; xrepB

→ ff; xrepC

→ tt; xrep′
→ tt]

15: [xt2
→ tt; xrepA

→ ff; xrepB

→ ff; xrepC

→ ff; xrep′
→ tt]

16: not satisfied

Here, we use v to stand for the boolean encoding of the value v and we usually use ϕ1 = ϕ2 as a shorthand for the
formula (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2).

More details about the definition of � ϕ@N are shown in Table 5, which is given by the inference system. The
intuitive meaning of these rules is that if the whole program wants to reach the program point immediately before
some processes (e.g., output, case structure), the boolean formula ϕ must be satisfied. And the rules also specify how
the boolean formula will change after the whole program executes these processes. The main goal for us to propose
these inference rules is that we can easily judge whether some program points will be reached by checking whether the
boolean formulae immediately before these program points are satisfied or not. For example, in our motivating case
study in Section 4, we do not want the whole program to execute a 0 process, which means that the whole program
goes into a deadlock state. Thus, we can easily check whether the boolean formula immediately before the 0 process
will be satisfied or not under the given combination of receiving values.

The idea inherits from the Quality Calculus, operating in a top-down manner instead of a more conventional
bottom-up manner, and gets started by an axiom � tt@(n1[P1] || ... || nk[Pk]), saying that the program (or network) is
reachable. On the second line, there are two inference rules for parallel composition that if ϕ describes the program
point just before the whole network n1[P1] || ... || nk[Pk], then it also describes the program point just before each of
the k processes.

Next two rules for the case construct use the auxiliary analysis judgement � e � ϕe to get the result of evaluating
the expression e, and the result information will be put together with ϕ to describe the program point just before the
selected branch. The rule for output is very straightforward. The next three inference rules define the judgement
� e �ϕ for expressions with the idea we mentioned at the beginning of this section. The rule for binding makes use of
another auxiliary analysis judgement � b � ϕb. The bindings of the variables that correspond to successful passing the
binder b are denoted by information ϕb, which together with ϕ will describe the program point before P. According
to the semantics of formula schemes [{q}](ϕ1, . . . , ϕk) in Section 3, last rule encodes the effect of quality predicates q.

5.2. A SAT-Based Robustness Analysis on Motivating Example

In this section, based on the analysis rules given in Table 5, we firstly compute the boolean formulae at the program
interesting points of the main process Puser, then we will use the SMT solver Z3 to check whether the formulae are
satisfied or not.

13

In Section 4, we use our calculus to model a real-world case study with the scenario about refueling a car. Taking
one important subnetwork User into consideration, we identified 16 critical program interesting points with different
labels in the process Puser inside one network node. Based on the inference rules we give above, we want to compute
the analysis results for these points. Starting with � tt@n11[Puser], we get 16 boolean formulae at labels in Table 6.

Here we use the same variable names as what we used in the model. The formula xt1 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′),

as well as the one xt2 ∧ (xrepA
∨ xrepB

∨ xrepC
∨ xrep′), with the meanings that both time t1 (or time t2) and any receiving

variable are reached, refer to the condition for passing the quality binder in the second line and the thirteenth line,
respectively. The remainder identifies the condition for reaching the given labels. Then we use Z3 to check whether
the program interesting point with the label is reachable or not, which means that whether the corresponding boolean
formula is satisfied or not. Satisfiability results of the motivating example given by Z3 are listed in Table 7, which
shows that the 0 process in node n11[Puser] will never be executed.

6. Data-Driven Probabilistic Trust Analysis

As mentioned in related work [11, 35], communication in WSNs will be affected by local conditions, platform
characteristics and power consumption constraints, and sensors may be lost during an engagement. Thus, the effec-
tiveness of the system decision making depends on the quality of information it received. Specifically, the system
decision of a WSN is expected to be made based on the highest quality data from all network nodes in the WSN, and
the decision may have the highest level of trustworthiness if data from all its constituent network nodes are received
and considered. However, in reality, there comes the problem that one cannot be sure what data has actually been re-
ceived in a WSN when making the decision. Consequently, system decisions may differ in trustworthiness depending
on which input data have actually been received, and hence it comes the need to analyze the trust of the robustness of
a system.

In the literature, Nielson et al. [31] developed a novel probabilistic trust analysis for supporting the Quality
Calculus [32] to indicate the trust that a user can have in the overall robustness of a system. The trustworthiness of
the system decision is determined by the probability that expected input will be absent. However, it is not applicable
to the CWQ Calculus for WSNs, because in the CWQ Calculus and WSNs, the trustworthiness of the system decision
is not only decided by the probability of absence of expected data, but also based on the trustworthiness of the data
itself. In CWQ Calculus, it includes an input guard, binder, to specify the inputs to be performed before continuing.
It has the flexibility that not all input data in a binder need to be received in order for the process to continue. The
subsequent process can determine whether a particular data has actually been received (e.g., by using the case construct
case x of some(y)), and decisions can be made accordingly. In other words, from the perspective of a single network
node, its locally stored data may not be sufficient for making the best system decision. In the section below, we will
illustrate this characteristic of WSNs in more details through the motivating example of refueling a car by using the
information of gas stations stored in base stations.

Thus, in this section, we propose a data-driven probabilistic trust analysis of the CWQ Calculus for WSNs. Instead
of only giving the channel a trust value to illustrate the probability of absence of expected data, we also assume that
the data received from a channel have a trust value, where the trust value of a data represents the trust of the system
decision made solely based on that data. Intuitively, data received from a channel of a network node is of high
trustworthiness level if it is essential for making a high-quality decision of the system, and it is not otherwise; for
simplicity, we assume the data received from a channel has a probability distribution of trust values.

To facilitate our probabilistic analysis, we change the syntax of binders in CWQ Calculus for WSNs to the form
of &πq(cl1

1 ?x1, · · · , cln
n ?xn), where π ∈ D({x1, · · · , xn} → {t,⊥}) denotes whether an input data xi is received (i.e., t) or

not received (i.e., ⊥) over channel ci for 1 ≤ i ≤ n, and li ∈ D({L,M,H} → R) is a probability distribution of the trust
of the input data received over channel ci (i.e., li is a probability distribution of the trust of xi). Note that, the available
data is classified into low (L), medium (M) or high (H) trust and the trust of a data here can be regarded as the utility
of the data in the decision of the entire system. Consequently, we consider data trustworthiness instead of channel
trustworthiness, and decouple the probability of receiving input data from the probability of the trustworthiness level
of the receiving data, which makes a more flexible probabilistic analysis possible (e.g., for analyzing systems based
on WSNs). The overall trustworthiness of the system decision is determined by performing relational analysis to
combine the probability distributions of π and li(∀1 ≤ i ≤ n).

14

Table 8: Trust Propagation

� 1, π◦,L◦@(n1[P1] || ... || nk[Pk])

� p, π,L@(n1[P1] || ... || nk[Pk])
� p, π,L@Pi

∀i ∈ {1, · · · , k}

� p, π,L@(case x of some(y) : P1 else P2)
� p · π[x�⊥], (π↓[x�⊥])|Cx ,L ⊕ lx[y := x]@P1

if π[x�⊥] � 0

� p, π,L@(case x of some(y) : P1 else P2)
� p · π[x=⊥], (π↓[x=⊥])|Cx ,L@P2

if π[x=⊥] � 0

� p, π,L@(c!v.P)
� p, π,L@P

� p, π,L@(b.P) � b�πb

� p, (π|Cbv(b)) ⊗ πb,L@P

6.1. Trust Propagation

The judgement of our analysis is of the form � p, π,L@P. Here, p is the probability that we will reach the
process P, π is a distribution from D(V → {t,⊥}) where V = {x1, · · · , xn′ } is a set of optional data variables, and
L = {l1, . . . , lm′ } is a set of distributions of the trust level of data variables yi for 1 ≤ i ≤ m′ (i.e., distributions from
D({L,M,H} → R). The mappings of V → {t,⊥} indicate whether optional data are received or not and π specifies
the distribution of these mappings when P is reached. Similarly, L specifies the distributions of the trust levels of data
variables y, and we assume li and l j (i � j) are independent. Note that, this judgement is different from that in related
work [31], which is of the form � p, π@P.

Through these rules, we can easily get the information about in what probability the whole program will reach the
process P, what the probability it is that the expected data may be absent when the program reaches P and what the
probability it is that the receiving data has some specific trustworthiness levels (i.e., Low, Medium and High) when
reaching P. The main goal for proposing these rules is that through the analysis, it gives a guide to design a better
binder to get a higher trustworthiness of the system decision under a given probability of absence of expected data.

The main judgement is of the form � 1, π◦,L◦@N as shown in Table 8, where N stands for the entire program (or
network) in the CWQ Calculus, and the choice of p = 1 reflects that the main process must be called in order to reach
other program points. Here, we let π◦ = ∅ and L◦ = ∅, since there are no optional data variables or data variables
when reaching the main process. Note that, it is also possible to incorporate constants into π (and π◦) and L (and L◦);
however, we omit the constants in these distributions for ease of presentation, and all constants are assumed to exist
and be of the highest trustworthiness.

6.1.1. Operations on π and L

To perform the trust propagation, we need to define several operations on π and L. First is lookup on a name for
π. That is, given a distribution π : D(V → {t,⊥}) and a name u, we want to know the probabilities π[u�⊥] and π[u=⊥],
corresponding to the probabilities that u is received or not, respectively.

π[u=⊥] =
∑

(σ∈π s.t. σ(u)=⊥) π(σ)

Here, σ is a mapping σ : V → {t,⊥}. π[u�⊥] is similarly defined, and moreover π[u�⊥] = π[u=t] = 1 − π[u=⊥]. These
operations are used in the analysis of the construct case x of some(y) : P1 else P2; π[x�⊥] is the probability that the
first branch is taken and π[x=⊥] is that the second branch is taken.

The next operation for π is selection on a name. That is, given a distribution π : D(V → {t,⊥}) and a name u, we
want to construct a new distribution π↓[u�⊥] that gives 0 probability to all mappings σ with σ(u) �⊥ and rescales the

15

remaining probabilities, and this is defined only if π[u�⊥] � 0.

(π↓[u�⊥])(σ) =
{ π(σ)
π[u�⊥]

if σ(u) �⊥,
0 otherwise.

Similarly, we define π↓[u=⊥]. These two operations are used in the analysis of the construct case x of some(y) : P1 else P2;
π[x�⊥] is the distribution of the first branch if it is taken and π[x=⊥] is the distribution of the second branch if taken.

The next operation for π is projection on a subset of names. That is, given a distribution π : D(V → {t,⊥}) and a
subset of names U ⊆ V , we want to obtain the distribution π|U inD(U → {t,⊥}). It is defined as,

(π|U)(σ) =
∑

(σ′∈π s.t. σ=σ′ |U) π(σ′).

Here, σ′|U is the restriction of the mapping σ′ : V → {t,⊥} to the domain of U; that is (σ′|U)(u) = σ(u) if u ∈ U, and
(σ′|U)(u) is undefined otherwise. Similarly, we define the projection on the complement of U, π|CU , which is the same
as π|V\U . These operations are used to reduce the size of a distribution.

The last operation of π is product of two distributions. That is, given two distributions π1 : D(V1 → {t,⊥}) and
π2 : D(V2 → {t,⊥}) over two disjoint sets of names (i.e., V1 ∩ V2 = ∅), we construct a new distribution π1 ⊗ π2 in
D(V1 ∪ V2 → {t,⊥}). It is defined as,

(π1 ⊗ π2)(σ) = π1(σ|V1) · π2(σ|V2).

They are used when combining two stochastically independent distributions.
For L, we define two operations, replacement and addition. Given a distribution lx in D({L,M,H} → R) and a

name y, the replacement operation lx[y := x] is to construct another distribution ly inD({L,M,H} → R) with the same
probabilities as lx; that is, ly(t) = lx(t),∀t ∈ {L,M,H}. That is, the replacement operation is to replace the name of
a distribution while all other information remains unchanged. Given a set of distributions L and a distribution ly, the
addition operation L ⊕ ly is to add ly into L (i.e., L ∪ {ly}). Both operations are used in the analysis of the construct
case x of some(y) : P1 else P2. That is, when the optional data x is actually received, then the process will continue
on the first branch P1; since y instead of x will be visible and used in P1, the distribution of the trust level of x is
copied and stored into data y to be prepared for being used in P1.

6.1.2. Propagation

Armed with the above operations on π and L, the detailed trust propagation is shown in Table 8. The logic-
flow of our analysis is similar to that in the program analysis [30] and in the Quality Calculus [32]. That is, the
propagation operates in a top-down manner instead of a more conventional bottom-up manner. As shown in Table
8, our propagation starts from an axiom � 1, π◦,L◦@(n1[P1] || ... || nk[Pk]) saying that the program (or network) is
reachable. The inference rule for parallel composition is presented at the second row; it means that if p, π,L describe
the program point just before the entire network n1[P1] || ... || nk[Pk], then they also describe the program point just
before each of the k constitute processes.

For the case construct case x of some(y) : P1 else P2, there are two inference rules as shown at the third and
fourth rows. If π[x�⊥] � 0, then there is a non-zero probability that the optional data x can be received. Thus, we will
continue with process P1 with probability p · π[x�⊥]. Now since we are sure that x �⊥ (since we reach P1), we need
to do a selection on π conditioned on the fact that x �⊥; we can also do a project on the set of names excluding x to
simplify the distribution. Moreover, the data y is assigned and may be used in P1; since the trust level of y is the same
as the optional data x, we construct a new distribution by replacing the x in lx with y, and add the new distribution to
L. Note that, the set of distributions L is used for conducting trust analysis at program points. If πx=⊥ � 0, then there
is a similar inference rule for continuing with process P2.

The last row illustrates inference rules for output and input, respectively. The rule for output is straightforward,
as p, π,L directly pass forward to the following process. The rule for input binding makes use of another auxiliary
judgement � b�πb, which obtains the distribution πb; note that, πb is computed by using standard statistical inference,
based on the probability distributions of all the optional data and channels in b. The notation of bv(b) represents the
set of bounded variables of b. When reaching P (i.e., successfully passing b), the distribution π will be augmented by
πb, while p and L remain the same.

16

6.1.3. Remarks

Note that the probabilistic analysis of CWQ Calculus proposed above is different from that conducted by Nielson
et al. for probabilistic trust analysis of the Quality Calculus. Firstly, the CWQ Calculus has a unique characteristic that
is not part of the Quality Calculus. Secondly, we decouple the probability of receiving input data from the probability
of the trustworthiness level of receiving data. That is, the judgement of our analysis is of the form � p, π,L@P where
π and L are distributions with π : D(V → {t,⊥}), while the judgement of the analysis in past work [31] is of the form
� p, π′@P with π′ : D(V ′ → {L,M,H,⊥}).

Note that, the set of distributions, L, in our analysis can be also regarded as a distribution as follows. Given
L = {l1, . . . , lm′ } with each li being a distribution li : D({L,M,H} → R), we can construct a new distribution L

′ =
L1 ⊗ · · · ⊗ Lm′ where Li : D(xi → {L,M,H}) and ⊗ is the product operation. It is easy to show that L′ is equivalent
to L. In this paper, we consider the set of distributions, L, due to its compact form and the independence of li and l j

(i � j); note that, the size of L′ is much (i.e., exponentially) larger than that of L.
The analysis can be implemented using programming languages, such as Standard ML. Each distribution can

be represented as a list of pairs (σ, p); for example, the distribution π can be represented in the form as shown in
Tables 9 and 10. More details and explanations about these two tables will be given in Section 6.3 via the motivating
example. Other improvements towards the representation and the probability inference are also possible, we omit the
discussions in this paper since it is orthogonal to the content of this paper.

6.2. Trust Analysis

Now, we show how to extract information about outputs from the analysis. Firstly, we consider an output of the
form c!v; that is, we want to compute the trust level of the value v sent over channel c. Assume the analysis gives the
form � p, π,L@c!v.P when reaching P; this means that P is reached with probability p, and the distributions of trust
levels of data y, which may be used in v or P, are given in L. The trust level of v over channel c can be represented as
a distribution φ inD({L,M,H} → R) and is defined as follows,

φ(t) =
∑
σ∈L s.t. σ(v)=t L(σ).

Note that, for ease of presentation, we assume L is in the form of a distribution as discussed in above. Thus, if v

consists of a single data y, then φ(y) is the same as ly ∈ L. Otherwise, v is of the form f (y1, . . . , yn) where f (·)
is a function (e.g., m̂in() in the SAT-based robustness analysis). Given a set of data {y1, . . . , yn} with trust levels
{t1, . . . , tn}, respectively, the trust of the function f (y1, . . . , yn) is assume to be the greatest lower bound of {t1, . . . , tn}
in the trust lattice L, where L d f

= ({L,M,H},≤). For example, given y1, y2, y3 of trust H,M, L, respectively, the trust of
m̂in(y1, y2, y3) is H; that is, y1 is the most important and sufficient data for the function.

Secondly, we consider all outputs of the form c!·; that is, we want to compute the trust level of the decision of the
system in the form c!· across all branches of the case constructs. For simplicity, we assume that no occurrence of c!·
prefixes another. Then, the distribution Φc inD({L,M,H,⊥} → R) is defined as follows,

Φc(t) =
∑
�p,π,L@c!v.P

∑
σ∈L s.t. σ(v)=t L(σ).

The probability of the trust level of ⊥ is Φc(⊥) = 1 −∑t∈{L,M,H,⊥}Φc(t).

6.3. Probabilistic Trust Analysis on Motivating Example

We illustrate how to compute such a trust of the system decision through two examples in the following. Details
about the motivating example have already been given in Section 4. To facilitate our probabilistic analysis, we rewrite
the CWQ model of the overall scenario as follows.

There are three channels: us is used to communicate (i.e., broadcast and receive) with the base stations; while local

and timer are used to communicate with the local computer and timer, respectively. As we mentioned at the beginning
of Section 6, to facilitate our probabilistic analysis, we change the syntax of receiving action in CWQ calculus for
WSNs to the form of cl?x, where l ∈ D({L,M,H} → R) is a probability distribution of the trust of the input data
received over channel c (i.e., l is a probability distribution of the trust of x). Note that, the available data is classified
into low (L), medium (M) or high (H) trust and the trust of a data here can be regarded as the utility of the data in the
decision of the entire system. For instance, in CWQ calculus, default values (of the same type as the required ones)

17

Table 9: π for binder 1

id xt1 xrepA
xrepB

xrepC
xrep′ p

π1 t t t t t 0.1750
π2 t t t t ⊥ 0.0438
π3 t t t ⊥ t 0.1167
π4 t t t ⊥ ⊥ 0.0292
π5 t t ⊥ t t 0.1167
π6 t t ⊥ t ⊥ 0.0292
π7 t ⊥ t t t 0.1167
π8 t ⊥ t t ⊥ 0.0292
π9 t t ⊥ ⊥ t 0.0778
π10 t t ⊥ ⊥ ⊥ 0.0196
π11 t ⊥ t ⊥ t 0.0778
π12 t ⊥ t ⊥ ⊥ 0.0196
π13 t ⊥ ⊥ t t 0.0778
π14 t ⊥ ⊥ t ⊥ 0.0196
π15 t ⊥ ⊥ ⊥ t 0.0513

Table 10: π for binder 2

id xt1 xrepA
xrepB

xrepC
xrep′ p

π1 t t t t t 0.1860
π2 t t t t ⊥ 0.0465
π3 t t t ⊥ t 0.1245
π4 t t t ⊥ ⊥ 0.0315
π5 t t ⊥ t t 0.1245
π6 t t ⊥ t ⊥ 0.0315
π7 t ⊥ t t t 0.1245
π8 t ⊥ t t ⊥ 0.0315
π9 t t ⊥ ⊥ t 0.0827
π10 t t ⊥ ⊥ ⊥ 0
π11 t ⊥ t ⊥ t 0.0827
π12 t ⊥ t ⊥ ⊥ 0
π13 t ⊥ ⊥ t t 0.0827
π14 t ⊥ ⊥ t ⊥ 0
π15 t ⊥ ⊥ ⊥ t 0.0514

are given to deal with the situations that the ideal behavior of a sensor node fails due to unreliable communications.
However, default values are not as useful as the expected data, and the final decision of the system may have a low
trustworthiness depending on the default value. Thus, L is marked on channel local. Similarly, the trustworthiness
level of the data via channel us may be H(igh) or M(edium), whereas the trustworthiness level of the data via channel
timer must be H(igh).

Network
d f
= User || (

∏
i∈Z

BSi ||
∏
k∈Z

GSk)

User
d f
= n11[Puser] || n12[Localuser] || n13[Timeruser]

BSi
d f
= n2i[Pbs]

GSk
d f
= n3k[Pgs]

Using usH∨M , localL, timerH .

Also, we give details of the main process Puser in Figure 4, which is the main subject of our probabilistic trust

analysis, and omit details of other processes.

Assumption. Before we discuss the different design of binders, we give the assumptions we will use as follows.

• In Puser in Figure 4, for ease of exposition we assume that there are three BSs (i.e., BSs A, B, and C in Figure 1)
that can communicate with the user.

• lrepA
is a probability distribution in D({L,M,H} → R) for variable xrepA

and let us assume that lrepA
(H) =

lrepA
(M) = 0.5. lrepB

and lrepC
are similarly defined as lrepA

, while lt1 and lrep′ have deterministic trust H and L,
respectively.

• For presentation simplicity, we assume that li, l j (i � j) are independent.

• The process of receiving input data through channels us and local are exponentially distributed with rates λus

and λlocal, respectively. For ease of presentation, let us assume the probability of receiving replying messages

18

through channels us and local are pus = 0.6 and plocal = 0.8, respectively; that is, the probability of not receiving
replying messages through channels us and local are 1 − pus = 0.4 and 1 − plocal = 0.2, respectively.

• For presentation simplicity, we assume that there is only one timeout (i.e., t1) in Puser in Figure 4; that is, only
labels, 1, . . . , 6, 16, are reachable, while those branches corresponding to labels 7, . . . , 15 are ignored.

Puser
d f
= usH∨M!req.localL!req.timerH!(t1, t2).

&∀(timerH?xt1 ,&∃(usH∨M?xrepA
, usH∨M?xrepB

, usH∨M?xrepC
, localL?xrep′)).

case xrepA
of some(yrepA

) :
case xrepB

of some(yrepB
) :

case xrepC
of some(yrepC

) :1 use(m̂in(yrepA
, yrepB

, yrepC
))

else2use(m̂in(yrepA
, yrepB

))
else

case xrepC
of some(yrepC

) :3 use(m̂in(yrepA
, yrepC

))
else4 use(yrepA

)
else

case xrepB
of some(yrepB

) :
case xrepC

of some(yrepC
) :5 use(m̂in(yrepB

, yrepC
))

else6 use(yrepB
)

else
case xrepC

of some(yrepC
) :7 use(yrepC

)
else

&∀(timerH?xt2 ,&∃(usH∨M?xrepA
, usH∨M?xrepB

, usH∨M?xrepC
, localL?xrep′)).

case xrepA
of some(yrepA

) :
case xrepB

of some(yrepB
) :

case xrepC
of some(yrepC

) :8 use(m̂in(yrepA
, yrepB

, yrepC
))

else9use(m̂in(yrepA
, yrepB

))
else

case xrepC
of some(yrepC

) :10 use(m̂in(yrepA
, yrepC

))
else11 use(yrepA

)
else

case xrepB
of some(yrepB

) :
case xrepC

of some(yrepC
) :12 use(m̂in(yrepB

, yrepC
))

else13 use(yrepB
)

else
case xrepC

of some(yrepC
) :14 use(yrepC

)
else

case xrep′ of some(yrep′) :15 use(yrep′)
else16 0

Figure 4: Model of the process Puser with trust

Discussion. In order to investigate how the design of the binder will affect the final decision of the system, we will
take two equivalent binders with different forms into consideration, and use our probabilistic trust analysis approach
to see what the trustworthiness of the final decision is depending on these two binders respectively.

The binder of the second line in Figure 4, is shown as follows:

&∀(timerH?xt1 ,&∃(usH∨M?xrepA
, usH∨M?xrepB

, usH∨M?xrepC
, localL?xrep′)).

According to the semantics of the quality predicate, formally, &∃(x1, . . . , xn) is equivalent to x1 ∨ · · · ∨ xn and
&∀(x1, . . . , xn) is equivalent to x1 ∧ · · · ∧ xn. Here, we also allow to write the quality predicate as &[1∧(2∨3)](x1, x2, x3)
which is equivalent to x1 ∧ (x2 ∨ x3). Thus, we rewrite this binder and denote it as binder 1,

19

&[1∧(2∨3∨4∨5)](timerH?xt1 , usH∨M?xrepA
, usH∨M?xrepB

, usH∨M?xrepC
, localL?xrep′).

That is, when t1 time units are reached, the process continues when the input from either BSs A, or B, or C, or the
local computer is performed. Alternatively, we might use the equivalent binder, denoted as binder 2,

&[1∧((2∧3)∨(2∧4)∨(3∧4)∨5)](timerH?xt1 , usH∨M?xrepA
, usH∨M?xrepB

, usH∨M?xrepC
, localL?xrep′).

This binder requires that at least two BSs from {A, B,C} must reply before the process can proceed when t1 time units
are reached. We will show through probabilistic trust analysis in Section 6.3 that the probability of high trustworthi-
ness of the final decision depending on binder 2 is better than the one based on binder 1 as far as the quality of the GS
(i.e., how close is it to the user), obtained by the system, is concerned. More details are given below:

Example 1. We take the binder, binder 1, into consideration,

&π[1∧(2∨3∨4∨5)](timerH?xt1 , usH∨M?xrepA
, usH∨M?xrepB

, usH∨M?xrepC
, localL?xrep′).

Here, the trust lrepA
of xrepA

received over channel us may be either H or M (i.e., H ∨ M). One can show that the
distribution π, indicating whether input data are received or not, is computed as that in Table 9, with π(δ) = 0 for all
other cases.

Now, we illustrate how to obtain the trust of the decision of the system. First, let us consider π1(xt1
→ t, xrepA

→

t, xrepB

→ t, xrepC

→ t, xrep′
→ t) = 0.1750 in Table 9. Since all optional data, xrepA
, xrepB

and xrepC
, have actually

been received, the decision of the system is made based on the combination of these three data; note that, π1 and π2
in Table 9 together correspond to label 1 in Figure 4. Thus, when reaching label 1, the trust of the decision is M with
probability lrepA

(M) × lrepB
(M) × lrepC

(M) = 0.125, and it is H with probability 1 − 0.125 = 0.875; recall that each
lx ∈ D({L,M,H} → R) is a probability distribution. Based on the above, we can see that the probability that the trust
of the decision is H includes 0.1750×0.875, and the probability to be M includes 0.1750×0.125. Similarly, π3 and π4
in Table 9 together correspond to label 2 in Figure 4, and π3 = 0.1167. When reaching label 2, the trust of the decision
is M with probability lrepA

(M)× lrepB
(M) = 0.25, and it is H with probability 1−0.25 = 0.75. Thus, the probability that

the trust of the decision is H also includes another 0.1167 × 0.75, and the probability to be M also includes another
0.1167 × 0.25.

Overall, the probability that the trust of the decision is H is (π1+π2)×0.875+(π3+ · · ·+π8)×0.75+(π9+ · · ·+π14)×
0.5 = 0.2188× 0.875+ 0.4377× 0.75+ 0.2922× 0.5 = 0.6658, and the probability that the trust of the decision is M is
(π1+π2)×0.125+ (π3+ · · ·+π8)×0.25+ (π9+ · · ·+π14)×0.5 = 0.2188×0.125+0.4377×0.25+0.2922×0.5 = 0.2829.

Example 2. Now, we consider binder 2 which is discussed in the case study, as follows,

&[1∧((2∧3)∨(2∧4)∨(3∧4)∨5)](timerH?xt1 , usH∨M?xrepA
, usH∨M?xrepB

, usH∨M?xrepC
, localL?xrep′).

Here, lrepA
, lrepB

, lrepC
, and lrep′ are the same as in Example 1 in above. Note that, the process Puser needs to be modified

accordingly; we omit the details here. Similar to Example 1, one can show that the distribution π, indicating whether
input data are received or not, is computed as that in Table 10.

We illustrate how to obtain the trust of the decision of the system. First, let us consider π1(xt1
→ t, xrepA

→

t, xrepB

→ t, xrepC

→ t, xrep′
→ t) = 0.1860 in Table 10. Since all optional data, xrepA
, xrepB

and xrepC
, have actually

been received, the decision of the system is made based on the combination of these three data. Thus, similar to that
in Example 1, the probability that the trust of the decision is H includes 0.1860 × 0.875, and the probability to be M

includes 0.1860 × 0.125. Similarly, when considering π3 = 0.1245, the probability that the trust of the decision is H

also includes another 0.1245 × 0.75, and the probability to be M also includes another 0.1245 × 0.25. Overall, the
probability that the trust of the decision is H is 0.6785, and the probability that it is M is 0.2701.

Remark. By comparing the above two examples, we can see that the probability of the trust of the decision based
on binder 2 to be H is 0.6785 and it is larger than the probability of the trust of the decision based on binder 1 to be
H which is 0.6658. Thus, by using probabilistic analysis we can quantify the trustworthiness of decisions based on
different binders, based on which we choose the better one.

20

7. Related Work

Non-Process-Algebraic Methods for Quality in Networks. In reality, communications in wireless networks are
often unreliable, which may be caused by deployment constraints (e.g., bad environment and time delay) and/or
communication modalities (e.g., nodes switch between an active (on) and a sleeping (off) mode, for saving energy);
this may result in abnormalities and thus decrease the quality of service provided by the system. There are a number of
efforts focusing on the communication quality of networks in general. Zhao et al. [43, 44] investigate the fundamental
relationship between node density and transmission delay in large-scale wireless ad hoc networks with unreliable links
from percolation perspective. They try to answer the question, how transmission delay varies in accordance with node
density, to provide a guidance for determining the number of nodes to meet the delay requirement when designing a
network. Related work [7, 17] show the relationship between transmission delay and connectivity between nodes with
dynamic links in wireless networks. Kong et al. [16] also study the connectivity and transmission latency in wireless
networks with unreliable links from a percolation-based perspective. Each link of the network is active with some
probability depending on the distance between two nodes in a static model. Whereas, the link is active or inactive
according to a Markov on-off process in a dynamic model, and a transmission delay exists because of the dynamic
behaviors of the links.

We are inspired by these work for our further investigations in our future work, but we find that none of these stud-
ies has built a general framework of the communication quality for wireless networks. Therefore, our framework aims
to capture the features of WSNs and observe the communication quality of wireless networks from a process algebra
perspective, which is more abstract and allows formal modeling and analysis of the networks. Process algebra, as a
very important part of the computer science theory, has already been widely used in many fields. It is also commonly
accepted in the formal methods community that the modeling and analysis of wireless systems in design can reduce
implementation errors considerably [1, 39].

Process Algebra on Networks. On the process algebra side, the process calculi CCS (a Calculus of Communicating
Systems) [27], CSP (Communicating Sequential Processes) [14] and π calculus [28] are usually used to describe
the point-to-point communications in reactive system. However, they cannot specify the broadcast communication
behavior, which is one of the most important features of WSNs. Thus, the calculus CBS (a Calculus of Broadcasting
Systems) [33] and bπ [8] are presented, which can specify the broadcast communications.

Both CBS and bπ describe the global broadcast communication, which means that the calculi assume that all the
receivers inside the network can receive the message broadcasted by the sender. In reality, the communication in
WSNs is local broadcast, which represents that only nodes within the transmission area of the sender can receive the
broadcast message. To capture the feature of local broadcast, a set of process calculi, AWN [9], CMAN [12], CMN
[23], TCWS [24], CBS� [29], CWS [26], the ω-calculus [36], RBPT [10, 13], are presented as process algebraic mod-
eling languages for wireless networks. In these models, a message that is sent by a node could only be received by
the nodes “inside the transmission range” and the neighborhood relationship is defined in different ways (e.g., define
it either as a part of the syntax or as a part of the semantics). Nevertheless, none of the above models consider the
service quality provided by the wireless system.

Quality Calculus. Taking service quality of wireless systems into consideration, it is of significant importance to
ensure that wireless sensor nodes can always behave in a reasonable manner even though they are in an unreliable
communication network. As a first step in this direction, Nielson et al. proposed the Quality Calculus [32, 37], which
enforces robustness of software components in an open and error prone environment, specifies the behavior when
communication links break down, and also considers global broadcast communications. However, their work focus
on the process level and they want to do some further researches, such as “enriching the framework with a notion of
network topology and spatially-bounded broadcast” in their future work.

As the combination of communication quality and features of WSNs (e.g., local broadcast, node mobility) is still
a challenging topic, to be taken one step further, the CWQ calculus [41] was recently proposed for modeling and
reasoning about WSNs and applications based on WSNs. The CWQ calculus combines the wireless local broadcast
together with quality predicates, and extracts the topological structure of the network as a parametric configuration.
Besides, partial functions are given to illustrate the different the different transmission areas of different nodes using
different channels. Default values (of the same type as the required ones) are given to deal with the situations that the

21

ideal behavior of a sensor node fails due to unreliable communications. Moreover, we develop a SAT-based analysis
approach to support the CWQ calculus for WSNs to check whether the whole network will reach some error configu-
rations or not.

Probabilistic Trust Analysis. Nielson et al. [31] developed a novel probabilistic trust analysis for supporting the
Quality Calculus to indicate the trust that a user can have in the overall robustness of a system. They assume each
channel has a trust value and change the syntax of binders into &πq(cl1

1 ?x1, · · · , cln
n ?xn). Here, π ∈ D({x1, · · · , xn} →

L⊥) is a probability distribution indicating the probability of the various inputs having been received where ⊥ denotes
the absence of input and L⊥ is the lifted trust lattice obtained from L by adding ⊥ as the new least element. Then,
they use the information about the probabilities that expected input will be absent to associate probability distributions
with all program points of interest, where the probabilities indicate the trust level of the data.

The trust analysis performed for Quality Calculus, in related work [31], however is not applicable to the CWQ
Calculus for WSNs. The reason is as follows: related work [11, 35] declare that, the effectiveness of the decision of
WSNs making depends on the quality of available information, which means that the quality of the data may affect
the system decision as well. Specifically, local stored data inside one single node may not be sufficient for making
the best system decision. Thus, a better system decision of a WSN is expected to be made based on the data with the
highest level of trustworthiness if data from all its constituent network nodes are received and considered.

Thus, in this paper, we propose a new data-driven probabilistic trust analysis of the CWQ calculus for WSNs. In
our analysis, we also take data trustworthiness into account, and decouple the probability of receiving input data from
the probability of the trustworthiness level of receiving data, which makes a more flexible probabilistic analysis pos-
sible (e.g., for analyzing systems based on WSNs). The overall trustworthiness of the system decision is determined
by performing relational analysis to combine these two probability distributions.

8. Conclusion and Future Work

In this paper, we extended the CWQ calculus by modifying and simplifying it to be a parametric framework to
make it more flexible for modeling and reasoning about networks of different topological structures. In our new
framework, we used an undirected graph to describe the topology of the entire network as a configuration, such that
all topological structure changes can be easily captured by this parametric framework. We used two partial functions
to illustrate the different transmission areas of different nodes when using different channels. Moreover, we proposed
two formal analysis approaches for CWQ calculus based on the theory of static analysis:

1) We developed a SAT-based robustness analysis for supporting the calculus to check the vulnerability of the
whole network. We formulated all the interesting program points as propositional formulae, and used an existing
efficient SMT solver Z3 to check the satisfiability of the formulae which then determines whether the corresponding
program point can be reached or not.

2) We proposed a data-driven probabilistic trust analysis to decouple the probability of receiving data from the
probability of the trustworthiness of receiving data, which makes a more flexible probabilistic analysis possible (e.g.,
for analyzing systems based on WSNs). The overall trustworthiness of the system decision is then determined by
performing a relational analysis to combine these probability distributions.

Finally, we gave a real-world case study with the scenario of refueling a car to illustrate the applicability of the
extended calculus and these two analysis approaches. Several interesting topics are discussed below.

• Correctness and Soundness. In supporting to analyse the robustness and trustworthiness of CWQ calculus
and WSNs, we propose two formal analysis approaches in Section 5 and Section 6, respectively. The transitions
in these analysis rules are given based on the semantic rules shown in Section 3. According to the theories in
type system [3, 38], the correspondence between these inference rules and semantic rules is left to be proved.
Besides, under the assistance of the theorem provers (e.g., Maude [4, 25] and Coq [2]), the correctness and
soundness of these inference rules may also be proved in the future.

• Probability Density Function for the Distance. Taking our probabilistic trust analysis into consideration, it
will be a very interesting topic if the probability distribution for receiving data depends on the distance between
two nodes, which means that the π(x) will not be a single probability, but a probability density function for

22

the distance. We are inspired from the work [16, 43] that we can also learn from the percolation theory to
investigate the relationship between the probability distribution of receiving data and the distance.

In the future, we are continuing to explore more on the reasoning of the wireless networks based on the formal se-
mantics [15], including the denotational semantics and algebraic semantics. Linking theories between these semantics
and a deduction system of the calculus may also be interesting topics. Furthermore, we want to take the mobility into
consideration to form the mCWQ calculus (CWQ calculus with Mobility) and introduce the probability into the syntax
to form the pCWQ calculus (CWQ calculus with Probability) to capture more features of WSNs. It is also possible
to use PRISM [18] for automatic probabilistic analysis. Besides, we will consider to give an explicit inference rule to
deal with the analysis of recursion in the robustness analysis approach and also add a name restriction into the calculus.

Acknowledgement. This work was partly supported by the Danish National Research Foundation and the National
Natural Science Foundation of China (Grant No. 61361136002) for the Danish-Chinese Center for Cyber Physical
Systems. It was also supported by National Natural Science Foundation of China (Grant No. 61321064) and Shanghai
Collaborative Innovation Center of Trustworthy Software for Internet of Things (No. ZF1213).

References

[1] J. Abrial. Formal Methods: Theory Becoming Practice. J. UCS, 13(5):619–628, 2007.
[2] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Texts

in Theoretical Computer Science. An EATCS Series. Springer, 2004.
[3] L. Cardelli. Type Systems. In A. B. Tucker, editor, The Computer Science and Engineering Handbook, pages 2208–2236. CRC Press, 1997.
[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F. Quesada. Maude: Specification and Programming in Rewriting

Logic. Theor. Comput. Sci., 285(2):187–243, 2002.
[5] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. 14th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software,

(ETAPS 2008), Budapest, Hungary, March 29–April 6, 2008, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer,
2008.

[6] L. M. de Moura and N. Bjørner. Satisfiability Modulo Theories: Introduction and Applications. Commun. ACM, 54(9):69–77, 2011.
[7] O. Dousse, P. Mannersalo, and P. Thiran. Latency of wireless sensor networks with uncoordinated power saving mechanisms. In Proc. 5th

ACM Interational Symposium on Mobile Ad Hoc Networking and Computing, (MobiHoc 2004), Roppongi Hills, Tokyo, Japan, May 24–26,

2004, pages 109–120. ACM, 2004.
[8] C. Ene and T. Muntean. A Broadcast-based Calculus for Communicating Systems. In Proc. 15th International Parallel & Distributed

Processing Symposium (IPDPS 2001), San Francisco, CA, April 23–27, 2001, page 149. IEEE Computer Society, 2001.
[9] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and W. L. Tan. A Process Algebra for Wireless Mesh Networks. In

Proc. 21st European Symposium on Programming Languages and Systems (ESOP 2012), volume 7211 of Lecture Notes in Computer Science,
pages 295–315, Tallinn, Estonia, March 2012. Springer.

[10] F. Ghassemi, W. Fokkink, and A. Movaghar. Restricted Broadcast Process Theory. In Proc. 6th IEEE International Conference on Software

Engineering and Formal Methods, (SEFM 2008), Cape Town, South Africa, 10–14 November 2008, pages 345–354. IEEE Computer Society,
2008.

[11] D. Gillies, D. J. Thornley, and C. Bisdikian. Probabilistic Approaches to Estimating the Quality of Information in Military Sensor Networks.
Comput. J., 53(5):493–502, 2010.

[12] J. C. Godskesen. A Calculus for Mobile Ad Hoc Networks. In Proc. 9th International Conference on Coordination Models and Languages,

(COORDINATION 2007), Paphos, Cyprus, June 6–8, 2007, volume 4467 of Lecture Notes in Computer Science, pages 132–150. Springer,
2007.

[13] J. C. Godskesen and S. Nanz. Mobility Models and Behavioural Equivalence for Wireless Networks. In Proc. 11th International Conference

on Coordination Models and Languages, (COORDINATION 2009), Lisboa, Portugal, June 9–12, 2009, volume 5521 of Lecture Notes in

Computer Science, pages 106–122. Springer, 2009.
[14] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666–677, AUG 1978.
[15] Y. Huang, J. He, H. Zhu, Y. Zhao, J. Shi, and S. Qin. Semantic Theories of Programs with Nested Interrupts. Frontiers of Computer Science,

9(3):331–345, 2015.
[16] Z. Kong and E. M. Yeh. Connectivity and Latency in Large-Scale Wireless Networks with Unreliable Links. In Proc. 27th IEEE International

Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, (INFOCOM 2008), 13–

18 April 2008, Phoenix, AZ, USA, pages 11–15. IEEE, 2008.
[17] Z. Kong and E. M. Yeh. On the Latency for Information Dissemination in Mobile Wireless Networks. In Proc. 9th ACM Interational

Symposium on Mobile Ad Hoc Networking and Computing, (MobiHoc 2008), Hong Kong, China, May 26–30, 2008, pages 139–148. ACM,
2008.

[18] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic Real-Time Systems. In Proc. 23rd International

Conference on Computer Aided Verification, (CAV 2011), volume 6806 of LNCS, pages 585–591. Springer, 2011.
[19] I. Lanese and D. Sangiorgi. An Operational Semantics for a Calculus for Wireless Systems. Theor. Comput. Sci., 411(19):1928–1948, 2010.

23

[20] E. A. Lee. Architectural Support for Cyber-Physical Systems. In Proc. 12th International Conference on Architectural Support for Program-

ming Languages and Operating Systems, (ASPLOS 2015), Istanbul, Turkey, March 14–18, 2015, page 1. ACM, 2015.
[21] S. Liu, Y. Zhao, H. Zhu, and Q. Li. A Calculus for Mobile Ad Hoc Networks from a Group Probabilistic Perspective. In Proc. 13th IEEE

International Symposium on High-Assurance Systems Engineering (HASE 2011), pages 157–162. IEEE Computer Society, 2011.
[22] S. Malik and L. Zhang. Boolean Satisfiability from Theoretical Hardness to Practical Success. Commun. ACM, 52(8):76–82, 2009.
[23] M. Merro. An Observational Theory for Mobile Ad Hoc Networks (full version). Inf. Comput., 207(2):194–208, 2009.
[24] M. Merro and E. Sibilio. A Timed Calculus for Wireless Systems. In Proc. 3rd IPM International Conference on Fundamentals of Software

Engineering, (FSEN 2009), volume 5961 of Lecture Notes in Computer Science, pages 228–243. Springer, 2009.
[25] J. Meseguer. Maude. In D. A. Padua, editor, Encyclopedia of Parallel Computing, pages 1095–1102. Springer, 2011.
[26] N. Mezzetti and D. Sangiorgi. Towards a Calculus For Wireless Systems. Electr. Notes Theor. Comput. Sci., 158:331–353, 2006.
[27] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982.
[28] R. Milner. Communicating and Mobile Systems: The PI-Calculus. Cambridge University Press, New York, NY, USA, 1999.
[29] S. Nanz and C. Hankin. Formal Security Analysis for Ad-Hoc Networks. Electronic Notes in Theoretical Computer Science, 142:195–213,

2006.
[30] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.
[31] H. R. Nielson and F. Nielson. Probabilistic Analysis of the Quality Calculus. In Proc. Joint IFIP WG 6.1 International Conference on Formal

Techniques for Distributed Systems, (FMOODS/FORTE 2013), Held as Part of the 8th International Federated Conference on Distributed

Computing Techniques (DisCoTec 2013), Florence, Italy, June 3–5, 2013, volume 7892 of Lecture Notes in Computer Science, pages 258–272.
Springer, 2013.

[32] H. R. Nielson, F. Nielson, and R. Vigo. A Calculus for Quality. In Proc. 9th International Symposium on Formal Aspects of Component

Software, (FACS 2012), Mountain View, CA, USA, September 12–14, 2012. Revised Selected Papers, volume 7684 of Lecture Notes in

Computer Science, pages 188–204. Springer, 2012.
[33] K. Prasad. A Calculus of Broadcasting Systems. Science of Computer Programming, 25(2–3):285–327, 1995.
[34] K. Prasad. A Prospectus for Mobile Broadcasting Systems. Electr. Notes Theor. Comput. Sci., 162:295–300, 2006.
[35] V. Sachidananda. Quality of Information in Wireless Sensor networks. In Proc. the Joint Workshop of the German Research Training Groups

in Computer Science, Algorithmic synthesis of reactive and discrete-continuous systems, (AlgoSyn 2010), May 31–June 2, 2010, page 115.
Verlagshaus Mainz, Aachen, Germany, 2010.

[36] A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A Process Calculus for Mobile Ad Hoc Networks. Sci. Comput. Program., 75(6):440–469,
2010.

[37] R. Vigo, F. Nielson, and H. R. Nielson. Broadcast, Denial-of-Service, and Secure Communication. In Proc. 10th International Conference

on Integrated Formal Methods (IFM 2013), Turku, Finland, June 10–14, 2013, volume 7940 of Lecture Notes in Computer Science, pages
412–427. Springer, June 2013.

[38] D. M. Volpano, C. E. Irvine, and G. Smith. A Sound Type System for Secure Flow Analysis. Journal of Computer Security, 4(2/3):167–188,
1996.

[39] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. S. Fitzgerald. Formal Methods: Practice and Experience. ACM Comput. Surv., 41(4), 2009.
[40] X. Wu, H. R. Nielson, and H. Zhu. A SAT-Based Analysis of a Calculus for Wireless Sensor Networks. In Proc. 9th IEEE International

Symposium on Theoretical Aspects of Software Engineering (TASE 2015), pages 23–30. IEEE Computer Society, 2015.
[41] X. Wu and H. Zhu. A Calculus for Wireless Sensor Networks from Quality Perspective. In Proc. IEEE 16th International Symposium on

High Assurance Systems Engineering (HASE 2015), pages 223–231, Daytona Beach, FL, USA, January 2015.
[42] X. Wu and H. Zhu. Probabilistic Analysis of a Calculus for Wireless Sensor Networks. In Proc. 4th International Workshop on Formal

Techniques for Safety-Critical Systems, (FTSCS 2015), Paris, France, November 6–7, 2015. Revised Selected Papers, volume 596 of Com-

munications in Computer and Information Science, pages 155–171. Springer, 2015.
[43] S. Zhao, L. Fu, X. Wang, and Q. Zhang. Fundamental Relationship between Node Density and Delay in Wireless Ad Hoc Networks with

Unreliable Links. In Proc. 17th Annual International Conference on Mobile Computing and Networking, (MOBICOM 2011), Las Vegas,

Nevada, USA, September 19–23, 2011, pages 337–348. ACM, 2011.
[44] S. Zhao and X. Wang. Node Density and Delay in Large-Scale Wireless Networks With Unreliable Links. IEEE/ACM Trans. Netw.,

22(4):1150–1163, 2014.

24

