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Abstract

The first aim of this thesis is to expand a range of econometric models available to investigate
the behaviours and the drivers of economic output (e.g. real Gross Domestic Product (GDP)),
labour productivity growth (real GDP per capita)). The second aim is to develop algorithms to
estimate the proposed models. The third aim is to develop an inferential framework for each
proposed model.

Chapter 2 generalises some of the existing methods to account for statistical noise in the es-
timation of a frontier, and to gain new insights on the drivers of labour productivity growth.
We apply the model specification to the data set used in Kumar and Russell (The American

Economic Review, 2002). We confirm that capital deepening is the main source of labour pro-
ductivity growth, and also is the factor driving the transformation of the distribution of labour
productivity from one single mode density to a density of two modes. When accounting for sta-
tistical noise in the estimation of the frontier, we find that capital deepening does not contribute
to growth convergence, but instead efficiency change is a driver of growth convergence. The
results indicate that improving technical efficiencies might reduce the gap between the poor and
the rich.

Chapter 3 proposes a non-linear state space stochastic frontier model which provides a re-
searcher a tool to jointly model the dynamic effects of environmental variables on both a pro-
duction function and an inefficiency term. A test for time-variation in technical inefficiencies is
also provided. We apply the proposed model to the economic study of 21 OECD countries. We
wish to investigate under what channels foreign direct investment (FDI) affects a production
process: through a production function, an inefficiency term, or both. The results show that
FDI plays more important role in influencing the shift of the production frontier rather than the
distribution of technical inefficiencies. This is to suggest that an output growth of an economy
might further increase by investing FDI in innovation to improve technological change (shift of
the frontier). We find statistical evidence in favour of time-variation in technical inefficiencies,
and the temporal effect therefore should not be ignored in measuring technical inefficiencies.

Chapter 4 considers an econometric model where interdependent relationships between GDP
and other key macroeconomic variables are allowed. We achieve impulse response functions of
some key macroeconomic variables from a large VAR model with 119 variables. The precision
of estimating a such large VAR model is obtained by using a dimension reduction approach,
namely a reduced rank regression which has a specification independent to the order of the
variables. The impulse responses of a selection of macroeconomic variables to a contractionary
monetary policy have expected sign. For instance, a contractionary monetary policy is followed.
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by a decrease in GDP, price level and an increase in unemployment rate. The results support the
conventional channel of the effects of a contractionary monetary policy on a real economy. That
is, a contractionary monetary policy tends to depress economic activity. An increase in interest
rate often leads to an increase in the cost of capital, which then affects capital accumulation, and
capital accumulation affects the labour demand, and the labour demand affects unemployment
rate. Comparing the forecast performance of the proposed model to other popular approaches
used in the literature of large VARs, we find that the proposed model provides a better forecast
for GDP, consumer price index and producer price index in terms of a point forecast mea-
sure (e.g. mean squared forecast errors) and a density forecast measure (e.g. log predictive
likelihood). In addition, we perform an extensive Monte Carlo simulation to investigate the
performance of a range of econometric techniques (i.e. cross entropy, predictive likelihood and
Laplace approximation) used in rank selection of a large VAR model. The results reveal that
the approaches underestimate the rank. The lower rank models appear to provide better long
horizon forecasts than the benchmark (the model with a correct rank) in terms of point forecast
and density forecast measures.
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CHAPTER 1

Introduction and Motivation

Economic growth is important for economic development. It is associated with an improvement
in quality of life and living standards of a nation. Higher economic growth is also associated
with achieving other macroeconomic goals such as a low unemployment rate and government
budget balance. Economists are often interested in answering important questions such as:
What are the components and drivers of economic growth? How do the components change
over time? How does economic growth respond to structural shocks such as monetary or fiscal
shocks? The answers to these questions assist policy makers to design informed policies with
the aim of boosting the growth of an economy.

This thesis makes a number of contributions in exploring a range of econometric models avail-
able to address the above questions. The first contribution is to expand the set of models avail-
able to investigate the behaviours and the drivers of economic output (e.g. Gross Domestic
Product (GDP) growth, labour productivity growth (GDP per capita). The second contribution
is the development of algorithms to estimate the proposed models. The third contribution is the
development of an inferential framework for each proposed model to gain evidence addressing
the important questions relating to the behaviours and drivers of economic output.

The second and third chapters of this thesis explain output growth using the concept of an ef-
ficient frontier (the maximum technically feasible output achievable from given inputs) from
the literature on productivity and efficiency. The fourth chapter focuses on forecasting output
growth as well as its response to monetary shocks. The model specification in the second chap-
ter is in a nonparametric framework, whereas the model specifications in the third and fourth
chapters are developed in parametric frameworks with flexible forms. The model specifica-
tion in the third chapter explicitly accounts for time variation. The model in the fourth chapter
permits joint modelling of a large set of potentially endogenous variables.
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The study in Chapter 2 is motivated by research using the concept of an efficiency frontier to
explain economic growth (see Färe et al. (1994), Ray and Desli (1997), Henderson and Rus-
sell (2005), Mastromarco and Simar (2015), and among many others).1 In this framework, the
labour productivity growth (GDP per capita) is decomposed into three components: efficiency
change (the movement towards the frontier), technological change (the shift of the frontier) and
capital deepening (the movement along the frontier). The efficient frontier is the key element
for the labour productivity decomposition, and is often estimated by Data Envelopment Analy-
sis (DEA). DEA is a data-driven method that does not require a priori assumptions relating to
the functional form of the frontier (e.g. Cobb Douglas, translog), or assumptions about market
structure and technological change. However, DEA assumes no statistical noise (e.g. measure-
ment error) in the estimation of the frontier. We aim to account for such a statistical noise in
Chapter 2.

We generalise the local likelihood estimator considered in Kumbhakar et al. (2007) and Park
et al. (2015) to account for statistical noise in the estimation of the efficient frontier, to measure
technological change in a nonparametric framework, and to gain new insights about the drivers
of output changes. To the best of our knowledge, our study is the first application of local like-
lihood estimator in the context of growth and convergence. We apply our model specification
to the data set used in Kumar and Russell (2002). We find capital deepening is not only the
main source of labour productivity growth, but also the factor driving the transformation of the
distribution of labour productivity from a single mode density to a density of two modes. This
result implies that the world is divided into two clubs: the rich and the poor. However, we do not
find capital deepening contributes to growth convergence. We instead find statistical evidence
suggesting technical efficiency change is a driver of growth convergence. This indicates that an
improvement in technical efficiencies might reduce the gap between the poor and the rich.

Chapter 3 focuses on explaining the dynamic variations of technical efficiencies in terms of
observable variables.2 Such a study provides answers to a number of questions such as: What
are the factors driving changes in technical inefficiencies? How do the effects vary over time?
When explaining variations in technical inefficiency, researchers often face an issue as to where
the factors influencing technical inefficiencies (sometimes known as “exogenous” or “environ-
mental” variables) should be incorporated into a production process: through a technical ineffi-

1 Compared to the conventional growth accounting approach, the efficient frontier approach avoids a number
of caveats relating to the assumptions about functional forms and returns to scale of a production function (see
Caselli (2005) for further discussion).

2Technical inefficiency measures how effective a decision making unit (e.g. a firm, an organisation, a country)
is at using inputs to produce output relative to the technological frontier, which is reflected by a deviation from the
observation toward the frontier.
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ciency term or a production frontier, or both.

We are motivated by studies that incorporate the effects of the environmental variables on both
a production function and an inefficiency term. One of the approaches is a conditional nonpara-
metric frontier (Daraio and Simar (2005), Mastromarco and Simar (2015)). The approach does
not require a specific assumption about the form of the production function. However, it ignores
the presence of statistical noise in the estimation of the production frontier. Simar et al. (2017)
overcome the issue of ignoring statistical noise by using local linear least squares. Obtaining
statistical inferences (e.g. standard errors, hypothesis testing, etc.) for such a nonparametric
stochastic frontier model is not a trivial task. A proper bootstrap algorithm is required. An al-
ternative is the stochastic parametric frontier model with a scaling property (Simar et al. (1994),
Wang and Schmidt (2002), Alvarez et al. (2006)). The scaling property feature implies that the
distribution of inefficiency is multiplicatively decomposed into a function of the environmental
variables and a random variable (which is known as a base inefficiency). The distribution of the
base inefficiency is independent of the environmental variables. The statistical inferences for
technical inefficiencies in a stochastic parametric frontier model are directly obtained, however,
an assumption about a production function is required.

In Chapter 3, building upon the model specification of Wang and Schmidt (2002) and Alvarez
et al. (2006), we extend their static model specification to a dynamic case. We allow the base
technical inefficiencies to vary over time and across decision making units (DMUs) (e.g. coun-
tries, firms, organizations, and etc.). In practice, it might be the case that the base inefficiencies
are not identically distributed across DMUs. DMUs can learn from their mistakes and have
incentives to improve their own efficiencies over time. The adjustments in technical efficiencies
can vary across DMUs due to heterogeneity factors such as the regulation system and the av-
erage quality of labours. To accommodate these, we allow the coefficients associated with the
environmental variables in technical inefficiencies to vary across DMUs and over time. We also
provide a formal test for time-varying effects of technical inefficiencies.

Our time-varying specification of technical inefficiencies is closely related to that of Tsionas
(2006) who allows the logarithm of the base inefficiencies to follow a first order autoregressive
process.3 Deviating from Tsionas (2006), we do not restrict the dynamic pattern of the base
technical inefficiencies to be identical across DMUs. Nor do we restrict the effects of envi-
ronmental variables on technical inefficiencies to be time-invariant and homogeneous across
DMUs. Both Tsionas’s (2006) model specification and ours contain a non-linear feature in

3Ahn and Sickles (2000), Emvalomatis et al. (2011) also consider the autoregressive process of inefficiencies
in their model specifications. However, their studies do not consider the effects of environmental variables on
inefficiencies.
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technical inefficiencies. The algorithm used to estimate our proposed model is more efficient.
Tsionas (2006) uses a Metropolis Hasting with random walk algorithm to address the non-
linearity issue, and estimates the time-varying parameters at each time period. In our work,
we adapt the idea of using a Gaussian approximation from Durbin and Koopman (1997) and
Chan and Strachan (2014) to provide an efficient way of sampling the non-linear parameters
in technical inefficiencies. We further use the precision-based algorithm (Chan and Jeliazkov
(2009)) which utilises the sparse structure of the matrices to improve efficiency and accelerate
the computation time.

We provide a formal test for time-variation in technical inefficiencies. To perform such a
hypothesis test, we first re-parametrize our model specification in the form of a non-centred
parametrisation developed in Frühwirth-Schnatter and Wagner (2010). We then adopt the idea
of using the Savage-Dickey ratio in Chan (2016) to perform the test for time variation in the
parameters. To the best of our knowledge, this is the first study providing a formal test for time
variation in technical inefficiencies.

We also allow the coefficients associated with a production function to be time-varying. The
time-varying parameters with a random walk in a production/cost function have recently been
considered in a number of studies such as Jin and Jorgenson (2010) and Peyrache and Rambaldi
(2012). These studies focus on the measurement of technological change, and do not consider
the effects of environmental variables upon the production frontier. Peyrache and Rambaldi
(2012) show the time-varying parameters in a production function provide a flexible way of
capturing technological change compared to a time-dummy variable approach. Unlike the pre-
vious studies, we allow the coefficients associated with a production to follow a random walk
with an intercept, and show that such a time-varying specification encompasses the commonly
used production functions (e.g. Cobb-Douglas, translog) with a linear trend.

We apply the proposed model to the study of economic growth of 21 OECD countries over the
period 1970-2011. We wish to investigate whether foreign direct investment (FDI) plays a role
in influencing the frontier or the technical inefficiency component. We find that FDI plays an
important role in influencing the production frontier rather than technical inefficiencies. Capital
deepening is still the main factor driving output growth. We also find evidence suggesting
inefficiencies of the countries are time-varying, and therefore the temporal effects should be
included in capturing the behaviours of technical inefficiencies.

Chapter 4 studies the behaviours of output (real Gross Domestic Product (GDP)) growth in
an econometric system which allows for interdependent relationships among output growth
and other macroeconomic variables such as interest rates, the inflation rate, the unemployment
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rate, and many others. We are interested in impulse response functions of some important
macroeconomic variables to structural shocks (e.g. monetary shocks), and the forecast of the
variables. A vector autoregressive (VAR) model is a natural tool to address these issues (see
Blanchard and Quah (1989), Sims (1992), Cochrane (1998), and many others). Many studies
find that large VAR models tend to provide better forecasts (see Banbura et al. (2010), Carriero
et al. (2011), Koop (2013)). Such large VAR models often risk over-parametrisation, which in
turn can worsen the forecast performance and impulse responses. Researchers in the literature
of large VARs have made significant contributions in proposing various approaches to handling
the over-parametrisation issue, and developing algorithms which are computationally tractable
and efficient in the estimation of such large VAR models.

In Chapter 4 we use the reduced rank regression (RRR) approach to tackle the issue of over-
parametrisation and contribute to this research line on large VARs in the following aspects. To
achieve a unique identification in RRR in Bayesian analysis, a linear normalization condition is
often used. A limitation of this specification is the lack of invariance in the variable ordering.
That is, empirical results can change if we change the ordering. The model specification in
this paper is invariant to the ordering of the variables. The invariant specification is built upon
a singular value decomposition (SVD) of the matrix that is potentially reduced rank. Such
an invariant specification using SVD is also considered in other research areas such as factor
models (Chan et al. (2017) and Kaufmann and Schumacher (2013)), co-integrating vector error
correction models (Strachan and Inder (2004), Koop et al. (2010)).

Given an SVD specification, sampling some of the identified parameters from their conditional
posteriors is not computable as the parameters belong to the Stiefel manifold, i.e. they are sub-
ject to semi-orthogonal constraints. To simplify computation we make use of the parameter
expansion approach (see Ghosh and Dunson (2009), Koop et al. (2010), Chan et al. (2017))
to map the parameters from the Stiefel manifold to the real space. More importantly, the con-
ditional posterior of the parameters in the expanded model are simple to draw from, i.e. they
belong to the class of normal distributions. Sampling the parameters from their conditional pos-
terior is therefore efficient. Further, using the conventional method to sampling the parameters
from its high-dimensional posterior density can be demanding when the size of the VAR system
increases. To improve the computation time we adopt the computation algorithm exploiting a
particular Kronecker structure of covariance matrices as suggested Carriero et al. (2016a) to our
context.

Regarding rank selection of the VAR coefficient matrix, we first estimate a set of models with
all possible values of the rank, and then choose a model yielding the highest marginal likeli-
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hood. In our context, the marginal likelihood computation is not trivial as it does not have a
closed form. We approximate the marginal likelihood by using a number of methods such as
cross entropy, predictive likelihood, and Laplace approximation, which are often used in a low
dimensional set-up in a number of studies such as Geweke (1996), Geweke (2001), Strachan
and Inder (2004), Chan and Eisenstat (2015). The performance of these methods in a high di-
mensional set-up is still not quite clear. In Chapter 4, we conduct an extensive Monte Carlo
simulation to investigate the performance of the methods in a high dimensional set-up. The
Monte Carlo results suggest a downward bias in estimating the rank which potentially leads to a
selection of misspecified models. The downward bias is more evident when the singular values
of VAR coefficients are small (close to zero). This result is not a surprise, but the implication
for forecasting is important and therefore we explore this area of application.

We carry out the recursive forecasting exercise to explore the forecast performance of misspec-
ified rank models against that of a benchmark model (a model with a correct rank). Using the
point forecast measures (e.g. mean squared errors, mean absolute errors, and the weighted mean
squared errors) we find that RRR with lower rank models perform worse than the benchmark
for shorter forecast horizons. However, for longer forecast horizons they appear to perform as
well as or even better than the benchmark. With regard to density forecasts, the lower rank
models appear to provide better forecasts than the benchmark.

We construct forecasts and impulse responses for a set of macroeconomic variables to a mon-
etary policy shock using a large VAR model with 119 dependent variables. Within these 119
variables, we focus on forecasting real gross domestic product, consumer price index, federal
funds rate, civilian unemployment rate, industrial production growth, money stock M2, real per-
sonal consumption, producer price index, and personal consumption expenditure. We compare
the forecasting performance of the macroeconomic variables using our proposed approach to
various popular alternatives. Our results suggest no single model dominates in forecasting the
variables. Our proposed model provides better forecasts for GDP, consumer price index, and
producer price index. The impulse response of the macroeconomics of interest have expected
sign and support economic theories. For example, a contractionary monetary policy is followed
by a decrease in GDP, price level and an increase in unemployment rate.

Chapter 5 of this thesis concludes and provides future research areas.
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CHAPTER 2

Productivity Growth and Convergence: Local
Linear Maximum Likelihood

2.1 Introduction

Explaining economic growth is one of the central problems that economists have grappled with
for decades. A comprehensive survey on the voluminous literature of economic growth is re-
ferred to Barro (1999), Sickles et al. (2015), Badunenko et al. (2017) and references therein. In
this chapter, we only discuss the studies most closely related to our research. A growth account-
ing approach was often considered as a main tool-kit to explain economic growth (see Solow
(1956), Maddison (1987)). The approach explains output changes by input changes and the
unexplained residual which is often referred to as “technological progress” (see Barro (1999)).
The accounting approach neglects the fact that economies utilise their productive capacities dif-
ferently. A number of studies propose an alternative approach which accounts for the potential
inefficiency of production, and gives us a structural interpretation of the unexplained residual
(see Färe et al. (1994), Ray and Desli (1997), Kumar and Russell (2002), Henderson and Rus-
sell (2005), Mastromarco and Simar (2015) and among others). This chapter is motivated by
this line of research on economic growth.

The basic idea underpinning the studies that account for the potential inefficiency of produc-
tion in explaining economic growth is to use the concept of efficient frontier from the literature
on productivity and efficiency. The efficient frontier approach avoids the assumptions about a
production function form (Cobb-Douglas) and returns to scale (constant), which are often made
in the growth accounting approach (see Caselli (2005) for further discussion). In the efficient
frontier framework labour productivity growth is decomposed into the tripartite components:
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2.1. INTRODUCTION

efficiency change (the movement towards the frontier), technological change (the shift of the
frontier) and capital deepening (the movement along the frontier due to an increase of capital
per worker).1 Such a tripartite decomposition of labour productivity growth provides a frame-
work to address a number of questions such as: Which countries make the most efficient use
of their own inputs? Is labour productivity growth of the countries driven by improving their
efficiencies? Or is it due to capital deepening or technological change? The answers to these
questions assist policy makers to design informed policies. For example, if efficiency changes
play an important role in economic growth, then policies should focus on the need for improve-
ment in technical efficiency such as improving the legal system, providing workers with more
training to improve their skills. If economic growth is driven by input changes, policies should
aim to change the input mix, e.g. more investment in capital stock.

The construction of the efficient frontier is the key element for the labour productivity de-
composition. Data Envelopment Analysis (DEA), a data-driven approach implemented with
standard mathematical programming, is often used to estimate the efficient frontier (Färe et al.

(1994), Henderson and Russell (2005), Badunenko et al. (2008)). The conventional DEA does
not require a priori assumptions about the functional form of the frontier (e.g. Cobb-Douglas,
translog function, etc.) or the structure of markets or technological change. However, a draw-
back of this approach is to assume no statistical noise (e.g. measurement error, outliers) and so
could potentially suffer from extreme observations (Simar (2003), Cazals et al. (2002)). The
estimated efficiency scores calculated from datasets that include outliers can be misleading. In
this chapter, we generalise some of the existing models (i.e. Local Likelihood Estimator (LLE)
and Stochastic DEA (SDEA)) to account for such statistical noise and to estimate technological
change nonparametrically in the context of two-period panel data.

One of the well-known approaches that account for statistical noise is a parametric stochastic
frontier, pioneered by Aigner et al. (1977) and Meeusen and van den Broeck (1977). This
approach is implemented in some studies of economic growth and convergence such as Koop
et al. (1999), Hultberg et al. (1999), Koop et al. (2000), and Kumbhakar and Wang (2005). A
requirement of a parametric stochastic frontier approach is an assumption about the functional
form of the frontier. Kumbhakar et al. (2007) relax the assumption by using the local likelihood
estimator (LLE).2 Their proposed method is first applied to continuous explanatory variables.
Park et al. (2015) later generalise it to encompass categorical variables. Both methods are
originally applied to cross-sectional data.

1Labour productivity measures how much a nation produces per unit of labour given its resources (e.g. capital)
and available technology.

2Further discussion about nonparametric estimation in stochastic frontier model is referred to Parmeter and
Kumbhakar (2014).

8



2.2. METHODOLOGY

Another estimator that accounts for such a statistical noise we adapt here is stochastic DEA
(Simar (2007), Simar and Zelenyuk (2011)), hereafter referred to as SDEA. SDEA can be
viewed as a combination of the estimation methods of DEA and LLE. While DEA uses “orig-
inal” input-output data to construct the frontier, SDEA uses the data filtered from noise via
LLE.

A contribution of this chapter is to generalise the methods of Kumbhakar et al. (2007), Park et al.

(2015) and Simar and Zelenyuk (2011), to estimate technological change nonparametrically in
the context of two-period panel data using LLE and SDEA. To the best of our knowledge this
study is the first application of LLE and SDEA on economic growth and convergence, and also
is the first paper that models technology change using LLE and SDEA. Some new insights about
the drivers of labour productivity growth are found by using the new methods.

The rest of this chapter is structured as follows. Section 2.2 presents the nonparametric de-
terministic and stochastic methods used in the chapter. Section 2.3 discusses some computa-
tional issues relating to the estimation of the efficient frontier using stochastic nonparametric
approaches. Section 2.4 discusses the empirical results while Section 2.5 concludes the chapter.

2.2 Methodology

We first present the estimation of the world frontier using DEA, LLE, and SDEA, and then
discuss the similarities and differences amongst the approaches in the context of a single output.

Let X = (K,L) ∈ R2
+ denote a vector of two inputs, where K is physical capital and L is

labour, and let Y ∈ R+ denote a single output (GDP). The technology describing a conversion
of the inputs to GDP in period t for all countries, can be characterised via a set

Tt = {(X, Y ) : X can produce Y in period t}. (2.2.1)

The boundary of this technology set is referred to as the (production) frontier.

2.2.1 Data Envelopment Analysis (DEA)

Under the regularity conditions, the technology set (2.2.1) can be characterised by the Shephard
(1970) output distance function. The output distance function of a country i in period t relative
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to the frontier in period t is defined as

Dt(Xit, Yit) ≡ inf{δ > 0 : (Xit, Yit/δ) ∈ Tt}. (2.2.2)

The distance function is also viewed as a criterion of efficiency of a country i, denoted as
TEit ≡ D(Xit, Yit). A country is considered as fully efficient when TEit = 1, and technically
inefficient if TEit < 1.

The true technology set Tt is not known, but can be estimated by DEA. The constant return to
scale technology set at period t, T̂ DEAt , estimated using DEA is defined as:3

T̂ DEAt =
{

(X, Y ) ∈ R2
+ × R1

+ :
n∑
i=1

αitYit ≥ Y ;
n∑
i=1

αitXit ≤ X;αit ≥ 0, i = 1, . . . , n
}
,

(2.2.3)
where αit are intensity variables. The efficiency score for a country i in period t is then obtained
via the following optimisation problem

T̂E
DEA

it = min
δ,α1t,...,αnt

{δ ≥ 0 : (Xit, Yit/δ) ∈ T̂ DEAt }. (2.2.4)

2.2.2 Local Likelihood Estimator (LLE)

Our nonparametric stochastic frontier here is a variant of the models proposed by Kumbhakar
et al. (2007) and Park et al. (2015). We generalise their approaches to estimate technological
change (shift of the frontier) nonparametrically for the two time-period panel data.

Let yit denote the logarithm of output (log(Yit)) for a country i in period t, and xit denote the
logarithm of inputs (log(Xit)). Given the sample of n countries observed in periods t = b and
t = c, the nonparametric stochastic frontier model is:

yit = m(xit, dit)− uit + vit, (2.2.5)

where m(., .) is the unknown frontier function; a two-sided error vit representing statistical
noise normally distributed with zero mean and variance σ2

v(x, d), (vit|xit = x, dit = d) ∼
N(0, σ2

v(x, d)); a one-sided error uit representing technical inefficiency following a half-normal
distribution, (uit|xit = x, dit = d) ∼ |N(0, σ2

u(x, d))|; a dummy variable dit takes the value of
1 if an observation is in the period c, and 0 otherwise.

3The variable return to scale implies that
∑n
i=1 αit = 1 and αit ≥ 0; the non-increasing return to scale∑n

i=1 αit ≤ 1 and αit > 0.
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Given the model (2.2.5), θ(x, d) = [m(x, d), σ2
u(x, d), σ2

v(x, d)]′ is the unknown function to be
estimated. The conditional log-likelihood function of θ is given by

L(θ|xit, dit, yit) =
2∑
t=1

n∑
i=1

log
[
g(yit, θ(xit, dit))

]
, (2.2.6)

where g(., .) is the known conditional probability density function of yit given xit = x and
dit = d. The functional form of g(.) is presented in Section 2.3.

Direct maximisation of the log-likelihood function (2.2.6) over θ is intractable and suffers from
over-fitting (Tibshirani and Hastie (1987)), and therefore the local version of (2.2.6) is consid-
ered instead, i.e.

Ln(θ0,Θ1;x, d) =
2∑
t=1

n∑
i=1

(
log g(yit, θ0(x, d) + Θ′1(x, d)(xit − x))

)
× KH(xit − x)Wγ(dit, d), (2.2.7)

where Θ1(x, d) is the first derivative of m(x, d) at given point (x, d) , and Θ′1(x, d) is the trans-
posed vector of Θ1(x, d).

The basic idea of LLE is to replace θ(xit, dit) in (2.2.6) by polynomial approximation in a
neighbourhood of a fixed interior point (x, d) in the direction of continuous variables x, and
maximise (2.2.7) instead. A maximiser of the local likelihood (2.2.7) is (θ̂0(x, d), Θ̂1(x, d)).
The proposed estimator of θ(x, d) is then θ̂0(x, d), while Θ̂1(x, d) is an estimator of the first
partial derivative of θ(x, d) with respect to x. The asymptotic properties and the bias in a finite
sample of LLE estimator are referred to in Theorem 3.1 in Park et al. (2015). The form of the
bias term shows that the bias increases with the curvature of the LLE estimator, θ(.).

In (2.2.7), the neighbouring observations around (x, d) are placed more weight than those fur-
ther from (x, d). The weight is chosen by using a kernel approach. For the discrete variable
dit, we use the kernel function proposed by Aitchison and Aitken (1976), i.e. Wγ(dit, d) =
(1 − γ)I(dit 6=d)γI(dit=d), with a bandwidth γ ∈ [0.5, 1], and an indicator function I(B) taking
a value of 1 if B holds, and 0 otherwise. Other kernel functions for categorical variables are
proposed in Racine and Li (2004) and Park et al. (2015). Their kernel densities are used for
categorical variables with two or more than two values whilst the kernel proposed by Aitchi-
son and Aitken (1976) is designed for categorical variables with two values only. Park et al.

(2015) show that their proposed kernel is equivalent to that of Aitchison and Aitken (1976)
in the context of binary categorical variables. For a vector of p × 1 of continuous variables
xit, we choose the most common kernel used in empirical studies, the Gaussian product, i.e.
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KH(xit, x) = |H|−1∏p
s=1 k

(
xsit−x

s

hs

)
, where H = diag(h1, . . . , hp), with hs being a bandwidth

of continuous variables xs (s = 1, . . . , p), |H| being the determinant of H , and k being an uni-
variate Gaussian density. Other kernel choices for continuous variables such as biweight kernel,
triweight kernel, Epanechnikov kernel can be used (see Pagan and Ullah (1999, pp. 54-55) for
further details).

The bandwidths γ and H in (2.2.7) are chosen using the leave-one-out maximum likelihood
cross-validation estimator, which is a data-driven approach. They are jointly estimated by max-
imising

MLCV (H, γ) = 1
2n

2∑
t=1

n∑
i=1

log[g(yit, θ̂−iH,γ(xit, dit))], (2.2.8)

where θ̂−iH,γ(xit, dit) is the ‘leave-the ith observation-out’ version of LLE discussed above. Fur-
ther discussion about the estimation of the frontier and the selection of the bandwidths is given
in Section 2.3.

To obtain the predictor of an individual efficiency score for an observation i in period t, we
follow Park et al. (2015) and adapt the procedure in Jondrow et al. (1982, p.235) to the context
of LLE with a 2-period panel

T̂E
LLE(xit, dit) ≈ exp(E(−uit|ε̂it))

= µ̂∗(xit, dit) + σ̂∗(xit, dit)
φ(− µ̂∗(xit,dit)

σ̂∗(xit,dit))
1− Φ(− µ̂∗(xit,dit)

σ̂∗(xit,dit))
, (2.2.9)

where φ(.),Φ(.) are the probability density function (pdf) and cumulative distribution function
(cdf) of a standard normal variable, respectively; ε̂it = yit − m̂(0)(xit, dit), σ̂2(xit, dit) =
σ̂2
u(xit, dit) + σ̂2

v(xit, dit), µ̂∗(xit, dit) = − σ̂2
u(xit,dit)ε̂it
σ̂2(xit,dit) , σ̂∗(xit, dit) = σ̂2

u(xit,dit)σ̂2
v(xit,dit)

σ̂2(xit,dit) .

2.2.3 Stochastic DEA (SDEA)

SDEA is another approach that accounts for statistical noise in the estimation of the produc-
tion frontier. Simar (2007) and Simar and Zelenyuk (2011) propose SDEA in the context of
continuous variables. We extend their approaches to handle both continuous and categorical
variables.

The construction of the constant returns to scale, period-t technology using SDEA, T̂ SDEAt is
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defined as

T̂ SDEAt =
{ n∑
i=1

αitŶ
∗
it ≥ Y ;

n∑
i=1

αitXit ≤ X,αit ≥ 0, i = 1, . . . , n
}
, (2.2.10)

where Ŷ ∗it = exp(ŷ∗it) with ŷ∗it being the fitted value of the output estimated by LLE ((2.2.7)).
The associated individual efficiencies obtained from SDEA follow a similar procedure to that
obtained from DEA (equation (2.2.4)), i.e.

T̂E
SDEA

it = min
δ,α1t,...,αnt

{δ ≥ 0 : (Xit, Yit/δ) ∈ T̂ SDEAt }. (2.2.11)

SDEA can be viewed as a symbiosis of DEA and LLE estimations. LLE is used to filter
the noise; and DEA is used to super-impose the monotonicity and convexity upon the LLE-
estimated frontier.

The asymptotic properties of the SDEA estimator have not, to date, been discussed in the litera-
ture and this is beyond the scope of this thesis. However, the Monte Carlo simulations in Simar
and Zelenyuk (2011) reveal that such an approach performs well in constructing the frontier in
the presence of statistical noise.

2.2.4 Comparison among DEA, SDEA and LLE

This section discusses the similarities and differences among DEA, SDEA, and LLE approaches
in the context of a single output. This allows researchers to better understand about the strength
and limitation of each approach and then they can choose the most suitable approach for their
research. For a single output case, both deterministic and stochastic frontier models can be
presented as follows

Yit = ft(Kit, Lit)e−uitevit , (2.2.12)

where ft(Kit, Lit) is a production function in period t.

The key differences across the approaches lie in the following aspects: the presence of statis-
tical noise, the regularity conditions imposed on the technology set, and the estimation of the
efficiency scores. DEA assumes statistical noise vit equal to 0, and thus the stochastic frontier
model (2.2.12) becomes Yit = ft(Kit, Lit)e−uit . The technical efficiency therefore measures
the distance from observed data to the frontier, which is simply the ratio of observed data to
maximal output given inputs, denoted as TEDEA

it = Yit/ft(Kit, Lit). The estimation of frontier
ft(Kit, Lit) and the associated efficiency scores are obtained through mathematical program-
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ming algorithms as described in (2.2.4).

Unlike DEA, LLE accounts for statistical noise vit, i.e. vit is different from 0. The technical
efficiency in this context is the ratio of observed output to the corresponding stochastic frontier,
denoted as TELLE

it = Yit/(ft(Kit, Lit)evit). The approximation of the technical inefficiency is
obtained by using the procedure described in (2.2.9). The frontier ft(Kit, Lit) is estimated by
the maximum likelihood-based method.

Both DEA and SDEA require mathematical programming algorithms to estimate the individual
technical efficiency scores. DEA uses “original” data {(Kit, Lit, Yit)}ni=1 to construct the fron-
tier ft(Kit, Lit), while SDEA uses “filtered” data {(Kit, Lit, Ŷ

∗
it )}ni=1, where Ŷ ∗it is filtered from

possible noise using LLE. SDEA contains two stages of estimation. The first stage is to obtain
the fitted data Ŷ ∗it using a stochastic nonparametric model (e.g. LLE), and the second stage is to
estimate the frontier and the associated technical inefficiency using DEA.

A number of regularity conditions (such as convexity, monotonicity) are implicitly imposed on
the frontier estimated in DEA and SDEA while they are not in LLE. If one wish to impose the
regularity conditions in LLE, one can adapt the methods discussed in Henderson and Parmeter
(2009), Parmeter et al. (2014), Du et al. (2013). In our context, the constant returns to scale can
be directly imposed in LLE by estimating the normalized version of the frontier where output
and all inputs are normalized by labour (i.e. log(Yit/Lit) = mt(Kit/Lit, 1) − uit + vit). The
frontier estimate, Ŷ ∗it , is then recovered as Ŷ ∗it = (exp( ̂log(Yit/Lit)))Lit.

2.3 Computational Details

In this section we discuss a number of computational issues arising in the estimation of the
frontier using LLE and the bandwidth selection using the local likelihood cross-validation esti-
mator.

14



2.3. COMPUTATIONAL DETAILS

2.3.1 The Frontier Estimation

Theoretically, the estimator of the function of interest θ(x, d) = [m(x, d), σ2
u(x, d), σ2

v(x, d)]′ is
obtained by maximising the log-local likelihood (2.3.1), i.e.

(θ̂0(x, d), Θ̂1(x, d)) = argmax
θ0,Θ1

Ln(θ0,Θ1;x, d),

= argmax
θ0,Θ1

2∑
t=1

n∑
i=1

(
log g(yit, θ0(x, d) + Θ′1(x, d)(xit − x))

)
× KH(xit − x)Wγ(dit, d). (2.3.1)

θ̂0(x, d) is the proposed estimator of θ(x, d), while Θ̂1(x, d) is the estimator of the first partial
derivative of θ with respect to x. The functional form of g(yit, θ0(x, d) + Θ′1(x, d)(xit − x))
for a stochastic frontier model (2.2.5) with a normal distribution for an error term vit, and a
half-normal distribution for an inefficiency term uit is given by Park et al. (2015).4

g(.) = 2√
Ψu(σ2

0u, σ
2
1u;xit − x) + Ψv(σ2

0v, σ
2
1v;xit − x)

× φ

 y −Ψm(m0,m1;xit − x)√
Ψu(σ2

0u, σ
2
1u;xit − x) + Ψv(σ2

0v, σ
2
1v;xit − x))


× Φ

− (y −Ψm(m0,m1;xit − x))×

1
2

√√√√ Ψu(σ2
0u, σ

2
1u;xit − x)

Ψv(σ2
0v, σ

2
1v;xit − x)(Ψu(σ2

0u, σ
2
1u;xit − x) + Ψv(σ2

0v, σ
2
1v;xit − x))

,
where φ(.),Φ(.) are pdf and cdf of a standard normal variable, respectively, and

Ψm(m0,m1;xit − x) = m0(x, d) +m′1(x, d)(xit − x),

Ψv(σ2
0v, σ

2
1v;xit − x) = σ2

0v(x, d) + σ
′2
1v(x, d)(xit − x),

Ψu(σ2
0u, σ

2
1uxit − x) = σ2

0u(x, d) + σ
′2
1u(x, d)(xit − x).

The function θ(x, d) = [m(x, d), σ2
u(x, d), σ2

v(x, d)]′ in our context is subject to a number
of constraints. First, the variances σ2

u(x, d) and σ2
v(x, d) must be non-negative. Second, the

variances of an inefficiency term uit and a random error term vit are smaller than that of
the composited error εit(= −uit + vit = yit − m(xit, dit)), i.e. σ2

u(xit, dit) ≤ σ2
ε(xit, dit),

4Alternatively, one can adopt the parametrisation of the function g(.) for continuous variables in Kumbhakar
et al. (2007) to the context of continuous and discrete variables.
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σ2
v(xit, dit) ≤ σ2

ε(xit, dit). The non-negativity restrictions on the functions of σ2
u(x, d) and

σ2
v(x, d) can be avoided in the local linear estimator by working with the logarithm of the

functions (e.g. Kumbhakar et al. (2007), Park et al. (2015)), i.e. σ̃2
u(x, d) = log(σ2

u(x, d))
and σ̃2

v(x, d) = log(σ2
v(x, d)). The vector of optimisation variables is therefore given by

θ̃(x, d) = [m(x, d), σ̃2
u(x, d), σ̃2

v(x, d)]′. To ensure the second constraints hold, a penalty is
introduced to the local log likelihood function. Such a penalty assigns a large negative value on
the conditional local log likelihood function (i.e. the local likelihood approaches 0) when the
estimators do not belong to their space.

Some initial values for θ0(x, d) and Θ1(x, d) are required. Here we choose the local least
squares estimators (Simar et al. (2017)) as starting values for θ̂0(x, d) and Θ̂1(x, d). That
is θ̂0(x, d) = [m̂CLLS

0 (x, d), log(σ̂2LLS
0u (x, d)), log(σ̂2LLS

0v (x, d))], where m̂CLLS
0 (x, d) is the

corrected estimator for the local least squares estimator, i.e. m̂CLLS
0 (x, d) = m̂LLS

0 (x, d) +√
2σ̂2LLS

0u (x,d)
π

, σ̂2LLS
0u (x, d) and σ̂2LLS

0v (x, d)) are the local least squares (LLS) estimators and

Θ̂1(x, d) = [m̂LLS
1 (x, d), 0, 0]. We also consider the parametric maximum likelihood and

parametric least squares estimators from a parametric stochastic frontier model (i.e. yit =
β0 + β1xit + β2dit − uit + vit) as the initial values of θ0 and Θ1. We find that the choice of the
local least squares estimators as starting values appear to be stable in the optimization algorithm
applied for the data in our empirical study.

2.3.2 Bandwidth Selection

The asymptotic theory behind the estimator requires fairly mild assumptions on the bandwidths,
hs ∝ n−1/(p+4) with s = 1, . . . , p, and λ ∝ n−2/(p+4) so that the bandwidths are not influenced
when they are scaled by a constant (Park et al. (2017)). In practice, choosing bandwidths is
a crucial task in nonparametric estimation as the performance of the estimation depends on
the choice of the bandwidths. Many studies have proposed and investigated the performance of
various bandwidth selection approaches in the context of a kernel density estimator (see Marron
(1988), Park and Marron (1990), Hall and Marron (1991), Henderson and Parmeter (2015) for
a summary). The performance of the approaches in the context of nonparametric regression
estimator is still limited. A brief discussion about the performance of the approaches in a kernel
density estimator is useful for the study of their performance in a nonparametric regression
estimator.

Two common bandwidth selection approaches for a kernel density estimator are an optimal se-
lection (e.g. a rule-of-thumb approach (Silverman (1986)) and a data-driven approach (e.g. LLS
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cross-validation (Bowman (1984), Hall (1983), Stone (1984), local likelihood cross-validation
(Duin (1976), van Es (1991)). Each of the approaches has its own advantages and disadvan-
tages. The optimal selection approach is computationally simple. A LLS cross-validation is one
of the most widely used for data-driven bandwidth selection approaches. Its popularity stems
from the asymptotic theory regarding the bandwidths obtained from a LLS cross-validation
(see Stone (1984)). The optimisation of LLS cross-validation can be challenging in practice.
Multiple local minima is often observed in LLS cross-validation (see Marron (1988), Hall and
Marron (1991), Hall et al. (2004)). To select a bandwidth when multiple local minima occurs,
some studies suggest to choose the largest local minimiser (Marron (1988), Park and Marron
(1990)), while Hall et al. (2004) suggest to choose the second smallest local minima. To the
best of our knowledge, there is still no theoretical explanation explaining why the largest or the
second is the best for a bandwidth selection.

In this chapter, we use a data-driven approach, and carefully examine whether multiple local
minima occurs here. We follow Park et al. (2015) and choose a leave-one-out maximum like-
lihood cross-validation (MLCV) estimator to choose the bandwidths γ and H in (2.2.7). The
MLCV has a strong intuitive appealing in the sense that it chooses a bandwidth which max-
imises the likelihood of observing a given data point:

MLCV(H, γ) = 1
2n

2∑
t=1

n∑
i=1

log[g(yit, θ̂−iH,γ(xit, dit))], (2.3.2)

where θ̂−ih,γ(xit, dit) is the “leave-the ith observation-out” version of LLE discussed above. The
boundary of the bandwidth H is (0,∞), and that of γ is [0.5, 1] with γ > 0.5 indicating the
frontiers in two time periods are differentiated. The estimators of bandwidths are obtained by
minimising the negative MLCV over H and γ.

Some initial values are required for the optimisation of (2.3.2). The benchmark starting value
for the bandwidth H is Silverman (1986) rule of thumb, i.e. std(x)n−1/5, where std(x) is a stan-
dard deviation of x. We then scale the rule of thumb bandwidth by a constant a, where a is from
{1.2, 1.5, 1.8, 2}. The starting values for the bandwidth γ are from the set {0.5, 0.6, 0.7, 0.8,
0.9, 0.95}. The set of initial values for bandwidth selection we consider is the combination
between the values of H and γ. Given the set of the starting values, our results show that result-
ing estimator for the bandwidth γ varies within a small interval (0.8-0.99). On the other hand,
the resulting bandwidth H for the continuous variable given the starting values vary within a
larger range (0.6,1.3). To examine if multiple local minima occurs here, we plot the estimated
bandwidths H against the negative MLCV (see Figure 2.3.1). Figure 2.3.1 reveals that the neg-
ative MLCVs associated with the bandwidths in the intervals of (0.95,1.09) and (1.14, 1.31) are
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marginally different. We also observe that a smaller bandwidth (less than 1) causes the efficient
frontier to have substantially less smooth or rugged shape, particularly at the low capital-labour
ratio income. Here we follow Marron (1988) and choose the largest bandwidth of 1.307.

Bandwidth H
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

-M
LC

V

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Figure 2.3.1: The bandwidth H versus the negative of MLCV values

It is noted that we also try various bandwidth values in the range of (1.14, 1.31) to check the
robustness of our conclusions. We find that the main conclusions are robust to the choices. The
bandwidth γ associated with our chosen H is 0.97, which indicates technological progress in
our context.

2.4 Empirical Study

In this section we employ DEA, SDEA, and LLE approaches to KR’s data, and investigate the
robustness of KR’s results when statistical noise is included in the estimation of the frontier.
The data used in this chapter comprise 57 countries for two periods 1965 and 1990.

We investigate the following issues: What are drivers of labour productivity (output per worker)
growth? What are the components of labour productivity growth driving the world conver-
gence? What are the components causing the bimodal transformation of the distribution of
labour productivity growth over the period 1965-1990? To address these we follow KR and
decompose labour productivity based on Fisher decomposition (Caves et al. (1982), Färe et al.
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2.4. EMPIRICAL STUDY

(1994)). The labour productivity is decomposed into three factors: efficiency change (the move-
ment toward to the frontier), technological change (the shift of the frontier) and capital deep-
ening (the movement along the frontier). The basic idea underlying the labour productivity
decomposition is that the countries are assumed to operate under a common efficient frontier.
Accordingly, the countries can be thought of as performing on or within the frontier, and the
distance from a country to the frontier reflects the technical efficiency. Over time, a country can
perform more efficiently and move toward the frontier, or the frontier itself can shift outward
over time, indicating technological progress. A country can also move along the frontier by
changing inputs.

Mathematically, the decomposition of labour productivity growth between a base period b and
a current period c is defined as

Yc/Lc
Yb/Lb

= TEc
TEb

×
(
fc(Kc/Lc, 1)
fb(Kc/Lc, 1) ×

fc(Kb/Lb, 1)
fb(Kb/Lb, 1)

)1/2
×
(
fc(Kc/Lc, 1)
fb(Kb/Lb, 1) ×

fb(Kc/Lc, 1)
fb(Kb/Lb, 1)

)1/2

= EFF × TECH × KACCUM, (2.4.1)

where ft(., .) is the potential output per unit of labour at period t. The first component on the
right-hand side EFF measures the effect of efficiency change. The second component TECH
reflects technological change. The measure is based on Fisher decomposition which is a ge-
ometric average of the effects of technological change which is based on the current period
capital/efficiency-labour ratio

(
fc(Kc/Lc,1)
fb(Kc/Lc,1)

)
, and based on the base-period capital/labour ratio(

fc(Kb/Lb,1)
fb(Kb/Lb,1)

)
. Similar to TECH, the last component measuring capital deepening (KACCUM)

is constructed by using a geometric average of the effects of KACCUM which is based on the
current and the base-period capital labour ratio.

2.4.1 Analysis of Tripartite Decomposition of Labour Productivity Growth

Table 2.4.1 presents the percentage change of labour productivity and its tripartite decompo-
sition for some selected countries in the sample used by KR. The results for all countries are
presented in Appendix 2.A. Column (i) of Table 2.4.1 provides the results estimated via DEA,
column (ii) reports the values computed via SDEA, and column (iii) presents the estimates
obtained via LLE.5

5 Focusing on the estimates obtained from DEA, we note that the estimates of the tripartite decomposition for
each individual country are marginally different from those presented in Table 2 of KR. The difference is minimal
on average. These minor differences could be due to numerical errors resulting from different optimization methods
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2.4. EMPIRICAL STUDY

When comparing the three sets of estimates from DEA, SDEA and LLE, we note that the mean
contribution of technological change to labour productivity growth appear to be robust across
the methods; however, there are discrepancies in the contribution of technical efficiency change
and capital deepening.6 In particular, both stochastic approaches (LLE and SDEA) suggest
a negative change in technical efficiencies (−8.5% in the case of SDEA and approximately
−5.4% in the case of LLE) while deterministic DEA indicates a positive average change (5.2%)
over the period of 1965-1990. The standard errors of the mean decomposition suggest that the
contribution of efficiency change to labour productivity growth is significant in SDEA and LLE
while it is insignificant in DEA.

The technical explanation for the difference in the result across the methods is due to the pres-
ence of statistical noise in the construction of the world production frontier in SDEA and LLE.
Any deviation of observations from the frontier is explained by both inefficiency and statistical
noise in SDEA and LLE whereas it is due to inefficiency in DEA. Another possible explana-
tion for the decrease in average efficiency is that capital was under utilised during the period
e.g. capital was idle or not efficiently used, resulting in inefficiency in capital utilisation. The
idleness of capital can be explained as a result of rational ex ante investment plans (see Winston
(1974) for further discussion), or as a consequence of unwanted accidents that occur after a firm
is built. For instance, firms are shut down or temporarily closed due to an inadequate demand
for a product or an unexpected high cost incurred. The machines are therefore not efficiently
used. After the oil crisis 1973, a number of countries experienced economic stagflation (e.g.
high increase in raw material price and unemployment rate) for a long time (see Grubb et al.

(1983), Bruno and Sachs (1985)). In addition, the newer version of Penn World Table 8.1 re-
vealed a substantial reduction in the average annual hours worked by persons engaged during
the period 1965-1990, e.g. the reduction was 19% in Belgium and greater than 22% in France
and Germany. It is noted that we do not advocate the argument that a reduction in working hours
implies lower productivity or high inefficiency. Our justification is that a reduction in working
hours implies the number of hours capital used in a production process likely decreased, and
therefore capital was idle, and was not efficiently used. Another explanation of the decrease in
average efficiency is due to the diffusion of general purpose technologies (GPT), i.e. it often

employed to compute individual technical efficiencies in KR’s and our study. In this study, we used a quadratic
programming sub-problem and implemented it in MATLAB version 2013.

6The monotonicity and convexity assumptions on the technology set are implicitly imposed on DEA and SDEA,
while they are not in LLE. One could impose such economic restrictions on the frontier in LLE by adapting some
of the approaches discussed in Henderson and Parmeter (2009), Parmeter et al. (2014) and references therein. The
estimates of the first order derivatives are all non-negative, which indicate that monotonicity holds for LLE in
our application. Since we use a local linear approximation for the LLE estimator, the concavity assumption on
the production function is not be able to checked in our application as the estimation of the second derivatives is
required.
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takes time before the appearance of new GPT (for example, computers and information process-
ing equipment) can be utilized 100% efficiently (Helpman (1998), Helpman and Rangel (1999)
and references therein).

Capital deepening is confirmed as the primary source of worldwide productivity growth over the
25 year period. Yet the magnitude of its mean contribution to labour productivity growth seems
to be underestimated when statistical noise is not modelled in the estimation of the world fron-
tier. DEA suggests that its magnitude is 59% over 25 years, which implies 1.9% per annum.
On the other hand, the new methods suggest the larger contribution from capital deepening,
above 85% (approximately 2.5% per annum).7 A possible explanation for the difference in the
magnitude of capital deepening in DEA, SDEA and LLE is due to the presence of statistical
noise in the construction of the world production frontier by SDEA and LLE. For instance,
both DEA and SDEA implicitly impose regularity conditions on the technology set, and require
mathematical programming algorithms to determine the frontier and to compute technical ef-
ficiencies. However, the observations used to construct the frontier in SDEA are filtered from
the noise while they are not in DEA. This is the key difference between SDEA and DEA. Com-
pared to SDEA and DEA, LLE is more flexible in the sense that it does not implicitly imposed
regularity conditions on the technology set. Some of the conditions can be imposed by adapt-
ing some approaches discussed in Henderson and Parmeter (2009), Parmeter et al. (2014) and
references therein.

Another possible explanation for the large contribution of capital deepening to labour produc-
tivity growth is due to remarkably high growth rate of capital stock over the 25 year period: the
average growth for all countries was 286.33% and the growth rate was even higher for some
countries such as Austria (380.42%), Japan (794%) and South Korea (1459.6%). The remark-
ably high increase in capital stock can be explained by the attempts of many countries to rebuild
capital stock damaged during World War II (Smolny (2000)) and the rise of Asia (Young (1995).
Also, when other factors such as human capital and foreign direct investment are considered in
the decomposition of labour productivity growth, a number of studies found the contribution
of capital deepening to labour productivity growth is smaller, but it is still one of the major
attributes (e.g. Henderson and Russell (2005), Badunenko et al. (2013), and an unpublished
paper of Gu and Russell (2010)). For the purpose of the comparison with KR, we focus only on
the tripartite decomposition considered in KR.

7The compound annual growth rate is used to compute the growth per annum.
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2.4.2 Convergence Hypothesis

A question we wish to address here is: what factors contribute to the world convergence
(the poor catching up to the rich). Convergence studies often focus on two types of conver-
gence: β-convergence which implies that output growth per capita is negatively dependent on
an initial economic level (poor countries grow faster than rich countries), and σ-convergence
which is defined as lowering of variance of output per capita among economies in time (Young
et al. (2008)). β-convergence is necessary but not sufficient condition for the existence of σ-
convergence (Sala-i Martin (1996), Young et al. (2008)). In the analysis of β-convergence,
researchers often run a cross-country regression the growth rate of output per capita (between
the base period and the current period) on the output per capital (at the base period) (see Barro
and Sala-i Martin (1992), Sala-i Martin (1996)). Quah (1996) introduces an alternative model
relating to the distribution of labour productivity to study whether the poor catches up with the
rich. Quah (1996) argues that the conventional approach (Generalised Least Squares regres-
sion) tends to provide information relating the performance of a single country towards to its
steady state while investigating the distribution of labour productivity provides the performance
of an economy relative to the others. We investigate both of the approaches- Generalised Least
Squares regression and the labour productivity distributions in this section to better understand
about the convergence.

Convergence hypothesis-Analysis of labour productivity distributions

Panel (a) of Figure 2.A.1 plots the distributions of output per worker of the 57 countries in 1965
and 1990. Over this 25-year period, the distribution of labour productivity appeared to transform
from a single peak into a twin peak distribution with a higher mean. We use Silverman’s (1981)
test to formally test for the twin-peak transformation. The null hypothesis is that the distribution
has s modes and the alternative is that it has more than s modes. Using the test, we find that the
1965 distribution contained a single mode (p-value = 0.35) whereas the 1990 distribution has
more than one mode (p-value = 0.00) but no more than two (p-value=0.21).

Following KR, we investigate what components of the tripartite decomposition cause the bi-
modal transformation of the labour productivity distribution. Our analysis of the change in the
distribution of labour productivity is based on Li’s (1996, 1999) test which is a nonparametric
test for the comparison of two unknown distributions (e.g. r1(z) and r2(z)). A null hypothesis is
r1(z) = r2(z) for all z, and the alternative is r1(z) 6= r2(z) for some z. In our context, we want
to test if the distribution of labour productivity based on 1990 capital-labour ratio is statistically
different from the counterfactual labour productivity which is constructed by consequently in-
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2.4. EMPIRICAL STUDY

troducing each of the decomposition.

Re-write the tripartite decomposition of labour productivity changes in (2.4.1) as follows:

yLc = (EFF× TECH× KACCUM)yLb, (2.4.2)

where yLc = Yc/Lc, yLb = Yb/Lb. The labour productivity distribution in the current year
can be constructed by successively multiplying labour productivity in the base year by each of
the three factors. This in turn allows us to construct counterfactual distributions by sequen-
tial introduction of each of these factors (where b = 1965 and c = 1990). For instance, the
counterfactual 1990 labour-productivity distribution of the variable,

yKL1990 = KACCUMyL1965,

isolates the effect on the distribution of changes in capital accumulation only, no technology,
and no technical inefficiency.

Table 2.4.2 contains the results of Li (1996, 1999) for testing the equality between the 1990
labour productivity distribution and its counter-factual distributions based on efficiency change,
technological change and capital deepening.8

Table 2.4.2: Testing for the significant contributions of various sources to the bimodal transfor-
mation of output per worker

Methods DEA (i) SDEA (ii) LLE (iii)

H0 : Distributions are equal Test Bootstrap Test Bootstrap Test Bootstrap
H1 : Distributions are not equal statistic p-value statistic p-value statistic p-value

(ia) (ib) (iia) (iib) (iiia) (iiib)

pdf(yL1990) vs. pdf(yL1965) 3.52 0.00 3.52 0.00 3.52 0.00

pdf(yL1990) vs. pdf(yL1965 × EFF) 2.78 0.00 4.69 0.00 4.26 0.00

pdf(yL1990) vs. pdf(yL1965 × TECH) 2.06 0.01 2.27 0.01 2.79 0.01

pdf(yL1990) vs. pdf(yL1965 × KACCUM) 0.77 0.19 0.80 0.16 1.26 0.07

pdf(yL1990) vs. pdf(yL1965 × EFF× TECH) 1.61 0.04 3.76 0.00 3.71 0.00

pdf(yL1990) vs. pdf(yL1965 × EFF× KACCUM) 0.68 0.27 0.37 0.59 0.10 0.90

pdf(yL1990) vs. pdf(yL1965 × TECH× KACCUM) -0.06 0.93 1.83 0.03 2.13 0.01

pdf(.) stands for probability density function.

We use the bootstrapped Li (1996) tests with 2000 bootstrap replications and Silverman’s (1986) rule-of-thumb bandwidth.

8Appendix 2.A provides the figures depicting the distribution of labour productivity based on the actual 1990
data and its counter-factual distributions following the order KACCUM-TECH-EFF for all methods. For other
orders, the figures are available upon request.
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2.4. EMPIRICAL STUDY

We confirm the results reported in Table 3 of KR for DEA. We find that the conclusions of most
hypotheses are robust across the methods (see rows 1-6 of columns (ib), (iib), (iiib) in Table
2.4.2). That is, when the effects of efficiency change and technological change are first intro-
duced, the null hypothesis of equality between the actual and the counterfactual distributions
are rejected. However, this is not the case for capital accumulation, which suggests capital ac-
cumulation primarily accounts for the bimodal distribution. (Figures 2.A.1-2.A.3 are consistent
with the findings.)

In row 7, the conclusion is different across the methods. SDEA and LLE results suggest the re-
jection of the hypothesis regarding the equivalence of the 1990 labour productivity distribution
and the counter-factual distribution incorporating technology change and capital deepening. It
is not the case in DEA. Also, SDEA and LLE produce p-values smaller than 0.05 regarding
hypothesis tests where the counter-factual distributions are based on technological change or a
combination of the other components (see row 3, 5 and 7 of columns (iib), (iiib) in Table 2.4.2).
This result suggests that technological change dampens the twin-peak divergence process, and
so it is possibly a source impeding the division of the world into two clubs: the rich and the poor.

Convergence hypothesis-Generalised least squares approach

Another approach to identify the determinants of world convergence is a Generalised Least
Squares regression (GLS) (see Barro and Sala-i Martin (1992), Sala-i Martin (1996)). The
approach provides an equation with labour productivity growth on the left-hand side, which is
explained by other factors on the right-hand side. We regress each of the components of the
labour productivity decomposition on the output per worker in the base period (1965). The
signs and significance of the resulting coefficients from these regressions shed light on catch-
up convergence (if they are negative and significant), or divergence (if they are positive and
significant).

Figure 2.4.1 contains plots of the tripartite decomposition against output per worker in 1965,
along with the fitted regression lines. Table 2.4.3 summarises the estimated coefficients and
their significance (based on p-values). Figure 2.4.1 (a) reveals the relationship between the
contribution of efficiency to productivity growth and the output per worker in 1965. The KR’s
results show a no clear pattern of the contribution of efficiency to productivity growth, with
many negative as well as positive changes. The regression slope coefficient is not statistically
significant. On the other hand, we find the coefficient is significantly negative at 5% level of
significance in the case of SDEA, and at 10% in the case of LLE.
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2.4. EMPIRICAL STUDY

Figure 2.4.1 (b) indicates that technological change makes a greater contribution to productivity
growth in most countries. We also find technological regress for low-income countries and
larger-than-average contributions to growth for most high-income countries. The coefficients
of the least-squares regressions are positive and statistically significant in the cases of DEA and
SDEA, but not in the case of LLE. The positive regression slope coefficients obtained from DEA
and SDEA suggest that relatively wealthy countries have benefited more from technological
progress than have less developed countries.

Figure 2.4.1 (c), on the other hand, suggests that the pattern of productivity growth attributable
to capital accumulation is remarkably similar to the overall pattern of changes in labour pro-
ductivity. For capital deepening, our results do not suggest that it contributes to convergence of
income per worker across the sample as found in the KR’s study. We find instead that the coef-
ficients are insignificantly negative (positive) in SDEA (LLE). The insignificant results should
not be interpreted as capital deepening not contributing to labour productivity growth. In fact,
the results in Section 2.4.1 indicate that capital deepening, on average, is the primary source in
the mean growth of labour productivity.

Table 2.4.3: Growth regressions of the percentage change in output per worker 1965 and the
three decompositions

Methods DEA (i) SDEA (ii) LLE (iii)

Dependent Variables Coefficient Coefficient Coefficient
(p-value) (p-value) (p-value)

(EFF− 1) × 100 0.09 -0.87 -0.49
(0.81) (0.01) (0.06)

(TECH− 1)× 100 0.77 0.60 0.05
(0.05) (0.01) (0.65)

(KACCUM− 1)× 100 -2.37 -0.83 0.26
(0.00) (0.46) (0.83)

The independent variable is output per worker in 1965.

p-values are in parentheses.
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Figure 2.4.1: The tripartite decomposition plotted against output per worker in 1965

2.5 Conclusions

This chapter first generalised the models of Kumbhakar et al. (2007) and Park et al. (2015) to
measure technological change nonparametrically. The methods (SDEA and LLE) used in this
paper might be appealing to some economic growth researchers. The nonparametric stochastic
methods provide an alternative tool to construct the worldwide production frontier in a set-up
where no assumption about the functional form of the frontier is needed and statistical noise is
modelled in the frontier model. To the best of our knowledge, this is the first application of LLE
in the context of economic growth and convergence.

We apply the nonparametric stochastic frontier model to the data used in KR to investigate
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the robustness of the KR’s conclusions. We find that the nonparametric stochastic methods
(which account for noise and do not assume a parametric form for the frontier) confirm some
of the findings as well as providing additional insights to understanding the evolution of labour
productivity of countries. In particular, we confirm that capital deepening made the largest
contribution to labour productivity growth since 1965 to 1990 and was also the main factor
driving the transformation of the distribution of labour productivity from a unimodal to a bi-
modal distribution during this period. A message can taken from this finding is that to improve
labour productivity growth, most of the countries were better off in investing in capital such
as equipment, machines, building good infrastructure. However, the new methods suggest that
the magnitude of capital deepening is underestimated when statistical noise is not accounted
(i.e. in standard DEA applied in KR). The methods do not confirm the hypothesis that capital
deepening is a significant factor for unconditional beta-convergence, which was found in the
KR study.

2.A Appendix A: Figures and Tables
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Figure 2.A.3: The counter-factual distributions of output per worker are constructed following
the order KACCUM-TECH-EFF using LLE
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Figure 2.A.1: The counter-factual distributions of output per worker are constructed following
the order KACCUM-TECH-EFF using DEA
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Figure 2.A.2: The counter-factual distributions of output per worker are constructed following
the order KACCUM-TECH-EFF using SDEA
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CHAPTER 3

Non-linear Time-varying Stochastic Frontier
Model: Assessing Determinants of Output Growth

3.1 Introduction

In the previous chapter labour productivity growth was decomposed into three components:
capital deepening, technological change and (technical) efficiency change.1 In this chapter, we
are interested in explaining dynamic variations of efficiencies in terms of observable variables.
Chapter 3 aims to address a number of questions such as: What are the factors driving an
inefficiency of a country? Are the effects constant or varying over time? Do the factors only
affect an inefficiency component or a production function or both? Such a study helps us to
better understand about the drivers of inefficiencies, and under what channels the factors affect
the production process: an efficiency component and/or a production function. In this chapter,
we extend the static model specification of Wang and Schmidt (2002), Alvarez et al. (2006) to
a dynamic case. We aim to capture the dynamic pattern of technical efficiencies and the effect
of the factors on production process over time. We also provide a formal hypothesis test to
examine if the dynamic specification is needed.

When explaining variations of efficiencies, researchers often face an issue of where factors in-
fluencing efficiencies (often known as “environmental variables” in this literature) should be
incorporated into a production process: through an inefficiency term, or through a production
frontier, or through both. The majority of studies in the early literature on productivity and effi-
ciency often considered the effects of environmental variables on an inefficiency component of

1In this chapter, a technical (in)efficiency is referred to as a (in)efficiency, unless stated otherwise.
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3.1. INTRODUCTION

a frontier model.2 Such frontier models are estimated by either a two-stage DEA or a one-stage
stochastic frontier approach. A two-stage DEA involves two stages of estimation. The first is
to estimate the frontier and the resulting efficiencies using DEA. The second is to regress the
estimated efficiencies on the environmental variables using an appropriate limited dependent
variable model (e.g. a truncated normal regression). To ensure the valid inferences for ineffi-
ciencies, a two stage DEA requires a “separability” assumption which implies that the support
of the output variables does not depend on the environmental variables (Simar and Wilson
(2007), Simar and Wilson (2011)). A one-stage stochastic frontier approach is often preferred
in this literature as it allows for potential relationships between the environmental variables and
the inputs. Ignoring the potential relationships result in unbiased and inconsistent estimators
(see Kumbhakar et al. (1991), Reifschneider and Stevenson (1991), Battese and Coelli (1995),
Huang and Liu (1994), and many others).

O’Donnell (2015) recently develops a theoretical framework suggesting that incorporating the
environmental variables into a production function implies the environmental variables can af-
fect both a production function and an inefficiency component. His model specification, how-
ever, does not provide an economic explanation regarding variations of inefficiencies, e.g. how
much inefficiencies change for a given change in an environmental variable. Also the estima-
tors are not consistent unless valid instruments are used (O’Donnell (2015)). This is due to an
endogeneity issue, i.e. a one-side random error term is implicitly a function of inputs, outputs,
and environment variables in his model specification.

Recent studies incorporate the effects of the environmental variables to both a production fron-
tier and an inefficiency component of a production process. A conditional nonparametric fron-
tier is one of the approaches to estimate such frontier models (see Daraio and Simar (2005),
Mastromarco and Simar (2015)). The approach does not require a particular assumption about
a production function. However, it ignores the presence of statistical noise in the estimation of
the production frontier. Simar et al. (2017) overcome this problem using a local least squares
estimator. Obtaining statistical inferences (e.g. standard errors, confidence intervals) for such
a nonparametric stochastic model is not a trivial task. A proper bootstrap algorithm is required
to obtain statistical inference in their framework. Modelling and testing time varying in in-
efficiency are still challenging in their framework. An alternative approach is the stochastic
parametric frontier model with the scaling property (Simar et al. (1994), Wang and Schmidt
(2002), Alvarez et al. (2006)). This scaling feature implies that the distribution of inefficiency
is multiplicatively decomposed into a function of the determinants of inefficiency and a random

2For a comprehensive survey about modelling the effects of environmental variables on inefficiencies, the
reader is referred to Kumbhakar and Lovell (2000).
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variable (known as the base inefficiency) whose distribution is independent of the environmen-
tal variables. Statistical inferences for such a stochastic frontier model are directly obtained.
However, a particular functional form of a production function is required.

We contribute to the line research of using the stochastic parametric frontier model with the
scaling property to capture the effects of environmental variables on a production process in
the following aspects. Building upon the model specification considered in Wang and Schmidt
(2002) and Alvarez et al. (2006), we extend their static models to a dynamic case. We believe
that in practice it is sensible to assume that the base inefficiencies are not identically distributed
across decision making units (DMUs) (e.g. firms, organisations, countries, etc.), and that DMUs
have incentives to improve their inefficiencies over time. For example, to stay in a competitive
industry firms often have incentives to improve their own inefficiencies. The adjustment of
inefficiencies can vary across DMUs due to heterogeneity factors such as the average quality of
a firm’s management and workers. To accommodate these features, we allow the coefficients
associated with the base inefficiencies and the environmental variable to vary over time and
across individuals. We also provide a formal test for time variation in technical inefficiency.

Our time-varying specification of inefficiency is closely related that of Tsionas (2006) who
allows the logarithm of base inefficiencies to follow an autoregressive process of first order.3

Deviating from Tsionas (2006), we do not restrict the dynamic pattern of the base inefficiencies
to be identical across individuals, and the effects of environmental variables on inefficiency to
be time-invariant and identical across individuals.

Both Tsionas (2006) model and ours have the non-linear feature in technical inefficiency. To
handle the non-linearity issue Tsionas (2006) uses a Metropolis-Hasting random walk algorithm
for each observation at each time period. Sampling the time-varying parameters at each time
period is well-known for slow convergence to a posterior distribution and far less efficient (e.g.
Carter and Kohn (1994)). Here we adapt the idea of using Gaussian approximation proposed by
Chan and Strachan (2014) to obtain the location (e.g. the mean and the variance) of the proposed
density, and then use accept reject Metropolis-Hasting to decide whether the draws are accepted.
We sample all the time-varying parameters at once using the precision-based algorithm Chan
and Jeliazkov (2009) to improve the efficiency of estimating the non-linear parameters. The
algorithm utilises the sparse structure of the matrices and therefore the computation time is
improved.

3Ahn and Sickles (2000), Emvalomatis et al. (2011) also consider autoregressive process of inefficiencies
in their model specifications. However, their studies do not consider the effects of environmental variables on
technical inefficiency.
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3.2. THE MODEL

To test for time-varying pattern in the base efficiencies, we first re-parametrise our model spec-
ification in the form of non-centred parametrisation following Frühwirth-Schnatter and Wagner
(2010). We then adapt the idea of using Savage-Dickey ratio in Chan (2016) to perform the test
for time variation in parameters. To the best of our knowledge, this is the first study providing
a formal test for time variation in inefficiencies.

We also allow the coefficients associated with a production function to be time-varying, and
show that such a specification encompassing the commonly used production functions (e.g.
Cobb-Douglas, translog) with linear trend. The time-varying parameters in a production/cost
function have recently considered in a number of studies such as Jin and Jorgenson (2010) and
Peyrache and Rambaldi (2012). Peyrache and Rambaldi (2012) show the time-varying param-
eters in production function provide a flexible way capturing technological change, in com-
parison to a time-dummy variable approach. However, these studies only focus on measuring
technological change, and do not consider the effects of environmental variables to production
process.

For the empirical illustration, we apply the proposed model in a study of economic growth of
21 OECD countries over the period 1970-2011 to investigate whether foreign direct investment
(FDI) plays a role as influencing the frontier or inefficiency. We also investigate the factors
driving output growth using stochastic frontier framework. We find that FDI plays a role as in-
fluencing the production frontier rather than inefficiency. We find statistical evidence suggesting
inefficiency are time-varying. Capital deepening is the key factor driving output growth.

The rest of this chapter is structured as follows. Section 3.2 presents the proposed model,
discusses the underlying assumptions of the model. Section 3.3 discusses Bayesian estimation.
Section 3.4 presents Savage-Dickey density ratio test for time-variation and model specification
of the stochastic frontier model. Section 3.5 illustrates the empirical study, and Section 3.6
concludes.

3.2 The Model

In this section, we first present the static stochastic frontier model with the scaling property
considered in studies of Simar et al. (1994), Wang and Schmidt (2002) and Alvarez et al. (2006),
and then provide our justifications for an extension to a dynamic case.

Consider a panel data where observations are indexed by i (i = 1, . . . , N ), and time is indexed
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3.2. THE MODEL

by t (t = 1, . . . , T ). Let yit be an output for observation i at period t, xit be a 1× k vector of an
intercept and variables determining the production frontier, and z∗it be a 1×r vector of variables
influencing inefficiencies. The stochastic frontier model with the scaling property in Simar et al.

(1994), Wang and Schmidt (2002), and Alvarez et al. (2006) has the following specification:

yit = xitβ − uit + vit, (3.2.1)

uit = ηi exp(z∗itγ∗), (3.2.2)

where the random noise vit is normally distributed with mean zero and constant variance, vit ∼
N(0, σ2), and is independent of xit and z∗it. The random error uit, representing for inefficiency,
has a scaling feature as described in (3.2.2), i.e. it is multiplicatively decomposed into a function
of the determinants of inefficiency and a random variable ηi.4 The variable ηi is known as the
base inefficiency level which can be thought of measuring things such as a manager’s natural
skills. How well the natural skills are exploited to improve the firm’s inefficiency depends on
other factors (z∗it) such as the manager’s education, experience or an environment in which a
firm operates. A change in z∗it changes only the scale, but not the shape of the base inefficiency
level ηi. An appealing feature of the scaling property specification is that it provides a simple
interpretation relating to an effect of z∗it on a firm’s inefficiency level (see Alvarez et al. (2006)).
For instance, suppose the environmental variables z∗it are in logarithm, the coefficient γ(j), where
j = 1, . . . , r, measures the percentage change in inefficiency given 1% change in z

∗(j)
it , i.e.

γ(j) = ∂ln(uit)/∂lnz∗(j)it ).

In the specification (3.2.2), the base inefficiency ηi is assumed to be identically distributed
across firms, and the effects of the environmental variables are homogeneous across DMUs
and constant over time. However, in practice the base inefficiencies might not be identically
distributed across DMUs. This could be due to heterogeneity in the average quality of a firm’s
management. Also, to stay in a competitive industry a firm most likely learns from its own
mistakes, and aims to improve its inefficiency over time. To accommodate these features, we
extend the static model to the dynamic stochastic frontier. We allow the base inefficiency ηi and
the coefficients associated with the environmental variables (γ∗) to vary across individuals and
over time. We further allow the coefficients associated with the production function to be time-
varying, and show that such a time-varying production function encompasses the commonly
used production functions (e.g. Cobb-Douglas, translog) with a linear trend. The proposed

4The models of Reifschneider and Stevenson (1991), Caudill and Ford (1993) and Caudill et al. (1995) can also
be presented as a stochastic frontier model with the scaling property.
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model is5

yit = xitβt − uit + vit, vit ∼ N(0, σ2
vi

), (3.2.3)

uit = exp(zitγit), (3.2.4)

βt = βt−1 + bt−1 + εβt , εβt ∼ N(0,w2
β), (3.2.5)

bt = bt−1 + εbt , εbt ∼ N(0,w2
b), (3.2.6)

γit = γit−1 + εγit , εγit ∼ N(0,w2
γi

), (3.2.7)

where zit = [1 z∗it], w2
β = diag(ω2

β) = diag(ω2
β(1) , . . . , ω

2
β(k)), w2

b = diag(ω2
b ) = diag(ω2

b(1) , . . . ,

ω2
b(k)), w2

γi
= diag(ω2

γi
) = diag(ω2

γ
(1)
i

, . . . , ω2
γ

(r+1)
i

). A statistical noise vit is normally distributed

with mean zero and variance σ2
vi

varying across individuals, vit ∼ N(0, σ2
vi

), and is independent
of inputs xit and zit. The state equations (3.2.5)-(3.2.7) are initialized with β0 ∼ N(β,P−1

β ),
b0 ∼ N(b,P−1

b ), γi0 ∼ N(γ
i
,P−1

γi
), where Pβ , Pb, Pγi are precision matrices which are the

inverse of the covariance-variance matrix.

Our specification of inefficiency (3.2.4) is equivalent to that of Wang and Schmidt (2002), and
Alvarez et al. (2006) if further restrictions are imposed on γit. Equation (3.2.4) can be written
as

uit = exp(zitγit) = exp(γ(1)
it + z∗itγ

∗
it) = exp(γ(1)

it )exp(z∗itγ∗it) = ηitexp(z∗itγ∗it), (3.2.8)

where γit = [γ(1)
it γ∗it]′. If one is willing to assume γ(1)

it to be time invariant, and γ∗it to be
time invariant and homogeneous across individuals, then (3.2.4) has the specification of Simar
et al. (1994), Wang and Schmidt (2002). In our specification the basic technical efficiency ηit
is assumed to be a log normal distribution i.e. ln(ηit) ∼ N(ηi, σ2

ηi
) while the basic efficiency is

often assumed to be a truncated normal distribution in the previous studies.

We now turn to the discussion about the motivations underpinning the time-varying specifica-
tions (3.2.5)-(3.2.7). We first discuss the specification in technical inefficiency and then the
specification in the production function. For an inefficiency component we allow the coefficient
γit following a random walk process to capture the high persistence in the movement of the
inefficiencies (equation (3.2.7)). The high persistence in the adjustment of inefficiencies could
be due to the potentially large adjustment costs associated with the inputs, union work rules, or
persistent change in management skills. Therefore, unless there are changes affecting the op-
erating environment (e.g. change in government regulation) or change in a firm ownership, the
technical inefficiencies are likely persistent. The unexpected changes are captured by a random

5 We use bold notations to refer to a matrix, and non-bold notations to a vector in Chapter 3.
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error εγit in our model. Further, given the random walk specification we are able to test for
time-variation in inefficiencies.6 To the best of our knowledge, this is the first study providing a
test for persistence in inefficiencies. The details of the time-varying test is discussed in Section
4.

To capture the dynamic patterns of the base inefficiencies, there are a number of specifications
proposed in the literature of productivity and efficiency. A common approach is to include a de-
terministic trend (i.e. linear or quadratic trends) (see Cornwell et al. (1990), Kumbhakar (1990),
Battese and Coelli (1992) and many others). Although the studies might provide approximation
for the dynamic of inefficiencies, the specifications are arbitrary approximations with little theo-
retical justifications. Many researchers aim to provide some economic interpretations regarding
the dynamic patterns using an AR(1) process (see Ahn and Sickles (2000), Emvalomatis et al.

(2011) and Tsionas (2006)). Ahn and Sickles (2000) propose an AR(1) of an technical ineffi-
ciency as follows uit = ρuit−1 + ζit, where 0 < ρ < 1 measures a firm’s ability to adjust its past
period inefficiency level. Ahn and Sickles (2000) and Emvalomatis et al. (2011) models are
not designed for incorporating the variables affecting inefficiency, while Tsionas (2006) does.
Our model specification differs from Tsionas’s (2006) in the sense that the base inefficiencies
are not identical across DMUs, and the effects of environmental variables are not time-invariant
and the same across DMUs.

We also allow for time variation in the coefficients associated with the production function.
Time-varying specification for a production function has been recently considered in some
studies such as Jin and Jorgenson (2010) and Peyrache and Rambaldi (2012). Peyrache and
Rambaldi (2012) allow the coefficients associated with a production function to follow a ran-
dom walk, and focus on measuring technological change rather than explaining variations of
inefficiencies, which is our interest of this chapter.

Deviating from their specification, we allow the coefficients associated with variables xit to
follow a random walk with a drift as described in (3.2.5)-(3.2.6). Such a specification (3.2.5)-
(3.2.6) provides a flexible form for a production function. It encompasses a Cobb-Douglas and
a translog function with a linear trend. To illustrate this, we re-parametrise the model (3.2.3)-
(3.2.7) to a non-centred reparametrisation specification proposed by Frühwirth-Schnatter and
Wagner (2010). We define β̃(j)

t = (β(j)
t − β

(j)
0 )/ωβ(j) , b̃(j)

t = (b(j)
t − b

(j)
0 )/ωb(j) , γ̃

(l)
it = (γ(l)

it −
γli0)/ω

γ
(l)
i

, where j = 1, . . . , k; l = 1, . . . ,m, then the non-centred specification of the model

6If one allows inefficiencies following an autoregressive process, then the framework discussed in this Chapter
cannot be used to test for time variation in inefficiencies.
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(3.2.3)-(3.2.7) is

yit = xitβ0 + xittb0 + xitwββ̃t + xitwbB̃t − exp(zitγi0 + zitwγi γ̃it) + vit, (3.2.9)

β̃t = β̃t−1 + ξβt ξβt ∼ N(0, Ik), (3.2.10)

b̃t = b̃t−1 + ξbt ξbt ∼ N(0, Ik), (3.2.11)

B̃t = B̃t−1 + b̃t−1, (3.2.12)

γ̃it = γ̃it−1 + ξγit ξγit ∼ N(0, Im). (3.2.13)

Without loss of generality, we consider a simple example where the vector xit includes an
intercept, two inputs, the cross terms of the inputs, and the squared terms of inputs, i.e. x∗it =
[1 x(1)

it x
(2)
it x

(1)
it x

(2)
it x

2(1)
it x

2(2)
it ]. If

• there is no time-variation in βt, implying wβ = wb = 0 in (3.2.9), the production
function (3.2.9) has the form f(xit) = xitβ0 + xittb0, which is expanded as f(xit) =
β0 +b0t+β(1)

0 x
(1)
it +b(1)

0 tx
(1)
it +β(2)

0 x
(2)
it +b(2)

0 tx
(2)
it +β(3)

0 x
(1)
it x

(2)
it +b(3)

0 tx
(1)
it x

(2)
it + β(4)

0 x
2(1)
it +

b
(4)
0 tx

2(1)
it +β(5)

0 x
2(2)
it + b

(5)
0 tx

2(2)
it .

• the coefficients b(1)
0 , b

(2)
0 , b

(3)
0 , b

(4)
0 and b(5)

0 are further restricted to zero, the model becomes
a translog function, i.e. f(xit) = β0 + b0t+ β

(1)
0 x

(1)
it + β

(2)
0 x

(2)
it + β

(3)
0 x

(1)
it x

(2)
it +β(4)

0 x
2(1)
it +

β
(5)
0 x

2(2)
it ;

• the coefficients β(3)
0 , β

(4)
0 and β(5)

0 are further restricted to 0, the production function is
Cobb-Douglas, i.e. f(xit) = β0 + b0t+ β

(1)
0 x

(1)
it + β

(2)
0 x

(2)
it .

Ignoring the effects of heteroskedasticity in inefficiency and/or a symmetric error component
can affect inferences about the parameters of the stochastic frontier as well as inefficiencies (see
Kumbhakar and Lovell (2000, pp.116-130)). To capture the possibility of heteroskedasticity in
the evolution of individual inefficiencies, we allow for the variance of innovations εγi to differ
across observations. A similar feature is also applied for vit to capture heterokedasticity in the
stochastic frontier model.

An advantage of using Bayesian in the estimation of the model is that restrictions on returns
to scale, marginal labour productivity, marginal capital productivity are straightforward to be
imposed.
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3.3 Bayesian Estimation

In this section we first elicit the priors for the parameters in the model (3.2.9)-(3.2.13), and then
provide their conditional posterior densities.

We choose an inverse Gamma prior for the variance ω2
vi

, i.e. p(ω2
vi

) ∼ IG(τi, Si), i = 1, . . . , n,
IG denotes inverse gamma. For the standard deviation ωβ, ωb and ωγ , we choose normal priors,
i.e. p(ωβ) ∼ N(0,P−1

ωβ
), p(ωb) ∼ N(0,P−1

ωb
), p(ωγ) ∼ N(0,P−1

ωγ ). The choice of normal priors
for the standard deviations are further discussed in Section 3.4. For the coefficients β0, b0 and
γi0 we also choose normal priors, i.e., β0 ∼ N(β,P−1

β ), b0 ∼ N(b,P−1
b ), γi0 ∼ N(γ

i
,P−1

γi
).

To facilitate further discussion we group the time invariant parameters (β0, b0), and the time-
varying parameters (β̃t, b̃t, B̃t) into two vectors, δ0 and δ̃t respectively, i.e. δ0 = [β′0, b′0]′, δ̃t =
[β̃′t, b̃′t, B̃′t]′. We also stack yit, xit, zit, vit, δ̃t, γ̃it for all observations i over t, and rewrite the
measurement equation (3.2.9) as

Y = Xδ0δ0 + Xδ̃ δ̃ − exp(Zγ0 + Zγ̃ γ̃) + v, (3.3.1)

where Y is a nT × 1 vector of an output, i.e. Y = [y11, . . . , yn1, . . . , y1T , . . . ynT ]′. Xδ0 =
[X (X�t)] is a nT×2k matrix, where� represents Hadamard multiplication, and X is a nT×k
matrix of factors influencing the frontier, i.e. X = [x′11, . . . , x

′
n1, . . . , x

′
1T , . . . x

′
nT ]′. The matrix

Xδ̃ =


[X1β,0,X1b] 0 0 . . . 0

0 [X2β,0,X2b] 0 . . . 0
... . . . . . . . . . ...
0 0 0 . . . [XTβ,0,XTb]

 has the dimension of nT×3kT ,

where Xtβ =


x1twβ

x2twβ

...
xntwβ

 with t = 1, . . . , T and wβ = diag(ωβ) = diag(ωβ(1) , . . . , ωβ(k)). A

similar procedure is applied to Xtb. δ̃ = [δ̃′1, . . . , δ̃′T ]′ is a 3kT × 1 vector of the coefficients
associated with Xδ̃. Z is a nT × nm (m = r + 1) matrix of factors influencing inefficiency,

i.e. Z =


Z1

Z2
...
ZT

 with Zt =


z1t 0 . . . 0
0 z2t . . . 0
... . . . . . . 0
0 0 . . . znt

 and t = 1, . . . , T . γ0 is a nm × 1 vector of the
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coefficients associated with Z. The matrix Zγ̃ =


z11wγ1 0 0 . . . 0

0 z21wγ2 0 . . . 0
... . . . . . . . . . ...
0 0 0 . . . znTwγn

 has the

dimension of nT × nmT . The nmT × 1 vector of γ̃ are the coefficients associated with Zγ̃ .

The log likelihood function is obtained from the measurement equation (3.3.1):

logp(Y |δ0, γ0, δ̃, γ̃, ωβ, ωb, ωγ, ω
2
v) ∝ −

1
2(Y − Ŷ )′Pv(Y − Ŷ ), (3.3.2)

where Ŷ = Xδ0δ0 + Xδ̃ δ̃ − exp(Zγ0 + Zγ̃ γ̃), and Pv = diag(1/σ2
v1 , . . . , 1/σ

2
vn) is a precision

matrix, which is an inverse of a covariance matrix.

Following Bayes’ Theorem, the joint posterior density is:

p(δ0, γ0, δ̃, γ̃, ωβ, ωb, ωγ, ω
2
v |Y ) ∝ p(δ0)p(γ0)p(δ̃)p(γ̃)p(ωβ)p(ωb)p(ωγ)p(ω2

v)

p(Y |δ0, γ0, δ̃, γ̃, ωβ, ωb, ωγ, ω
2
v) (3.3.3)

To sample the parameters, δ0, γ0, δ̃, γ̃, ωβ, ωb, ωγ, ω
2
v from the joint posterior density we use the

following MCMC algorithm

1. Sample δ0 from p(δ0|Y, γ0, δ̃, γ̃, ωβ, ωb, ωγ, ω
2
v);

2. Sample δ̃ from p(δ̃|Y, δ0, γ0, γ̃, ωβ, ωb, ωγ, ω
2
v);

3. Sample γ̃ from p(γ̃|Y, δ0, γ0, δ̃, ωβ, ωb, ωγ, ω
2
v);

4. Sample γ0 from p(γ0|Y, δ0, δ̃, γ̃, ωβ, ωb, ωγ, ω
2
v);

5. Sample ωβ from p(ωβ|Y, δ0, γ0, δ̃, γ̃, ωb, ωγ, ω
2
v);

6. Sample ωb from p(ωb|Y, δ0, γ0, δ̃, γ̃, ωβ, ωγ, ω
2
v);

7. Sample ωγ from p(ωγ|Y, δ0, γ0, δ̃, γ̃, ωβ, ωb, ω
2
v)

8. Sample ω2
v from p(ω2

v |Y, δ0, γ0, δ̃, γ̃, ωβ, ωb, ωγ).

Sampling the parameters δ0, δ̃, ωβ, ωb, ω
2
v from their respective conditional posteriors is straight-

forward and standard as they are linear. The procedure of sampling the linear parameters is the
same as that of a conventional linear-Gaussian state space model. However, this is not the
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case for γ0, γ̃, ωγ due to the non-linearity of the parameters. We elaborate the estimation of the
parameters of γ0, γ̃, ωγ here and present the others in Appendix 3.A.

We first focus on time-varying parameters γ̃. The state equation (3.2.13) is re-written as 7

Kγ̃ γ̃ = ξ ξ ∼ N(0, ImT ), (3.3.4)

where Kγ̃ =


Im 0 . . . 0
−Im Im . . . 0

... . . . . . . ...
0 0 −Im Im

. Given the state equation (3.3.4), the log-density of prior

is a log Normal prior

logp(γ̃) ∝ −1
2 γ̃
′K′γ̃Kγ̃γ̃ + c1, (3.3.5)

where the constant c1 is independent of γ̃.

The conditional posterior of γ̃ is

p(γ̃|Y, δ0, γ0, δ̃, θ) ∝ p(γ̃)p(Y |δ0, γ0, δ̃, γ̃, θ), (3.3.6)

where θ = [ωβ, ωb, ωγ, ω2
v ], p(γ̃) is a prior of γ̃; p(Y |δ0, γ0, δ̃, γ̃, θ) is a likelihood function, and

p(γ̃|Y, δ0, γ0, δ̃, θ) is conditional posterior of interest, which is not a normal distribution.

One of the popular approaches handling the non-standard conditional posterior density for time-
varying parameters is a particle filtering (Doucet et al. (2001), Doucet and Johansen (2011)).
The approach involves sequential importance sampling and bootstrap resampling. Despite its
recent advances in the techniques, a particle filter approach still requires an intensive com-
putation, particularly when the dimensions of time-varying parameters are high and the time
periods are long. An alternative is based on a fast approximation of the conditional posterior
p(γ̃|Y, δ0, γ0, δ̃, θ) (see Durbin and Koopman (1997), Chan and Strachan (2014)). Durbin and
Koopman (1997) use a second order Taylor expansion to approximate the log of the target of the
conditional posterior of the state vector. This approximation provides a Gaussian density, where
the mean is the mode of the target density and its precision is equivalent to the negative Hessian
evaluated at the mode. The Metropolis-Hastings (MH) algorithm is used to decide whether the
draws from the proposal Gaussian approximation are accepted or rejected. The rate acceptance
of MH is often quite low. Chan and Strachan (2014) build upon the approach and improve the
efficiency of the algorithm using the precision-based algorithm rather than Kalman filter-based

7This is obtained by moving γ̃it−1 to the left hand side of (3.2.13).
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methods. The precision-based algorithm exploits the sparseness structure of the precision ma-
trix for the conditional density of state vectors, and the computation therefore speeds up. To
improve the acceptance rate of the MH algorithm, they use an accept reject MH (ARMH). Here
we adapt Chan and Strachan (2014) approach to our context.

We first obtain the gradient F and the negative Hessian G of the log likelihood function p(Y |δ0,

γ0, δ̃, γ̃, θ), and then use the second-order Taylor series approximation to approximate the log
likelihood function at a given point γ̃, denoted as γ̆∗. That is,

logp(Y |δ0, γ0, δ̃, γ̃, θ) ≈ p(Y |δ0, γ0, δ̃, γ̃, θ)|γ̃=γ̆∗ + (γ̃ − γ̆∗)′Fγ̃

−1
2(γ̃ − γ̆∗)′Gγ̃(γ̃ − γ̆∗) + c2,

≈ −1
2[γ̃′Gγ̃ γ̃ − 2γ̃′(Fγ̃ + Gγ̆∗)] + c2, (3.3.7)

where c2 is independent of γ̃; Fγ̃ and Gγ̃ are the gradients (i.e. first derivative) and negative
Hessian matrix at the point γ̃, respectively.

The approximation of the log conditional posterior density of the state vector (3.3.6) is

logp(γ̃|Y, δ0, γ0, δ̃,θ) ∝ logp(Y |δ0, γ0, δ̃, γ̃, θ) + logp(γ̃)

≈ −1
2

[
γ̃
′(Gγ̃ + K′γ̃Kγ̃)γ̃ − 2γ̃′(Fγ̃ + Gγ̃ γ̆)

]
+ c3, (3.3.8)

where the constant term c3 is independent of γ̃. It can be seen that the approximation of the
conditional posterior density (3.3.8) is Gaussian with the precision Pγ̃ = Gγ̃ + K′γ̃Kγ̃ and the
mean vector ̂̃γ = P−1

γ̃ (Fγ̃ + Gγ̃ γ̆
∗).

To sample γ̃ from the Gaussian approximation N(̂̃γ,P−1
γ̃ ), we first take Cholesky decomposi-

tion Cγ̃ of the precision matrix Pγ̃ , i.e. C′γ̃Cγ̃ = Pγ̃ , and then use the backward and forward
algorithm in Chan and Jeliazkov (2009) to solve ̂̃γ.8 That is,

̂̃γ = P−1
γ̃ (Fγ̃ + Gγ̃ γ̆

∗),

C′γ̃Cγ̃
̂̃γ = (Fγ̃ + Gγ̃ γ̆

∗),

Cγ̃
̂̃γ = (C′γ̃)−1(Fγ̃ + Gγ̃ γ̆

∗),̂̃γ = C−1
γ̃ (C′−1

γ̃ )(Fγ̃ + Gγ̃ γ̆
∗). (3.3.9)

8For a s× s matrix, only O(s) operations are needed for the Cholesky decomposition while O(s3) operations
are required for taking an inverse of a full matrix. Additional draws from the Gaussian approximation can be
obtained with low marginal cost.
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As for the choice of γ̆∗, the most natural choice is the posterior mode, which can be easily
obtained via the Newton-Raphson method (see Kroese et al. (2011, pp.688-689)).

Given candidate draws of the Gaussian approximationN(̂̃γ,P−1
γ̃ ), we follow Chan and Strachan

(2014) and use an ARMH algorithm (Chib and Greenberg (1995, pp.331-332)) to determine
whether the candidate draws are accepted or rejected. To illustrate the ARMH algorithm, we
define the set

D = {γ̃ : p(γ̃|Y, δ0, γ0, δ̃, γ̃, θ) ≤ dq(γ̃|Y, δ0, γ0, δ̃, γ̃, θ)}, (3.3.10)

where p(γ̃|Y, δ0, γ0, δ̃, γ̃, θ) is the target density and q(γ̃|Y, δ0, γ0, δ̃, γ̃, θ) is the proposal density.
The classic AR algorithm requires the existence of a constant d to ensure that the Gaussian
proposal density dominates the target density. In practice, it is often difficult to chose such a
d to ensure the condition (3.3.10) holds, especially if γ̃ is high dimensional vector. To relax
the dominant condition, the MH algorithm is utilised to decide whether the candidate draws
are accepted when the condition is not satisfied for some γ̃. The ARMH therefore can be
summarised in the following steps:

1. AR step: Generate a draw γ̃∗ from the proposal density q(γ̃|Y, δ0, γ0, δ̃, γ̃, θ) with the
acceptance-reject probability

αAR(γ̃∗) = min
{

1, p(γ̃|Y, δ0, γ0, δ̃, γ̃, θ)
dq(γ̃|Y, δ0, γ0, δ̃, γ̃, θ)

}
.

2. MH step: Given the current draw γ̃ and γ̃∗

• if γ̃ ∈ D, αMH(γ̃∗, γ̃) = 1;

• if γ̃ ∈ Dc and γ̃∗ ∈ D, then

αMH(γ̃∗, γ̃) = dq(γ̃∗|Y, δ0, γ0, δ̃, γ̃, θ)
p(γ̃∗|Y, δ0, γ0, δ̃, γ̃, θ)

;

• if γ̃ ∈ Dc and γ̃∗ ∈ Dc, then

αMH(γ̃∗, γ̃) = min
{

1, p(γ̃
∗|Y, δ0, γ0, δ̃, γ̃, θ)q(γ̃∗|Y, δ0, γ0, δ̃, γ̃, θ)

p(γ̃|Y, δ0, γ0, δ̃, γ̃, θ)q(γ̃|Y, δ0, γ0, δ̃, γ̃, θ)

}
.

Return to γ̃∗ with probability αMH(γ̃∗, γ̃); otherwise return γ̃.

To choose the constant d in (3.3.10), we follow Chan and Strachan (2014) to set d = r p(
ˆ̃γ|Y,δ0,γ0,δ̃,γ̃,θ)

q(ˆ̃γ|Y,δ0,γ0,δ̃,γ̃,θ)
,

where r is between 1 and 5, and ˆ̃γ is the mode of the conditional density of γ̃. Similar procedure
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is applied to sample γ̃, ωγ .

3.4 Testing for Time-variation in Inefficiency

This section focuses on testing time-variation in base inefficiencies. Time-varying parameter
models are widely used in many research areas, but specification tests for time-varying param-
eter models have been recently investigated (see Frühwirth-Schnatter and Wagner (2010), Chan
(2016)). To test for time-varying parameters, Frühwirth-Schnatter and Wagner (2010) develop
the stochastic model specification search approach. They introduce model indicators which
yield 1 if the parameters are time-varying, and 0 otherwise, and then propose a Gibbs sampler
to jointly sample the model indicators with other parameters in the model to improve the ef-
ficiency of the proposed algorithm. Their approach is developed for a linear Gaussian and a
linear non-Gaussian state space model. Chan (2016) considers another approach which is based
on a Bayes factor to conduct a formal test for time-varying parameters in a stochastic volatility
model. Here we use a number of results from both Frühwirth-Schnatter and Wagner (2010) and
Chan (2016) to conduct a test for time-varying in efficiencies. It is noted that the test can be
used to for testing time-variation in parameters associated with a production function.

Given the model specification in (3.2.3)-(3.2.7), no time variation in the base technical ineffi-
ciencies implies the variances ω2

γ1
i

are all equal to zeros. The null hypothesis isH0: ω2
γ1
i

= 0 and
the alternative hypothesis is H1: ω2

γ1
i
> 0. As pointed out by Frühwirth-Schnatter and Wagner

(2010), such a hypothesis test results in a non-regular testing problem because the null hypoth-
esis lies on the boundary of parameter space. The boundary issue can be avoided by working
with the standard deviation ωκ instead. This is because the support of the standard deviation
lies on the real space. The null hypothesis test for time-varying parameters is then H0: ωγ1

i
= 0

and the alternative hypothesis is H1: ωγ1
i
6= 0. Bayes factor is the most widely used approach

for such a model comparison in a Bayesian framework.

Let us denote the unrestricted model asMo and the restricted model asMj . The Bayes factor
in favour modelMo againstMj is defined as

BFoj = p(Y |Mo)
p(Y |Mj)

, (3.4.1)

where p(Y |Ml), l = o, j, is the marginal likelihood under modelMl evaluated at the observed
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data Y . The Bayes factor is related to the posterior odds ratio between the two models such as

p(Mo|Y )
p(Mj|Y ) = p(Mo)

p(Mj)
BFoj. (3.4.2)

The first term of the right-hand side of (3.4.2) is referred to as the prior odds ratio. If one
chooses the equal prior for each model, i.e. p(Mo) = p(Mj), the posterior odds ratio between
modelMo and modelMj is equivalent to the Bayes factor. The case of BFoj = 20 suggests
that ModelMo is 20 times more likely than ModelMj given the data.

The key element of computing the Bayes factor is the marginal likelihood which does not have
a standard form in our context. A number of approaches for computing a non-standard marginal
likelihood for a Gaussian and a non-Gaussian state space model are proposed such as impor-
tance sampling (Chan (2016)) or auxiliary mixture sampling (Frühwirth-Schnatter and Wagner
(2008)). The computation can be demanding in the cases. In our context, the Savage Dickey
(SD) ratio test proposed by Verdinelli and Wasserman (1995) can be used to calculate a Bayes
factor for a nested model. An appealing feature of the SD ratio test is that it does not require
the computation of marginal likelihood; it only requires the information from the unrestricted
model. The SD ratio test in favour of unrestricted model is defined as

BFoj =
p(ωγ1

i
= 0)

p(ωγ1
i

= 0|Y ) . (3.4.3)

The numerator of (3.4.3) is computed by evaluating the normal prior at the value of 0, which is
directly obtained. The normal priors of ωγ1

i
, N(0, σ2

ω
γ1
i

), implies that ω2
γ1
i
∼ G(1

2 ,
1

2Vω
γ1
i

), where

G(.) is a Gamma distribution (see Kroese and Chan (2014)). The gamma prior has more mass
concentrated around small values of σ2

γ1
i
, and therefore the prior provides more shrinkage (see

Frühwirth-Schnatter and Wagner (2010) and Chan (2016) for further discussion). This means
that the Gamma prior of the variances favours the constant coefficient model. The denominator
of (3.4.3) is computed by using the so-called Rao Blackwell algorithm. That is,

̂p(ωγ1
i

= 0|Y ) = 1
R

R∑
r=1

p(ωγ1
i

= 0|Y, δ0
(r), γ0

(r), δ̃(r), γ̃(r), ω
(r)
β , ω

(r)
b , ωγ−1

i

(r)ω(r)
v ), (3.4.4)

where ωγ−1 is a vector of ωγ without an element of ωγ1 . The δ0
(1), γ0

(1), δ̃(1), γ̃(1), ω
(1)
β , ω

(1)
b , ωγ−1

i

(1),

ω(1)
v , . . . , δ0

(r), γ0
(r), δ̃(r), γ̃(r), ω

(r)
β , ω

(r)
b , ωγ−1

i

(r), ω(r)
v are posterior draws from the MCMC algo-

rithm.

The SD approach can be used to test for the significance of a parameter. For example, if one
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is interested in testing whether the coefficient δ0 in (3.3.1) is significant, the Bayes factor is
computed as

BFoj = p(δ0 = 0)
p(δ0 = 0|Y ) . (3.4.5)

3.5 Empirical Study

A number of studies find that FDI has an impact on improving an economy’s efficiency via
transferring technology (see Iyer et al. (2008), Mastromarco and Ghosh (2009), and others).
For example, a local labour force gains more skills through training received from foreign firms,
or local firms adopt new technologies brought by foreign companies. FDI can also increase
productivity by spurring competition between domestic and foreign companies (Glass and Saggi
(1998)). An improvement in new foreign competition arrivals encourages domestic firms to use
their resources more efficiently, which implies an improvement in their productivity. These
studies often make a prior assumption about the effect of FDI on either the production function
or the inefficiency term.

Deviating from the studies, we jointly model the effects of FDI on both the production function
and efficiency, and allow the effects of FDI to the production process to vary over time. A
study closely related to ours is Mastromarco and Simar (2015), which investigate the issue
in the context of a deterministic nonparametric frontier, namely a conditional nonparametric
estimator. The deterministic nonparametric frontier approach does not require an assumption
about the production frontier, but assumes away statistical noise. A standard bootstrap algorithm
cannot directly be applied to obtain statistical inferences for inefficiencies in the framework.
Also, testing for time-variation in inefficiencies is not considered in their framework. Although
our approach requires an assumption about the frontier, it takes into account of statistical noise
in the estimation of the frontier. It is noted that our model is parametric but with flexible form;
we do not restrict the production frontier to be a Cobb-Douglas or a translog function. The
statistical inferences are straightforward to obtain in Bayesian framework.

In this section, we wish to investigate under what channels the environmental factor FDI affects
the production process: through the inefficiency component, or the production What countries
make the most efficient use of their inputs? Is economic growth driven by improving efficiency?
Or is it due to change in inputs? Or is it driven by the shift of the frontier? Does FDI improve
output growth? Another aim of this section is to test whether the inefficiencies of the economies
are time-varying.
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The data used in this section contain aggregate output real GDP (Y ), labour (L), and capital
stock (K) for 21 OECD countries over the period 1970-2011. The real GDP, labour and capital
are obtained from Penn World Tables (version 8.0). All three variables are logged and nor-
malised with respect to the mean to ensure homogeneity assumption in inputs and outputs. FDI
is collected from the World Bank World Development Indicators and transformed as a ratio to
GDP. The descriptive statistics for the data are presented in Table 3.B.1.

3.5.1 The Model

To facilitate further discussion we rewrite the stochastic frontier model here

yit = xitβt − uit + vit vit ∼ N(0, σ2
vi

), (3.5.1)

uit = exp(zitγit) (3.5.2)

βt = βt−1 + bt−1 + εβt εβt ∼ N(0,w2
β), (3.5.3)

bt = bt−1 + εbt εbt ∼ N(0,w2
b), (3.5.4)

γit = γit−1 + εγit εγit ∼ N(0,w2
γi

). (3.5.5)

The output yit is log(GDP)it, the vector zit contains constant and FDI, i.e. zit = [1 FDIit]. For
the vector xit, we consider a number of specifications. That is, xit includes

(i) a constant, the inputs and FDI, i.e. xit = [1, log(Lit), log(Kit),FDIit];

(ii) the variables in (i), the cross terms between the inputs, and the squared terms of the inputs,
i.e. xit = [1, log(Lit), log(Kit), log(Lit)log(Kit), log2(Lit), log2(Kit),FDIit];

(iii) the variables in (ii), and the squared term of FDI, i.e. xit = [1, log(Lit), log(Kit), log2(Lit),
log2(Kit), log(Lit)log(Kit), FDIit,FDI2

it];

(iv) the variables in (iii), and the cross terms between FDI and the inputs FDI, i.e. xit =
[1, log(Lit), log(Kit), log2(Lit), log2(Kit), log(Lit)log(Kit), FDIit,FDI2

it, FDIitlog(Lit),
FDIitlog(Kit)];

It is noted that here we assume the exogeneity of FDI as many others do (see van Pottelsberghe
de la Potterie and Lichtenberg (2001), Kneller and Stevens (2006), Wang and Wong (2012),
and etc.). The issue of reverse causality between FDI and an output is still an open issue in the
literature on the effects of FDI on output growth.
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For the purpose of testing for time-varying parameters and model specifications, we rewrite the
model (3.5.1)-(3.5.5) in the non-centred representation:

Y = Xδ0δ0 + Xδ̃ δ̃ − exp(Zγ0 + Zγ̃ γ̃) + v, (3.5.6)

The structure of the matrices Y,Xδ0 ,Xδ̃, Z, Zγ̃ are presented in Section 3.3. It is noted that
the model representation of (3.5.1)-(3.5.5) and its non-centred representation (3.5.6) are equiv-
alent. An advantage of the non-centred parametrisation is that it enables to test for time-varying
parameters as the boundary support of the variances is not an issue (see Section (3.4) for the
discussion).

The priors of the parameters δ0, γ0, ωβ, ωb, ωγ, ω
2
v in (3.5.6) are as follows. We choose fairly

non-informative normal priors for the parameters δ0, i.e. p(δ0) = N(µδ, I2k), where µδ is the
maximum likelihood estimates of the conventional stochastic frontier model (see Aigner et al.

(1977)).9 For the parameters ωβ, ωb, ωγ , and ω2
v , we also choose non-informative priors, e.g.

ωβ ∼ N(0, I2k), ωb ∼ N(0, I2k), ωγ ∼ N(0, Inm), and ω2
v ∼ IG(10, 1). For the parameters

γ0 = [γ
′(1)
0 , γ

′(2)
0 ] where γ(1)

0 is associated with the base efficiency of each country, and γ(2)
0

associated with the effect of FDI on efficiency for each country. We chose a non-informative
prior for γ(2)

0 , e.g. γ(2)
0 ) ∼ N(0, Ir), while s we choose an informative prior for γ(1)

0 ), e.g. γ(1)
0 ∼

N(log(0.2)1n, 0.1In), indicating that the base inefficiency follows a log normal distribution
LN(0.2041n, 0.67In).

It is noted the priors for most of the parameters in our model are fairly non-informative whilst
the prior for the base efficiency is informative (e.g. the variance is set at relatively small). To
check the robustness of the results relative to the informative prior choice of the base efficiency,
we have estimated the model with a range of mean values of (log(0.1), log(0.9)). We find that
our main conclusions regarding the effects of FDI on the production process, and the contribu-
tions of capital deepening and technology change to the productivity growth are robust to the
choice, although the magnitude of the estimates changes. Our results in the empirical study are
based on 30,000 MCMC iterations with 5,000 burn-in.

9The conventional stochastic frontier model we consider here is Y = Xδ0δ0 + Xδ̃ δ̃ − u + v where u ∼
N+(0, σ2

uInT ), v ∼ N(0, σ2
vInT ).
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3.5.2 Results

Efficiency levels and the role of FDI to a production process

To examine under what channels FDI influences the production process: we perform hypothesis
tests for the significant effects of FDI on a production function and an inefficiency component.
In our context, we are testing the significance of the coefficients δ0 associated with the variables
FDIit, FDI2

it, FDIitlog(Lit), FDIitlog(Kit), and γ(2)
0 . Tables 3.5.1 and 3.5.2 report the values of

log Bayes factor ratio and their numerical standard errors for the 21 OECD countries. The nu-
merical standard errors are computed using 10 parallel chains, each of which is of length 30000
with a burn-in of 5000. A positive log-Bayes factor suggests evidence supporting significant
effects of FDI on the production process.

The results are robust across the model specifications. The first two lines of Table 3.5.1 pro-
vide the Bayes factor for testing the significant effect of FDI on the production function. This
information reflects the effect of FDI on the shift of the frontier, which measures technologi-
cal change. The last two lines of Table 3.5.1 capture the effect of the interaction relationship
between FDI and the inputs on the production function. This reflects the effect of FDI on the
shape of the frontier, which sometimes is referred to as technological bias. The log Bayes fac-
tors are positive and significant across all the models (see Table 3.5.1), which implies that FDI
has significant impacts on the shift and the shape of the frontier. However, the log Bayes fac-
tors regarding the test for significant effects of FDI on the distribution of inefficiencies in Table
3.5.2 are mostly negative, which suggest that FDI appear to have less influence on technical
efficiencies. Over all, FDI appears to play more important role in shifting the frontier (techno-
logical change), and has less influence on the distribution of technical efficiencies. This result
supports the theoretical hypothesis that FDI improves productivity by spurring competition:
foreign firms invest more in innovation to maintain their technological advantage (Glass and
Saggi (1998)). FDI should be therefore invested in innovation to further improve technological
change. A question arising here is whether FDI contributes to output growth of the countries.
This question is soon discussed.
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Table 3.5.1: The estimated log Bayes factors and their numerical standard errors for testing the
significant effect of FDI on the production frontier

Variables Model (i) Model (ii) Model (iii) Model (iv)
FDIit 1141.471 756.314 753.124 43.711

(11.412) (7.580) (7.522) (1.037)
FDI2

it 1865.238 1301.764
(18.830) (13.199)

FDIit × log(Lit) 129.919
(1.525)

FDIit × log(Kit) 42.245
(0.468)

Table 3.5.2: The estimated log Bayes factors and their numerical standard errors (in parenthe-
ses) for testing the significant effect of FDI on the technical inefficies

Model (i) Model (ii) Model (iii) Model (iv)

Countries/Parameters γ
(2)
0 γ

(2)
0 γ

(2)
0 γ

(2)
0

Australia -0.569 -0.478 -0.485 -0.463
(0.054) (0.040) (0.037) (0.033)

Austria -1.642 -1.872 -1.280 -1.523
(0.042) (0.032) (0.032) (0.027)

Belgium -8.900 -8.724 -10.359 -9.225
(0.074) (0.062) (0.028) (0.026)

Canada -0.133 -0.061 -0.185 -0.141
(0.054) (0.041) (0.038) (0.034)

Denmark -1.514 -1.879 -1.490 -1.668
(0.044) (0.032) (0.032) (0.027)

Finland -1.068 -1.409 -1.406 -1.135
(0.047) (0.033) (0.031) (0.029)

France -0.187 -0.142 -0.155 -0.148
(0.055) (0.042) (0.039) (0.035)

Germany -0.308 -0.331 -0.243 -0.164
(0.054) (0.040) (0.038) (0.035)

Greece -0.186 -0.191 -0.167 -0.175
(0.055) (0.042) (0.039) (0.035)

Ireland 0.080 -1.282 -1.371 -1.796
(0.052) (0.034) (0.031) (0.031)

Italy -0.031 -0.039 -0.038 -0.042
(0.057) (0.043) (0.040) (0.036)

Japan -0.002 -0.003 -0.003 -0.003
(0.058) (0.043) (0.041) (0.036)

New Zealand -1.776 -2.060 -1.905 -1.944
(0.049) (0.036) (0.034) (0.030)

Netherlands 4.551 4.971 8.324 33.756
(0.046) (0.029) (0.037) (0.035)

Norway -0.069 -0.041 -0.043 -0.048
(0.057) (0.043) (0.041) (0.036)

Portugal -2.591 -2.569 -2.457 -2.389
(0.042) (0.032) (0.030) (0.028)

Spain -0.677 -0.646 -0.615 -0.618
(0.052) (0.039) (0.036) (0.033)

Sweden -1.377 -1.354 -1.421 -1.312
(0.044) (0.034) (0.031) (0.029)

Turkey -0.218 -0.168 -0.172 -0.152
(0.055) (0.042) (0.039) (0.035)

United Kingdom -0.565 -0.548 -0.637 -0.592
(0.052) (0.039) (0.036) (0.033)

United States 0.006 -0.056 -0.051 -0.069
(0.057) (0.043) (0.040) (0.036)
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We now turn to investigate the behaviours of technical inefficiencies of the economies, and ex-
amine whether the base inefficiencies of the countries are time-varying. The null hypothesis for
such a hypothesis test is H0: ω

γ
(1)
i

= 0. Table 3.5.3 reports the results of log Bayes factor ratio
and their numerical standard error for the hypothesis test. The positive value of log Bayes factor
indicates that the unrestricted model (time-variant inefficiency) is preferred to the restricted one
(time-invariant inefficiency). Our results suggest that the efficiencies of most of the countries
are time-varying (the log Bayes factor are positive and significant). For some countries such
as Australia, Belgium and Italy, the log Bayes factors are negative, however, the stand errors
indicate that the values are not significant.

Figure 3.5.1 describes the evolution of the base efficiencies of some selected OCED countries
over the period 1970-2011. A country is considered as fully efficient if the efficiency score
is 1. Some countries such as Canada, Norway, Ireland, Norway, France and US are relatively
efficient in using their own resources, whereas Greece and Portugal have lower efficiency scores.
Ireland and Norway had a high and increasing pattern of efficiencies during the period. Ireland
experienced a slight decrease in the efficiencies in the early 1970, however, quickly improved
its efficiency after 1975. An explanation for the improvement in the efficiency of Ireland might
be due to economic reforms during the period 1980-2000. A number of economic reforms were
implemented in Ireland for the purpose of transforming the country into a high-tech industry
country (see Koop et al. (1999), Badunenko et al. (2008)). The efficiencies of US, France, and
Canada seem to be stable over the periods while the efficiencies of Greece and Portugal appear
to have a decreasing trend.

1970 1975 1980 1985 1990 1995 2000 2005 2010
0.4

0.5

0.6

0.7

0.8

0.9

1
Canada
France
Greece
Ireland
Norway
Portugal
U.S

Figure 3.5.1: The evolution of the posterior means of base efficiencies of some selected OECD
countries over 1970-2011 using the time-varying nonliear stochastic frontier model.
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Table 3.5.3: The estimated log Bayes factors and the numerical standard errors for testing time-
varying base efficiencies

Model (i) Model (ii) Model (iii) Model (iv)
Countries/Parameters ω

γ
(1)
i

ω
γ

(1)
i

ω
γ

(1)
i

ω
γ

(1)
i

Australia -1.375 -0.631 -0.891 -0.903
(0.687) (0.438) (0.515) (0.686)

Austria 16.067 9.975 10.370 11.623
(8.033) (3.770) (3.666) (3.675)

Belgium -1.539 -1.171 -1.243 -1.101
(0.769) (0.443) (0.439) (0.348)

Canada 2.355 1.532 1.059 1.221
(1.177) (0.579) (0.374) (0.386)

Denmark 6.309 17.289 16.619 17.981
(3.155) (6.535) (5.876) (5.686)

Finland 25.493 18.494 17.935 23.026
(12.746) (6.990) (6.341) (7.281)

France -1.558 -1.120 -1.252 -1.297
(0.779) (0.623) (0.743) (0.610)

Germany 3.665 10.747 8.376 9.285
(1.832) (4.062) (2.961) (2.936)

Greece 64.586 56.977 52.162 53.165
(32.293) (21.535) (18.442) (16.812)

Ireland 7.757 4.339 5.374 3.929
(3.878) (1.640) (1.900) (1.242)

Italy -0.435 -0.849 -0.689 -1.057
(0.218) (0.521) (0.444) (0.534)

Japan 1.488 22.224 18.037 24.885
(0.744) (8.400) (6.377) (7.869)

New Zealand 38.469 89.228 75.431 80.708
(19.234) (33.725) (26.669) (25.522)

Netherlands -1.519 -1.398 -0.993 -0.478
(0.759) (0.729) (0.651) (0.351)

Norway 20.384 11.600 11.529 11.540
(10.192) (4.384) (4.076) (3.649)

Portugal 269.229 237.574 218.008 219.653
(134.614) (89.794) (77.078) (69.460)

Spain 6.817 2.647 2.957 2.756
(3.409) (1.001) (1.045) (0.871)

Sweden -1.531 -1.541 -1.593 -1.697
(0.766) (0.882) (0.863) (0.937)

Turkey 74.691 39.574 42.376 32.464
(37.345) (14.958) (14.982) (10.266)

United Kingdom 1.924 2.240 1.755 1.806
(0.962) (0.847) (0.621) (0.571)

United States 7.367 3.266 4.113 3.189
(3.684) (1.234) (1.454) (1.009)
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Non dynamic model specification

For a model comparison, we go further to estimate the non-dynamic version of our model
specifications with a linear trend in the production, which is

yit = x∗itα− ηi exp(z∗itγ∗) + vi, (3.5.7)

where x∗it = [xit, t].

The non-dynamic models are estimated using a non-linear least squares and the results are
presented in Table 3.5.4. Table 3.5.4 confirms our findings regarding the role of FDI on the pro-
duction process. FDI has a significant impact on the production function (the 95% confidence
intervals for the coefficients associated with FDI in the production function do not include zero).
The effects of FDI on efficiencies appear to be insignificant (the 95% confidence intervals for
the coefficients associated with FDI in the inefficiency term include zero).

We also plot the efficiencies of some selected OCED obtained from the non-dynamic model
specification (Figure 3.5.2). The evolution of the efficiencies of US, France, Canada and Ireland
obtained from our proposed model is smoother than that obtained from the non-dynamic model.
For Portugal and Greece, the non-dynamic model suggests that the efficiencies of the countries
greatly fluctuated during the time period. In particular, we observe a sharp increase in the
efficiency of Portugal in the early 1970 and a sharp decline in its efficiency in 2001. On the
other hand, our results suggest that Portugal experienced a decline in the efficiency from 1970-
1985, and remained at the low efficiency level from 1985-2011. We observe a high persistence
in the adjustment of Portugal’s efficiency while it is not the case in the non-dynamic model. A
high persistence in the adjustment of efficiencies is a feature that many researchers often wish
to capture the dynamic pattern of efficiencies (Ahn and Sickles (2000), Tsionas (2006)). A
rationale behind this is that efficiencies might take time to be adjusted due to the potentially large
adjustment costs associated with the inputs, or persistent change in management skills. Such
a high persistence is captured in our model specification. Sudden change in efficiencies might
occur when there are changes affecting the operating environment (e.g. change in government
regulation).
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Figure 3.5.2: The evolution of the base efficiencies of some selected OECD countries over
1970-2011 using the non-dynamic specifications.

Table 3.5.4: The estimated coefficients and their 95% confidence intervals for the non-dynamic
specification of Model (i), (ii) and (iii) with a linear trend in the production function

Variables Model Specification
Production Function Model (i) Model (ii) Model (iii)

Intercept 5.110 -6.604 -5.438
(4.321; 6.969) (-16.219; 6.749) (-14.662; 6.949)

t 0.008 0.009 0.008
(0.004; 0.013) (0.005; 0.014) (0.005; 0.013)

log(Lit) 0.490 -1.405 -1.180
(0.422; 0.651) (-3.231; 1.696) (-2.991; 1.489)

log(Kit) 0.538 2.543 2.335
(0.374; 0.610) (0.118; 4.243) (0.146; 3.934)

log(Lit)log(Kit) 0.153 0.133
(-0.121; 0.321) (-0.010; 0.303)

log2(Lit) -0.047 -0.035
(-0.163; 0.125) (-0.152; 0.113)

log2(Kit) -0.085 -0.076
(-0.161; 0.024) (-0.147; 0.022)

FDIit 0.027 0.027 -0.021
(0.017; 0.059) (0.016; 0.057) (-0.043; 0.072)

FDI2
it 1.21E-04

(-2.40E-04; 0.003)

Inefficiency Component

FDIit 0.014 0.014 -0.048
(-0.009; 0.030) (-0.010; 0.029) (-0.079; 0.057)

The 95% confidence intervals are computed by using the block bootstrap procedure. The
bootstrap iterations are 1000.
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Growth Decomposition

Here we decompose output growth into inefficiency change, capital deepening, technological
change, and FDI change. We wish to investigate which component contributes to the output
growth. To decompose output growth we follow the procedure similar to those of Koop et al.

(2000) and Kumar and Russell (2002), which is summarised as follows. Given the specification
(3.5.1)-(3.5.5), the expected increase in the log of GDP of a country i from the period t to t+ 1
is

(xt+1βt+1 − xtβt) + (ui,t − ui,t+1). (3.5.8)

The first term (xt+1βt+1− xtβt) reflects the changes in technology, inputs and FDI. The second
term (ui,t − ui,t+1) reflects changes in inefficiencies.

Suppose that the variables xit and xi,t+1 are fixed at some levels such as x0, then the expected
output growth in (3.5.8) is measured as

exp(x0(βt+1 − βt)) exp(ui,t − ui,t+1). (3.5.9)

The first component exp(x0(βt+1− βt)) measures the “pure” technological change (the shift of
the frontier). The second term exp(ui,t − ui,t+1) measures the individual efficiency change. In
practice inputs often change over time from x0 = xi,t at period t to x0 = xi,t+1 at period t + 1.
To construct the technological change in such a case, we use the Fisher decomposition which is
based on the geometric of the technological change for a given x0 = xi,t and x0 = xi,t+1 (see
Caves et al. (1982), Färe et al. (1994)). The technological change is hence defined as

TCi,t+1 = exp
{1

2(xi,t+1 + xi,t)′(βt+1 − βt)
}
.

The change in expected GDP of country i in (3.5.8) is re-written as

GCi,t+1 = exp
(1

2(xt+1 + xt)(βt+1 − βt)
)
× exp

(1
2(xt+1 − xt)(βt+1 + βt)

)
× exp

(
ui,t − ui,t+1

)
,

= TCi,t+1 × IFCi,t+1 × ECi,t+1,

where ECi,t+1 = exp(uit − ui,t+1) captures efficiency change, and IFCi,t+1 = exp
(

1
2(xt+1 −

xt)(βt+1 + βt)
)

reflects the input change and FDI change.

The component IFCi,t+1 is further decomposed into input change (ICi,t+1) and FDI change
(FDIi,t+1). As xi,t+1 = [x̃i,t+1, x̃

∗
i,t+1], where x̃i,t+1 are variables containing inputs while x̃∗i,t+1

are variables containing FDI, βi,t+1 = [β̃i,t+1, β̃
∗
i,t+1] are the parameters associated with x̃i,t+1
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and x̃∗i,t+1, IFCi,t+1 is written as

IFCi,t+1 = exp
(1

2(xt+1 − xt)(βt+1 + βt)
)
,

= exp
(1

2(x̃t+1 − x̃t)(β̃t+1 + β̃t)
)
× exp

(1
2(x̃∗t+1 − x̃∗t )(β̃∗t+1 + β̃∗t )

)
,

= ICi,t+1 × FDICi,t+1.

To this end, the growth in expected GDP of country i is then written as

GCi,t+1 = TCi,t+1 × ICi,t+1 × FDICi,t+1 × ECi,t+1. (3.5.10)

The cumulated output growth and its components over the time period is given by

CPCi = CTCi × CICi × CFDICi × CECi, (3.5.11)

where

CTCi =
T−1∏
t=1

TCi,t+1; CICi =
T−1∏
t=1

ICi,t+1; CFDICi =
T−1∏
t=1

FDICi,t+1; CECi =
T−1∏
t=1

ECi,t+1.

Average changes are defined as geometric average of annual changes, i.e.,

AOGCi = (CTCi)
1

T−1 × (CICi)
1

T−1 × (CFDICi)
1

T−1 × (CECi)
1

T−1 ,

= ATCi × AICi × AFDICi × AECi. (3.5.12)

To facilitate the discussion of our results, we use average annual percentage growth . That is,
AOGi = 100 × (AOGCi − 1), ATGi = 100 × (ATCi − 1), AIGi = 100 × (AIGCi − 1),
AFDIGi = 100× (AFDICi − 1), AEGi = 100× (AECi − 1).

The second column of Table 3.5.5 reports average output growth (AOG) of the economies using
the actual data. The third-seventh column of Table 3.5.5 present posterior means and standard
deviations of these four measures along with expected GDP growth (i.e. AEG), which is ap-
proximately equal to the sum of AIG, ATG, AFDIG and AEFFG). The standard deviations of
most of the average growth measures are substantial, and therefore, our conclusions contain a
considerable degree of uncertainty. This is not surprising. It would be more surprising to expect
a small and noisy data set to answer the complicated questions about growth decomposition that
we consider with any high degree of accuracy.

A general pattern observed from Table 3.5.5 is that input change and technological change are
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Table 3.5.5: Percentage change of output growth and its decomposition for Model (iii)

Countries AOG AEG AIG ATG AFDIG AEFFG

Australia 3.398 3.449 2.754 0.668 -0.050 0.059
(0.000) (0.148) (0.082) (0.167) (0.037) (0.118)

Austria 3.059 3.437 2.296 1.503 0.032 -0.414
(0.000) (0.214) (0.188) (0.217) (0.100) (0.211)

Belgium 2.823 2.629 1.395 1.303 0.094 -0.178
(0.000) (0.193) (0.147) (0.419) (0.357) (0.186)

Canada 3.102 3.440 2.857 0.459 -0.030 0.137
(0.000) (0.155) (0.066) (0.177) (0.044) (0.135)

Denmark 2.348 2.681 1.316 1.936 -0.005 -0.572
(0.000) (0.206) (0.165) (0.233) (0.094) (0.216)

Finland 2.864 2.892 1.265 2.061 0.151 -0.594
(0.000) (0.214) (0.179) (0.238) (0.079) (0.234)

France 2.515 2.345 1.953 0.219 0.086 0.080
(0.000) (0.145) (0.165) (0.195) (0.027) (0.111)

Germany 2.776 2.166 1.565 0.360 0.024 0.208
(0.000) (0.211) (0.136) (0.230) (0.037) (0.211)

Greece 3.009 3.024 2.135 1.453 0.058 -0.631
(0.000) (0.202) (0.145) (0.192) (0.014) (0.203)

Ireland 5.591 5.441 2.537 2.482 0.192 0.150
(0.000) (0.203) (0.345) (0.405) (0.167) (0.163)

Italy 2.856 2.634 2.346 0.242 -0.019 0.058
(0.000) (0.144) (0.172) (0.188) (0.013) (0.124)

Japan 3.165 3.639 3.361 0.607 0.005 -0.340
(0.000) (0.224) (0.300) (0.284) (0.003) (0.197)

New Zealand 2.728 2.926 1.569 2.183 0.028 -0.856
(0.000) (0.219) (0.099) (0.321) (0.047) (0.284)

Netherlands 3.236 3.026 2.057 0.981 0.133 -0.159
(0.000) (0.267) (0.115) (0.691) (0.652) (0.287)

Norway 5.341 4.907 2.068 2.168 0.098 0.503
(0.000) (0.210) (0.171) (0.248) (0.037) (0.176)

Portugal 3.400 3.256 2.972 1.225 0.119 -1.054
(0.000) (0.239) (0.257) (0.273) (0.039) (0.223)

Spain 3.517 3.607 3.129 0.429 0.136 -0.102
(0.000) (0.164) (0.221) (0.183) (0.039) (0.126)

Sweden 2.558 2.933 1.444 1.346 0.149 -0.028
(0.000) (0.140) (0.108) (0.227) (0.122) (0.110)

Turkey 4.239 3.982 3.025 1.048 0.036 -0.154
(0.000) (0.223) (0.237) (0.389) (0.018) (0.269)

United Kingdom 2.494 2.306 1.463 0.461 0.152 0.215
(0.000) (0.164) (0.153) (0.242) (0.065) (0.166)

United States 2.814 2.975 2.510 0.315 0.081 0.057
(0.000) (0.224) (0.192) (0.332) (0.023) (0.170)

Mean 3.230 3.224 2.191 1.117 0.070 -0.172
std.err of the mean (0.171) (0.141) (0.155) (0.014) (0.084)
95% credible interval (2.888; 3.559) (1.915; 2.468) (0.812; 1.421) (0.041; 0.099) (-0.336; -0.008)
of the mean
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the key drivers of output growth. This confirms some of the findings in the literature on eco-
nomic growth, that is output growth is driven largely by accumulation of inputs, with a lesser
role for improvements in productivity (see Kumar and Russell (2002), Henderson and Russell
(2005), Koop et al. (2000) and many others). The changes in technical efficiency and changes
in FDI play minor roles. For almost all countries (e.g. Austria, Greece, Japan, New Zealand,
Portugal), there is either no efficiency change or it was somewhat negative. One possible ex-
planation for the negative contribution of efficiency change to output growth is that capital was
under utilised during the period, e.g. capital was idle or not efficiently used, resulting in in-
efficiency in capital utilisation. The idleness of capital can be explained as a consequence of
unwanted accidents that occur after a firm is built, or as a result of rational ex ante investment
plans (see Winston (1974) for further discussion). For example, firms are built with the expec-
tation that the expected costs of running a business is affordable, or the foreign exchange for
imported inputs will be available in additional to adequate working capital.

Looking closer to some countries such as Norway and Ireland, we find that the countries
achieved their fast GDP growth largely due to input growth and technological change. We also
find statistical evidence suggesting efficiency improvement contributes to the fast GDP growth
of Norway, but not for Ireland. For other countries such as Australia, Canada, Japan and Nether-
lands, they relied on input change to achieve their fast growth. Other countries (i.e. Belgium,
Denmark, Finland, New Zealand) which experienced slower than average GDP growth, we find
that slow growth in inputs and decrease in technical inefficiencies appeared to the culprit since
technological change was above average.

FDI seems to play a minor role in output growth on the average. However, when looking
closer at some specific countries, we find that FDI contributes to the economic growth of some
countries such as Ireland, Norway, Finland, United Kingdom, and United States. For example,
FDI contributed around 0.1% to output growth of Norway, and 0.15% to output growth of
Ireland. This provides some support to the fact that the period from the mid-1990s to the mid-
2000s is known as the Celtic Tiger for Ireland, which refers to the rapid real economic growth
fuelled by foreign direct investment. Ireland benefited from the large scale of global FDI in
the 1960s, and attracted many U.S investors. In the early 1970s, policy towards FDI became
increasingly more selective, encouraging a pattern of investment in the production of modern
high technology goods.

Evidence on mixing performance of the MCMC algorithm

To evaluate the mixing performance of a sampling algorithm we use the mixing factor perfor-
mance factors. The mixing performance factor is defined as 1+2∑L

l=1 φl, where φl is the sample
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autocorrelation at lag length l and L, which are chosen large enough so that the autocorrelation
tapers off. If a mixing performance score of a parameter obtained from 10,000 draws is equal to
5, then this implies that the draws of the parameter are equivalent to 2,000 independent draws
from its posterior.

Table 3.5.6: Mixing performance factors of some selected parameters

γ̃(1) δ̃(1) δ
(1)
0 γ

(1)
0 ω2

vi ωβ(1) ωb(1)

61.14 8.08 9.89 13.08 1.64 15.80 15.22

Table 3.5.6 summarises the mixing performance factors for some selected parameters of our
model. It is noted that for the time-varying parameter δ̃, and the parameter varying across in-
dividuals ω2

vi
, and the parameter varying across individuals and time δ̃, we choose to report

the 50th percentile of the mixing performance factors rather than reporting each mixing per-
formance factor of each observation at each time period. Over all, we find that the mixing
performance factors are relatively low, suggesting that the proposed sampling works well in
terms of producing posterior draws that are not highly correlated.

3.6 Conclusions

Our contribution in this chapter is to extend the static parametric stochastic frontier with scal-
ing property considered in Wang and Schmidt (2002) and Alvarez et al. (2006) to a dynamic
one. Such a model specification allows the joint effects of environmental variables on a pro-
duction function and an inefficiency components. Further, it sheds a light on drivers of techni-
cal inefficiency and the dynamic pattern of technical inefficiency over time. The time-varying
parameters associated with a production provide a flexible specification to encompass a Cobb-
Douglas/translog function with a linear trend. Statistical inferences (e.g. confidence intervals,
standard errors) of the parameters in our proposed model are directly obtained in comparison to
a nonparametric stochastic frontier model . A formal test for time-variation in inefficiencies is
provided.

We apply the proposed model to investigate the role of FDI to a production process of 21 OECD
countries for the period 1970-2011. Our results show that FDI plays an important role as influ-
encing the production frontier rather than changes in the distribution of technical inefficiency.
We find statistical evidence suggesting that technical inefficiencies are time-varying and that
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the temporal effect should be taken into account in modelling technical inefficiencies. We fur-
ther decompose output growth into input changes, technological change, efficiency change and
FDI change to investigate which component contributes to the output growth. Technological
change, and input change make a large contribution to output growth. Technical efficiency does
not appear to improve economic growth on the average, but makes a contribution to growth of
some countries such as Norway and Ireland. In addition, we find FDI makes a contribution to
the growth of some of the developed economies such as Ireland, Norway, Finland and United
Kingdom.

3.A Appendix A: MCMC Algorithm

In the Appendix we provide the conditional posterior density of parameters in the model (3.2.9)-
(3.2.13). To facilitate further discussion, recall the model here

yit = xitβ0 + xittb0 + xitwββ̃t + xitwbB̃t − exp(zitγi0 + zitwγi γ̃it) + vit, (3.A.1)

β̃t = β̃t−1 + ξβt ξβt ∼ N(0, Ik), (3.A.2)

b̃t = b̃t−1 + ξbt ξbt ∼ N(0, Ik), (3.A.3)

B̃t = B̃t−1 + b̃t−1, (3.A.4)

γ̃it = γ̃it−1 + ξγit ξγit ∼ N(0, Im). (3.A.5)

As discussed in Section 3.3, we group the time invariant parameters β0, b0, and the time-varying
parameters β̃t, b̃t, B̃t into two vectors, δ0 and δ̃t, i.e. δ0 = [β′0, b′0]′, δ̃t = [β̃′t, b̃′t, B̃′t]′, t =
1, . . . , T . We also stack yit, xit, zit, vit, δ̃t, γ̃it for all observations i over t, and rewrite the
measurement equation (3.A.1) as

Y = Xδ0δ0 + Xδ̃ δ̃ − exp(Zγ0 + Zγ̃ γ̃) + v, v ∼ N(0,Pv) (3.A.6)

1. Sampling δ0 = [β′, b′]′ from the normal conditional posterior:

δ0 ∼ N(δ̂0,P−1
δ̂0

),

with the mean δ̂0 and the precision matrix P−1
δ̂0

as follows

Pδ̂0
= Pδ0 + X′δ0PvXδ0 ,

δ̂0 = P−1
δ̂0

(X′δ0Pv(Y −Xδ̃ δ̃ + exp(Zγ0 + Zγ̃ γ̃)) + Pδ0δ0),
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where Pδ0 , δ0 are the the precision matrix (inverse variance), and the mean of the prior of

δ0, i.e. δ0 = [β′, b′]′, Pδ0 =
P−1

β 0
0 P−1

b

.

2. Sampling δ̃ = [β̃′, b̃′, B̃′]′.

We first rewrite the state equations (3.A.2)-(3.A.4) as

Kδ̃ δ̃ = ξ ξ ∼ N(0,Hδ̃), (3.A.7)

where Kδ̃ =



Ik 0 0 0 0 0 . . . 0
0 Ik 0 0 0 0 . . . 0
0 0 Ik 0 0 0 . . . 0
−Ik 0 0 Ik 0 0 . . . 0
0 −Ik 0 0 Ik 0 . . . 0
0 0 −Ik −Ik 0 Ik . . . 0
... . . . . . . . . . . . . . . . . . . ...
0 0 0 0 0 0 . . . Ik



; δ̃ =



β̃1

b̃1

B̃1
...
...
β̃T

b̃T

B̃T



.

Hδ̃ =



Ik 0 0 . . . 0
0 Ik 0 . . . 0
0 0 108Ik . . . 0
... . . . . . . . . . ...
0 0 0 . . . 108Ik


.

We sample δ̃ from the normal conditional posterior with mean ˜̂
δ and the precision matrix

P−1
˜̂
δ

, i.e. δ̃ ∼ N(˜̂
δ,P−1

˜̂
δ

), where

P˜̂
δ

= K′δ̃Hδ̃Kδ̃ + X′δ̃PvXδ̃,

˜̂
δ = P−1

˜̂
δ

(Xδ̃Pv(Y −Xδ0δ0 + exp(Zγ0 + Zγ̃ γ̃)).

3. Sampling ωβ

For the purpose of computation, we first reparameterise Xδ̃ δ̃ as Xβ̃ωβ + Xb̃ωb where

Xβ̃ =


X1diag(β̃1) 0 . . . 0

0 X2diag(β̃2) . . . 0
... . . . . . . ...
0 0 . . . XTdiag(β̃T )

. A similar procedure is applied

for Xb̃. Given the reparameterisation, ωβ is sampled from the normal conditional posterior
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with the mean ω̂β and the precision matrix P−1
ω̂β

, i.e. ωβ ∼ N(ω̂β,P−1
ω̂β

), where

Pω̂β = Pω̂β + X′β̃PvXβ̃,

ω̂β = P−1
ω̂β

(Pω̂βωβ + X′β̃Pv(Y −Xδ0δ0 −Xb̃ωb + exp(Zγ0 + Zγ̃ γ̃))).(3.A.8)

4. We draw ωb from the normal conditional posterior ωb ∼ N(ω̂b,P−1
ω̂b

), where

Pω̂b = Pω̂b + X′b̃PvXb̃,

ω̂b = P−1
ω̂b

(Pω̂bωb + X′b̃Pv(Y −Xδ0δ0 −Xβ̃ωβ + exp(Zγ0 + Zγ̃ γ̃))).(3.A.9)

5. For each ω2
vi

, we draw ω2
vi

from the inverse gamma conditional posterior:

ω2
vi
∼ IG

(
τvi + T − 1, Svi + 1

2

T∑
t=2

(yit − ŷit−1)2
)
,

where yit = xitβ0 + xittb0 + xitωββ̃t + xitωbB̃t − exp(zitγi0 − zitωγit γ̃it).

6. For the non-linear parameters γ0, γ̃, ωγi , the sampling algorithm is presented in Section
3.2.
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3.B Appendix B: Tables

Table 3.B.1: Descriptive statistics for variables used in estimation

GDP (in 000s) L K (in 000s) FDI

Australia 469,457,022 7,915,850 1,523,100,839 2.08
Austria 191,326,249 3,491,144 621,880,626 1.93
Belgium 246,537,003 3,934,699 771,728,363 8.55
Canada 771,875,552 12,799,122 2,105,717,010 2.08
Denmark 133,609,172 2,647,057 440,202,100 1.66
Finland 112,694,104 2,339,262 448,232,295 1.54
France 1,368,321,804 23,935,329 4,393,159,479 1.33
Germany 1,863,154,487 37,606,167 6,137,226,750 0.96
Greece 171,059,356 4,097,929 574,116,274 0.77
Ireland 80,763,630 1,378,069 199,133,582 5.88
Italy 1,258,005,719 22,192,072 4,533,384,827 0.53
Japan 2,813,658,161 61,193,693 10,009,963,101 0.08
New Zealand 72,957,208 1,739,870 182,613,516 2.57
Netherlands 383,048,964 6,889,215 1,181,301,257 7.88
Norway 128,789,756 2,122,041 423,445,561 1.57
Portugal 142,134,854 4,398,743 456,053,633 1.73
Spain 734,313,237 14,644,606 2,477,709,557 1.96
Sweden 213,654,308 4,275,507 540,170,993 2.60
Turkey 514,696,384 17,998,953 1,125,752,455 0.67
U.K. 1,313,025,655 26,166,970 3,139,447,521 2.63
U.S. 8,593,822,214 118,871,391 24,282,753,048 0.94

Y is real GDP measured in million U.S. dollars at 2005 constant prices
(using chained index),
L is the number of persons engaged in labour force,
K is capital stock measured in million U.S. dollars at current 2005 con-
stant prices,
FDI is measured as a ratio of net inflows of foreign direct investment to
GDP.
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CHAPTER 4

Reduced Rank Regression in a Large VAR Model:
Forecasting GDP and Its Impulse Response to

Structural Shocks

4.1 Introduction

Chapter 4 aims to investigate some economic questions such as: How does the output growth re-
spond to structural shocks (e.g. monetary shocks)? Will the forecast of output growth and other
important macroeconomic variables be improved by using a model including many macroeco-
nomic variables? Such a study assists policy makers in navigating changes and making better
decisions around the output growth. A vector autoregression model (VAR) is often used to ad-
dress these issues (see Blanchard and Quah (1989), Sims (1992), Cochrane (1998) and many
others). A VAR model with a large number of variables has been found, based upon a range of
point and density forecast measures, to provide better forecasts than a small VAR (see Banbura
et al. (2010), Carriero et al. (2011), Koop (2013), and many others). A large VAR model can
also mitigate the issues related to omitted variables. However, such a large VAR model often
faces the risk of over-parametrisation, which in turn could worsen forecasting performance and
impulse responses.

One of the most popular approaches addressing the over-parametrisation issue is a shrinkage
prior (e.g. Minnesota prior (Doan et al. (1984) and Litterman (1986)), ridge regression prior
(Hoerl and Kennard (1970)), and g-prior (Zellner (1986))). These priors are subjective in the
sense that the shrinkage parameters are not estimated via a data-driven approach. The subjec-
tive issue is overcome by using Bayesian hierarchical priors such as shrinkage Normal-Jeffreys
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(Hobert and Casella (1996)), Bayesian Lasso (Park et al. (2008)), hierarchical fused lasso (Tib-
shirani et al. (2005)), stochastic search variable selection (SSVS) (George et al. (2008), Koop
(2013)) and many others. The basic idea underlying these studies is to place hyper-prior dis-
tributions on the shrinkage parameters, and the parameters are then estimated using the Bayes’
rule. Most of the flexible Bayesian priors often rely on the computationally intensive Markov
Chain Monte Carlo (MCMC) methods. The recursive forecasting exercise therefore can become
prohibitive when the size of VAR system increases. An exception is a variant of the Minnesota
prior which is based on the natural conjugate prior (see Banbura et al. (2010), Giannone et al.

(2015)).

Dimension reduction is an alternative approach to handle the over-parametrisation. Lasso re-
gression (Tibshirani (1996), Fu (1998)) reduces the number of parameters by using a double-
exponential prior. The double-exponential prior shrinks the regression coefficients to zero rather
than close to zero. The posterior of the regression coefficients might have more than one mode,
which results in some difficulties in statistical inferences and computation (see Park et al. (2008)
for further discussion). Another approach is to use a factor model which explains the variation
of a large number of variables by a small number of factors (see Forni et al. (2000), Stock and
Watson (2002)). Such a factor model has been applied in the literature of large VARs for fore-
casting and structural analysis (see Bernanke and Boivin (2003), Forni et al. (2003), Bernanke
et al. (2005), Christine et al. (2008), and many others.). Pettenuzzo et al. (2016) recently
adopt the Bayesian compressed regression (Guhaniyogi and Dunson (2015)) from the machine
learning literature to tackle the over-parametrisation. The Bayesian compressed regression ap-
proach provides sound forecasts in their application. Reduced rank regression (RRR) (Velu
et al. (1986), Reinsel (1983), Geweke (1996)) began to gain its popularity in forecasting large
VARs (Carriero et al. (2011), Carriero et al. (2016b)). The method reduces the number of
parameters significantly when the regression coefficient is a reduced-rank matrix.

In this chapter, to improve the precision of estimating such a large VAR we use a reduced rank
regression model specification. We carefully investigate the performance of some popular rank
selection techniques in a high dimensional set-up, and the implication for forecast performance
when a misspecified rank is used.

A body of research has explored the ways of specifying reduced rank matrices that are invariant
to the order of the variables in the model. For instance, some studies have used a singular
value decomposition (SVD) to achieve an invariant specification in factor models (Chan et al.

(2017), Kaufmann and Schumacher (2013)), co-integrating vector error correction models and
simultaneous equations models (Strachan and Inder (2004), Koop et al. (2010)).
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An alternative approach to solve the issue of invariant ordering is to average over orderings (see
Geweke (1996), Hansen (2007), Magnus et al. (2010), Amini and Parmeter (2012)). Averaging
over orderings appears to perform well in a small dimensional set-up, however, the computation
of an averaging approach can become a challenge when the number of variables are large. For
example, a system of 50 variables with the number of rank equal to 5. The total of number of
orderings will be more than 2 million if we use an non-invariant approach and average over the
orderings. In the application in the thesis, with 119 variables, we would need to compute over
118 million orderings for a rank 5, and for a rank of 10 the number of orderings exceed over
100 trillion.

In this chapter, we achieve the invariant ordering by using a singular value decomposition
(SVD). Given the SVD specification, some of the identified parameters of the model belong
to the special manifold (Stiefel manifold), i.e. they are subject to semi-orthogonal constraints.
Sampling these parameters with the semi-orthogonal constraints are therefore not direct. To
simplify the computation of these parameters we make use of the parameter expansion approach
(see Ghosh and Dunson (2009), Koop et al. (2010), Chan et al. (2017)). We introduce two pa-
rameter expansions to map the parameters from the Stiefel manifold to the real space which is
no longer subject to the semi-orthogonal constraints. More importantly, we show that the con-
ditional posteriors of the parameters in the expanded model are normal distributions, which are
simple to draw from. To improve the computation time, we adopt the computation procedure
exploiting a certain Kronecker structure of covariance matrices (Carriero et al. (2016a)).

Rank selection of the VAR coefficient matrix is an important issue. Here we first estimate a set
of models with all possible values of rank, and then choose a model with the largest marginal
likelihood. In our context, the computation of a marginal likelihood is not trivial as the marginal
likelihood does not have a closed form. We therefore approximate the marginal likelihood by
using a number of techniques such as cross entropy, predictive likelihood, and Laplace ap-
proximation. The approaches are often used in a low dimensional set-up (see Geweke (1996),
Geweke (2001), Strachan and Inder (2004), Chan and Eisenstat (2015)). The performance of
the approaches in a high dimensional set-up is still not quite clear. In this paper, we conduct
an extensive Monte Carlo simulation to investigate their performance in a high dimensional
VAR model. The Monte Carlo results suggest that the downward bias in rank selection. The
downward bias is more evident when the singular values of VAR coefficients are small (close
to zero). These results are not surprising, but the implication for forecasting is important and
therefore we explore this area here.

We wish to explore whether the forecast performance is affected by a misspecified rank model.
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Our results suggest that models with lower rank perform better than the model with a correct
rank (the benchmark model) in terms of density forecast criteria (multivariate average log pre-
dictive likelihood, average log predictive likelihood). With regard to the point forecast criteria,
the models with misspecified ranks do not perform as well as the benchmark for shorter forecast
horizons. They appear to perform better than the benchmark model for longer forecast horizons.

For empirical illustration, we conduct a macroeconomic forecasting exercise for a large VAR
model with 119 dependent variables. Within these 119 variables, we focus on forecasting real
gross domestic product, consumer price index, federal funds rate, civilian unemployment rate,
industrial production growth, money stock M2, real personal consumption, producer price in-
dex, and personal consumption expenditure. We compare the forecasting performance of our
proposed approach to various popular alternatives: a univariate AR model with a random walk,
the Minnesota prior proposed by Banbura et al. (2010), a dynamic factor model (Bernanke et al.

(2005). Our results suggest that no single model dominates in forecasting the above variables.
Our proposed model provides a better forecast for gross domestic product, consumer price in-
dex, and producer price index. For the impulse response of a selection of macroeconomic
variables to a contractionary monetary policy shock, the results are in line with our expectation
and provide some support to economic theories.

The rest of the paper is organized as follows. Section 2 discusses the invariant specification of
large VARs. Section 3 provides priors and conditional posteriors for the identified parameters
of the model. Section 4 discusses the approaches used to select the rank. Section 5 presents
our Monte Carlo simulation study. Section 6 discusses the empirical application and Section 7
concludes the chapter. All technical details, figures and tables are presented in the Appendix.

4.2 The Model

Consider the following VAR (s) model of 1 × n stationary time series Yt = (y1,t, . . . , yn,t),
t = 1, . . . , T :

Yt = Yt−1Φ1 + Yt−2Φ2 + . . .+ Yt−sΦs + εt εt ∼ N(0,Σ),

= XtΦ + εt, (4.2.1)

where Φ1, . . . ,Φs are all n × n coefficient matrices; Φ = (Φ′1, . . . ,Φ′s)′ is a ns × n matrix;
Xt = (Yt−1, . . . , Yt−s) is a 1 × ns vector. The error term εt is normally distributed with mean
of zeros and full covariance matrix Σ.
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If Φ is a reduced rank matrix, the model (4.2.1) is written as a reduced rank regression model
such as

Yt =
s∑
j=1

Yt−jBjA+ εt

= XtBA+ εt. (4.2.2)

where A is a k × n matrix, Bj is a n× k (k < n) matrix with j = 1, . . . , s, and B =


B1
...
Bs

 is a

ns × k matrix. Such a reduced rank regression has been applied in a number of research areas
such as psychology (Ter Braak (1990)), neuroscience (Vounou et al. (2010)), geoscience (Rasti
et al. (2014)), and recently in the literature of large VARs (Carriero et al. (2011), Carriero et al.

(2016b)).

The number of parameters in the coefficients BA are significantly reduced if rank k is much
smaller than n. For instance, suppose the number of variables in the VAR system n = 25, and
the number of lags s = 4, this implies that 2,500 parameters (n2s) are required to be estimated
in the full rank matrix Φ in (4.2.1). However, if the matrix Φ has the rank k of 4, only 484
(nk(s+ 1)− k2) parameters are required to be estimated in BA in (4.2.2).

Not only is the specification (4.2.1) useful for achieving parsimony, but also has important im-
plications. From an economic point of view, this specification captures short run co-movements
(common cycles) among stationary time series. The rank of BA matrix suggests the number of
common cycles among Yt (see Engle and Kozicki (1993), Vahid and Issler (2002)).

The parameters A and B are not uniquely defined as there always exists a non-singular matrix
D such that Φ = BDD−1A = B#A#. To ensure the uniqueness of A and B, k2 restrictions
need to be imposed. In Bayesian analysis, researchers often consider a linear normalization, i.e.
B = [Ik B̃].1 A drawback of such a linear normalization specification is that it is dependent
on variable ordering, i.e. empirical study results can change when the order of the variables
in Yt changes. The lack of invariance is due to a non-homeomorphic transformation from the
parameter spaces of A,B to the identified parameters. That is, the transformation contains the
discontinuity (see Chan et al. (2017) for further discussion).

To obtain the invariant specification of (4.2.1) the singular value decomposition (SVD) specifi-

1In theory, one can estimate (4.2.2) in a frequentist framework as discussed in Reinsel and Velu (1988, Chapter
2, p.28). Such an estimation might not work well in practice if the second moment matrix ΣXX = 1/T (X ′X) is
close to be singular, which results in a numerical instability in the estimation of the model.
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cation of Φ is considered. The invariant specification using SVD has been discussed in a number
of research areas such as factor models (Chan et al. (2017), Kaufmann and Schumacher (2013)),
co-integrating vector error correction model and simultaneous equations models (Strachan and
Inder (2004), Koop et al. (2010)). The SVD of Φ with rank k is

Φ = UΛV ′, (4.2.3)

Λ = diag(λ1, . . . , λk), λ1 ≥ . . . ≥ λk > 0,

U ∈ Vk,n, V ∈ Vk,ns,

where V denotes a Stiefel manifold, e.g. Vk,n = {U(n× k) : U ′U = Ik}, where Ik is the k × k
identity matrix. All of the parameters U,Λ, V are identified up to sign, and have nk− k(k+1)

2 , k,
and nsk − k(k+1)

2 free elements, respectively. The estimation of such an invariant specification
is discussed in the next section.

4.3 Model Estimation

This section first elicits the priors for (U,Λ, V ) and the covariance variance matrix Σ in (4.2.3).
Due to semi-orthogonal constraint of U and V , sampling the parameters from their respective
conditional posteriors is not direct. To handle the semi-orthogonal constraints and simplify
the sampling computation of the parameters, we follow Chan et al. (2017) and introduce two
parameter expansions to map the parameters (U,Λ, V ) to (A,B) which belong to a real space.
We provide the priors of identified parameters A,B in the expanded model and provide the link
between the priors of (A,B) and those of (U,Λ, V ) . The conditional posterior densities of the
identified parameters in the expanded model are also presented. We assume rank k of the VAR
coefficient matrix is known in this section. The selection of k is discussed in Section 4.4.

4.3.1 Parameter Expansions and The priors

For the inverse covariance variance matrix Σ−1 we choose a Wishart prior, i.e. W (S0, v0) with
the scale S0 and the degrees of freedom v0. For the parameters U and V we choose a non
informative priors (i.e. a Uniform distribution over the Stiefel manifold). For Λ, we want to
choose a prior which can simplify the computation of (A,B) in the expanded model. For these
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purposes, we adopt the priors proposed in Chan et al. (2017)

p(Λ, V |cλ,Ω)(dΛ)(V ′dV )(U ′dU)cC
cΛcU

, (4.3.1)

p(Λ, V |cλ,Ω) = |Λ|n−k
k∏
i<j

(λ2
i − λ2

j) exp
{
− cλ

2 tr(V ′Ω−1V Λ2)
}
, (4.3.2)

cΛ

cC
=
∫
p(Λ, V |Ω)(dΛ)(V ′dV ), (4.3.3)

cU =
∫

(U ′dU) = 2kπnsk/2
Γk(np2 ) , (4.3.4)

cC =
∫

(C ′dC) = 2kπk2/2

Γk(k2 )
, (4.3.5)

Γk(
m

2 ) = πk(k−1)/4
k∏
i=1

Γ
[
m− i+ 1

2

]
, (4.3.6)

where tr(M) is the trace of a square matrix M . The constants cU , cC , cΛ are normalising con-
stants to ensure the priors of U,Λ, V are all proper. The forms of cU , cC are obtained from James
(1954, pp. 58-59) while cΛ is defined in (4.A.5). The matrix Ω can be fixed at the identity matrix
for a prior that is invariant to ordering only, or equal to Σ for a prior that is invariant to both
ordering and scale transformation.

Both U and V are subject to the orthogonal constraints which complicate the procedure of sam-
pling the parameters. To overcome this issue, we make use of parameter expansions developed
in Chan et al. (2017) to map (U,Λ, V ) to (A,B) in a real space. The parameter expansion
approach is also used in a number of studies to obtain the efficient computation (see Ghosh and
Dunson (2009), Koop et al. (2010), Chan et al. (2017)).

The mapping from (U,Λ, V ) to (A,B) is established by introducing two parameter expansions.
The first parameter expansion is an orthogonal matrix C ∈ O(k) (i.e. C ′C = Ik). The second
is a k × k upper positive definite matrix κ. The mapping of (U,Λ, V ) and (A,B) is described
as

UΛV = (UC ′)(CΛV ), where C ∈ O(k)

= B∗A∗ = (B∗κ)(κ−1A) = BA.

The parameter expansions C, κ are non-identified parameters, i.e. they do not change the like-
lihood function and are not identified under the joint posterior density.
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The choice of the prior p(Λ, V |cλ,Σ) in (4.3.2) implies that the marginal prior of A (integrating
out B) is a matrix variate t-distribution with the degree of freedom ns − n − k + 1, means of
zero, and the variance matrices

(
Σ, Ik 1

cλ(ns−n−k−1)

)
(see Gupta and Nagar (2000, p.134) for

the definition of a matrix variate t-distribution). The shrinkage parameter cλ is to permit the
shrinkage of A in (4.2.2) towards zero. We estimate the shrinkage parameter via a data-driven
approach, i.e. we place a Gamma prior on the shrinkage parameter cλ, i.e. cλ ∼ G(α, β), where
G denotes a Gamma distribution.

The priors of A and B are given in the following theorem.

Theorem 4.3.1 The prior (U,Λ, V ) in (4.3.1)-(4.3.6) implies that the priors for A and B are

for the case s = 1:

p(B|A,Σ) ∼ N(0, (cλAΣ−1A′)−1 ⊗ Ins),

p(A|B) ∼ N
(
0,

1
cλ

Σ⊗ (B′B)−1
)

;

for the case s > 1:

p(B|A,Σ) ∼ N(0, (Ik + cλAΣ−1A′)−1 ⊗ Ins),

p(A|B) ∼ N
(
0,

1
cλ

Σ⊗ (B′B)−1
)
.

Proof: Our proof is presented in Appendix 4.A.1. The proof is based on a number of results in
Chan et al. (2017).

4.3.2 The Posteriors

In this section, we present the MCMC algorithm to estimate parameters (A,B,Σ−1, cλ). For no-
tation convenience, we stack all the observations over time periods and denote Y = (Y ′1 , . . . , Y ′T )′,
X = (X1, . . . , XT ), and rewrite the reduced rank regression model as follows

Y = XBA+ ε ε ∼ N(0,Σ⊗ IT ). (4.3.7)

The likelihood function of the model is :

p(Y |A,B,Σ) ∝ |Σ|−T/2 exp−1
2 tr
(

Σ−1(Y −XBA)′(Y −XBA)
)
. (4.3.8)
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Following Bayes’rule, the posterior is obtained by incorporating the priors and the likelihood
function:

p(cλ, A,B,Σ−1|Y ) ∝ p(A,B|cλ,Σ)p(cλ)p(Σ−1)p(Y |A,B,Σ). (4.3.9)

The conditional posterior densities of (A,B,Σ−1, cλ) are presented below.

Sampling parameter A

The conditional posterior of A

p(vec(A)|B,Σ, cλ, Y ) ∝ N(vec(A), VA),

where vec(A) is vectorisation of a matrix A

VA = Σ⊗ P−1
A ,where PA = cλB

′B +B′X ′XB,

A = P−1
A B′X ′Y. (4.3.10)

To compute the mean of A, we first take a Cholesky decomposition CPA of PA, i.e. C ′PACPA =
PA and then follow the below procedure

PAA = B′X ′Y,

C ′PACPAA = B′X ′Y,

CPAA = (C ′PA)−1B′X ′Y,

A = C−1
PA
ZA, where ZA = (C ′PA)−1B′X ′Y . (4.3.11)

A conventional way to sample A from its conditional posterior is

vec(A) = vec(A) + chol(VA)z,

where chol(VA) denotes Cholesky decomposition of a matrix VA, z is a nk × 1 vector of of
random variables drawn from N(0, Ink). To speed up the computation time of sampling A

when sample size n increases, we use the computation algorithm (considered in Carriero et al.

(2016b)) which exploits the Kronecker structure of the covariance matrix rather than taking the
inverse matrix VA, i.e.

A = A+ C−1
PA
ZCΣ, (4.3.12)

where Z is a k × n matrix of independent N(0, Ink) random variables. The expression in
(4.3.12) implies that a = vec(A) ∼ N(vec(A),Σ⊗P−1

A ) (see Bauwens and Richard (2000, pp.
301-302)). For a given matrix r = ns + 1, the time complexity implied by (4.3.12) is of order
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O(n3s3) while the conventional approach is of order O(n6s3).

Sampling parameter B

The conditional posterior of B

p(vec(B)|A,Σ, cλ, Y ) ∝ N(vec(B), VB),

where

B = V BX
′Y Σ−1A′

VB = [AΣ−1A′ ⊗ (X ′X + cλIns)]−1 for the case s = 1

VB = [AΣ−1A′ ⊗ (X ′X + cλIns) + Insk]−1 for the case s > 1

Since the covariance matrix V B does not have a Kronecker structure for s > 1, a conventional
approach is applied to draw vec(B) from its normal conditional posterior N(vec(B), VB), i.e.
vec(B) = vec(B) + C−1

VB
z, where z is a nsk × 1 matrix of independent N(0, Insk).

Sampling parameter Σ

The conditional posterior of Σ−1

p(Σ−1|A,B, cλ, Y ) ∝ W (S, v),

where v = T + k + v0, S =
[
cλA

′B′BA+ (Y −XBA)′(Y −XBA) + S−1
0 ]−1.

Sampling parameter cλ

The conditional posterior of shrinkage parameter cλ is

p(cλ|A,B, cλ, Y ) ∝ G(α, β),

where α = α + 1
2 tr(Σ−1A′B′BA), β = β + nk

2 .

4.4 Determining the Rank

One of the common approaches for rank selection of a matrix is based on a sequential test. A
sequential test is well-developed in the frequentist framework and in a small set-up (see Gill
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and Lewbel (1992), Engle and Kozicki (1993), Cragg and Donald (1997), Robin and Smith
(2000), Camba-Mendez et al. (2003), and references therein). The test statistics in the previ-
ous studies require a root-T consistent estimator of the coefficient regression matrix (Φ in our
context). Information criteria such as Akaike (AIC), Hannan-Quinn (HQ) and Schwarz (SC) is
an alternative way of selecting k (see Vahid and Issler (2002), Lütkepohl (2007)). Information
criteria can be used to jointly select the rank k and the number of lags s.

In Bayesian analysis, a Bayes factor or a marginal likelihood is a natural way to select the
rank. In the approach, a range of RRR models with several possible values of k is considered.
The marginal likelihood of each model is estimated, and the model with the largest marginal
likelihood is chosen. Similar to information criteria, the number of lags can be jointly selected
with the rank. Comparing the performance of information criteria and marginal likelihood is
worth to be investigated.

The marginal likelihood, under model Ml with rank kl, is calculated by integrating the joint
density of the observables (Y ) and parameters (θl) with respect to θl, i.e.

p(Y |kl) = p(Y |Ml) =
∫
p(Y, θl|Ml)dθl =

∫
p(Y |θl,Ml)p(θl|Ml)dθl, (4.4.1)

where θl = [Al, Bl,Σ−1
l ], p(Y |θl,Ml) is the likelihood function of model Ml, p(θl|Ml) is the

prior of θl.

In our context an analytical solution of the marginal likelihood often does not exist. We hence
approximate the marginal likelihood by using a number of techniques such as adaptive im-
portance sampling (Chan and Eisenstat (2015)), predictive likelihood (Geweke and Amisano
(2010)), and Laplace approximation (Tierney and Kadane (1986)). The approaches have been
applied in a low dimension set-up, however, their performance in a high dimensional set up is
not quite clear. Their performance in selecting the rank is investigated in Section 4.5, while this
section discusses the approaches.

4.4.1 Cross-Entropy Method

We first integrate the joint density of Y and unknown parameters [A,B,Σ−1] with respect to
[A,Σ−1]. The joint density of Y and the remaining parameter B is stated in Theorem 4.4.1.

Theorem 4.4.1 The joint density of Y and B conditional on model M is2

2For notation convenience, we suppress the subscript l in k here.
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For the case s = 1

p(B, Y |kl) = p(B, Y |Ml) = c∗1|B′PB|
T+v0−n

2 |B′QB|−
T+v0

2 , (4.4.2)

where c∗1 = c
nk
2
λ π

−nsk−nT
2 Γk(ns2 )Γn(T+v0

2 )
Γn( v02 ) |S0|−

v0
2 ; P = cλIns + X ′X; Q = P − X ′Y (S−1

0 +
Y ′Y )−1Y ′X .

For the case s > 1

p(B, Y |kl) = p(B, Y |Ml) = c1|B′PB|
T+v0−n

2 |B′QB|−
T+v0

2 exp−1
2 tr(B′B), (4.4.3)

where c1 = c
nk
2
λ 2−nsk+nk

2 π
−nsk−nT

2
Γk(ns2 )

Γk(ns−n2 )
Γn(T+v0

2 )
Γn( v02 ) |S0|−

v0
2 ; P = cλIns + X ′X; Q = P −

X ′Y (S−1
0 + Y ′Y )−1Y ′X .

Proof. Our proof is presented in Appendix 4.A.2.

The marginal likelihood under model Ml is calculated as

p(Y |kl) = p(Y |Ml) =
∫
p(B, Y |kl)dB. (4.4.4)

Such a marginal likelihood of (4.4.2) can be approximate by an importance sampling estimator:

p(Y |kl) =
∫ p(B, Y |kl)

g(B) g(B)d(B) ≈ 1
M

M∑
m=1

p(B(m), Y |kl)
g(B(m)) = p̂(Y |kl), (4.4.5)

where B(m), m = 1, . . . ,M , are draws from an importance density g(B) which dominates
p(B, Y |kl), i.e. g(B) ≥ p(B, Y |kl). The performance of the estimator, particularly its variance,
is critically dependent upon the choice of the importance density g(B). In our context, the
optimal choice of g(.), denoted as g∗(.), is p(Y |B, k)p(B)/p(Y |k). The optimal choice is rarely
obtained as it contains the marginal likelihood term, p(Y |k), which we want to estimate. The
idea underpinning the cross entropy approach is to search for a proposed importance density
“close” enough to the optimal density g∗. The closeness between the proposed density and
the optimal density is defined by the cross-entropy distance (also known as Kullback-Leibler
divergence distance).3

Let us denote a parametric family T ≡ {g(B; v)} which is indexed by some parameter vector
v that we want to locate importance density, e.g. a mean and a variance. The cross-entropy

3Further discussion about the cross-entropy method is referred to in Rubinstein and Kroese (2004).
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distance is then defined as

D(g∗, g) =
∫
g∗(B)log

g∗(B)
g(B; v)dB. (4.4.6)

The closer g(.) to g∗(.) implies that the Kullback-Leibler is minimised, which is equivalent to

v∗CE = arg max
v

∫
g∗(B)logg(B; v)dx.

In our context, it is

v∗CE = arg max
v

∫
p(B, y|k)logg(B; v)dB ≈ arg max

v

1
M

M∑
m=1

log(g(B(m); v),

where B(m), m = 1, . . . ,M , are draws from the conditional posterior density using the MCMC
algorithm.

Our choice for g(B; v) is based on the following criteria i) generating random samples from a
parametric family should be easy and direct, and ii) the optimisation should be easily solved
either analytically or numerically. We choose a matrix variate t proposal density, i.e. B ∼
g(B) ≡ t(df, B̂, V̂B, Ik) with degree of freedom df , location vector B̂, and scale matrix V̂B, and
Ik:

B̂ = 1
M

M∑
m=1

B(m); V̂B = 1
kM

M∑
m=1

(B(m) − B̂)(B(m) − B̂)′.

Given the proposal density g(.), we then apply the importance sampling estimator in (4.4.5)
to evaluate the marginal likelihood. The procedure approximating the marginal likelihood is
summarised in the following steps:

1. Use the outputs from the MCMC described in Section 4.3 to obtain the location vector B̂
and the scale matrix V̂B. Then obtain the Cholesky decomposition of V̂B, denoted as CB,
(V̂B = C ′BCB).

2. Sample u ∼ N(0, Inkn) and r ∼ G(df/2, df/2). Then set v ≡ u/
√
r ∼ t(df, 0, Inkn).

3. Solve CBx = v for x, i.e. x = C−1
B v, and then take B = B̂ + x ∼ t(df, B̂, V̂B, Ik).

4. Use the draws from step 3 to evaluate the marginal likelihood (4.4.5).
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4.4.2 Predictive Likelihood Method

The second method of evaluating the marginal likelihood we consider here is predictive likeli-
hood. The method has been applied in a number of studies such as Geweke (1996), Geweke
(2001), Geweke and Amisano (2010), Warne et al. (2017), etc.

To facilitate the discussion in the section, we denote the dataset at period T as YT = {y1, . . . , yT}
(the subscript T is introduced in Y ). For the dataset YT , the marginal likelihood of the model
Ml can alternatively be decomposed as the product of the predictive likelihood, i.e.

p(YT |Ml) =
T∏
t=1

p(yt|Yt−1,Ml), (4.4.7)

where p(yt|Yt−1,Ml) is one-step ahead predictive likelihood, evaluated at time t

p(yt|Yt−1,Ml) =
∫
p(yt|Yt−1, θl,Ml)p(θl|Yt−1,Ml)dθl,

≈ (1/M)
M∑
m=1

p(yt|Yt−1, θ
(m)
l ,Ml),

The cost of this approach is that the posterior simulator is computed at each time period t.

The corresponding generalization of (4.4.7) is

p(YT |YS,Ml) =
T∏

t=S+1
p(yt|Yt−1,Ml). (4.4.8)

for S < T , YS = {y1, . . . , ys}. Equation (4.4.8) is identical to equation (4.4.7) when S = 0. The
right hand side of (4.4.8) is the ratio of the accumulation of the predictive likelihood function,
which starts at period t = S + 1 rather than t = 1.

4.4.3 Laplace Approximation Method

The application of Laplace approximation for evaluating integrals over a space (e.g. Lebesgue
space) is often straightforward when the mode and the Hessian matrix of a given kernel function
are easily obtained (see Tierney and Kadane (1986), Breslow and Lin (1995), Chickering and
Heckerman (1996)). The approach provides a faster computation than the MCMC and numeri-
cal integration methods. However, the approach does not perform well if the kernel function is
not smooth and is not peaked around the mode.

80



4.4. DETERMINING THE RANK

Instead of evaluating the marginal likelihood p(Y |k) =
∫
p(B, Y |k)dB stated in Theorem 4.4.1,

we evaluate the marginal likelihood
∫
p(B̃, Y |k)(dvknp), where dvknp is the measure of the Stiefel

manifold (its form is discussed later). It is noted that the two marginal likelihood expressions are
equivalent. The key difference between the expressions is that B̃ does not contain the parameter
expansions C, κ while B does. As discussed in Section 4.3.1, the parameter expansions do not
enter to the likelihood function, and are not identified under the posterior density. Evaluating
the marginal likelihood using either of the two expressions should provide similar results. The
reason we choose to evaluate

∫
p(B̃, Y |k)(dvkns) is that the mode and the negative Hessian

matrix of the joint density p(B̃, Y |k) are easier to derived.

The space we integrate the integral p(B̃, Y |k) is over the Stiefel manifold, Vk,ns, and therefore
standard rules are not directly applied to calculate the integral. More specifically, for any matrix
ns × k E ∈ Vk,ns, there are only ns − k(k + 1)/2 free elements in E, and therefore, if one
wants to compute the second differentials of a given function with respect to a matrix E (i.e.
the Hessian matrix), this must be subject to ns − k(k + 1)/2 free elements in E. Due to
this, the calculation of differentials over the Stiefel manifold becomes more challenging. Our
derivations of the mode and the negative Hessian matrix are built upon a number of results
from James (1954), Strachan and Inder (2004), Villani (2005), Muirhead (2005, Chapter 9),
and Magnus and Neudecker (2007, Chapter 9-10).

Let recall the SVD of the matrix Φ = UΛV ′, where U ∈ Vk,ns, V ∈ Vk,n. It is known that for a
matrix U ∈ Vk,ns, it can be expressed as U = B̃C, where C ∈ O(k) (see Chikuse (2003)). This
implies that we rotate the vector of B̃ within the plane b = sp(B̃), which is in the Grassmann
manifold, Gk,ns.4 The matrix U spans the same space as B̃, i.e. b = sp(B̃) = sp(U). Its
measure, prior, and posterior are preserved under the transformation (see James (1954)). The
matrix can then be re-parametrised as

Φ = B̃CΛV ′

= B̃Ã, where Ã = CΛV ′. (4.4.9)

In other words, sp(B̃) has a uniform prior over the Grassmann manifold. The idea of doing the
translation is to map (U,Λ, V ) to (Ã, B̃), and to obtain a standard form for the prior of A.

The forms of the priors, the likelihood function, the posteriors, and the joint density of B̃ and

4 The Grassmann manifold is defined as the space whose points are k-planes (k-dimensional hyperplanes
containing the origin) Vk,np (see James (1954) or Chikuse (2003) for further discussion about the Grassmann
manifold, Stiefel manifold, and the orthogonal manifold).
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Y are presented in the two following theorems. The derivations of the priors and posteriors are
similar to these presented in Section 4.3 and therefore we omit.

Theorem 4.4.2 Given the priors of the parameters U,Λ, V as described in Section 2, the prior

of B̃ is a uniform, the prior of Ã is normal, and the prior of Σ−1 is Wishart:

p(Ã|cλ,Σ)p(Σ−1)(dÃ)(B̃′dB̃)
cΛcB̃cΣ−1

,

p(Ã|cλ,Σ) ∝ exp
{
− cλ

2 tr(Σ−1Ã
′
Ã)
}
,

cΛ =
∫
p(Ã|cλ,Σ)(dÃ) =

(2π
cλ

)nk/2
|Σ|k/2,

cB̃ =
∫
B̃′d(B̃) = π

k(ns−k)
2 Γk(k/2)

Γk(np/2) ,

p(Σ−1) ∝ |Σ−1|
v0−n−1

2 exp
{
− 1

2 trS−1
0 Σ−1

}
,

cΣ−1 =
∫
p(Σ−1)dΣ−1 = 2nv0/2Γn(v0

2 )|S0|v0/2.

The likelihood function is

p(y|Ã, B̃,Σ−1) = (2π)−Tn/2|Σ|−T/2 exp
{
− 1

2 trΣ−1(Y −XB̃Ã)′(Y −XB̃Ã)
}
.

The posterior density is

p(Ã, B̃,Σ−1|Y ) ∝ c2|Σ−1|
T+v0+k−n−1

2 exp
{
− cλ

2 trΣ−1Ã′Ã
}

exp
{
− 1

2 trS−1
0 Σ−1

}
× exp

{
− 1

2 trΣ−1(Y −XB̃Ã)′(Y −XB̃Ã)
}
, (4.4.10)

where c2 = c
nk/2
λ 2−nk/2π−k(n+ns+k)/2 Γk(ns/2)

Γk(k/2) .

Theorem 4.4.3 The joint density of B̃ and Y conditional on model M is

p(B̃, Y |k) = p(B̃, Y |M ) ∝ h(B̃|Y, k)

= ck|B̃′PB̃|
T+v0−n

2 |B̃′QB̃|−
T+v0

2 , (4.4.11)

where h(B̃|Y, k) = ck|B̃′PB̃|
T+v0−n

2 |B̃′QB̃|−
T+v0

2 ; ck = (cλ)
nk
2 π

−kns+k2
2

Γk(ns/2)
Γk(k/2) ; P = cλIns +

X ′X; Q = P −X ′Y (S−1
0 + Y ′Y )−1Y ′X.

Proof: The proof follows the same procedure as described in Theorem (4.4.1).
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The marginal likelihood p(Y |k) can be computed by integrating B̃ out of p(B̃, Y |k) over the
Stiefel manifold. That is,

p(Y |k) =
∫
Gk,ns

p(B̃, Y |k)(dgkns) =
∫
Gk,ns

h(B̃|Y, k)(dgkns),

where B̃ = [b̃1, b̃2, . . . , b̃k], dgkns = Λk
w=1Λ

np
j=ns−k+1b̃

′
wdb̃s, Λ denotes exterior product differen-

tial forms (see Muirhead (2005, Chapter 2)).

It is known that an integral of h(Ẽ) with respect to Gk,ns can be obtained by integrating over
the Stiefel manifold Vk,ns with the adjustment by the volume of the orthogonal group, Vol(Ok)
(see Strachan and Inder (2004, p.315)). In our case, that is

∫
Gk,ns

h(B̃|Y, k)dgnsk =
∫
Vk,np h(B̃|Y, k)dvnsk∫

Ok dv
k
k

, (4.4.12)

where k(.) = ckf
T+v0g, f = |B̃′PB̃| 12 |B̃′QB̃|− 1

2 , g = |B̃′PB̃|−n2 , dvnpk = Λns
w=1Λns

j=w+1b̃wdb̃s,
dvkk = Λk

w=1Λk
j=w+1b̃wdb̃s.

Following the Poincaré theorem, for B̃ ∈ Vk,ns, then
∏k
j=1 λns−k+j(W ) ≤ |B̃′WB̃| ≤ ∏k

j=1 λj(W ),
where W = P,Q; λj(W ) are eigenvalues with positive and finite values. The kernel density
r(.) therefore has a finite upper bound. These are sufficient conditions to ensure that the condi-
tional posterior for B̃ is proper and all finite moments (see Strachan and Inder (2004) for further
discussion).

To this end, the marginal likelihood in (4.4.12) can be approximated by

ckg(B̂∗)fT+v0(B̂∗)
( 2π
T + v0

)(ns−k)k/2
|Ψ|−1/2,

where B̂∗ is the mode of the function f , Ψ is the negative Hessian matrix of ln(f). The forms
of the mode and the negative Hessian matrix are presented in 4.B.

4.5 Monte Carlo Experiment

In this section we perform extensive Monte Carlo simulation and wish to investigate under
what circumstances cross entropy (CE), predictive likelihood and Laplace approximation fail
to select the correct rank, and whether the forecast performance of the model is affected by a
misspecified rank.
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4.5.1 Monte Carlo Design

The Monte Carlo design is based on the following data generating process (DGP)

Yt = Yt−1Φ1 + Yt−2Φ2 + . . .+ Yt−sΦs + εt εt ∼ N(0,Σ),

= XtΦ + εt,

= XtUΛV ′ + εt,

where the initial values of Xt in period t = 1 are randomly drawn from the standard normal
distribution, i.e. X1 ∼ N(0, In) with the number of variables n = 25, 35, and 50. The number
of time periods T is set at 250 and the number of lags s is 2. The inverse covariance matrix
Σ of the random error term εt is drawn from a Wishart distribution, Σ−1 ∼ W (100In/n, n).
The rank k of the coefficient Φ is set at {2, 3, 4, 5, 6}. Without loss of generality we set the

semi-orthogonal matrices U and V as follows U =
 Ik

0ns−k,k

, V =
 Ik

0n−k,k

.5 For the i-th

element λi of the diagonal Λ (Λ = diag(λ1, . . . , λk)), we generate the elements following the
DGP below6

λi = 0.97− a(i− 1), (4.5.1)

where i = 1, . . . , k. The slope a is chosen from a set of values which i) ensures that the
VAR system is stable, ii) reflects how fast the magnitude of the singular values decreases.
The purpose of generating such DGPs is to examine whether the magnitudes of the singular
values play a role in the rank selection using CE, predictive likelihood and Laplace approx-
imation approaches. For example, for the case k = 5, the slope a is chosen from the set
{0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2}, which corresponds to the cases where
the singular values decrease at a slow rate (a = 0.01, DGP1) and at a fast rate (a = 0.2,
DGP9). The largest and smallest singular values in DGP1 (a = 0.01) are all close to 1, i.e.
λ1 = 0.97, λ2 = 0.96, λ3 = 0.95, λ4 = 0.94, λ5 = 0.93. On the other hand, the largest
singular value of DGP9 (a = 0.2) is close to 1 while the smallest one approaches to 0, i.e.
λ1 = 0.97, λ2 = 0.77, λ3 = 0.57, λ4 = 0.37, λ5 = 0.17.

5One can generate the semi-orthogonal matrices by using the polar decomposition. For any np× k matrix of a
random Z which has a density function, and has the rank of k almost everywhere, the unique polar decomposition
of Z is UZT

1/2
Z , where UZ = Z(Z ′Z)−1/2 ∈ Vk,ns and TZ = Z ′Z. We also generate data using the approach

and find that the conclusions are robust to our main Monte Carlo experiments.
6We also generate the singular values λi following the DGP: λi = 0.97 − ai. The DGP implies that the

magnitudes of singular values change according to the slope a, whereas the first singular value is fixed regardless
the value of a in (4.5.1). The main conclusions remain the same as they are obtained from our main Monte Carlo
experiments.
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Over all, the total number of DGPs for a given k and n is 9. For each DGP, we replicate 500
datasets. The total number of experiments is 4500 for a given k and n. The Monte Carlo
experiments are performed on a Euramoo computer cluster at The University of Queensland.

4.5.2 The Performance of CE, Predictive Likelihood, and Laplace Ap-
proximation in Rank Selection

The common pattern we observe from the extensive Monte Carlo exercise is that both the di-
mensions of VAR systems and the magnitude of singular values affect the performance of the
approaches. There is a downward bias in rank selection in a high dimensional set-up, and the
downward bias is more distinct when the singular values of VAR coefficients are small (ap-
proaching to zero).

Our discussion below is not subject to the DGPs with the true rank of 5, but emerges from
the simulation study we conduct. Table 4.5.1 reports the means and the standard errors of the
estimated ranks (over 500 replicated data) for DGP1-DGP9 with the true rank k = 5 using CE,
predictive likelihood, and Laplace approaches. Column (i) of the table reports the results for
n = 25, column (ii) is for n = 35, and column (iii) is for n = 50. Figure 4.5.1 summarises the
estimated rank k̂ according DGPs. The results for other ks are presented in Table 4.D.1-Table
4.D.4.

Figure 4.5.1 shows that the estimated rank k appears to be underestimated when the slope of
eigenvalues a increases (the magnitude of the singular values decreases at a faster rate). For
instance, when the slope a is 0.01 which corresponds to DGP1 (all the eigenvalues are large
and the smallest singular value λ5 is 0.93), all of these approaches correctly estimate the true
rank (e.g. 4.99 (0.12) for CE, 4.76 (0.58) for predictive likelihood, and 5 (0.00) for Laplace
approximation given n = 25) . However, when the slope a is large (e.g. a= 0.2 associated with
DGP9 where the magnitude of the smallest singular value is at 0.17), the estimated rank is much
lower than the true value (e.g. 2.59 (0.53) for CE, and 2.25 (0.44) for Laplace approximation).
The similar patterns are found for n = 35 and n = 50. Table 4.5.1 reveals that standard errors
of the mean estimated k obtained from predictive likelihood approach are larger than those
obtained from the others, which indicate more uncertainty in selecting the rank.

To investigate the performance of the approaches when the size of VAR (n) grows, we keep all
DGPs the same, but increase the sample size from n = 25 to 35 and 50. Reading the results
of each row across columns (i), (ii), and (iii) of Table 4.5.1, we see that the average mean of
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Table 4.5.1: The means and standard errors (in parenthesis) of selected ranks for DGPs with
k = 5

(i) (ii) (iii)
DGP Methods n=25 n=35 n=50

DGP1 CE 4.99(0.08) 4.99(0.12) 4.90(0.29)
Pred.Like 4.76(0.58) 4.64(0.68) 3.81(1.15)
Laplace 5.00(0.00) 5.00(0.00) 5.00(0.04)

DGP2 CE 4.98(0.13) 4.91(0.28) 4.75(0.44)
Pred.Like 4.53(0.85) 4.37(0.93) 3.42(1.24)
Laplace 5.00(0.00) 5.00 (0.00) 4.99(0.13)

DGP3 CE 4.88(0.33) 4.69(0.46) 4.32(0.53)
Pred.Like 4.12(1.05) 3.68(1.16) 2.53(1.11)
Laplace 5.00(0.00) 5.00(0.00) 4.12(0.88)

DGP4 CE 4.60(0.49) 4.34(0.58) 3.77(0.54)
Pred.Like 3.45(1.22) 2.98(1.21) 2.17(0.82)
Laplace 5.00(0.00) 4.26(0.49) 2.69(0.60)

DGP5 CE 4.12(0.58) 3.57(0.54) 3.17(0.43)
Pred.Like 2.87(1.13) 2.39(0.97) 1.83(0.64)
Laplace 4.52(0.67) 3.16(0.64) 2.03(0.34)

DGP6 CE 3.69(0.58) 3.31(0.49) 2.93(0.42)
Pred.Like 2.55(0.97) 2.21(0.80) 1.71(0.55)
Laplace 3.33(0.54) 2.51(0.53) 1.81(0.40)

DGP7 CE 3.23(0.47) 2.84(0.51) 2.47(0.50)
Pred.Like 2.10(0.76) 1.87(0.62) 1.59(0.53)
Laplace 2.96(0.20) 2.01(0.25) 1.41(0.49)

DGP8 CE 2.95(0.51) 2.61(0.50) 2.23(0.42)
Pred.Like 2.05 (0.79) 1.79 (0.63) 1.61(0.68)
Laplace 2.80(0.40) 1.87 (0.33) 1.19(0.39)

DGP9 CE 2.59 (0.53) 2.27(0.45) 2.07(0.26)
Pred.Like 2.05(0.79) 1.79(0.63) 1.64(0.77)
Laplace 2.25(0.44) 1.73(0.44) 1.05(0.23)

DGP1: λ1 = 0.97, λ2 = 0.96, λ3 = 0.95, λ4 = 0.94, λ5 = 0.93;
DGP2: λ1 = 0.97, λ2 = 0.95, λ3 = 0.93, λ4 = 0.91, λ5 = 0.89;
DGP3: λ1 = 0.97, λ2 = 0.93, λ3 = 0.89, λ4 = 0.85, λ5 = 0.81;
DGP4: λ1 = 0.97, λ2 = 0.91, λ3 = 0.85, λ4 = 0.79, λ5 = 0.71;
DGP5: λ1 = 0.97, λ2 = 0.88, λ3 = 0.79, λ4 = 0.70, λ5 = 0.61;
DGP6: λ1 = 0.97, λ2 = 0.86, λ3 = 0.75, λ4 = 0.64, λ5 = 0.53;
DGP7: λ1 = 0.97, λ2 = 0.82, λ3 = 0.67, λ4 = 0.52, λ5 = 0.37;
DGP8: λ1 = 0.97, λ2 = 0.80, λ3 = 0.63, λ4 = 0.46, λ5 = 0.29;
DGP9: λ1 = 0.97, λ2 = 0.77, λ3 = 0.57, λ4 = 0.37, λ5 = 0.17.
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Figure 4.5.1: Estimated rank versus slope a

the estimated k tends to decrease as the size n grows. The rate of decrease in the estimate rank
is faster when the magnitude of singular values is smaller. The conclusions hold when the true
rank of the V AR(n) system increases.

We also want to point out that the results in Table 4.5.1 and Tables 4.D.1-4.D.4 are based on
DGPs where we ensure the existence of the mode of the kernel density considered in Laplace
approximation. We go further and generate data without imposing the restriction to examine
whether Laplace approximation still performs well. The results show that the number of times
that the mode is not identified or the negative Hessian matrix is not a positive-definite matrix
increases when the magnitudes of singular values are small, and the dimensions of VARs in-
crease. For CE and predictive likelihood approaches, similar conclusions about the downward
bias in the estimation of the rank still hold for such DGP without imposing the restrictions on
the existence of a single mode and a positive definite matrix of a negative Hessian matrix.

With respect to computation time, the fastest computation time is Laplace, followed by CE
and then predictive likelihood. This is because Laplace does not require MCMC iterations
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to evaluate the marginal likelihood while the others do. Predictive likelihood requires fairly
intensive computation as it involves the recursive forecast exercise. That is, at each time period
we need to use MCMC iterations to evaluate a one-step predictive likelihood.

Overall, from the Monte Carlo simulation study we prefer CE approach for selecting the rank
of the VAR coefficients, given its advantage in computation time and its accuracy in estimating
the rank of VAR coefficients

4.5.3 Forecasting Performance

The rank selection results of Monte Carlo simulation exercises suggest that CE, predictive like-
lihood and Laplace approximation tend to underestimate the rank model of the VAR coefficients
in a high dimensional set-up. A question arising is whether a misspecified rank provides better
(or worse) forecast than the model with a true rank based on some point and density forecast
measures.

Given the DGPs set-up in our Monte Carlo design, the first k variables of a VAR system are
associated with the first non-negative k singular values, and the remaining n − k variables are
associated with the singular values of 0. We conduct and present the recursive forecast results
for the first k variables and the first three variables of the remaining n − k variables. Our aim
is to investigate whether the forecast performance of RRR is associated with the magnitude of
singular values.

The recursive forecast exercise is summarised as follows. We first use the sample including 203
periods to obtain the estimates used to predict outcomes for the periods from T = 204 (h = 1)
to T = 211 (h = 8). For the next forecast, T = 204 is included in the sample, and the same
procedure is repeated to predict outcomes for the periods T = 205 to T = 212. The procedure
is conducted until T = 242.

To assess the forecast accuracy, researchers have proposed a number of criteria such as mean
squared forecast errors (MSFE), median absolute forecast errors (MAFE), root mean squared
forecast errors (RMSFE). Further discussion about some limitation of the point forecast mea-
sures in assessing forecast accuracy is referred to Hyndman and Koehler (2006). In this chapter
we consider MSFE and MAFE which are are widely used in the literature (see Banbura et al.

(2010), Carriero et al. (2011), Koop (2013) and many others). We report these forecast mea-
sures obtained from RRR with a misspecified rank relative to that obtained from a model with
a correct rank (the benchmark model). For each variable i, the h-step-ahead point forecast
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measures of MAFE and MSFE obtained from model j relative to that from the benchmark are

MAFEj,i,h =
∑t−h
t=t |ŷj,i,t+h|t − yi,t+h|∑t−h
t=t |ŷbm,i,t+h|t − yi,t+h|

,

MSFEj,i,h =
∑t−h
t=t (ŷj,i,t+h|t − yi,t+h)2∑t−h
t=t (ŷbm,i,t+h|t − yi,t+h)2

,

where t and t denote the start and the end of the out-of-sample period, ŷj,i,t+h|t, and ŷbm,i,t+h|t
are the predicted values of model j and the benchmark model for variable i at forecast horizon
h using the information up to t.

The above forecast measures are designed to assess the forecast accuracy for a single variable.
To assess the forecast accuracy for multivariate variables, we consider the multivariate loss
function of Christoffersen and Diebold (1998), and calculate the multivariate weighted mean
squared forecast error (WMSFE) of model j relative to that of the benchmark model for a h-
step-ahead point forecast

WMSFEj,h =
∑t−h
t=t (e′j,t+h ×W × ej,t+h)∑t−h

t=t (e′bm,t+h ×W × ebm,t+h)
, (4.5.2)

where ej,t+h and ebm,t+h are a (k + 3) × 1 vector of forecast errors of jointly k + 3 variables,
and W is the (k + 3) × (k + 3) matrix of weight. Following Carriero et al. (2011), we set the
matrix W to be a diagonal matrix which features on the diagonal the inverse of the variance of
the series to be forecast.

In Bayesian analysis another popular measure of forecast accuracy is forecast density (e.g.
average log predictive likelihood (ALPL), and multivariate average log predictive likelihood
(MVALPL)). A great advantage of the density forecast measures is that they evaluate the fore-
cast performance of the entire predictive density rather that at a particular point estimate. The
ALPL obtained from model j relative to that from the benchmark model is

ALPLj,h = 1
t− t− h+ 1

t−h∑
t=t

(LPLj,i,t+h − LPLbm,i,t+h), (4.5.3)

where LPLj,i,t+h and LPLbm,i,t+h are the log predictive scores obtained from model j and the
benchmark model for variable i at time t+ h.

The multivariate average log predictive likelihood from model j relative to that from the bench-
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mark model is

MVALPLj,h = 1
t− t− h+ 1

t−h∑
t=t

(MVLPLj,t+h −MVLPLbm,t+h), (4.5.4)

where MVLPLj,t+h and MVLPLbm,t+h denote the multivariate log predictive likelihoods of
model j and the benchmark at time period t+ h.

To test if the point forecast and density forecast measures of a misspecified rank model are
statistically different from these obtained from the benchmark (e.g. H0 : MSFEj = MSFEbm,
H1 : MSFEj 6= MSFEbm ), the modified Diebold and Mariano (1995)’s test statistic proposed by
Harvey et al. (1997) is used. To make a decision on rejecting the null hypothesis, the modified
Diebold and Mariano (1995)’s test statistic is compared with critical values from the Student’s
t distribution with (T − 1) degree of freedom rather than the standard normal distribution.

We conduct the recursive forecast exercises for 500 replicated data for each of the nine DGPs.
To summarize the forecast results over 500 replicated data for each DGP, we choose to report the
50% percentile of the estimated distribution of the metric measures. We also compute the 25%
and 75% percentiles of the measures, and find the conclusions obtained from the percentiles are
robust to those obtained from the 50% percentile.

The results presented below are obtained from a small subset of our extensive Monte Carlo
simulation, DGP9 with the true rank k = 5.7 The conclusions are not subject to the particular
cases, but are the common patterns that are observed from our Monte Carlo simulation.

Table 4.5.2 reports average WMSFE and average MSFE over 500 replicated data for k + 3
forecast variables at a number of forecast horizons h = {1, 2, 4, 6, 7, 8} for DGP9 with k = 5.
The measures smaller than 1 indicate that the other models are preferred to the benchmark.
The ∗∗∗, ∗∗, and ∗ indicate whether the forecast errors obtained from the models are statistically
different from those obtained from the benchmark model at the 1%, 5%, and 10% level of
significance, respectively.

Based on the point forecast measure of WMSFE for the k + 3 variables, the benchmark model
outperforms the models with lower rank for shorter forecast horizons (e.g. h = 1, 2).8 However,
the models with lower rank perform as well as, or even better than the benchmark model for
longer forecast horizons (e.g. h = 4, 6, 8). Similar results are found for MSFE for an individ-
ual variable. For the higher rank models, there is no statistical evidence suggesting that they

7The results for other DGPs are available upon the request.
8In our discussion a shorter forecast implies that h < 4, which is equivalent to a year forecast ahead using

quarterly data, while a longer forecast horizon implies h > 4.
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Figure 4.5.2: Cumulative sum of weighted of squared forecast errors differentials, n = 35,
k = 5, DGP9 (λ1 = 0.97, λ2 = 0.77, λ3 = 0.57, λ4 = 0.37, λ5 = 0.17)

perform better or worse than the benchmark (see Table 4.5.2 for variables 6, 7, and 8).

All of the above measures only provide the forecast accuracy based on the average of the mea-
sures over the forecast periods, but not for each time forecast period. To better understand the
forecast performance at each time forecast period, we plot the cumulative sum of WSFE differ-
entials (CSWSFE) (Figure 4.5.2), and the cumulative sum of squared forecast error differentials
(CSSFE) (Figures 4.D.1-4.D.4) during the forecast period T=204-242.9 If the metric values
are smaller than zero, this implies that the other RRR models are beating the benchmark. The
figures confirm our findings in Table 4.5.2

The quality of the forecast density (AMVLPL), and average log predictive likelihood (ALPL)
are reported in Tables 4.5.3 for DGP9, with h = {1, 2, 4, 6, 7, 8} over 500 replicated datasets.
The metric greater than zero suggests that the lower models provide better forecast than the
benchmark model. The lower rank models seem to outperform the benchmark for a h-step
ahead forecast with h ≥ 2. The higher rank model appear to perform worse than the benchmark

9Due to space limitations, we present only the results for CSWSFE and CSSFE for some variables. The full
results are available upon the request. The cumulative sum of WSFE differentials between model j and the bench-
mark is CSWSFEj,h =

∑t−h
t=t (e′j,t+hWej,t+h − e′bm,t+hWebm,t+h). The cumulative sum of SFE differentials

between model j and the benchmark for variable j is CSSFEi,j,h =
∑t−h
t=t (e2

i,j,t+h − e2
i,bm,t+h).
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4.6. EMPIRICAL STUDY

here (the density forecast are negative). Our understanding here is that the cumulative log
predictive likelihood for a one-step ahead is an approximation of the marginal likelihood. Since
the true model is known in the Monte Carlo simulation, one would expect that the benchmark
yields the highest marginal likelihood.10 In other words, the benchmark model performs best
for a one-step forecast ahead.

Over all, a number of conclusions are drawn from the Monte Carlo simulation. The models with
lower rank perform better in term of density forecast criteria. For shorter forecast horizons, the
models with misspecified rank do not perform as well as the model with the correct rank based
on the point forecast criteria (MSFE and MAFE). However, for longer forecast horizons they
appear to perform better than the benchmark model. With respect to the density forecast, the
lower rank models seem to outperform the benchmark for a h-step ahead forecast with h ≥ 2.

4.6 Empirical Study

To evaluate the forecasting performance of the RRR model, we compare its forecast perfor-
mance with the forecast performance of a number of models that are widely used in the fore-
casting literature for high dimensional data. These include the dynamic factor model (e.g., Forni
et al. (2000), the Minnesota prior model (Banbura et al. (2010)), AR model with a random walk.
The details of the factor model and the Minnesota prior are referred to Bernanke et al. (2005)
and Banbura et al. (2010), respectively. A brief description of the approaches is presented in
Section 4.6.2.

4.6.1 Data

The data used in this empirical study is from the FED QD database of quarterly U.S. variables
from 1960Q1 to 2014Q3. We work with a VAR system including 119 variables. The list of
the variables used in the paper is presented in Section 4.C; a full description of the variables is
referred to McCracken and Ng (2015). We transform the variables to stationary variables using
the transformation codes provided in McCracken and Ng (2015).11

10In the computation, we set the priors of the identified parameters of the model at the true values.
11Similar to Pettenuzzo et al. (2016), we remove the series non-borrowed reserves, as it was too volatile during

the Great Recession.
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4.6.2 Forecasting Models

Minnesota Priors

The normal conjugate prior is chosen for the coefficient Φ and the inverse covariance variance
matrix Σ

vec(Φ)|Σ ∼ N(vec(Φ),Σ⊗ V ),

Σ−1 ∼ W (S, v),

where φ, V , S, and v are prior hyperparameters.

Banbura et al. (2010) introduce two fictitious variables Y and X with dimension of (ns + n +
1)×n and (ns+n+1)×(ns+1) in to the system (4.2.1), and show that the prior hyperparameters
can be written as Φ = (X ′X)−1XY , V = (X ′X)−1, S = (Y − XΦ)′(Y − XΦ). For given
specific forms of Y and X , Banbura et al. (2010) show that their proposed priors coincide with
the traditional Minnesota (Litterman (1986)) (except that the covariance matrix Σ is treated as
unknown and a single scalar is used for shrinkage instead of the two scalars used for shrinkage
in the traditional implementation). The forms of the two fictitious Y and X are

Y =


diag(δ1ω1,...,δnωn)

λ

0(ns−n+1)×n

diag(ω1, . . . , ωn)

 , X =


Js ⊗ diag(ω1,...,ωn)

λ
0ns×1

01×ns v

0n×ns 0n×1

 , (4.6.1)

where Js = diag(1, 2, . . . , s), Σ = diag(ω2
1, . . . , ω

2
n). δi = 1 if the ith is believed to exhibit

persistence; and δi = 0 if the ith is believed to exhibit little persistence. The first block of
the fictitious variables reflects a prior belief on the autoregressive coefficients, the second block
reflects the prior for the intercept and the third block is the prior for the covariance matrix. The
parameter v in the second block of X is chosen at a small value, implying a fairly noninforma-
tive prior for the intercept. The shrinkage parameter λ is chosen as follows. We first estimate
the VAR model using the training sample (which is half of the sample size), and use the re-
sulting parameters to conduct an in-sample forecast within this training sample. The “optimal”
parameter λ is chosen so that the fit of the in-sample forecast is as close to as that of the small
VAR including only the forecast variables of interest (nf ). That is, we set a grid search for λ,
e.g. [0.01, 0.05, 0.1, 0.5, 1], and choose the “optimal” choice of λ by minimizing the

|Fitλn − Fit∞nf |, (4.6.2)
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where Fitλn = 1
nf

∑nf
i=1

MSFE(i,λ,n)
MSFE(i,0,nf ) , MSFE(i, λ, n) is the MSFE of variable i using shrinkage

parameter λ in a VAR with n variables. If we stack the actual data and the fictitious variables as
Y = (Y ′, Y ′)′, X = (X ′, X ′)′, then the conditional posteriors of Φ and Σ−1 have the following
forms

vec(Φ)|Σ ∼ N(vec(Φ),Σ⊗ V ),

Σ−1 ∼ W (S, v),

where V = (X ′X)−1, Φ = (X ′X)−1X
′
Y , S = ((Y − XΦ)′(Y − XΦ))−1, v = T + v,

Y = (Y ′, Y ′), X = (X ′, X ′)′.

Dynamic Factor Model

The idea underpinning a dynamic factor model is that a small number of factors can summarize
the information in a large system of n variables (see Forni et al. (2000), Stock and Watson
(2002)). The factor has the following form

Yt = λ0 + λ1Ft + εYt , εYt ∼ N(0,ΩY ),

Ft = θ1Ft−1 + εFt , εFt ∼ N(0,ΩF ), (4.6.3)

where Ft is a q× 1 vector of unobserved latent factors, q � n. The vector of factors is assumed
to follow VAR(1) process. The covariance-variance ΩY is a diagonal matrix, εFt independent of
εFt̃ at all t and t̃. To select the number of factors, we first specify the maximum possible number
of factors to be qmax =

√
n. At each point in time, we use IC criteria proposed by Bai and

Ng (2002) to determine the number of factors. We use Bayesian methods with non-informative
priors to estimate and forecast the models.

4.6.3 Forecast Results

We conduct a recursive forecast and present the forecast results for nine variables of inter-
est: real gross domestic product (GDPC96), consumer price index (CPIAUCSL), federal funds
rate (FEDFUNDS), civilian unemployment rate (UNRATE), industrial production growth (IN-
DPRO), money stock M2 (M2REALx), real personal consumption (PCECC, producer price
index (PPIFGS), and personal consumption expenditure (PCECTPI). It is noted that one can
choose to forecast other variables among the 119 variables, our choice of the nine variables is
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purely based our interest, and the variables are also the most commonly forecast in the literature
of macroeconomics.

In the recursive forecasting exercise, we use the sample from 1960Q1-1986Q4 to estimate the
initial parameter estimates, which are then used to predict outcomes for 1987Q1 (h = 1) through
1990Q4 (h = 12). For the next forecast, 1987Q1 is included in the sample, and the same pro-
cedure as above is repeated to predict outcomes for 1988Q2-1990Q1. The process is recur-
sively proceeded until 2015Q4, and a time series of forecasts is generated for up to three years
h = 1, . . . , 12.

To assess the forecast accuracy of models, we use both point and density forecast measures
for a single variable (MSFE and ALPL), and for multivariate variables (WSFE and WALPL).
These measures are described in Section 4.5.3. The benchmark model we choose here is AR(1)
with a random walk. Tables 4.6.1 (4.6.2) summarizes WMSFE, MSFE (MVALPL and ALPL)
over a number of forecast horizons h = {1, 4, 6, 8, 10, 12} for the nine variables of interest. The
value of WMSFE/MSFE less than 1 indicates that the other models (RRR, DFM, and Minnesota
prior) perform better forecast than the benchmark, while the value of MVAPLP/APLP smaller
than 0 suggests the benchmark is preferred.

Following Koop (2013), we choose the lag length for the VAR system of quarterly data is equal
to 4. The cross-entropy is used to determine the rank of the VAR coefficients, and the result
suggests the rank k equal to 3.

Our results suggest no single approach dominant in forecasting the variables of interest. Some
models perform well in some cases and do not perform well in the others. In general, the point
forecast and the density forecast measures achieve the same conclusions (with the exception
of interest rates). Both WMSFE and WALPL in Tables 4.6.1-4.6.2 suggest that DFM provides
the best forecast at shorter horizons h = 1, 4, 6 while RRR performs better forecast at longer
forecast horizons h = 8, 10, 12. We look closer at the forecast performance for each individual
variable of interest: DFM is found to be preferable for one-step ahead forecast for unemploy-
ment rate, and industrial production index, whereas RRR performs well for the two-step ahead
forecast onwards. Minnesota prior provides a better forecast for money stock (M2), while DFM
provides the best forecast for producer price index and personal consumption. As for the federal
funds rate, it appears that none of the models outperforms the benchmark (AR(1) with a random
walk) in terms of the point forecast measures. However, the results are mixed in term of density
forecast measure. DFM performs well in forecasting the federal funds rate up to the forecast
horizon h = 6.
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Table 4.6.1: Out of sample point forecast performance (WMSFE/MSFE) of BRRR, BGR, and
DFM relative to a random walk model

Variables/Models BRRR BGR DFM BRRR BGR DFM

WMSFE/MSFE h=1 h=4

Multivariate 0.532 0.522 0.518 0.733 0.840 0.613
GDPC96 0.702 0.802 0.881 1.115 1.691 0.742
CPIAUCSL 0.380 0.370 0.381 0.510 0.525 0.416
FEDFUNDS 1.206 1.140 1.291 2.837 3.429 1.150
UNRATE 1.070 1.275 0.779 0.665 0.725 1.087
INDPRO 1.317 1.413 0.949 0.915 1.349 1.191
M2REALx 1.341 0.941 1.120 0.747 0.651 0.632
PCECC96 0.846 0.882 0.831 1.381 1.860 1.048
PPIFGS 0.387 0.385 0.398 0.537 0.544 0.404
PCECTPI 0.395 0.389 0.404 0.600 0.615 0.394

h=6 h=8

Multivariate 0.844 1.040 0.760 0.708 0.914 0.707
GDPC96 0.785 1.551 0.641 0.597 1.417 0.609
CPIAUCSL 0.669 0.696 0.558 0.594 0.661 0.535
FEDFUNDS 2.768 2.844 1.218 2.362 2.630 1.181
UNRATE 0.479 0.682 0.965 0.382 0.501 0.807
INDPRO 0.698 1.323 1.162 0.589 1.325 1.309
M2REALx 0.946 0.771 0.763 0.937 0.611 0.680
PCECC96 1.043 1.985 0.986 0.730 1.694 0.888
PPIFGS 0.742 0.772 0.577 0.557 0.624 0.469
PCECTPI 0.928 0.956 0.620 0.725 0.799 0.523

h=10 h=12

Multivariate 0.624 0.823 0.682 0.640 0.847 0.758
GDPC96 0.551 1.447 0.664 0.457 1.188 0.588
CPIAUCSL 0.478 0.558 0.449 0.556 0.672 0.546
FEDFUNDS 1.877 2.507 1.153 1.431 2.373 1.176
UNRATE 0.476 0.463 0.864 0.617 0.441 0.956
INDPRO 0.542 1.375 1.603 0.453 1.132 1.578
M2REALx 1.177 0.644 0.779 1.092 0.563 0.718
PCECC96 0.588 1.550 0.911 0.504 1.409 1.009
PPIFGS 0.503 0.590 0.441 0.470 0.568 0.429
PCECTPI 0.542 0.633 0.413 0.687 0.849 0.551

The above forecast measures do not provide the relative forecast performance of the models
to that of the benchmark at each time period. To shed a light on this issue, we consider the
cumulative log of one-step ahead predictive likelihoods which are summarised in Figure 4.6.1.
A pattern worth noting in Figure 4.6.1 is that the density forecast metric drops drastically in
forecasting the variables during the financial crisis during the period 2007-2009. A sudden drop
in CSLPL can be due to the fact that our model specification in this empirical study does not
consider the volatility and structural break. Our model specification is in a static set-up. In-
corporating the volatility in our model is beyond the scope of this chapter, but is worth to be
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Table 4.6.2: Out of sample density forecast performance (MVALPL/ALPL) of BRRR, BGR,
and DFM relative to a random walk model

Variables/Models BRRR BGR DFM BRRR BGR DFM

MVALPL/ALPL h=1 h=4

Multivariate 1.137 1.311 1.402 0.308 0.362 0.625
GDPC96 0.175 0.115 0.110 -0.105 -0.304 0.142
CPIAUCSL 0.402 0.423 0.583 0.115 0.081 0.481
FEDFUNDS 0.191 0.183 0.221 -0.153 -0.264 0.106
UNRATE -0.104 -0.142 -0.058 0.060 0.193 -0.329
INDPRO -0.084 -0.109 -0.085 -0.159 -0.304 -0.418
M2REALx -0.317 -0.021 -0.120 0.161 0.340 0.252
PCECC96 0.104 0.082 0.143 -0.284 -0.414 -0.103
PPIFGS 0.382 0.384 0.494 0.056 0.035 0.477
PCECTPI 0.386 0.396 0.467 0.003 -0.024 0.461

h=6 h=8

Multivariate 0.382 0.344 0.451 0.442 -0.705 -0.841
GDPC96 0.054 -0.300 0.190 0.158 -0.267 0.185
CPIAUCSL -0.079 -0.111 0.304 -0.022 -0.119 0.309
FEDFUNDS -0.250 -0.250 0.016 -0.229 -0.264 -0.052
UNRATE 0.306 0.280 -0.312 0.544 0.610 -0.274
INDPRO 0.050 -0.312 -0.498 0.132 -0.320 -0.801
M2REALx -0.071 0.179 0.011 -0.096 0.379 0.105
PCECC96 -0.071 -0.449 -0.091 0.082 -0.392 -0.126
PPIFGS -0.164 -0.202 0.239 0.008 -0.107 0.350
PCECTPI -0.257 -0.278 0.210 -0.136 -0.227 0.287

h=10 h=12

Multivariate 0.723 -0.356 -2.175 0.744 -0.139 -4.008
GDPC96 0.187 -0.276 0.131 0.264 -0.199 0.171
CPIAUCSL 0.121 -0.025 0.415 0.031 -0.152 0.270
FEDFUNDS -0.131 -0.262 -0.124 -0.017 -0.250 -0.200
UNRATE 0.377 0.722 -0.451 0.084 0.806 -0.607
INDPRO 0.176 -0.341 -1.134 0.314 -0.194 -1.252
M2REALx -0.333 0.347 -0.035 -0.256 0.482 0.041
PCECC96 0.166 -0.364 -0.237 0.227 -0.330 -0.382
PPIFGS 0.100 -0.066 0.393 0.157 -0.037 0.411
PCECTPI 0.062 -0.090 0.429 -0.059 -0.265 0.246

investigated. We leave it for a future research. For the variables (GDP and personal income
consumption, real personal consumption, producer price index, personal consumption expendi-
ture), although cumulative sum LPLs (CSLPL) drop after the financial crisis, the measures are
still positive, suggesting all the models forecast better than the benchmark model (AR(1) with
a random walk). For the industrial production index and unemployment rate, RRR and DFM
provide better forecasts than the benchmark before the crisis, but the benchmark outperforms
the others after 2007. As for money stock M2, the benchmark model is the best in forecasting
the variable in a one-step forecast ahead.
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Figure 4.6.1: Cumulative sum of log predictive likelihood of one-step forecast ahead for the
nine variables of interest: real gross domestic product (GDPC96), consumer price index (CPI-
AUCSL), federal funds rate (FEDFUNDS), civilian unemployment rate (UNRATE), indus-
trial production growth (INDPRO), money stock M2 (M2REALx), real personal consumption
(PCECC), producer price index (PPIFGS), and personal consumption expenditure (PCECTPI)

4.6.4 Impulse Responses

We now turn to the structural analysis of GDP and some macroeconomic variables to a mone-
tary policy shock. To identify the monetary shock, we use a recursive identification scheme. We
follow Bernanke et al. (2005) and Banbura et al. (2010), divide the variables of the VAR sys-
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tem into two categories: slow-moving and fast-moving. The slow-moving group contains the
real variables and prices while the fast groups includes financial variables. The slow-moving
variables do not contemporaneously respond to a monetary policy shock while the fast-moving
variables respond do. We order the variables as Yt = [Y sl

t , rt, Y
fa
t ]′, where Y sl

t contains n1

slow-moving variables, rt is the monetary policy instrument (federal interest rate), and Y fa
t in-

clude n2 fast-moving variables. The monetary policy shock is orthogonal to all other shocks
driving the economy.

To facilitate further discussion we rewrite VAR(s) in the form of VAR(1) such as

Yt = Π0 + Π1Yt−1 + et, (4.6.4)

whereYt =



Yt

Yt−1

Yt−2
...

Yt−s−1


, Π0 =



Φ0

0
0
...
0


, Π1 =



Φ1 Φ2 . . . Φs−1 Φs

In 0 . . . 0 0
0 In 0 0
... . . . ...

...
0 0 . . . In 0


, et =



εt

0
0
...
0


.

Let Θ be a n × n lower diagonal Cholesky matrix of the covariance matrix of the residuals et
of the VAR system, i.e. Ω = ΘΘ′. The Wold representation of the reduced form VAR(s) is

Yt = (I−Π(L))−1Π0 + (I−Π(L))−1ΘΘ−1et,

Yt = (I−Π(L))−1Π0 + (I−Π(L))−1Θut, ut ∼ N(0, I)

where (I −Π(L))−1 = ∑∞
s=0 ΠsL

s,Π0 = I,Πs = Πs
1. ut is the linear transformation of the

VAR residuals ut = (u1t, . . . , unt)′ = Θ−1et. The monetary shock in the row of ut corre-
sponds to the variable rt, which is un1+1,t. The coefficients (I−Π(L))−1Θ reflect the response
functions of the variables to a structural shock.

At the outset of our discussion we note that our aim here is not to compare the results obtained
from a large VAR model to a small/medium one. Here we wish to investigate whether our model
provides sound results.12

Figure 4.6.2 displays the impulse response functions of a selection of macroeconomics of in-
terest to a monetary shocks. The results provide some insight into how monetary policy may
influence the real economy. We find that the “price puzzle” issue - an counterintuitive increase

12A number of studies (Banbura et al. (2010), Koop (2013), Pettenuzzo et al. (2016)) in the literature of large
VARs investigate whether a large VAR model provide additional information in comparison to a small/ medium
VARs.
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of inflation by a contractionary monetary policy which often occurs in a small VAR model
- did not appear here. Also, we find that responses of some macro economic variables have
expected signs. A contractionary monetary policy is followed by a decline in GDP, which is
in line with our expectation and the economic theory (Bernanke and Blinder (1988), Romer
and Romer (1989)). The responses of other variables such as (civilian unemployment rate, in-
dustrial production growth, and civilian employment) have expected sign. That is, one would
expect an increase in unemployment rate and a decrease in industrial production growth if there
is a contractionary monetary policy innovation. A contractionary monetary policy tends to de-
press economic activity. For instance, an increase in interest rate often leads to an increase in
the cost of capital, which lead to a fall in industrial production (see Barth III and Ramey (2000)
for further discussion). Further an increase in the cost of capital affects capital accumulation,
and capital accumulation influences the demand for labour, and the demand of labour affects
unemployment rate (Galı́ (2010)).

4.7 Conclusions

In this chapter, we consider a reduced rank regression in large Bayesian VARs with an invariant
specification using singular value decompositions. Different from Bayesian RRR specifications
in a large VAR, our RRR specification does not depend on the ordering of the variables.

We carry out an extensive Monte Carlo simulation to examine the performance of cross entropy,
predictive likelihood, and Laplace approximation used in a rank selection of VAR coefficients.
We learn from the Monte Carlo simulation results that these approaches underestimate the num-
ber of rank when the singular values of the VAR matrices are small (close to zero) or the dimen-
sions of VAR systems grow. We then go further to examine whether the forecast performance
of the model is affected by a misspecified rank based on some metrics of point forecast (e.g.
mean squared forecast errors, weighted mean squared forecast errors) and density forecast (e.g.
log predictive likelihood). Our results suggest that the models with lower rank perform worse
than the benchmark for short forecast horizons, however, they perform as well as or even bet-
ter than the benchmark for long forecast horizons. These patterns are more evident when the
magnitudes of the singular values of the VAR coefficient are small.

We apply the model to the data of the FED QD database of quarterly U.S. variables from
1960Q1 to 2014Q3. Our results suggest no single model dominates in forecasting the vari-
ables. In comparison to other popular approaches used in large VAR models (shrinkage priors
Banbura et al. (2010) and factor models Bernanke et al. (2005)), our proposed model provides
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Figure 4.6.2: The impulse response functions to a monetary policy shock and the corresponding
posterior intervals at 0.95% level for real gross domestic product (GDPC96), consumer price
index (CPIAUCSL), civilian unemployment rate (UNRATE), industrial production growth (IN-
DPRO), Civilian Employment (CE16OV), federal funds rate (FEDFUNDS), money supply M1
(M1REALx), 10-year treasury constant maturity rate (GS10).
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better forecasts of gross domestic product, consumer price index, and producer price index in
term of some point and density forecast measures. Also the impulse response functions of a
selection of macroeconomic variables are sensible and provide some support to economic theo-
ries.

4.A Appendix A: Priors, Conditional Posterior Distributions
and Joint Densities

4.A.1 Priors for (A,B)

Here we provide the proof for Theorem 4.3.1, which is an adaptation of Chan et al. (2017). For
convenience, we recall the transformation of (U,Λ, V ) to (A,B)

UΛV = (UC ′)(CΛV ), where C ∈ O(k) (i.e. C ′C = Ik)

= B∗A∗ = (B∗κ)(κ−1A) = BA,

where κ is a upper triangular positive definite.

The first parameter expansion, the orthogonal matrix C ∈ O(k) (i.e. C ′C = Ik), is introduced.
The roles of the parameter expansion are i) to map the parameters (U,Λ, V ) to the expanded
parameters (B∗, A∗), and ii) to obtain standard form for the priors of B∗, A∗. That is,

Φ = UΛV ′ = UC ′CΛV ′ = B∗A∗,

B∗ = BC ′,

A∗ = CΛV ′. (4.A.1)

To attain the priors for B∗ and A∗, the Jacobian transformations of the transformation from
(U,Λ, V ) to the expanded parameters (B∗, A∗) is required. The Jacobian transformations are
taken from James (1954, p.71):

(B∗′dB∗) = (U ′dU),

(dA∗) = (
k∏
i=1

λi)n−k
k∏
i<j

(λ2
i − λ2

j)(dΛ)(V ′dV )(C ′dC), (4.A.2)
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Substituting (4.A.1) and (4.A.2) to (4.3.1)-(4.3.5), we obtain the equivalent priors

p(Λ, V |cλ,Σ)(dΛ)(V ′dV )(U ′dU)(C ′dC)
cΛcU

= p(A∗|cλ,Σ)(dA∗)(B∗′dB∗)
cΛcU

, (4.A.3)

p(A∗|cλ,Σ) = exp{−cλ2 tr(Σ−1A∗
′
A∗)}, (4.A.4)

cΛ =
∫
p(A∗|cλ,Σ)(dA∗) =

(2π
cλ

)nk/2
|Σ|k/2.

(4.A.5)

The prior p(A∗|cλ,Σ) in (4.A.4) suggests the prior for A∗ is a normal distribution with means of
zero and the variance matrix 1

cλ
Σ. The prior of B∗ is the same as that of U , which is a uniform

distribution over the Stiefel manifold Vk,ns. For any matrix H in the Stiefel manifold,Vk,ns,
its differential form is invariant under the left and right transformations. For instance, under
the left transformation, H → CH , where C ∈ Ons, then (H ′dH) → (H ′dH). The prior,
posterior distributions and measures are also preserved under the transformation. Unfortunately,
the uniform prior of B∗ does not lead to a standard form for its posterior.

To achieve a conjugate prior for B∗, the second parameter expansion κ is introduced. The
parameter expansion is an upper triangular of k × k positive definite matrix. It maps (B∗, A∗)
to (B,A):

B∗A∗ = B∗κκ−1A∗ = BA,where B = B∗κ,A = κ−1A∗.

The Jacobian transformation of the bijective transformation from (A∗, B∗, κ) to (B,A) is based
on Theorem 2.1.4, Theorem 2.1.13, and Theorem 2.1.14 in Muirhead (2005, Chapter 2). For
convenience, we define F = B′B = κ′κ:

B = B∗κ⇒ (dB) = 2−k|F |
np−k−1

2 (dF )(B∗′dB∗),

A = κ−1A∗ ⇒ (dA) = |κ−1|n(dA∗) = |F |
−n
2 (dA∗),

⇒ (dA)(dB) = 2−k|F |
np−n−k−1

2 (dF )(B∗′dB∗)(dA∗),

(dF )(B∗′dB∗)(dA∗) = 2k|F |−
np−n−k−1

2 (dA)(dB),

= 2k|B′B|−
np−n−k−1

2 (dA)(dB). (4.A.6)
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The priors in (4.A.3) are now equivalent to

p(A∗|cλ,Σ)(dA∗)(B∗′dB∗)d(F )
cΛcU

= p(A,B|cλ,Σ)J(B)(dA)(dB)
cΛcU

, (4.A.7)

J(B) = 2k|B′B|−(ns−n−k−1)/2,

p(A,B|cλ,Σ) = exp−cλ2 tr(Σ−1A′B′BA),

where J(.) denotes the Jacobian transformation. Chan et al. (2017) point out that the presence
of the determinant |B′B| in the priors of A and B complicates computation, i.e. the posterior
distribution for B is not in the standard form. This can be overcome by exploiting the prior of
F . In our case, if the number of lags s = 1, then a diffuse prior, |F |−(ns−n−k−1)/2, is chosen so
that conjugate priors for A and B are achieved. In the case s > 1, which is the most common
case in empirical studies, a Wishart distribution for F with degrees of freedom of ns−n results
in the standard priors for A and B. For the sake of space, we present only the derivations of
the priors for A and B in the most common case (s > 1). The priors in the case s = 1 are
straightforward and are attained following the same procedure.

Incorporating the Wishart probability density prior for F into (4.A.7), we have

|F |(ns−n−k−1)/2
(

exp−1
2 trF

)
p(A∗)(dA∗)(B∗′dB∗)d(F )

cΛcUcF

= c|B′B|(ns−n−k−1)/2
(

exp−1
2 trB′B

)
exp−cλ2 tr

(
Σ−1A′B′BA

)
(dA)(dB),

= c
(

exp−1
2 tr(B′B)

)
exp−cλ2 tr

(
Σ−1A′B′BA

)
(dA)(dB), (4.A.8)

where c = 2k
cΛcU cF

and cF =
∫
|F |(ns−n−k−1)/2

(
exp−1

2 tr(F )
)

= 2(ns−n)k/2Γk
(
ns−n

2

)
.

The resulting joint prior distribution for A and B is given by

p(A,B|cλ,Σ)(dA)(dB) = c
(

exp−1
2 tr(B′B)

)(
exp−cλ2 tr(Σ−1A′B′BA)

)
(dA)(dB).

(4.A.9)
Given the priors in (4.A.9), it is clear that the prior of A conditional on B and Σ is a matrix
variate normal distribution with means of zero and covariance matrix 1

cλ
Σ⊗ (B′B)−1, denoted

as N(0, 1
cλ

Σ ⊗ (B′B)−1) (see Gupta and Nagar (2000, pp. 55-56) for the definition of the
matrix variate normal distribution). The prior of B conditional on A and Σ is also a matrix
variate normal distribution, N(0, (Ik + cλAΣ−1A′)−1 ⊗ Ins). For the case p = 1, the prior of A
is N(0, 1

cλ
Σ⊗ (B′B)−1) while the prior for B is N(0, (cλAΣ−1A′)−1 ⊗ Ins).
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4.A.2 Joint Densities

Here we provide the derivation of the joint density function of observed Y and unknown pa-
rameter B in Theorem 4.4.1.

The joint density function of the likelihood function and the priors of A, B, and Σ−1 is

p(A,B,Σ−1, Y ) = c3|Σ−1|
T+v0+k−n−1

2 exp
{
− cλ

2 tr
[
Σ−1A′B′BA

]}
exp

{
− 1

2B
′B
}

× exp
{
− 1

2Σ−1S−1
0

}
exp

{
− 1

2 tr
[
Σ−1(Y −XBA)′(Y −XBA)

]}
,

(4.A.10)

where c3 = (cλ)
nk
2 2−

n(sk+v0+T )
2 π−

n(ks+k+T )
2 |S−1

0 |
v0
2

Γk(ns2 )
Γk(ns−n2 ) .

The joint density of B,Σ−1 and Y

Integrating A out of the joint density p(A,B, |Σ−1, Y ), we have

p(B,Σ−1, Y ) =
∫
p(A,B,Σ−1, Y )(dA),

= c3|Σ−1|
T+v0+k−n−1

2 exp
{
− 1

2B
′B
}

exp
{
− 1

2Σ−1S−1
0

}
×
∫

exp
{
− cλ

2 tr[Σ−1A′B′BA]
}

exp
{
− 1

2 tr[Σ−1(Y −XBA)′(Y −XBA)]
}

(dA),

= c3|Σ−1|
T+v0+k−n−1

2 exp
{
− 1

2B
′B
}

exp
{
− 1

2Σ−1S−1
0

}
exp

{
− 1

2 tr[Σ−1Y ′Y ]
}

×
∫

exp
{
− 1

2 trΣ−1[A′(B′X ′XB + cλB
′B)A− 2A′B′X ′Y ]

}
(dA),

= c3(2π)nk2 |Σ−1|
T+v0−n−1

2 |VA|
n
2 exp

{
− 1

2B
′B
}

exp
{
− 1

2Σ−1S−1
0

}
× exp

{
− 1

2 tr[Σ−1Y ′Y ]
}

exp
{
− 1

2 tr[Σ−1µ′AV
−1
A µA],

}

where VA = [B′X ′XB + cλB
′B]−1, µA = VA(B′X ′Y ).

The joint density of B and Y
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Integrating Σ−1 out of p(B,Σ−1, Y ), we have

p(B, Y ) =
∫
p(B,Σ−1, Y )dΣ−1

= c3(2π)nk2 |VA|
n
2 exp

{
− 1

2B
′B
}

×
∫
|Σ−1|

T+v0−n−1
2 exp

{
− 1

2Σ−1S−1
0

}
exp

{
− 1

2 tr[Σ−1Y ′Y ]
}

× exp
{
− 1

2 tr[Σ−1µ′AV
−1
A µA],

}
d(Σ−1)

= c3(2π)nk2 2
(T+v0)n

2 Γn
(
T + v0

2

)
|VA|

n
2 exp

{
− 1

2B
′B
}
|S−1

0 + Y ′Y − µAV −1
A µA|−

T+v0
2

= c3(2π)nk2 2
(T+v0)n

2 Γn
(
T + v0

2

)
|VA|

n
2 exp

{
− 1

2B
′B
}

× |S−1
0 + Y ′Y − Y ′XB(B′X ′XB + cλB

′B)−1B′X ′Y |−
T+v0

2 |B′X ′XB + cλB
′B|

−n
2

(4.A.11)

= c3(2π)nk2 2
(T+v0)n

2 Γn
(
T + v0

2

)
exp

{
− 1

2B
′B
}
|B′PB|

T+v0−n
2 |B′QB|−

T+v0
2 ,

(4.A.12)

where P = cλInp+X ′X , Q = P −X ′Y (S−1
0 +Y ′Y )−1Y ′X . To obtain equation (4.A.12) from

(4.A.11) we use some algebra results regarding the determinant of a matrix in Harville (1997,
Chapter 13). That is

|S−1
0 + Y ′Y − Y ′XB(B′X ′XB + cλB

′B)−1B′X ′Y |−
T+v0

2

=

∣∣∣∣∣∣ S
−1
0 + Y ′Y Y ′XB

B′X ′Y B′X ′XB + cλB
′B

∣∣∣∣∣∣
−T+v0

2

× |B′(X ′X + cλInp)B|
T+v0

2 ,

= |B′(X ′X + cλInp)B|
T+v0

2 |S−1
0 + Y ′Y |−

T+v0
2 |B′(X ′X + cλInp)B

−B′X ′Y (S−1
0 + Y ′Y )−1Y ′XB|−

T+v0
2 ,

= |B′PB|
T+v0

2 |S−1
0 + Y ′Y |−

T+v0
2 |B′PB −B′X ′Y (S−1

0 + Y ′Y )−1Y ′XB|−
T+v0

2 .

4.B Appendix B: Laplace Approximation

In this section, we show how Laplace approximation is used to approximate the integral

L =
∫
Gk,ns

f(B̃)g(B̃)dgnsk =
∫
Vk,ns f(B̃)g(B̃)dvnsk∫

Ok dv
k
k

, (4.B.1)
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where f(B̃) = |B̃′PB̃|1/2|B̃′QB̃|−1/2, g(B̃) = |B̃′PB̃|1/2.

Before proceeding further, we define a number of matrices

1. P = cλIns+X ′X , Q = P −X ′Y (S−1
0 +Y ′Y )−1Y ′X = P −R, where R = X ′Y (S−1

0 +
Y ′Y )−1Y ′X ,

2. Z = P−1/2RP−1/2 and Z = CΛC ′, where C ∈ Ons, Λ = diag(λ1(Z), . . . , λns(Z)) is
the eigenvalues of Z,

3. B̃0 = C ′B̃, B̃ = [b̃1, . . . , b̃k], B̃0 = [b̃01, . . . , b̃0k], then dvnsk = Λns
w=1Λns

j=i+1b̃jdb̃s =
Λns
w=1Λns

j=i+1b̃0jdb̃0w.

From (3), the numerator of (4.B.1) is expressed as

L =
∫
Vk,ns

f(B̃)g(B̃)dvnsk =
∫
Vk,ns

f(CB̃0)g(CB̃0)dvnsk (4.B.2)

f(CB̃0) = |B̃′0P0B̃0|1/2|B̃′0Q0B̃0|−1/2, g(CB̃0) = |B̃′0P0B̃0|1/2 P0 = C ′PC,Q0 = C ′QC.

To approximate the integral with respect to the B̃0, the mode of f(.) and the negative Hessian
matrix of − log f(.) at the mode are required. The mode of the f(.) is found by maximising
f(.), which is equivalent to minimising f−1 = |B̃′0P0B̃0|−1|B̃′0Q0B̃0|. Following Theorem 3.29
in (Schott, 2005, pp. 121-122), we have:

min f−2 = min |B̃′P−1
0 Q0B̃|,

=
k∏
j=1

λns−k+1(P−1
0 Q0) =

k∏
j=1

λns−k+1((C ′PC)−1(C ′QC)),

=
k∏
j=1

λns−k+1(P−1Q). (4.B.3)

Using Theorem 3.2 Schott (2005, p.89), we obtain

λns−k+j(P−1Q) = λns−k+j(P 1/2P−1QP−1/2) = λns−k+j(P−1/2QP−1/2). (4.B.4)

Further, it is noted that

P−1/2QP−1/2 = P−1/2(P −R)P−1/2 = Ins − P−1/2RP−1/2 = Ins − Z. (4.B.5)
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Given (4.B.4) and (4.B.5), (4.B.3) can be written as

k∏
j=1

λns−k+1(P−1Q) =
k∏
j=1

λns−k+j(P−1/2QP−1/2)

=
k∏
j=1

(1− λj(Z)) (4.B.6)

= min |B̃′0(I − Z)B̃0|

= min |B̃′C ′(I − Z)CB̃|

= min |I − B̃′C ′ZCB̃|

= min |I − B̃′ΛB̃| (4.B.7)

The minimum occurs when B̃ = [±Ik 0ns−k,k], where ±Ik implies that the main diagonal
elements yield either 1 or -1 and the elements in the off-diagonals are zeros. In other words,
the function f(.) yields the maximum values at each of the 2k matrices B̃ = [±Ik 0ns−k].
To evaluate the integral at the mode, we split Vk,ns up into 2k disjoint pieces, each containing
exactly one of the matrices [±Ik 0ns−k] (see Muirhead (2005, Chapter 9) for further discussion).
Hence, at the mode B̂∗, for a large T we have

L ∼ 2k
∫
N

 Ik

0ns−k,k

 f
T+v0(B̃)g(B̃)dvnsk , (4.B.8)

where N

 Ik

0ns−k,k

 denotes a neighbourhood of

 Ik

0ns−k,k

.

The negative Hessian matrix in our case is not simply the second derivatives of log(f), i.e., Ψ =
∂2 log f/(∂(vec)(B̃))′(∂(vec)(B̃)) as the B̃ is in the Stiefel manifold, and has nsk−k(k+1)/2
free parameters. One can follow Strachan and Inder (2004) to derive the negative Hessian
matrix. Here we use some results in Villani (2005) and Magnus and Neudecker (2007, Chapter
9-10) to derive the Hessian matrix.

We can re-parametrise the matrix B̃ as follows

B̃ =
B̃1

B̃2

 =
 Ik
B2

 B̃1 = BB̃1. (4.B.9)

The function f(.)g(.) is now equivalent to
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f(B̃)g(B̃) = f(B)g(B)|B̃′1B̃1|−n/2,

= f(B)g(B)|B̃′1B̃1|−n/2,

= |B′PB|1/2|B′QB|−1/2|B′PB|1/2|B̃′1B̃1|−n/2. (4.B.10)

Further, as B̃ ∈ Vk,np, B̃′B̃ = Ik

Ik = B̃′1B̃1 + B̃′2B̃2

B̃−1′
1 B̃−1

1 = Ik + B̃−1′
1 B̃

′

2B̃2B̃
−1
1 ,

B̃−1′
1 B̃−1

1 = Ik +B
′
2B2 This is from (4.B.9). (4.B.11)

Substitute (4.B.11) to (4.B.10) and use B =
 Ik
B2

, we rewrite (4.B.10) as the function of B2.

The underlying idea here is that we aim to evaluate the integral with respect to B2 which does
not belong to Stiefel manifold and all elements are free in the matrix. This helps us to obtain the
negative Hessian matrix easily by taking the second-order differentials of − log f with respect
to B2. Hence, the expression of (4.B.10) in term of B2 is

|B̃P B̃| = |P11 +B
′
2P21 + P12B

′
2 +B

′
2P22B

′
2||I +B

′
2B2|,

|B̃QB̃| = |Q11 +B
′
2Q21 +Q12B

′
2 +B

′
2Q22B

′
2||I +B

′
2B2|,

fT+v0 = |P11 +B
′
2P21 + P12B

′
2 +B

′
2P22B

′
2|(T+v0)/2|Q11 +B

′
2Q21 +Q12B

′
2 +B

′
2Q22B

′
2|−(T+v0)/2

gn = |P11 +B
′
2P21 + P12B

′
2 +B

′
2P22B

′
2|−n/2|I +B

′
2B2|−n/2 (4.B.12)

where

P =
P11 P12

P21 P22

 , Q =
Q11 Q12

Q21 Q22


.

We use Lemma 3.4 from Villani (2005, p.331) and some results in James (1954) to obtain the
Jacobian transformation dvnsk → dB2. More specifically, Villani (2005) provides a Jacobian
transformation from the Grassmann manifold to the real-line space, i.e., B̃′d(B̃) = dgnsk =
|I + B

′
2B2|ns/2dB2. Meanwhile, James (1954) provides the relationship among the measures

of Grassmann manifold, Stiefel manifold, and orthogonal manifold, i.e., dgnsk = dvnsk dg
k
k .
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Given the two results and the transformation in (4.B.12), equation (4.B.8) is now equivalent to

L ∼ 2k
∫
|P11 +B

′
2P21 + P12B

′
2 +B

′
2P22B

′
2|
T+v0−n

2 |Q11 +B
′
2Q21 +Q12B

′
2 +B

′
2Q22B

′
2|−

T+v0
2

× |I +B
′
2B2|

n−np
2 dB2 (4.B.13)

To this end, our task is to evaluate the integral using Laplace approximation, the mode of f is at
B = 0, where f = |P11+B′2P21+P12B

′
2+B′2P22B

′
2|

1
2 |Q11+B′2Q21+Q12B

′
2+B′2Q22B

′
2|−

1
2 |I+

B
′
2B2|−

1
2 the negative Hessian matrix at the model is equivalent to

Ψ = −(Ψ1 −Ψ2 −Ψ3),

Ψ1 = −(P−1
11 P12 ⊗ P21P

−1
11 )Knp−k,k − (P−1

11 ⊗ P21P
−1
11 P12) + (P−1

11 ⊗ P22),

Ψ2 = −(Q−1
11 Q12 ⊗Q21Q

−1
11 )Knp−k,k − (Q−1

11 ⊗Q21P
−1
11 Q12) + (Q−1

11 ⊗Q22),

Ψ3 = −Ik (4.B.14)

whereKns−k,k is a permutation matrix, e.g. for any (ns−k)×k matrix ofE, thenKns−k,kvec(E) =
vec(E ′).

4.C Appendix C: Data
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4.D. APPENDIX D: FIGURES

4.D Appendix D: Figures

Table 4.D.1: The means and standard errors (in parenthesis) of selected ranks for DGPs with
k = 2

(i) (ii) (iii)
DGP Methods n=25 n=35 n=50

DGP1 CE 2.01(0.08) 2.00(0.00) 2.00(0.04)
Pred.Like 1.98(0.15) 1.94(0.23) 0.00(0.00)
Laplace 2.00(0.00) 2.00(0.00) 2.00(0.00)

DGP2 CE 2.00(0.00) 2.00(0.04) 2.00(0.06)
Pred.Like 1.91(0.28) 1.79(0.41) 1.68(0.50)
Laplace 2.00(0.00) 1.98(0.13) 1.92(0.27)

DGP3 CE 2.00(0.00) 2.01(0.08) 2.01(0.08)
Pred.Like 1.90(0.45) 1.62(0.50) 1.56(0.59)
Laplace 2.00(0.00) 1.45(0.50) 1.08(0.26)

DGP4 CE 2.00(0.04) 2.01(0.10) 2.01(0.10)
Pred.Like 1.83(0.54) 1.64(0.53) 1.52(0.67)
Laplace 1.99(0.10) 1.23(0.42) 1.02(0.15)

DGP5 CE 2.00(0.04) 2.00(0.06) 2.00(0.06)
Pred.Like 1.87(0.64) 1.58(0.62) 1.51(0.74)
Laplace 1.98(0.15) 1.07(0.26) 1.00(0.04)

DGP6 CE 2.01(0.11) 2.00(0.13) 2.00(0.11)
Pred.Like 1.89(0.85) 1.58(0.68) 1.59(0.89)
Laplace 1.87(0.34) 1.02(0.13) 1.00(0.00)

DGP7 CE 2.02(0.13) 1.99(0.16) 2.00(0.11)
Pred.Like 1.88(0.80) 1.52(0.71) 1.74(1.12)
Laplace 1.65(0.48) 1.00(0.00) 1.00(0.00)

DGP8 CE 2.01(0.15) 1.99(0.23) 1.99(0.16)
Pred.Like 1.98(1.09) 1.51(0.84) 1.75(1.17)
Laplace 1.35(0.48) 1.00(0.00) 1.00(0.00)

DGP9 CE 1.00(0.00) 1.01(0.08) 1.02(0.15)
Pred.Like 1.76(1.29) 1.53(1.15) 1.79(1.32)
Laplace 1.00(0.00) 1.00 (0.00) 1.00(0.04)

DGP1: λ1 = 0.97, λ2 = 0.96;
DGP2: λ1 = 0.97, λ2 = 0.87;
DGP3: λ1 = 0.97, λ2 = 0.78;
DGP4: λ1 = 0.97, λ2 = 0.76;
DGP5: λ1 = 0.97, λ2 = 0.73;
DGP6: λ1 = 0.97, λ2 = 0.70;
DGP7: λ1 = 0.97, λ2 = 0.67;
DGP8: λ1 = 0.97, λ2 = 0.64;
DGP9: λ1 = 0.97, λ2 = 0.14.

116



4.D. APPENDIX D: FIGURES

Table 4.D.2: The means and standard errors (in parenthesis) of selected ranks for DGPs with
k = 3

(i) (ii) (iii)
DGP Methods n=25 n=35 n=50

DGP1 CE 3.00(0.00) 3.00(0.00) 3.00(0.00)
Pred.Like 2.92(0.29) 2.83(0.41) 2.57(0.62)
Laplace 3.00(0.00) 3.00(0.00) 3.00(0.04)

DGP2 CE 3.00(0.06) 3.00(0.04) 3.00(0.00)
Pred.Like 2.75(0.49) 2.60(0.58) 2.12(0.74)
Laplace 3.00(0.00) 3.00(0.00) 2.86(0.37)

DGP3 CE 3.00(0.11) 2.97(0.18) 2.92(0.27)
Pred.Like 2.50(0.62) 2.20(0.67) 1.83(0.66)
Laplace 3.00(0.00) 2.71(0.45) 1.75(0.51)

DGP4 CE 2.81(0.39) 2.72(0.45) 2.45(0.50)
Pred.Like 2.21(0.66) 1.94(0.66) 1.61(0.58)
Laplace 2.48(0.50) 1.96(0.27) 1.20(0.40)

DGP5 CE 2.35(0.48) 2.32(0.46) 2.09(0.29)
Pred.Like 2.03(0.66) 1.82(0.67) 1.54(0.72)
Laplace 2.01(0.13) 1.55(0.50) 1.01(0.09)

DGP6 CE 2.11(0.32) 2.10(0.31) 2.04(0.21)
Pred.Like 1.76(0.59) 1.83(0.95) 1.74(1.14)
Laplace 1.92(0.27) 1.12(0.33) 1.00(0.00)

DGP7 CE 2.04(0.19) 2.04(0.23) 1.99(0.21)
Pred.Like 1.75(0.77) 1.90 (1.17) 1.74(1.29)
Laplace 1.59(0.49) 1.01(0.09) 1.00(0.00)

DGP8 CE 2.02(0.17) 1.98(0.33) 1.90(0.32)
Pred.Like 1.78(0.94) 1.91(1.38) 1.86(1.51)
Laplace 1.16(0.37) 1.00(0.00) 1.00(0.00)

DGP9 CE 1.99(0.20) 1.77(0.44) 1.74(0.46)
Pred.Like 1.83(1.13) 2.05(1.50) 1.75(1.45)
Laplace 1.01(0.09) 1.00(0.00) 1.00(0.00)

DGP1: λ1 = 0.97, λ2 = 0.96, λ3 = 0.95;
DGP2: λ1 = 0.97, λ2 = 0.92, λ3 = 0.87;
DGP3: λ1 = 0.97, λ2 = 0.87, λ3 = 0.77;
DGP4: λ1 = 0.97, λ2 = 0.82, λ3 = 0.67;
DGP5: λ1 = 0.97, λ2 = 0.77, λ3 = 0.57;
DGP6: λ1 = 0.97, λ2 = 0.72, λ3 = 0.47;
DGP7: λ1 = 0.97, λ2 = 0.67, λ3 = 0.37;
DGP8: λ1 = 0.97, λ2 = 0.62, λ3 = 0.27;
DGP9: λ1 = 0.97, λ2 = 0.57, λ3 = 0.17.
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Table 4.D.3: The means and standard errors (in parenthesis) of selected ranks for DGPs with
k = 4

(i) (ii) (iii)
DGP Methods n=25 n=35 n=50

DGP1 CE 4.00(0.00) 4.00(0.06) 4.00(0.10)
Pred.Like 3.84(0.46) 3.79(0.52) 3.27(0.90)
Laplace 4.00(0.00) 4.00(0.00) 3.99(0.09)

DGP2 CE 4.00(0.12) 3.92(0.26) 3.83(0.38)
Pred.Like 3.44(0.81) 3.19(0.88) 2.51(0.99)
Laplace 4.00(0.00) 3.97(0.17) 3.59(0.56)

DGP3 CE 3.88(0.32) 3.60(0.49) 3.42(0.49)
Pred.Like 3.07(0.91) 1.99(1.14) 1.98(0.77)
Laplace 3.99(0.12) 3.37(0.60) 2.37(0.53)

DGP4 CE 3.52(0.50) 3.26(0.46) 3.04(0.37)
Pred.Like 2.58(0.94) 2.40(0.86) 1.71(0.60)
Laplace 3.55(0.51) 2.60(0.50) 1.91(0.33)

DGP5 CE 3.26(0.44) 2.86(0.49) 2.73(0.47)
Pred.Like 2.23(0.84) 2.06(0.71) 1.64(0.54)
Laplace 2.90(0.37) 2.06(0.33) 1.63(0.48)

DGP6 CE 3.14(0.39) 2.65(0.51) 2.51(0.50)
Pred.Like 2.21(0.82) 1.93(0.67) 1.60(0.59)
Laplace 2.60(0.49) 1.95(0.25) 1.43(0.50)

DGP7 CE 2.85(0.44) 2.32(0.46) 2.20(0.40)
Pred.Like 1.94(0.72) 1.87(0.64) 1.56(0.57)
Laplace 2.06(0.39) 1.83(0.38) 1.16(0.37)

DGP8 CE 2.59(0.49) 2.13(0.33) 2.05(0.23)
Pred.Like 1.80(0.63) 1.89(0.85) 1.57(0.77)
Laplace 1.88(0.33) 1.56(0.50) 1.03(0.18)

DGP9 CE 2.13(0.33) 2.01(0.11) 1.98(0.15)
Pred.Like 1.64(0.66) 1.84(1.07) 1.02(0.98)
Laplace 1.40(0.49) 1.09(0.28) 1.00(0.00)

DGP1: λ1 = 0.97, λ2 = 0.96, λ3 = 0.95, λ4 = 0.94;
DGP2: λ1 = 0.97, λ2 = 0.93, λ3 = 0.89, λ4 = 0.85;
DGP3: λ1 = 0.97, λ2 = 0.90, λ3 = 0.83, λ4 = 0.77;
DGP4: λ1 = 0.97, λ2 = 0.87, λ3 = 0.78, λ4 = 0.68;
DGP5: λ1 = 0.97, λ2 = 0.84, λ3 = 0.72, λ4 = 0.59;
DGP6: λ1 = 0.97, λ2 = 0.82, λ3 = 0.66, λ4 = 0.51;
DGP7: λ1 = 0.97, λ2 = 0.79, λ3 = 0.60, λ4 = 0.42;
DGP8: λ1 = 0.97, λ2 = 0.76, λ3 = 0.55, λ4 = 0.33;
DGP9: λ1 = 0.97, λ2 = 0.70, λ3 = 0.43, λ4 = 0.16.
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Table 4.D.4: The means and standard errors (in parenthesis) of selected ranks for DGPs with
k = 6

(i) (ii) (iii)
DGP Methods n=25 n=35 n=50

DGP1 CE 5.99(0.02) 5.98(0.08) 5.95(0.12)
Pred.Like 5.84(0.42) 5.79(0.52) 5.27(0.95)
Laplace 6.00(0.00) 6.00(0.00) 5.99(0.1)

DGP2 CE 5.98(0.12) 5.92(0.26) 5.83(0.38)
Pred.Like 5.44(0.81) 5.19(0.88) 5.51(0.97)
Laplace 6.00(0.00) 5.97(0.17) 5.59(0.56)

DGP3 CE 5.88(0.32) 5.60(0.49) 5.42(0.49)
Pred.Like 5.07(0.91) 4.99(1.14) 4.98(0.77)
Laplace 5.99(0.12) 4.7(0.60) 4.37(0.53)

DGP4 CE 5.52(0.50) 5.26(0.46) 5.04(0.37)
Pred.Like 4.58(0.94) 4.40(0.86) 3.71(0.60)
Laplace 4.55(0.51) 3.60(0.50) 3.91(0.33)

DGP5 CE 5.26(0.44) 4.86(0.49) 4.73(0.47)
Pred.Like 4.23(0.84) 4.06(0.71) 3.64(0.54)
Laplace 4.90(0.37) 4.06(0.33) 3.63(0.48)

DGP6 CE 5.14(0.39) 4.65(0.51) 4.51(0.50)
Pred.Like 4.21(0.82) 3.93(0.67) 3.60(0.59)
Laplace 4.60(0.49) 3.95(0.25) 3.43(0.50)

DGP7 CE 4.85(0.44) 4.32(0.46) 4.20(0.40)
Pred.Like 3.94(0.72) 3.87(0.64) 3.56(0.57)
Laplace 4.06(0.39) 3.83(0.38) 3.16(0.37)

DGP8 CE 4.59(0.49) 4.13(0.33) 4.05(0.23)
Pred.Like 3.80(0.63) 3.89(0.85) 3.57(0.77)
Laplace 3.88(0.33) 3.56(0.50) 3.03(0.18)

DGP9 CE 4.13(0.33) 4.01(0.11) 4.01(0.11)
Pred.Like 3.64(0.66) 3.84(1.07) 3.00(0.98)
Laplace 3.40(0.49) 3.09(0.28) 3.00(0.95)

DGP1: λ1 = 0.97, λ2 = 0.95, λ3 = 0.93, λ4 = 0.91, λ5 =
0.90, λ6 = 0.88;
DGP2: λ1 = 0.97, λ2 = 0.93, λ3 = 0.90, λ4 = 0.86, λ5 =
0.83, λ6 = 0.79;
DGP3: λ1 = 0.97, λ2 = 0.92, λ3 = 0.86, λ4 = 0.81, λ5 =
0.76, λ6 = 0.70;
DGP4: λ1 = 0.97, λ2 = 0.90, λ3 = 0.83, λ4 = 0.76, λ5 =
0.69, λ6 = 0.61;
DGP5: λ1 = 0.97, λ2 = 0.88, λ3 = 0.79, λ4 = 0.70, λ5 =
0.61, λ6 = 0.53;
DGP6: λ1 = 0.97, λ2 = 0.86, λ3 = 0.75, λ4 = 0.65, λ5 =
0.54, λ6 = 0.44;
DGP7: λ1 = 0.97, λ2 = 0.85, λ3 = 0.72, λ4 = 0.60, λ5 =
0.47, λ6 = 0.35;
DGP8: λ1 = 0.97, λ2 = 0.83, λ3 = 0.69, λ4 = 0.54, λ5 =
0.40, λ6 = 0.26;
DGP9: λ1 = 0.97, λ2 = 0.81, λ3 = 0.65, λ4 = 0.49, λ5 =
0.33, λ6 = 0.17.
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Figure 4.D.1: Cumulative squared forecast errors differentials for variable 1, n = 35, k = 5,
DGP9 (λ1 = 0.97, λ2 = 0.77, λ3 = 0.57, λ4 = 0.37, λ5 = 0.17)
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Figure 4.D.2: Cumulative squared forecast errors differentials for variable 3, n = 35, k = 5,
DGP9 (λ1 = 0.97, λ2 = 0.77, λ3 = 0.57, λ4 = 0.37, λ5 = 0.17)
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Figure 4.D.3: Cumulative squared forecast errors differentials for variable 5, n = 35, k = 5,
DGP9 (λ1 = 0.97, λ2 = 0.77, λ3 = 0.57, λ4 = 0.37, λ5 = 0.17)
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Figure 4.D.4: Cumulative squared forecast errors differentials for variable 7, n = 35, k = 5,
DGP9 (λ1 = 0.97, λ2 = 0.77, λ3 = 0.57, λ4 = 0.37, λ5 = 0.17)
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CHAPTER 5

Future Research

The end of one journey is the beginning of another one. . .

In this thesis, a number of additional insights about the behaviours and the drivers of economic
output (e.g. GDP, labour productivity growth) are gained by extending a range of econometric
models available.

In Chapter 2 we generalise the existing models to account for noise in the estimation of the pro-
duction function and to model technological change in the context of two-period panel data. The
new methods confirm some of the findings and also provide additional insights about the factors
contributing to labour productivity of the countries. In particular, we confirm that capital deep-
ening made the largest contribution to labour productivity growth from 1965 to 1990 and was
also the main factor driving the transformation of the distribution of labour productivity from
a unimodal to a bimodal distribution over this period. However, the new methods suggest that
the magnitude of the contribution of capital deepening is underestimated when statistical noise
is not accounted for (in standard DEA applied in the KR study). These methods do not confirm
the hypothesis that capital deepening is a significant factor for the world convergence, which
was found in the KR study. This implies that capital deepening might not have contributed to re-
ducing the gap between the poor and the rich over this period to the extent previously suggested.

A number of research directions can be extended from this chapter. One can develop statistical
inference (e.g. we can compute standard errors, confidence intervals) for efficiency scores or
the decomposition indexes in the framework of LLE and SDEA. This provides an insight on
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whether the contribution of the decomposition indexes to labour productivity are significant.
One possible way of developing such statistical inferences is to develop a proper bootstrap al-
gorithm. Another direction is to consider other factors such as human capital, foreign direct
investment and investigate their impacts on productivity growth.

In Chapter 3 we aim to capture the dynamic pattern of technical efficiencies and the effect
of exogenous factors on a production process over time. For this, we extend the static model
specification of Wang and Schmidt (2002), Alvarez et al. (2006) to a dynamic one. Compared
to the existing models, the proposed model allows to i) capture the dynamic pattern of technical
inefficiencies and the effects of exogenous variables on inefficiencies and ii) capture the het-
erogeneous effect of exogenous variables on inefficiencies across countries. We also provide a
hypothesis test to examine whether the time-varying specification is needed.

In our application, FDI plays a more important role in influencing the shift of the production
function than the movement towards the frontier (reductions in the technical inefficiencies).
This suggests that FDI should be invested in innovation to improve the technological change
for the countries. We also find that FDI makes a contribution to the growth of some of the
developed economies such as Ireland, Norway, Finland and United Kingdom.

One possible extension of the work in this chapter is to consider developing countries and other
exogenous variables such as human capital to investigate whether the same conclusion regard-
ing the impacts of FDI on the production process for the developing countries hold.

In Chapter 4 we focus on investigating the dynamic responses (from the impulse response func-
tions) of output growth and other important macroeconomic variables (such as unemployment
rate, inflation) to structural shocks (e.g. monetary policy), and the forecasts of the variables
in a large VAR model with 119 variables. Our proposed model specification helps to improve
the precision of estimating such a large VAR model by using a reduced rank regression which
has an invariant specification to the ordering of the variables. Such a specification significantly
mitigate the computation burden. That is, using the non-invariant model in our application one
would need to compute over 118 million orderings for a rank of 5, and for a rank of 10 the
number of orderings exceed over 100 trillion. Whereas using the specification in this thesis,
only one model need be estimated for each rank.
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In the empirical study, we find that the “price puzzle” issue - an counterintuitive increase of
inflation with a contractionary monetary policy which often occurs in a small VAR model - did
not appear here. Also, we find that a contractionary monetary policy was followed by a decrease
in GDP, price level and an increase in unemployment rate, supporting the conventional channel
of the effects of a tight monetary policy on a real economy. In terms of forecasting, we find that
the forecast of GDP growth, consumer price index, and producer price index are improved in
comparison to a random walk AR model in terms of a point forecast measure (e.g. MSFE) and
a density forecast measure (e.g. ALPL).

In our extensive Monte Carlo simulation we investigate some existing approaches in rank se-
lection for a large VAR model. We find that cross entropy, predictive likelihood and Laplace
approximation tend to underestimate the rank of VAR matrices, and that underestimated rank
models appear to provide better forecasts than the benchmark for long forecast horizons in terms
of point forecast and density forecast measures.

One can extend the study to the context of a panel VAR to capture the interdependencies across
the economies or potential spillover effects. Some issues relating model specifications are
worthwhile to be investigated. Should the rank vary across countries? Should the rank re-
duction be applied to full lag matrix for all countries?

Thank you for reading my thesis!
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Färe, R., Grosskopf, S., Norris, M., and Zhang, Z. (1994). Productivity growth, technical
progress, and efficiency change in industrialized countries. American Economic Review,
84(1):66–83.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic-factor
model: Identification and estimation. The Review of Economics and Statistics, 82(4):540–
554.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2003). Do financial variables help forecasting
inflation and real activity in the Euro area? Journal of Monetary Economics, 50(6):1243 –
1255.
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