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Abstract  

Several cyclic peptides have been reported to have unexpectedly high membrane permeability. 

Of these, cyclosporin A is perhaps the most well-known example, particularly in light of its 

relatively high molecular weight. Observations that cyclosporin A changes conformation 

depending on its solvent environment led to the hypothesis that conformational dynamics is a 

prerequisite for its permeability; however, this hypothesis has been difficult to validate 

experimentally. Here, we use molecular dynamics simulations to explicitly determine the 

conformational behavior of cyclosporin A and other related cyclic peptides as they 

spontaneously transition between different environments, including through a lipid bilayer. 

These simulations are referenced against simulations in explicit water, chloroform, and 

cyclohexane and further validated against NMR experiments, measuring conformational 

exchange, nuclear spin relaxation, and 3D structures in membrane-mimicking environments, 

such as in DPC micelles, to build a comprehensive understanding of the role of dynamics. We 

find that conformational flexibility is a key determinant of the membrane permeability of 

cyclosporin A and similar membrane-permeable cyclic peptides, as conformationally constrained 

variants have limited movement into, then through and finally out of the membrane in silico. We 

envisage that a better understanding of dynamics might thus provide new opportunities to 

modulate peptide function and enhance their delivery.  
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Introduction 

Peptides are promising alternatives to small molecules as drug modalities, and are particularly 

attractive because of their potential applications in the ‘undruggable’ target space of intracellular 

protein:protein interactions,1 with several examples now available of peptides with promising 

activity profiles.2-5 However, a major challenge for peptides is their poor oral bioavailability, 

which limits their translation into drugs. 

 

Cyclosporin A stands in the face of this criticism: it is one of the largest known cyclic peptides to 

have pharmaceutically tractable oral bioavailability since the initial pharmacokinetic studies in 

which it was characterized 50 years ago.6 This 11-residue peptide (Figure 1) was originally 

isolated from the fungus Tolypocladium inflatum7,8 and is currently used as an 

immunosuppressant, modulating the expression of inflammatory cytokines by binding to the 

cytosolic protein, cyclophilin.9 After oral administration, cyclosporin A must cross the enterocyte 

layer of the gastrointestinal tract, enter the systematic circulation and subsequently make its way 

into the lymphocytes. As a peptide, the voyage from gut to cytosol faces several challenges, 

requiring passage across multiple cellular membranes. Cyclosporin A is thought to rely on 

passive diffusion to accomplish this feat.10,11 

 

Studies on peptide permeability12,13 suggest that the cyclic backbone and N-methyl moieties of 

cyclosporin A are partly responsible for its ability to diffuse across membranes. These structural 

characteristics lead to the burial of polar groups, presumably resulting in favorable desolvation 

energies for the transition from an aqueous to a membrane phase. These findings for cyclosporin 

have furthermore been more generally exploited to enhance the membrane permeability of other 

small cyclic peptides.14-16 Other recent studies have expanded the knowledgebase of membrane-

permeable cyclic peptides11 as well as our understanding of the determinants of peptide 

permeability, raising awareness of the importance of lipophilicity, structure, solubility, and size, 

as well as the interplay between these factors.17-22 

 

Conformational polymorphism is another feature of cyclosporin A thought to be important for its 

membrane permeability.11,23,24 This hypothesis is based on structural analyses of cyclosporin A 
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that showed a dependence of its structure and dynamics on the solution environment,10,25-29 as 

highlighted in Figure 1. In chloroform, cyclosporin A predominantly adopts a single 

conformation characterized by an elongated shape with internal hydrogen bonds that hide the 

constituent donor and acceptor groups from the solvent.25,26 Hereafter, we refer to this 

conformation as the “closed” state. Although cyclosporin A is thought to adopt multiple 

conformations in water,10 experimentally determined structures in water are not available. 

Alternative structures to that formed in chloroform have been elucidated but these are of 

cyclosporin A bound to a protein target, typically cyclophilin.30-32 Nevertheless, these structures 

provide the most reasonable representation of a non-chloroform, and potentially aqueous, state; 

we refer to these as the “open” conformations because of the increased exposure of the polar 

groups.  

 

The hypothesis that conformational change (and so dynamics) of cyclosporin A facilitates its 

diffusion across membranes is easy to conceptualize but difficult to test experimentally because 

chemical modification to preference a particular conformation or tune structural rigidity would 

invariably change peptide lipophilicity and size, making it difficult to delineate the contribution 

of conformational flexibility. Predicted structures of cyclic peptides in implicit solvents of low 

and high dielectric constants that approximate aqueous and lipid environments, respectively, 

have been shown to be predictive of the propensity for membrane insertion.23,24 Instead of 

focusing on defined time-points during the permeation process, molecular dynamics offers a way 

to explicitly track conformational motion, resolving spatial and temporal dimensions as the 

peptide permeates through the membrane and in response to variations in simulation parameters, 

such as temperature.33,34 Several studies have examined the behavior of cyclosporin A in water 

and chloroform in silico.35-38 Early attempts were limited by their short simulation times (in the 

ps range),35-37 but more recent studies have shown the potential of extended simulations in these 

solvents to capture the landscape of conformations and inter-conversion rates between 

conformations, which can be used to rationalize differences in permeability.38,39 Here we extend 

these studies to new ground to look explicitly at the transition between different environments, 

such as aqueous and lipid phases.  
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In the current study our aim was to understand the contribution of dynamics to the membrane 

permeability of cyclic peptides. To build towards that goal, we first simulated cyclosporin A in 

simple solvents to validate the simulation parameters against NMR-derived data, and then moved 

to more complex systems that more accurately mimic cellular membranes, demonstrating the 

role of conformational flexibility in membrane permeability. Finally, we broadened the study to 

examine other membrane-permeable cyclic peptides. A better understanding of the membrane 

permeability of cyclic peptides might facilitate the future design of membrane-permeable and 

orally bioavailable peptides. 
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Methods 

Chemicals and peptides 

Deuterated acetonitrile (acetonitrile-d3, 99.8%), chloroform (chloroform-d, 99.8%, with 0.03% 

v/v tetramethylsilane), cyclohexane (cyclohexane-d12, 99.5%), and dodecylphosphocholine 

(dodecylphosphocholine-d38, 98%) were purchased from Novachem. Cyclosporin A (≥98.5%) 

was purchased from Sigma Aldrich. Cyclosporin H (≥95%) was purchased from Cayman 

Chemicals. 

 

NMR spectroscopy 

NMR samples were prepared by dissolving dried peptide (1 mg) in 550 μL of the desired solvent 

mixture; i.e., 38–100% (v/v) acetonitrile-d3 (mixed with water), pure chloroform-d, pure 

cyclohexane-d12, or a mixture of dodecylphosphocholine-d38 with water. Typically, samples 

were centrifuged at 13,000 rpm for 10 min to remove precipitate (which was observed for the 

cyclohexane sample) before data acquisition. One- and two-dimensional NMR spectra (1H, 1H 

TOCSY, NOESY) were recorded on a Bruker Avance 500 MHz spectrometer at the indicated 

temperatures. Mixing times of 80 and 200 ms were used for TOCSY and NOESY experiments, 

respectively. Spectra were processed with TopSpin (Bruker), phased and calibrated, and then 

assigned with CCPNMR software v2.4.2.40 Chemical shifts in the 1H dimension were referenced 

to internal 4,4-dimethyl-4-silapentane-1-sulfate or tetramethylsilane.  

 

Relaxation measurements were carried out using Bruker Avance 500, 600, and 900 MHz 

spectrometers, as previously described.41 T1 (spin-lattice) 13C relaxation times were measured 

using the Bruker pulse program hsqct1etgpsi3d.2. NMR spectra were acquired with a spectral 

width of 14 ppm over 2048 complex points in the 1H dimension, and 12 ppm over 40 complex 

points in the 13C dimension. To determine T1 values, 12 relaxation delays in the range of 0.01 to 

2.5 s were used. A recycle delay of 2 s was used. Peak heights were measured in CCPNMR and 

fitted using a two-parameter fit exponential equation to determine T1 values. Experiments were 

carried out in triplicate, with a different order of relaxation delays used in each experiment; the 

mean and standard deviation for the T1 values were derived. 
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13C NOEs were determined from the ratio of peak intensities from 2D 1H–13C correlation spectra 

measured via double inept transfer using sensitivity improvement with decoupling during 

acquisition, using Bruker pulse program hsqcnoegpsi.2. A recycle delays of 2 s was used. NOE 

on and NOE off spectra were processed with a zero scaling factor, phased identically, and the 

intensities of the respective peaks were measured using CCPNMR software. Errors were 

calculated as the standard deviation over triplicate measurements. 

 

The relaxation data were fitted to equations described in the model-free formalism using the 

‘Solver’ function in Microsoft Excel, as previously described.41 Errors were estimated by fitting 

to simulated data generated using a Monte Carlo algorithm. The fits of the NOE values were 

given a 50% weighting compared to the T1 values, to take into account the higher uncertainty in 

the experimental NOE measurements.41 

 

Molecular dynamics 

The solid-state structure of cyclosporin A crystallized from chloroform was used as the “closed” 

form (CCDC code: DEKSAN), whereas the solution-state structure bound to cyclophilin was 

used as the “open” form (PDB ID: 1CYA). The open form was selected by downloading, 

aligning, and visually inspecting structures of cyclosporin A (and its analogues) deposited in 

PDB (35 in total; i.e., 1BCK, 1C5F, 1CSA, 1CWA, 1CWB, 1CWC, 1CWF, 1CWH, 1CWI, 

1CWJ, 1CWK, 1CWL, 1CWM, 1CWO, 1CYA, 1CYB, 1CYN, 1IKF, 1M63, 1MIK, 1QNG, 

1QNH, 1XQ7, 2ESL, 2OJU, 2POY, 2RMA, 2RMB, 2RMC, 2WFJ, 2X7K, 2Z6W, 3BO7, 3CYS, 

3EOV). The solid-state structure of cyclosporin H crystallized from methanol42 was used as the 

starting conformation in simulations. The solution structure of cyclic peptide 13 was used in our 

simulations;16 the structure of cyclic peptide 1 was derived from cyclic peptide 13 by removing 

the N-methyl groups in silico. 

 

Force field parameters for the peptides were derived from the CHARMM27 force field. For non-

standard amino acids, parameters for their side-chains were obtained from SwissParam 

(http://www.swissparam.ch/); parameters for their backbone regions were initially derived from 

the CHARMM27 force field, and later modified as described. Force field parameters for 
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chloroform were based on the rigid model of Dietz and Heinzinger43 (which was previously 

shown to reproduce experimental liquid properties44), parameters for cyclohexane were obtained 

from a CHARMM force field for ethers, and parameters for POPC were extracted from the 

CHARMM36 force field (which has been optimized for lipids).  

 

Simulation protocols were modified from previously described methods for cyclic peptides in 

explicit solvent.41,45 Specifically, for simulations in a single solvent (i.e., chloroform, water, or 

cyclohexane only), a cubic box of solvent (50 × 50 × 50 Å) was constructed and the peptide was 

placed at the center. For simulations using a biphasic system (i.e., chloroform and water), a box 

(80 × 80 × 100 Å) filled with chloroform in the lower half and water in the upper half was 

constructed, and the peptide was placed at the center of the water partition. With harmonic 

restraints of 5 kcal/(mol Å) on the centroid of the Cα atoms and dihedral angles of cyclosporin 

A, each system was first minimized with 10,000 steps of conjugate gradient energy minimization 

using NAMD v2.11. This was followed by a 100-ps simulation in the canonical (NVT) ensemble 

and then 100 ps isothermal-isobaric ensemble (NPT) simulation at the experimental temperature 

and pressure, both with the harmonic restraints. A further equilibration of 1 ns was conducted 

before initiating production runs. The harmonic restraints on the dihedral angles were maintained 

for simulations of the constrained closed and open conformations, or were removed otherwise. 

Molecular dynamics simulations were performed using periodic boundary conditions. The 

particle mesh Ewald method with a real space cutoff of 12 Å was used to treat Coulomb 

interactions and a force-switching function was applied to smooth Lennard-Jones interactions 

over the range of 10–12 Å. All covalent hydrogen bonds were constrained by the SHAKE 

algorithm (or the SETTLE algorithm for water), permitting an integration time step of 2 fs. 

Coordinates were saved every 100 ps. 

 

For simulations in a lipid/water system, a box (80 × 80 × 100 Å) was constructed, comprised of a 

POPC (1-palmitoyl-2oleoyl-sn-glycero-3-phosphocholine) lipid bilayer and the peptide placed in 

the aqueous phase. With harmonic restraints of 2 kcal/(mol Å) on all non-hydrogen atoms and 5 

kcal/(mol Å) on all peptide dihedral angles, the system was first subjected to 10,000 steps of 

conjugate gradient minimization, followed by 490-ps NPT simulation. A Langevin thermostat 
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with a damping coefficient of 1 ps-1 was used to maintain the system temperature. The system 

pressure was maintained at 1 atm using a Langevin piston barostat. Initially, covalent hydrogen 

bonds were not constrained and an integration time step of 1 fs was used. Then, a 1.5-ns 

simulation was carried out with harmonic restraints of 2 kcal/(mol Å) on all heavy atoms, while 

maintaining harmonic restraints on peptide dihedral angles. Afterwards, all covalent hydrogen 

bonds were constrained by the SHAKE algorithm (or the SETTLE algorithm for water) and the 

integration time step was increased to 2 fs for a 4-ns simulation, while restraining all heavy 

atoms and peptide dihedral angles. Then, a 9-ns simulation with harmonic restraints of 2 

kcal/(mol Å) on all peptide carbon atoms and 5 kcal/(mol Å) on all peptide dihedral angles and 2 

kcal/(mol Å) on C1 carbon of all POPC lipids was carried out. Subsequently, restraints on the 

carbon atoms were removed for simulations of the constrained, closed and open conformations, 

and the system was equilibrated for a further 3 ns before carrying out production runs. 

Otherwise, all restraints were subsequently removed, and the system was equilibrated for 3 ns 

before production runs were conducted using ACEMD v1.6.0. Compared to simulations using 

NAMD v2.11, the cutoff was changed to 9 Å, and the integration time step was increased to 4 fs 

with the use of hydrogen mass re-partitioning as implemented in ACEMD.  

 

Order parameters were calculated from the simulations by overlaying all snapshots from the 

trajectories to the structure of the first snapshot, as previously described.41,46 The approach has its 

limitations (e.g., it is sensitive to the quality of the structural alignments), but is useful for 

providing broad indications on the flexibility of the system being studied. For each snapshot, the 

unit vector along the Cα-Hα vector was obtained from its Cartesian co-ordinates and used in the 

following equation: 

    

, where ‹› denotes the average over all snapshots from the trajectory. 
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Results 

Dynamics of cyclosporin A 

We confirmed that the conformation is dependent on solution environment in a series of NMR 

studies of cyclosporin A in a range of solvent mixtures (Figure 2a). Cyclosporin A is sparingly 

soluble in water and thus we used deuterated acetonitrile/water mixtures in a first set of 

experiments to confirm the role of the solvent. In a predominantly aqueous environment (<40% 

CD3CN content), the large number of peaks in the 1H 1D NMR spectrum indicates the presence 

of at least three conformations in slow exchange on the µs-ms timescale. In general, increasing 

the acetonitrile concentration increases structural homogeneity as judged by a reduced number of 

spectral peaks. Indeed, the spectrum of cyclosporin A in pure acetonitrile indicates convergence 

to one major conformation (population >90%), consistent with previous findings.28 

  

The conformational homogeneity is even greater in pure chloroform, where the spectrum is 

dominated by just four peaks in the amide region of the spectrum–corresponding to the four 

backbone amides of cyclosporin A, and indicating one major conformation is present. This 

conformation is well characterized and is shown in Figure 1. A minor conformation (population  

<6%) has been reported and differs from the major conformation by cis/trans isomerization 

about an N-methylated peptide bond.26 Overall the data suggest minimal conformational 

dynamics on the ms timescale (as assessed by NMR peak analysis) in chloroform. But what 

about faster motions not detected based on peak multiplicity? 

 

We used NMR relaxation measurements to gain a more precise understanding of the backbone 

dynamics on the ns-timescale of cyclosporin A in chloroform (Figure 2b). 13C NMR spin-lattice 

(T1) relaxation times and heteronuclear NOEs (hNOEs) for the Cα-Hα bonds were recorded at 

three field strengths (i.e., 500, 600, and 900 MHz) and interpreted according to the model-free 

formalism,47 which provides values for the correlation time (reflecting the rate of rotational 

diffusion) and the order parameters (reflecting the amplitudes of local motions). For cyclosporin 

A in chloroform the overall correlation time was found to be 0.28 ns, with order parameters (S2) 

for individual backbone Cα sites ranging from 0.72 to 0.83 (mean of 0.78). This result is 

consistent with a partial analysis of backbone Cα dynamics reported earlier,48 apart from two 
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outliers in that analysis that gave very low order parameters. The important conclusion to arise 

from this analysis is that individual backbone sites of cyclosporin A do have limited amplitude 

fast (sub ns-timescale) motions and this peptide is more flexible than other cyclic peptides with 

highly cross-braced structures, which typically exhibit S2 values >0.8.41,49 In other words, in any 

given conformation cyclosporin A is not completely rigid (S2 values ~1.0 would be expected for 

a rigid molecule). These experimental solution state data provide a benchmark upon which to 

calibrate in silico simulations, as detailed below. 

 

Simulations of the closed structure of cyclosporin A in chloroform 

Since it is well established that the closed form of cyclosporin A is the main conformation in 

chloroform we explored whether this structure can be faithfully predicted in silico. Accordingly, 

a model of the closed form was placed in a box of explicit chloroform and subjected to molecular 

dynamics simulations. Over the course of the simulation runs at both 298 and 315 K, very little 

deviation from the starting structure was observed (Figure 3a). Increasing the temperature to 490 

K resulted in increased local flexibility, as well as sporadic and significant deviations from the 

closed structure; however, the closed form was still the most frequently observed over the 

simulated time (Figures 3a and 3b).  

 

We compared the order parameters calculated from the simulations to experimentally determined 

values and found that elevated temperature simulations better recreated the experimentally 

observed dynamics than the room temperature simulations (Figure 3c). Order parameters were 

calculated from the simulations by integrating the time-dependent fluctuations of the Cα-Hα 

bond vectors using a previously described approach.46 Despite its limitations, the approach is 

suitable here because the simulation times are long relative to the experimentally determined 

rotational correlation time of cyclosporin A (i.e. ~0.3 ns) and also the magnitude of structural 

deviations is small. As shown in Figure 3c, simulations at 298 and 315 K overestimate the 

rigidity of cyclosporin A; at 490 K, there is better agreement with the results of the NMR spin 

relaxation analysis. The force field parameters acting on the system at lower temperatures appear 

to be too restrictive, but this restriction is compensated by increasing the simulation temperature 

so that the NMR-observed behavior can be better replicated in silico. Effectively the high 
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temperature simulations provide sufficient energy to fast-track the simulations so that dynamics 

trends can be predicted in a reasonable timeframe and without significantly affecting the 

thermodynamics of the system.34,50 Note that there is no inference that the 490K temperature 

would ever be reached (or relevant) in a biological system. 

 

Simulations of the open structure of cyclosporin A in chloroform 

We attempted to simulate conversion of the open to closed form in chloroform, but this structural 

conversion was initially difficult to simulate (Figure 4a). We conducted molecular dynamics 

simulations of the open structure in an explicit chloroform box, but conversion was not observed 

over the simulated time at 315 K. A higher temperature simulation was better able to induce 

conversion, giving conformations that were similar to the closed form. These closed form-like 

conformations differed from the closed conformation mainly by the geometry of the Mle-3 

peptide bond, i.e., they were in the trans, rather than cis, orientation (Figure 4a). Based on this 

observation, we speculated that the force field parameters acting on the ω-bond angle are overly 

constraining, so we investigated whether the force field could be modified to allow for cis/trans 

inter-conversion. 

 

We carried out atomic biased force calculations to explore the effect of the peptide bond 

parameters on the ω-dihedral free energy landscape of a model system comprising a N- and C-

capped amino acid and found the cis/trans transition energies could be reduced by decreasing the 

appropriate force constants (Figure 4b). Specifically, a capped Ala residue was subjected to 2.5 

ns and 25 ns simulations, both of which had similar energy profiles, suggesting convergence in 

sampling was obtained. Addition of a methyl group at the amide position, without modifying the 

force field parameters for the remainder of the amino acid, resulted in an 18% reduction in the 

transition energy barrier, as well as a 60% reduction in the free energy of the cis state. This result 

is consistent with quantum mechanical calculations on the effect of N-methylation on cis/trans 

conversion of Ac-X-OMe amino acids, reporting an average drop of 80% in the energy 

difference between the cis–trans conformations after N-substitution.51 Lowering of the force 

constant of the parameters acting on the ω-dihedral angle in the force field to 80% and then 60% 
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of the original values resulted in further reductions of the transition free energy, yet maintained 

the free energy level of the cis state.  

 

By incorporating the modified force field tested in the model Ala system into a full simulation 

for cyclosporin A we identified conditions in which the open structure converted to the closed 

structure in chloroform (Figure 4c). Initially, reduction of the force constants to 80% of their 

original values did not improve sampling of the closed structure at 490 K. However, a further 

reduction of the force constants, to 60% of their original values, improved sampling (Figure 4c). 

Interconversion between the open and closed structures was observed using the modified force 

field at 448 K, but not at 315 or 393 K (Figure 4d). Although the closed structure was 

successfully regenerated from the open structure at both 448 and 490 K, the closed structure did 

not remain stable for the entire simulation (Figures 4c and d); this is not unexpected as 

cyclosporin A exchanges between a major and minor conformation in chloroform (Figure 2a) 

probably due to cis/trans isomerization26 as noted above. Modifying only the force field 

parameters that act on the Mle-3 ω-angle resulted not only in the occurrence of the closed 

structure, but also in increased structural stability of the closed form (Figure 4d). Overall, the 

results show that the original force field imposed energetic penalties that inhibited complete 

conversion of the open to the closed structure within the simulation times. Increasing the 

temperature and relaxation of the force constants facilitated formation of the closed structure.  

 

Simulations of the open and closed forms of cyclosporin A in water 

NMR studies of cyclosporin A indicate that it adopts multiple conformations in water,10 and we 

found that this behavior could be replicated in silico. In a box of explicit water, significant 

deviations from the starting structure, either closed or open, were observed at 315 and 490 K 

(Figure 5a). The higher temperature simulations were better able to produce the expected 

behavior because of the transition of the Mle-3 peptide bond from the cis to trans orientation. As 

shown in Figure 5b, the water environment leads to conformations that have larger solvent-

accessible surface areas and more open polar groups than in chloroform. Overall, the simulations 

in water provide additional support that the modified force field and higher temperatures 

appropriately replicate experimental cyclosporin’s conformational behavior. 
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Simulating the transition from water to chloroform 

Since the focus of this study is the transition of cyclosporin A between different solvent phases, 

we simulated the peptide in a biphasic system and found that it readily partitioned into the 

chloroform phase (Figure 6a). Due to its high lipophilicity, cyclosporin A favors the apolar phase 

of a polar-apolar biphasic system, with log P values of 2–3 in octanol/heptane36 or 

octanol/isooctane10 mixtures. We constructed a simulation box comprising an explicit water 

phase and an explicit chloroform phase and then positioned the open structure of cyclosporin A 

in the center of the aqueous partition. Cyclosporin A moved rapidly into the chloroform partition 

and then remained just under the chloroform–water interface for the remainder of the simulation. 

Cyclosporin A adopted the closed conformation during transition from the upper chloroform-

water interface to the lower interface (Figure 6a). We speculated that it was unable to move back 

through the chloroform phase into the upper interface in the simulation because the interfacial 

environment did not encourage formation of the closed structure. Indeed, when cyclosporin A 

was constrained into the closed form, it diffused through the chloroform phase with higher 

frequency (Figure 6b). On the other hand, when constrained into the open form, it was unable to 

transition through the chloroform phase and was trapped at the upper water–chloroform interface 

(Figure 6b). These simulations support the importance of conformational change for the 

movement of cyclosporin A between different solvent environments. 

 

NMR structural studies of cyclosporin A in membrane mimics 

We next altered our focus from chloroform to systems that mimic the membrane environment, 

and demonstrated that the closed conformation or one similar to that exists in lipids (Figure 7a). 

We considered cyclohexane because of the abundance of CH2 groups in both cyclohexane and 

lipid tails. Additionally, the force field parameters for cyclohexane and lipid tails have many 

similarities, allowing for more meaningful comparisons between experiment and simulation. We 

also examined dodecylphosphocholine (DPC) because of its structural similarity to POPC; 

another approach is to use bicelles. The structure of cyclosporin A in SDS has been previously 

reported.29 As shown in Figure 7a, the Hα chemical shifts show a similar trend across the 

sequence of cyclosporin A in chloroform, cyclohexane, SDS,29 and DPC, with those in 
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cyclohexane and chloroform being most similar. Notably, there are some differences in chemical 

shifts (Figure 7a); for example, Sar-7 exhibits an Hα chemical shift in the presence of DPC that 

is 0.26 ppm downfield to that in chloroform, which might indicate differences in the local 

backbone geometry. Therefore, the analysis of Hα chemical shifts suggest that the 

conformational behavior of cyclosporin A in DPC is not identical to that in chloroform but could 

also have similarities.  

 

Figure 7b shows that cyclosporin A adopts a single conformation (or multiple conformations in 

fast exchange) in cyclohexane. The 1H 1D spectrum at 288 K (and other temperatures) exhibits 

four sharp peaks in the amide region that correspond to the four backbone amides, resembling 

the behavior in chloroform (Figure 2). By comparison, there is greater conformational 

heterogeneity in the presence of DPC because of the presence of slow-exchanging conformations 

in addition to the major conformer. The distribution of these peaks in the 1H 1D spectrum as well 

as the Hα chemical shifts of the main conformer did not change significantly as the cyclosporin 

to DPC ratio was increased from 1:50 to 1:100 (Supplementary Table S1, Supplementary Figures 

S1–S4). Despite these differences in the 1H 1D spectrum between chloroform and DPC, 

preliminary structures of cyclosporin A at 1:50 and 1:100 peptide to DPC ratios calculated using 

NOE restraints (Supplementary Tables S2 and S3, Supplementary Figures S5 and S6) indicate 

that the structure in DPC could resemble the closed conformation, although there might be 

differences in the backbone geometry, for example at Sar-7 and Ala-11 (Supplementary Figure 

S7). Similarity in the general trend in temperature coefficients and 3JHN-Hα constants 

(Supplementary Table S4) with the presence of localized differences (e.g. Ala-11 having ~1 Hz 
3JHN-Hα difference between cyclohexane and DPC) supports this conclusion. Although the 

structures could be further refined, the data generally show that the closed form could exist in a 

lipid bilayer.  

 

 

Simulations of cyclosporin A in cyclohexane 

We next showed that cyclosporin A could adopt the closed structure in cyclohexane in silico 

(Figure 8a). We placed the open form of cyclosporin A in a box of explicit cyclohexane and 
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carried out molecular dynamics simulations. At 315 K, the simulated structures did not approach 

the closed form, but increasing the temperature improved sampling of the closed structure. At 

448 K, for example, the open structure rapidly converted to the closed form and remained stable 

in the closed structure. A further increase in temperature to 490 K resulted in sampling of 

additional non-closed structures, so 448 K was the optimal simulation temperature. 

 

Simulations of cyclosporin A with a lipid bilayer 

Having characterized the behavior of cyclosporin A in various solvent environments and with 

different simulation parameters, we conducted simulations of cyclosporin A in the presence of a 

lipid bilayer, and found that conformational dynamics is an important determinant of 

permeability (Figure 8b–f). A simulation box comprising a POPC lipid bilayer patch and the 

open structure of cyclosporin A positioned above the patch was constructed. Early in the 

simulation, cyclosporin A partitioned into the lipid bilayer (Figure 8b). We experimentally 

confirmed that cyclosporin A can bind to a POPC lipid bilayer using SPR with the bilayer 

deposited on a L1 sensor chip, as shown in Supplementary Figure S8. Over the course of the 

simulation, cyclosporin A moved through the lipid bilayer while adopting various conformations, 

including the closed form. Solid-state NMR and small angle X-ray diffraction experiments have 

previously shown that cyclosporin A can reside in the membrane interior.52 Figure 8c shows that 

the closed form is preferred when cyclosporin A is sequestered near the lipid tails where there is 

low exposure to water, but becomes less preferred as cyclosporin A moves away from the 

membrane core and becomes more open to water.  

 

We then examined the effect of temperature on the translational properties of cyclosporin A in 

silico (Figure 8d). At 315 K, cyclosporin A remains in the aqueous phase. At 393 K, it enters the 

membrane but is stuck in the upper leaflet of the bilayer. At both 315 and 393 K, the closed 

structure is never observed. At 490 K, cyclosporin A is again able to move through the lipid 

bilayer, but the movement is more rapid and the occurrence of the closed structure is less 

frequent compared to the simulation at 448 K. A change in the simulation temperature also 

affects the lipid bilayer. Figure 8e shows that an increase in temperature results in thinning of the 

bilayer, as indicated by increases in the area per lipid. Thus, the ability of cyclosporin A to move 
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through the bilayer could be due to the ability of the simulated structures to adopt the closed 

form and/or porosity of the lipid bilayer.  

 

To explore whether the conformation of cyclosporin A is indeed a determinant of its membrane 

permeability in the presence of a thinned bilayer, simulations of cyclosporin A constrained in 

either the closed form or the open form were carried out and compared to simulations without 

constraints. As shown in Figure 8f, when cyclosporin A is not constrained, its distance from the 

membrane center is distributed along the normal of the bilayer. When cyclosporin A is 

constrained in the closed form, the distance distribution is narrower because it predominantly 

stays in a lipid core surrounded by lipid tails. When cyclosporin A is constrained in the open 

conformation, it is unable to permeate the membrane and remains trapped in the upper leaflet. 

Overall, the simulations of cyclosporin A, either unconstrained or constrained, show that 

conformational flexibility is important for the membrane permeability of cyclosporin A.  

 

Extension to simulations of cyclosporin H and other cyclic hexapeptides in a lipid bilayer 

To provide further validation and to broaden the study, we conducted simulations of other cyclic 

peptides, including cyclosporin H (Figure 9a) and two cyclic hexapeptides (Figure 9b), in the 

presence of a lipid bilayer, and confirmed that conformational flexibility can indeed affect 

movement through a membrane. Cyclosporin H is able to passively diffuse across an artificial 

membrane, but is less permeable than cyclosporin A (i.e. log(Pe) of -5.36 compared to -5.01).11 It 

differs from cyclosporin A by a stereochemical inversion at residue 4, but like cyclosporin A, it 

also exhibits solvent-dependent conformational change (Figure 9a). Its solid-state structure has 

been determined from methanol-grown crystals (Figure 9a);42 however, the structure is different 

to those reported for cyclosporin A (Figure 1), and so provides a different starting point for our 

in silico investigations. As shown in Figure 9c, when cyclosporin H starts (unconstrained) in this 

conformation in the presence of a membrane, it enters the membrane and transitions to the other 

side, sampling different locations along the membrane normal during the simulation, including 

the membrane core and the outer aqueous compartment. By comparison, when constrained in 

this starting conformation, cyclosporin H rapidly partitions into the membrane, but does not 

sample as diverse a range of locations. A similar dependence of positional distribution on 
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conformational restriction is also exhibited by a cyclic hexapeptide (i.e. cyclic peptide 13) that 

we have previously shown to have high passive membrane permeability and oral bioavailability 

(i.e., F = 33% when administered orally in rats).16 The unconstrained peptide moves more freely 

through the membrane than its constrained form or a non-N-methylated variant (i.e. cyclic 

peptide 1, which was first reported as compound 424) reported to have lower permeability.16 

Overall, the simulation results clearly demonstrate that conformational flexibility can help 

mediate passive transport across membranes.  
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Discussion 

Here we studied how conformational dynamics affects the passage of peptides across biological 

membranes. We focused on cyclosporin A, a peptide drug that has high membrane permeability 

for its size.19 Its conformational flexibility has been hypothesized to be a key determinant of its 

ability to cross membranes.11,23,24 This hypothesis has been difficult to study, particularly at the 

molecular level, because the factors that affect permeability are multifarious and many 

biophysical techniques lack the spatial and temporal resolution needed. Thus, we explored the 

potential of molecular dynamics, alongside NMR, to characterize the dynamics of cyclosporin A 

and other membrane permeable cyclic peptides, and their spontaneous partitioning into and out 

of lipid membranes.  

 

Studying membrane permeability of cyclosporin A using molecular dynamics is challenging 

because membrane diffusion and conformational change, including cis–trans bond transitions,  

occur on slow timescales. Specifically, based on an apparent permeability of ~10-5 cm/s,11 the 

rate at which cyclosporine A crosses a lipid bilayer would be ~10 s-1. Compared to this, cis–trans 

rotation about the Mle-2 peptide bond is slower in an aqueous-like environment (i.e. ~10-3 s-1 in 

pure tetrahydrofuran53). In chloroform, the interconversion rate increases by up to 1000-fold, 

with a cis to trans conversion rate of ~10-2 s-1 and trans to cis conversion of 1 s-1; these rates 

further increase with increasing temperature.54 Clearly, the timescale of these processes require 

substantial computational resources and/or advanced sampling techniques for exhaustive 

characterization. Indeed, previous molecular dynamics simulations have been too short (i.e., 50 

ps–2.1 ns) to observe conformational changes at ambient temperatures without adding biased 

restraints.35,37 Longer simulations (i.e., 100 ns seeded simulations; 10 μs total) at near ambient 

temperatures have demonstrated more success in obtaining convergence, showing that expected 

behavior (e.g., cis-trans bond populations) can be simulated.38  

 

Our approach was to perform simulations using a wide range of conditions (i.e, at a range of 

temperatures, in a range of solvents, using a range of structural parameters), and to interpret the 

results with reference to NMR data. As in previous simulations, elevated temperatures were used 

to accelerate sampling.33,34,37 The use of high temperatures in simulations is now widespread, and 
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has proved valuable to study peptide–membrane interactions. For example, the partitioning and 

transmembrane insertion of helical polyleucine segments have been studied at 353-490 K, which 

directly revealed all states populated at equilibrium.33 Here, we demonstrated that elevated 

temperatures indeed improved sampling and produced better agreement with experimental 

results compared to lower temperature simulations. For example, elevated temperature 

simulations of the open structure in either chloroform or cyclohexane facilitated conversion into 

the closed form, consistent with experimental observations (Figures 1 and 7b). Furthermore, 

there was a higher degree of structural deviation in chloroform compared to cyclohexane, again 

confirmed by experimental data (Figures 1 and 7b). As well as elevated temperatures, which 

facilitates peptide bond isomerization in silico,55 modification of the force field parameters 

acting on the ω-angle of N-methylated residues also assisted in improving sampling (Figure 4c). 

Nevertheless, the requirement of higher temperatures and force field modifications suggest that 

large energy barriers restrict sampling in the system studied here. With modifications to the 

simulation parameters, we confirmed the dependence of conformation on the solvent observed 

experimentally.10,25-29 By performing simulations in simple solvent systems first, we established 

a foundation for studying cyclosporin A in the presence of lipid bilayers.  

 

Cyclosporin A permeates membranes in in vitro trans-well assays,10,11 confirming that passive 

diffusion across membranes is an important step towards achieving cell permeability and oral 

absorption. We aimed to address the question of whether conformational flexibility is important 

for this membrane permeability. The observation that unconstrained cyclosporin A can move 

more freely in a water–chloroform biphasic system than can either the constrained closed or open 

structures provided initial evidence in support of the importance of dynamics (Figure 6b). 

Further support came from simulations in the presence of a lipid bilayer (Figure 8f). 

Unconstrained cyclosporin A moved more freely in a lipid bilayer than constrained cyclosporin 

A, which was predominantly trapped in the membrane core or interface depending, on whether it 

was in the closed or open structure, respectively. Additionally, this dependence of movement 

through a lipid bilayer on conformational flexibility was observed for other cyclic peptides 

reported to be membrane permeable (Figure 9). If complete rigidity can limit permeability, does 

this mean that flexibility is the key? To a degree. Increased flexibility, for example as would 
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occur by linearizing cyclosporin A, would be expected to decrease permeability because the 

linear peptide would be less able to sample the conformation favorable for membrane insertion.  

 

Conformational polymorphism affects all stages of the membrane permeability of cyclosporin A 

(Figure 10). To permeate membranes, cyclosporin A must transition from an aqueous 

environment into the chemically-opposing environment of the membrane core. Based on studies 

of membrane permeability of peptides,19,20,56 many factors are thought to affect this transition, 

including electrostatic contributions, non-polar contributions, and lipid perturbation effects, in 

addition to peptide conformational effects. In the aqueous phase, cyclosporin A samples multiple 

conformations as evidenced by 1D 1H NMR spectra in polar solvents and water.10,27 In water, 

both closed and open conformations are not stable in silico; however, these starting 

conformations may still exist sporadically, as previously suggested.38 Some of the conformations 

sampled in water are more favorable than others for insertion into as well as movement through 

the membrane. For example, although both the closed and open form can partition to the 

membrane in silico, only the closed form can more freely move through the membrane; the open 

form prefers to sit at the water–membrane interface (Figure 8). The inter-conversion rates 

between conformations that favor and disfavor membrane permeability are thought to drive 

permeability, particularly when the time scales of conversion are slower than permeation.39 

 

On average, insertion of cyclosporin A into a lipid membrane is an endothermic process, 

governed by an enthalpic penalty that is counterbalanced by favorable entropic changes.52 The 

enthalpic contribution to insertion might be brought about by: (i) a reordering of water molecules 

about the peptide surface; (ii) changes in hydrogen bonding between water and cyclosporin A; 

or, (iii) a combination of both processes. Evidence of multiple conformations of cyclosporin A, 

in which some have smaller polar surface areas or have their backbone polar groups more 

protected from the solvent, supports the role of conformational change in facilitating insertion. 

Additionally, some conformations of cyclosporin A have larger non-polar surface areas, which 

would facilitate insertion via the classical hydrophobic effect, which is an entropy-driven 

phenomenon. Both electrostatic and non-polar contributions add to the overall desolvation 

energy, which has been suggested to be a predictor of membrane permeability.12,23  
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Upon insertion into a membrane, cyclosporin A can partition into the membrane core.52,57 Based 

on structural studies in chloroform (a solvent with a low dielectric constant that mimics the 

membrane core), cyclosporin A is commonly assumed to adopt the closed structure inside the 

membrane. We showed using a NMR relaxation analysis that cyclosporine A exhibits limited 

amplitude fast backbone motion; we hypothesize that the lack of absolute rigidity is important to 

enable structural change. We further demonstrated that cyclosporin A can indeed form the closed 

form in environments that mimic the membrane (Figure 7a); for example, the Hα chemical shifts 

of cyclosporin A in cyclohexane are almost identical to those in chloroform. In the presence of 

DPC, the chemical shifts are, generally, similar to those in cyclohexane and chloroform, 

suggesting that the overall structure in the micelle environment resembles the closed form. This 

conclusion is supported by a comparison of temperature-dependent amide proton shifts (markers 

of solvent exposure and hydrogen bonding) in cyclohexane with those in the presence of DPC. 

We demonstrated that the closed structure favored the membrane interior when cyclosporin A 

was constrained during simulations in the presence of a lipid bilayer (Figure 8f). However, when 

cyclosporin A was not constrained, alternative conformations were observed in the membrane 

core. Conformational flexibility might be beneficial inside the membrane because it might 

reduce the entropic cost of insertion. It also increases sampling of positions along the membrane 

normal (Figure 8f), suggesting that it might also facilitate departure of cyclosporin A from the 

membrane interior, as was observed for cyclosporin H and cyclic peptide 13 (Figure 9c).  

 

It is also thought that lipid perturbation effects can affect membrane insertion of peptides. Lipid 

perturbation effects arise from conformational dynamics of the lipid chains in the bilayer and are 

dependent on the size of the inserted peptide. We observed that changes in the conformation of 

cyclosporin A resulted in changes in the overall size, with the closed conformation being 

generally smaller than those found in water (Figure 5b). Peptide size also affects diffusion of a 

peptide through a membrane, as corroborated in a recent study of a range of cyclic peptides.19 As 

that study noted, as did an earlier study,58 diffusion through a membrane is in accord with a 

polymer-based model rather than a Stokes-Einstein model. In the polymer model, peptides move 

through the membrane by successively occupying nearby voids that sporadically appear. This 
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might explain the observation that insertion is favored in elevated temperature simulations, in 

which the membrane is less compact (Figure 8). Interestingly, the polymer-model predicts that 

the diffusion rate correlates with the short dimension of the diffusant; this is consistent with the 

closed conformation being favorable for membrane permeation because it resembles an 

elongated shape with one dimension shorter than the other (Figure 1). If the polymer model is 

more appropriate for representing membrane permeability, then simulations in the presence of a 

lipid bilayer should have broad utility for studying peptide permeability.  
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Conclusions 

In summary, we have used simulations to provide a molecular microscope to monitor the 

dynamics of membrane-permeable cyclic peptides and its role in membrane permeability. We 

found that conformational polymorphism is indeed an important feature of these peptides, 

allowing them to more readily move through a lipid bilayer. Given that increasing attention is 

being paid to exploring the potential of peptides as therapeutics, there is a greater need to 

understand how peptides can permeate membranes, leading to a better understanding of how 

peptides might be modified so that they can be delivered orally.  
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Figure Legends 

Figure 1. Cyclosporin A, open and closed structures, and the question of membrane 

permeability. The sequence and chemical structure of cyclosporin A is shown at the top right, 

with each residue labelled with its three-letter code. Residues 1, 5, and 10 are labelled with the 

residue number. Cyclosporin A has seven N-methylated amino acids (i.e., Mle-2, Mle-3, Mva-4, 

Bmt-5, Sar-7, Mle-8, and Mle-10) and four non-N-methylated amino acids (i.e., Dal-1, Aba-6, 

Val-9, and Ala-11). It has a cyclic backbone, as indicated by the black line connecting the last 

residue to the first. Based on reported structures, the peptide bond between Mle-2 and Mle-3 can 

adopt either a cis or trans conformations. Structures of cyclosporin A bound to a protein target 

(typically cyclophilin) are similar (blue, only backbone shown for clarity; top left), and have the 

Mle-3 bond in the trans orientation. We have chosen one of these to represent the 'open' 

conformation. In chloroform, cyclosporin A adopts an extended conformation (orange) in 

chloroform, in which the Mle-3 bond adopts a cis orientation. We refer to this structure as the 

'closed' conformation. A schematic of a lipid bilayer is shown to highlight the overall focus of 

the manuscript on membrane permeability. 

 

Figure 2. Dynamics of cyclosporin A characterized by NMR. a) 1H 1D NMR spectra of 

cyclosporin A in various solvents, including aqueous mixtures of deuterated acetonitrile and 

water (38–100% v/v CD3CN), and pure deuterated chloroform (CDCl3). The sample temperature 

as well as the solvent composition is shown to the left of each spectrum. The four backbone 

amides of cyclosporin A are labelled. The asterisk indicates the solvent peak. b) 13C Spin-lattice 

(T1) and heteronuclear NOE (hNOE) values recorded at 500, 600, and 900 MHz in CDCl3 at 298 

K, and were used to derive generalized order parameters (S2) from a model-free analysis. The 

sequence of the cyclosporin A is shown for reference. 

 

Figure 3. Molecular dynamics simulations of the closed structure in chloroform. 

Simulations in explicit chloroform were carried out using the closed structure as the starting 

point. a) Root mean squared deviation (RMSD; backbone heavy atoms) of simulated structures 

compared to the closed structure at 298, 315, and 490 K. b) The conformations at two time-

points in the 490 K simulation, labelled with (i) and (ii), are shown, along with the RMSD 
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values. c) Average order parameters ‹S2› were calculated from the simulations and compared to 

that from the nuclear spin relaxation (NSR) analysis (Figure 2). 

 

Figure 4. Molecular dynamics simulations of the open structure in chloroform. Simulations 

in explicit chloroform were carried out using the open structure as the starting point. a) Root 

mean squared deviation (RMSD; backbone heavy atoms) of simulated structures compared to the 

closed structure at 315 and 490 K. The structure at the (i) time-point (green) is aligned to the 

closed structure (orange).  The Mle-3 peptide bond adopts a trans orientation, whereas the same 

bond adopts a cis orientation in the closed structure. b) Adaptive biasing force calculations of 

amino acids capped at both terminal ends (Ac-X-NH2). The key shows the tested identities of X 

(using a three-letter code) and the time length of the calculations, as well as the percentage 

modification to the force constants acting on the ω dihedral angles of N-methylated amino acids. 

c) Simulations of the open form at 490 K, using the 80% and 60% force field (FF) modifications 

to the force constants. The RMSD compared to the closed form is shown, along with the Mle-3 ω 

angle. The structure at the (ii) time-point (green) aligns well with the closed structure (orange), 

with a RMSD of 0.73 Å. d) Further simulations at different temperatures; i.e., 315, 393, and 

448K. A simulation at 490 K with the 60% modification to the force constants applied only to 

the Mle-3 ω angle was also executed. 

 

Figure 5. Molecular dynamics simulations of cyclosporin A in water. Starting with either the 

closed form (orange) or the open form (blue), simulations in an explicit water box were 

conducted at 315 and 490 K. a) In the upper panel, the root mean squared deviation (RMSD; 

backbone heavy atoms) of simulated structures compared to the closed structure for each 

simulation are shown as box plots. In the lower panel, the Mle-3 ω angle over the course of each 

simulation is shown in box plots. The angle corresponding to the ideal cis and trans bond 

orientations is shown for reference. The result for the simulation of the closed form in 

chloroform (CHCl3) at 315 K is also shown for comparison. b) In the upper panel, the solvent-

accessible surface area (SASA) for each simulation as box plots. In the lower panel, the polar 

surface area (PSA) distribution for the backbone polar groups of the simulated structures are 

shown. 
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Figure 6. In silico partitioning of cyclosporin A between water and chloroform. Simulations 

of cyclosporin A were conducted in a water–chloroform biphasic system at 490 K, and with the 

force constants modified to 60% of their original values (60% FF). a) The position of 

cyclosporin A relative to the membrane normal over the course of the simulation is shown. The 

root mean squared deviation (RMSD; backbone heavy atoms) of simulated structures compared 

to the closed structure is also plotted. An illustration of the simulation box is shown (top right). 

b) Box plots of the position of cyclosporin A along the chloroform normal for simulations in 

which cyclosporin A was not constrained, constrained in the closed conformation, and 

constrained in the open conformation. The grey shaded region corresponds to the chloroform 

phase of the simulation box. 

 

Figure 7. NMR structural studies of cyclosporin A in membrane mimics. a) Chemical 

structures of chloroform and membrane mimics, including cyclohexane, SDS, and DPC. The 

chemical structure of POPC is also illustrated for comparison. The Hα chemical shifts of 

cyclosporin A in chloroform, cyclohexane, and DPC are shown. The chemical shifts of 

cyclosporin A in SDS were obtained from a previous report.29 Below this plot is the Hα  

chemical shifts of cyclosporin A in cyclohexane, SDS and DPC, relative to those in chlorofom 

(secondary shifts). b) 1D 1H spectra of cyclosporin A in cyclohexane and in the presence of DPC 

(and water). The temperature of the samples are shown, as well as the cyclosporin A to DPC 

ratio (w/w), where relevant. The peaks of the main conformation corresponding to the four 

backbone amides of cyclosporin A are labelled. 

 

Figure 8. Membrane permeability of cyclosporin A in silico. Cyclosporin A was simulated in 

cyclohexane and in the presence of a POPC lipid bilayer with the 60% force constant 

modification (60% FF). a) The open structure was simulated in a box of explicit cyclohexane at 

315, 393, 448, and 490 K. The root mean squared deviation (RMSD) of simulated structures 

compared to the closed structure is plotted. b) Position of cyclosporin A relative to the 

membrane normal and the root mean squared deviation (RMSD; backbone heavy atoms) of 

simulated structures (after equilibration) compared to the closed structure are plotted. To the 
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right is an illustration of the simulation box, showing that it is composed of a lipid bilayer. At the 

start of the simulation, cyclosporin A is placed above the lipid bilayer. c) Box plot of the RMSD 

dependence on exposure to water over the whole simulation. d) Simulations at 315, 393, and 

490K. e) Area per lipid depending on the simulation temperature. f) Box plots of the position of 

cyclosporin A along the membrane normal for simulations (20–250 ns period of the production 

runs) in which cyclosporin A was not constrained, constrained in the closed conformation, and 

constrained in the open conformation. The grey shaded region corresponds to the lipid bilayer of 

the simulation box. 

 

Figure 9. Membrane permeability of cyclosporin H and cyclic hexapeptides in silico. a) The 

sequence of cyclosporin H is shown at the top, with each residue represented using a three-letter 

code. The residue in bold at position 4 distinguishes cyclosporin H from cyclosporin A (i.e. Dmv 

instead of Mva). Below the sequence are 1H 1D NMR spectra at 298K of cyclosporin H in 

various solvents, including a mixture of methanol and water (50% v/v methanol-d), acetonitrile 

and water (50% v/v acetonitrile-d3), pure chloroform (chloroform-d), pure cyclohexane 

(cyclohexane-d12), and in the presence of DPC micelles (at 1:100 and 1:250 peptide:DPC 

ratios). The solvent composition is shown above each spectrum. To the right is the backbone 

structure of cyclosporin H determined from crystals grown from methanol.42 b) The sequence of 

two cyclic hexapeptides referred to as cyclic peptide 1 and 13.16 (Cyclic peptide 1 was first 

reported as peptide 424). Cyclic peptide 13 differs from cyclic peptide 1 in that it the first two 

amino acids (highlighted in bold) have methylated amides. To the right is the backbone structure 

of cyclic peptide 13 in 30% acetonitrile16 with the two N-methylated residues labeled. c) Position 

of cyclosporin H relative to the membrane normal with no constraints on the backbone and with 

the backbone constrained to the starting conformation;42 the position of the lipid bilayer is 

shaded grey. At the start of the simulation, cyclosporin H is placed above the lipid bilayer and 

simulated with the 60% force constant modification (60% FF). On the right is are box plots of 

the position of cyclosporin H, and cyclic peptide 1 and 13, along the membrane normal for 

simulations in which the peptide was not constrained or constrained as indicated below the plots. 
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Figure 10. Role of conformational polymorphism in membrane permeability of cyclosporin 

A. Outside of the membrane, cyclosporin A samples multiple different conformations, as 

indicated by the differently colored shapes. During permeation, it is likely that multiple states are 

sampled, with the proportion of each state changing depending on the phase (i.e. aqueous, 

membrane head group, membrane tail). In other words, it is likely that multiple permeation 

pathways exist, characterized by different combination of states at each phase. Each state has 

different physiochemical properties that affect its transition to the next phase; for example, the 

size of the solvation shell or the area of the open hydrophobic surface. Each state also interacts 

with the membrane differently, with some more able to negotiate through the polymeric net 

formed by the lipids. 
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