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Abstract
Heparin, a sulfated polysaccharide belonging to the glycosaminogly-

can family, hasbeenwidelyusedas ananticoagulantdrug fordecades

and remains the most commonly used parenteral anticoagulant in

adults and children. However, heparin has important clinical limi-

tations and is derived from animal sources which pose significant

safety and supply problems. The ever growing shortage of the raw

material for heparin manufacturing may become a very significant

issue in the future. These global limitations have prompted much

research, especially following the recent well-publicized contami-

nation scandal, into the development of alternative anticoagulants

derived from non-animal and/or totally synthetic sources that mimic

the structural features and properties of heparin. Such compounds,

termed heparin mimetics, are also needed as anticoagulant mate-

rials for use in biomedical applications (e.g., stents, grafts, implants

etc.). This review encompasses the development of heparinmimetics

of various structural classes, including synthetic polymers and non-

carbohydrate small molecules as well as sulfated oligo- and polysac-

charides, and fondaparinux derivatives and conjugates, with a focus

on developments in the past 10 years.
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anticoagulants, glycopolymers, heparin, heparin mimetics, sulfated

oligosaccharides

1 INTRODUCTION

At present, globally, a large number of people are affected with different types of cardiovascular diseases (CVDs), that

is, myocardial infarction (heart attack), stroke, arterial thrombosis and venous thromboembolism (deep vein thrombo-

sis and pulmonary embolism), where the underlying etiology behind these life threatening diseases is the formation

of thrombus (accumulation of aggregated platelets and cross-linked insoluble fibrin).1–3 According to a 2017 WHO

report, CVD is the leading cause of mortality throughout the world accounting for 17.7 million deaths in 2015, and

equivalent to 31%of all deaths.4 Some of themost important treatment options for these life-threatening diseases are

basedonunfractionatedheparin (UFH), lowmolecularweight heparins (LMWH), and the synthetic ultra-lowmolecular
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weight heparin (ULMWH) pentasaccharide, that is, fondaparinux (1, Figure 3), see Table 1. Among these, UFHwhich is

a sulfated polysaccharide (average molecular weight [MW] of most commercial preparations ∼12–30 kDa) has been

in use for decades and offers advantages such as rapid onset of action after intravenous administration, reversibility,

widespread availability, and lowcost.However,UFH is associatedwith serious complications such as bleeding, heparin-

induced thrombocytopenia (which can be fatal), osteoporosis (frequently in females), hypoaldosteronism, heparin-

induced skin necrosis, and variable dose response in different patients, requiring specialmonitoring.5–9 A serious event

took place in 2007/8 when more than 200 patients died after receiving UFH and hundreds were reported to have

serious adverse effects due to contamination; specifically from adulteration of the UFH preparation with oversulfated

chondroitin sulfate (CS).10,14 UFH is obtained from animal tissue (porcine, or occasionally bovine, intestinal mucosa)

and so there is potential for contamination from viruses. In addition, UFH has a very short half-life (less than 1 hr), and

only approximately one-third of the administered dose elicits a therapeutic response.11 Moreover, after complex for-

mationwith antithrombin (AT), heparin cannot inhibit the function of coagulation factors Factor Xa (FXa) and thrombin

(FIIa) when they are bound to platelets and fibrin, respectively.12 Therefore, LMWHs (averageMW∼3.5–6 kDa), were
developed to provide some advantages over UFH, for example, increased half-life, improved bioavailability.13 There is

also the additional advantage of no additional monitoring required following LMWH administration, so that patients

do not need to be hospitalized. However, LMWHs also have some limitations such as functional irreversibility and a

dependence on UFH as the starting material.14 On the other hand, synthetic fondaparinux (1) became commercially

available in 2001 and is frequently prescribed despite the high cost due to its complex synthesis. All of these limita-

tions associated with heparin and its derivatives have motivated the development of alternative anticoagulants with

improved properties. This review focuses on different approaches for the development of heparinmimetics as alterna-

tive anticoagulants. For thepurposesof this reviewwedefineheparinmimetics as compounds thatmimic the structural

features of heparin (principally negatively charged sulfo groups) and therefore its properties.

2 BLOOD COAGULATION

Based on the waterfall model first proposed by Macfarlane in 1964, the zymogen Factor X (FX) is activated to FXa

through two independent pathways, namely the intrinsic and extrinsic pathways.2,15 The ultimate goal is activation of

prothrombin (also known as FII and secreted from platelets) into active thrombin (FIIa), which further stimulates the

generation of abundant fibrin from fibrinogen to form a stable clot. However, recent cell-based coagulation studies

convey that coagulation takes place in three overlapping steps, namely initiation, amplification, and propagation.16,17

During initiation, at the site of vascular disruption, a complex is formed between Factor VIIa (FVIIa) and subendothelial

tissue factor, which activates both Factor IX (FIX) and FX; the complex also generates a small amount of thrombin to

form fibrin via activation of fibrinogen. During amplification, thrombin activates platelets, Factor V (FV), Factor VIII

(FVIII), and Factor XI (FXI). FIXa forms a complex (intrinsic "tenase" complex) with FVIIIa (FIXa:FVIIIa), activating a

sufficient amount of FX into FXa to form a prothrombinase complex with FVa (FXa:FVa).17 This complex generates a

large amount of thrombin to convert fibrinogen into fibrin and to form a clot which becomes stable once Factor XIII

forms crosslinks across fibrin strands.

3 SOURCES, CHEMISTRY AND ANTICOAGULANT ACTIVITY OF UFH,

LMWH, AND ULMWH

Heparin and specificallyUFH is prepared by extraction fromanimal tissue,mostly porcine intestinalmucosa.18 All hep-

arin preparations are linear polymerswith a number averageMW(Mn) of 12 to 16 kDa and aweight averageMW(Mw)

of 17 to 20 kDa, and thus a polydispersity (Mw/Mn) of about 1.3–1.4.19 Themanufacturing processes for heparin have
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F IGURE 1 Structures of themajor (A) andminor (B) disaccharide sequences in heparin

F IGURE 2 Structure of the unique pentasaccharide (DEFGH) sequence of heparin, also known as the antithrombin
binding domain (ABD)

changed slightly over time as the industry has transitioned from beef lung to porcine intestine as the primary source

tissue.20

Heparin is a highly sulfated polyanionic polysaccharide consisting of repeating disaccharide subunits of 1→4 linked

𝛼-D-glucosamine (GlcN) and a uronic acid, typically 90% 𝛼-L-iduronic acid (IdoA) and 10% 𝛽-D-glucuronic acid (GlcA).

Themost common structure occurring in heparin is the trisulfated disaccharide IdoA2S-GlcNS6S (Figure 1), however, a

number of structural variations exist, leading to the microheterogeneity of heparin.21 Different sulfation patterns are

unevenly distributed along the heparin chains, with highly charged sequencesmostly concentrated at the nonreducing

end and less charged sequences at the reducing end, with mixed sequences between these two regions.21 The propor-

tions of differently charged domains and the actual composition within these domains vary depending on the animal

and organ source and also on the extraction and purification procedures.22 For example, during manufacture of UFH

base-catalyzed displacement of sulfate from Ido2S and/or enrichment of 6-O-sulfated sequences via chromatographic

purification can occur at variable levels.22

Heparin exerts its anticoagulant effects primarily through its interaction with the serpin (serine protease inhibitor)

AT, bringing about a conformational change and thus allowing it to interact with the proteases FXa and FIIa. To induce

the conformational change in AT, an AT-binding domain (ABD) comprised of a specific pentasaccharide sequence con-

taining the 3-O-sulfated GlcN residuemust be present (DEFGH, Figure 2). The pentasaccharide ABD stimulates exclu-

sively the AT-mediated inactivation of FXa, whereas longer heparin fragments (at least 14–16 saccharides long) with a

thrombin-binding domain (TBD) situated to the nonreducing end of the ABD, are required for inhibition of thrombin.

TheminimumMWof a heparin chainwith anti-IIa activity is thus approximately 5 kDa.23 The combination of ABDwith

extra chain length to include a TBD has been termed the “C-region”.24 Current heparin profilingmethods such as NMR

spectroscopy can provide an estimate of the amount of ABD content but not of the C-region.25 The variability in the

amount of ABD/C-region combined with the variation inMW leads to significant variability in bioavailability and anti-

coagulant effect for UFH. The anticoagulant activity of UFH strongly depends on the level of sulfation along with the

amount of ABD pentasaccharide sequences.
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F IGURE 3 Structures of fondaparinux (1) and idraparinux (2). R1 = SO3Na, R
2 =Me

LMWHs are manufactured from UFH, using a variety of physical, chemical or enzymatic cleavage techniques.20,26

The defining characteristic of all LMWH products is that 60 wt% or more must have MW below 8 kDa.27 LMWHs

produced by different depolymerization processes result in unique structural alterations to the cleaved heparin

chains.28 These structural differences give rise to differences in their in vitro and pharmacokinetic/pharmacodynamic

properties.29

The fully synthetic methyl glycoside derivative of the ABD pentasaccharide is now marketed as the drug fonda-

parinux (1, Figure 3) following many years of development led by van Boeckel, Petitou, and co-workers.30,31 Their

earlier efforts resulted in a synthetic pentasaccharide with a low overall yield following complex synthetic proce-

dures taking 60 steps. Following the introduction of the methyl glycoside at the anomeric center of the H unit,30

the resultant pentasaccharide exhibited similar anticoagulant activity with additional advantages such as improved

yield and a longer half-life (17 hr). This preparation was then registered as drug in the United States and Europe

under the trade nameArixtra R© .32 Subsequently, the same group developed a fullyO-sulfated andO-methylated (non-

glycosaminoglycan) pentasaccharide known as idraparinux (2, Figure 3), which is an analogue of fondaparinux.33 This

pentasaccharide displayed some advantages over fondaparinux, such as ease of synthesis, improved anticoagulant

activity, and a longer half-life (120 hr).

To inhibit coagulation, the serine protease inhibitor AT belonging to the serpin family, plays the central role. How-

ever, under physiological conditions, as a stand-alone inhibitor it is not sufficiently potent.34 UFHaccelerates the activ-

ity of AT several thousandfold. The anticoagulant activity of UFH was first discovered early in the 20th century, and

since 1937 it has been in use in the clinic.35 This long chain polysaccharide exhibits its effects in two ways. First, it

accelerates the inhibitory activity of AT on FVIIa, FIXa, FXa, FXIa, FXIIa, and FIIa via a conformational change of AT

after binding; this is known as an allosteric mechanism (Figure 4).36–38 Second, heparin directly binds thrombin via

electrostatic interactions, and reduces thrombin's activity by forming a bridge between thrombin and AT known as the

ternary complex.39–45 Sequential investigations by different groups have shown that to increase the inhibitory effect

of AT on FIXa and FXa, a unique pentasaccharide sequence is needed which can bind with AT.46,47 Moreover, to accel-

erate the anti-IIa activity following the ternary complex, an additional 13 monosaccharide units must be present with

that pentasaccharide.48

Only one-third of the UFHmolecules display anticoagulant activity through their interaction with AT.40,49–52 How-

ever, the anticoagulant activity of heparin strongly depends on the presence of N- and O-sulfates.53,54 The absence

of O-sulfate groups on the pentasaccharide (DEFGH) dramatically reduces anticoagulant activity. In addition, esteri-

fication of the carboxyl group of the uronic acids diminishes the anticoagulant activity.55–57 Although the bulk of the

literature indicates that DEFGH is the main active sequence of UFH to exert anticoagulant activity, some studies have

indicated that tetra or hexasaccharides also have anticoagulant activity.50,58
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F IGURE 4 (A) antithrombin; (B) thrombin; (C) long chain heparin; (D) binding of heparin pentasaccharide with the
antithrombin; and (E) formation of ternary complex of heparin with thrombin and antithrombin. HBD: heparin binding
domain; ABD: antithrombin binding domain; TBD: thrombin binding domain

4 HEPARIN MIMETICS

Different strategies havebeenexplored to prepare heparinmimetics, such as the synthesis of heparin-relatedoligosac-

charides and their derivatives, the sulfonation of natural polysaccharides, for example, chitosan and hyaluronic acid

(HA); the synthesis of noncarbohydrate sulfated polymers; conjugation of sulfated oligosaccharides to synthetic poly-

mers; and the isolation of sulfated polysaccharides from different natural sources (see Table 2 and below). The key

structural feature behind all the above strategies is the presence of sulfo groups on a suitable scaffold. Interestingly,

there have also been some reports of small sulfated molecules as potential anticoagulants; while some nonsulfated

anionic compounds have also been shown to have anticoagulant properties.

4.1 Synthetic heparin oligosaccharide derivatives

A series of studies to develop ULMWH/heparin oligosaccharides by chemoenzymetic methods has been reported

by the Liu group.59–61 Recently two synthetic sulfated oligosaccharides (3 and 4, Figure 5) consisting of the ABD

of porcine and bovine heparin, respectively, were developed using a GlcA-anMan disaccharide (R in Figure 5) as the

starting material which was selected because it could be elongated by glycosyl transferases.59 These two oligosaccha-

rides were found to exhibit excellent anticoagulant activities with comparable pharmacokinetic properties to 1. Liu

and co-workers also generated a library of size defined N-sulfo-oligosaccharides using the disaccharide GlcA-anMan

as the starting material which was elongated by two bacterial glycosyltransferases.60 After C5-epimerization and O-

sulfonations, oligosaccharides were produced consisting of ABD and TBD connected via a linker domain (consisting

of repeating disaccharides of –GlcNAc-GlcA-). This is the first report of the preparation of heparin oligosaccharides

having up to 21 saccharide residues via chemoenzymatic synthesis. All the oligosaccharides displayed both anti-Xa

and anti-IIa activities and showed low binding to PF4, suggesting they would be less likely to cause heparin-induced
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F IGURE 5 Structures of the synthetic sulfated oligosaccharides consisting of theABDof porcine (3) and bovine hep-
arin (4)

F IGURE 6 Structures of synthetic LMWHs

thrombocytopenia. Additionally, this study concluded that a minimum of 19 saccharide residues is required for the

anti-IIa activity of themolecule. Although these oligosaccharides displayed strong anticoagulant activities, the synthe-

sis took 14 days and ultimately the oligosaccharides were structurally heterogeneous. To minimize this lengthy proce-

dure, a one-pot chemoenzymatic synthesis of LMWHwith anarrowpolydispersitywasdeveloped,whichwasnamedde

novo LMWH,61 using a tetrasaccharide primerwhich could be obtained in only 2 days. The in vitro and the ex vivo anti-

coagulation assays indicated higher potency of the de novo LMWH compared with the commercially available LMWH

enoxaparin.

Subsequently, five LMWHs (5a–c and 6a,b, Figure 6) ranging from hexasaccharide to dodecasaccharide were

synthesized from commercially available monosaccharide 1-O-(p-nitrophenyl)-glucuronide as the starting mate-

rial, instead of the GlcA-anMan disaccharide.14 Each oligosaccharide consisted of the ABD from porcine (5a–c)

or bovine (6a, b) heparin. Oligosaccharides 5a–c were constructed by changing the number of IdoA2S-GlcN6S

repeating units while the dodecasaccharide 6a differs from 6b by lack of one 3-O-sulfate group. The results from the
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F IGURE 7 Chemical structure of idrabiotaparinux (7).63 R1= SO3Na, R2=Me

anticoagulant assays demonstrated strong binding affinity toAT and anti-FXa activity from these five oligosaccharides.

The reversibility of the anticoagulation properties of these five oligosaccharides was evaluated by treatment with

protamine sulfate where the dodecasaccharide 6b displayed higher reversibility than the LMWH enoxaparin and

similar to UFH. Eight related hexasaccharides containing 2-O-sulfated glucuronic acid (GlcA2S) were also prepared by

chemoenzymatic synthesis using monosaccharide 1-O-(p-nitrophenyl)-glucuronide as the starting material.62 Three

hexasaccharides were subjected to AT binding affinity testing by affinity coelectrophoresis.62 This study revealed that

without the presence of 2-O-sulfated iduronic acid, the oligosaccharides are not able to bind to AT.

The development of idraparinux (2) was halted due to excessive bleeding complications and the very long half-life.63

To overcome these concerns, biotin was conjugated to C-2 of the nonreducing end saccharide unit of idraparinux to

give idrabiotaparinux (7, Figure 7) to allow for rapid neutralization with avidin.63 This compound showed the same

anticoagulant properties as idraparinux,63,64 however, its development was also discontinued.

From the study of the formation of the ternary complex of heparin with AT and thrombin, it was found that the

bridge between ABD and TBD does not interact with positively charged protein residues.65 This finding informed the

design of tailor-made glycoconjgugates such as 8 and 9 (Figure 8) with the full anticoagulant properties of heparin,

consisting of synthetic ABD and TBD domains linked through a molecular spacer. Initially, a nonglycosaminoglycan

ABD pentasaccharide (i.e., idraparinux) was connected via a molecular spacer to a persulfated maltotrioside as the

TBD.65,66 This study revealed that the anticoagulant activity was dependent on all three domains of the conjugate.

When the spacer length was short, the conjugates failed to form any ternary complex when both the ABD and TBD

were fixed. The optimum length spacer was found to be around 50 atoms long. It was subsequently found that a rigid

linker such as a neutral heptasaccharide such as in conjugate 9 increased the anticoagulant activity compared with

flexible ones. In addition, the charge density of the TBDwas found to regulate the anti-IIa activity.

Taking advantage of the availability of direct thrombin inhibitors, the same group also developed dual active

antithrombotic conjugates. A dual inhibitor Org39913 (10, Figure 9) which can inhibit the action of thrombin and FXa

throughATwasdevelopedby conjugating thedirect thrombin inhibitor𝛼-NAPAP [𝛼-N-(2-naphthalenesulfonyl)-glycyl-

D-4-aminophenylalanyl-piperidine] and an idraparinux pentasaccharide analogue.67 It was then optimized by decreas-

ing the number of sulfate groups, replacing the aromatic linker by 𝛾-aminobutyric acid and using a single enantiomer of

aNAPAPanalogue. The resultant conjugateOrg42675 (11, Figure9) exhibited similarAT-mediated anti-FXa activity to

1, a ten times longer half-life than the direct thrombin inhibitor on its own,68 and thrombin inhibitionwas enhanced 20

times comparedwith 10. Conjugation of a biotin tag toOrg42675 (also known as EP42675) resulted in EP217609 (12,

Figure 9), which could retain the activities of Org42675 and could be neutralized by avidin injection.68,69 In another

study, following a similar strategy, EP224283 (13) was developed consisting of idraparinux conjugated to the 𝛼IIb𝛽3

inhibitor tirofiban,70 in addition to biotin, producing a neutralizable conjugate with both anti-FXa and antiplatelet

activity. It is noteworthy that tirofiban on its own has a very short half-life and cannot be used for outpatients whereas

13 has amuch longer half-life due to the presence of the idraparinuxmoiety.
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F IGURE 8 Synthetic tailor-made glycoconjugates consisting ofABDandTBD through flexible (8) and rigid (9)molec-
ular spacers65,66

Recently, Oscarson and Desai generated an in silico library of 46,656 heparan sulfate hexasaccharides and found a

rare sequence consisting of consecutive GlcA2S residues which could selectively target heparin cofactor II (HCII),71

another serpin involved in the regulation of blood coagulation via inhibition of FIIa. They synthesized five unique

sequences including three containing at least oneGlcA2S residue (a residue rarely found in heparin). Of particular note

was the hexasaccharideHX3 (14, Figure 10), which inducedHCII activation nearly 250-fold, similar to AT activation by

1. Compound14, which contains two consecutiveGlcA2S residues, was a poor activator of AT (only fivefold), indicating

a high selectivity for HCII.

4.2 Polysulfated non-heparin oligosaccharides and derivatives

A series of synthetic polysulfated oligosaccharides, prepared by chemical sulfonation of various isolated oligosaccha-

rides, was tested for anticoagulant activity by determining the activated partial thromboplastin time (APTT).72 Anti-

coagulant activity was dependent on chain length, linkage, and nature of the constituent monosaccharides. One of the

most potent anticoagulants was PI-88 (15, Figure 11), amixture of polysulfatedmanno-oligosaccharides that has been

in clinical development as an anticancer agent,73,74 which was selected for further study. PI-88 was found to inhibit

blood coagulation via HCII-mediated thrombin inhibition and this activity could be neutralized by protamine sulfate.75

Raake et al. synthesized lowMWpolysulfated bis-lactobionic acid amides which possessed moderate to low anticoag-

ulant activity.76 One of the compounds, LW10082 (Aprosulate, 16) showed similar antithrombotic activity to LMWH

andwas initially found to stimulate HCII77; but inactivation of both FV, FX,78 and FVIII has also been reported. Abend-

schein and co-workers synthesized the highly sulfated tetrasaccharide derivativemaltodapoh (17) as an anticoagulant

consisting of twomaltose sugars linked through 1,3-diamino-2-propanol. Themechanism of anticoagulation bymalto-

dapoh is unclear but itwas thought that this compound does not inhibit thrombin function viaHCII.79 Desai et al. found

that the commercially available sucrose octasulfate (18) directly inhibits thrombin with high potency but low efficacy

after binding with exosite II of thrombin.80 Jairajpuri and co-workers synthesized trehalose octasulfate (19) as a dual

anticoagulant/antiplatelet agent but themechanism of action was not fully elucidated.81
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F IGURE 9 Structures of pentasaccharide conjugates Org39913 (10),67 Org42675 (11),68 EP217609 (12),69 and
EP224283 (13)70
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F IGURE 10 Structure of synthetic hexasaccharide HX3 (14).71 R= SO3Na

F IGURE 11 Structures of the polysulfated PI-88 (15), bis-lactobionic acid amide LW10082 (16), maltodapoh (17),
sucrose octasulfate (18), and trehalose octasulfate (19). R= SO3Na

4.3 Sulfated non-heparin polysaccharides

4.3.1 Naturally occurring sulfated polysaccharides

BesidesUFH, various sulfatedpolysaccharides isolated fromawide rangeof natural sources such asCS,82–84 dermatan

sulfate (DS),83,85–87 sulfated galactan,88,89 and sulfated fucans88,90–96 have been shown to have anticoagulant activity.

These polysaccharides have been found to contain different degrees of sulfation at various positions in the saccharide

ring which have specific effects on the coagulation time and themechanism of action of each of themolecules.

Most early studies reported the ineffectiveness of both natural chondroitin-4-sulfate and chondroitin-6-sulfate

(known CSA and CSC, respectively) as anticoagulants due to the presence of only one sulfate group per disaccharide

unit,83,84 although one study did report that CSA had significant anticoagulant activity mediated through AT.82 Fuco-

sylated chondroitin sulfates (FCS), which contain heavily sulfated fucose residues at the O-3 position of the GlcA of
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CS, have been found to act as potent anticoagulants.97–109 The naturally occurring FCSs isolated from a sea cucum-

ber have been found to inhibit thrombin action via AT and HCII,100,107 and could inhibit FXa by forming the intrinsic

tenase complex.106 Depending on the position of the sulfate groups, Zhao et al. have shownATmediated anti-IIa activ-

ities by FCSs containing a higher proportion of 2,4-disulfated fucose; while 3,4-disulfated fucose functioned via a HCII

dependent pathway.100 Selective inhibition of FXawas displayed by the FCSs having at least 6–8 trisaccharide units.

DS (previously known as chondroitin sulfate B ), which contains L-IdoA instead of GlcA in the disaccharide unit, dis-

plays better anticoagulant activity although it contains a single sulfate group per disaccharide unit like CSA andCSC.83

DS accelerates the inhibitory action on thrombin of HCII but not of AT and it takes place in the vessel wall only after

vascular disruption.83,86,87,108–115 The variation in anticoagulant activity by DS has been reasoned to be due to the

structural heterogeneity caused by isolation from different sources such as porcine skin and intestinal mucosa and

bovine lung.83 For example, highly sulfated DS (25% w/w) from the skin of the ray Raja montagui exhibited 5–7-fold

higher anticoagulant activity due to containing twofold higher sulfate and uronic acid content compared with the DS

from porcine intestinal mucosa.87,108,116,117 Previously, the authors reported more potent anticoagulant activity from

the DS obtained from the skin of Raja radula via both HCII and to a lesser extent AT.118,119 In another study, variations

in anticoagulant activities of DS of similar structures isolated from different species of rays was observed.120 The DS

isolated from electric eel, Electrophorus electricus (L.), was shown to bemore potent compared with porcine DS.117 Lin-

hardt et al. have reported anti-Xa activity by the lowMWDS (4.2 kDa).121 Fernandez et al. reported the enhancement

of anticoagulant activity of activated protein C (APC) by DS.122

Both sulfated fucans and sulfated galactans, isolated from various species ofmarine organisms, have been reported

to possess anticoagulant activity.88,95 The methods of isolation of these anionic polysaccharides and their chemical

compositions have been summarized in recent reviews.95,96,123 Both AT- (30 times less potent than UFH) and HCII-

(similar potency to UFH and DS) mediated thrombin inhibition have been observed from the sulfated fucans isolated

from Pelvetia canaliculata.90,93 Similar mechanisms were observed by Mourao et al. from sulfated fucan isolated from

Laminaria cichorioides.124 This compound also displayed anti-Xa activity, however, to a lesser extent. On the other

hand, some sulfated fucans have been reported to inhibit FIIa function via HCII and not AT.91,92 It has been reported

that branched fucans directly inhibit FIIa, whereas both AT and HCII mediated activity have been reported for lin-

ear fucans.125 Similarly, galactan sulfate, isolated frommarine invertebrates, prolongs blood coagulation time through

inhibition of thrombin (similarly to UFH) via both HCII and AT.88,89

4.3.2 Chemical modification of naturally occurring polysaccharides

Polysaccharides with little or no sulfation and thus no anticoagulant activity can be converted into anticoagulants via

exhaustive chemical sulfonation. Sulfonation of the polysaccharides (such as chitosan, dextran and CSs) has generally

been carried out using sulfur trioxide pyridine (or triethylamine) complex, chlorosulfonic acid, or sulfuric acid/DCC

(N,N'-dicyclohexylcarbodiimide) as the sulfating agent.

As a source of polysaccharide for sulfonation, chitosan (deacetyl chitin) has been considered due to the presence of

𝛽-(1→ 4) linkages, linearity, and the presence of amino and acetamido groups (features in common with heparin).126

Chitosan does not have any anticoagulant effects but partial enzymatic depolymerization and sulfonation of the amino

and hydroxy functional groups and/or addition of carboxyl groups endows it with anticoagulant activity.126–142 Dif-

ferent methods of preparation of sulfated chitosan have been reviewed by Tamura et al. For sulfated chitosan, N-

sulfation at the C-2 position is required to inhibit blood coagulation.143–145 It has also been found that the 6-O-sulfate

group is critical for anticoagulant activity and the absence of sulfation at this position totally ablates the anticoagu-

lant activity.132,146 On the other hand, N-succinyl chitosan (20) and N,O-succinyl chitosan (21, Figure 12) without any

sulfate groups have been found to increase blood coagulation time.139 Ronghua et al. reported that the anticoagulant

activity of sulfated chitosan could be improvedbymodification of someof the amino groupswithN-acyl groups.134 Zou

and Khor have suggested that to act as an anticoagulant, sulfated chitosan must possess at least 36 consecutive sul-

fate groups along the polymer backbone.147 The reportedmechanisms of action of the various sulfated chitosans have
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F IGURE 12 Structures of theN-succinyl chitosan (20) andN,O-succinyl chitosan (21)

F IGURE 13 Structures of the sulfated galactomannan (22). R= SO3Na or H

varied across different studies, for example, indirect inhibition of thrombin via AT126,132,138,144,145,148,149 andHCII,138

or direct inhibition of thrombin and ATmediated FXa inhibition.138,149,150

HA, consisting of glucuronic acid 𝛽-(1→3) andN-acetylglucosamine 𝛽-(1→4) linkages, is a nonsulfated glycosamino-

glycan with no anticoagulant activity.151 Magnani et al. developed a range of sulfated HAs which displayed anticoagu-

lant activity dependent on the degree of sulfation.152 These compounds inhibited FIIa function via nonspecific electro-

static interactions and FXa via AT. This study concluded at least 3.5 sulfate groups per disaccharide unit are required

to enhance blood anticoagulation.152 Subsequently, HCII andATmediated thrombin inhibition by LMWandHMWsul-

fated HA, respectively, was reported.151

The sulfation of dextran, a branched glucan consisting of 𝛼-(1 → 6)-glycosidic linkages with 𝛼-(1 → 3)-linked

branches, has long been explored for the development of heparin mimetics with anticoagulant activity.153–157

Numerous studies have been reported to evaluate the anticoagulant activity of carboxymethyl benzylamide sulfonate

dextrans (CMDBS),113,158–165 and these have recently been reviewed by Maynard and co-workers.166 The CMDBS

derivativeswere found to inhibit thrombin activity via bothATandHCII.159,167–169 The related functionalized dextran-

methylcarboxylate benzylamide sulfate, which differs from CMDBS in the preparation and the degree of sulfation,165

displays higher anticoagulant activity than CMDBS.170 Besides sulfated dextrans, some other semisynthetic sulfated

𝛽-glucans have been found to act as anticoagulants which accelerate thrombin inhibition via HCII.171–173

Chemically sulfated galactomannan (22, Figure 13) with various degrees of sulfation (0.7–1.4 per saccharide) dis-

played moderate to higher anticoagulant activity than dextran sulfate and curdlan sulfate (a sulfated 𝛽(1→ 3)-linked

glucan).174 A study has shown that sulfated galactomannan could inhibit both FIIa and FXa, via a mechanism that is

thought to be different to that of UFH.175
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F IGURE 14 Structures of the synthetic sulfated alginate (23) and propylene glycol conjugated sulfated alginate (24)

Ronghua et al. expected that sulfation of alginate, consisting of 𝛽-D-mannuronic acid connected to 𝛼-L-guluronic

acid via 𝛽-(1→ 4) linkage, could provide a heparin-like structure (containing both sulfates and carboxylates).176 They

prepared sulfated alginate (SA) (23, Figure 14) using chlorosulfonic acid in formamide, and found that at 17 𝜇g/mL

the APTT was 226 sec whereas for UFH the APTT was 125sec at 10𝜇g/mL. Similarly, Zhao and co-workers prepared

SA of varying degrees of sulfation using sulfuric acid/N,N'-Dicyclohexylcarbodiimide (DCC) as the sulfating agent. The

SA also displayed excellent anticoagulant activity dependent on the degree of sulfation.177 Fan et al. reported that

SA prepared using trisulfated sodium amine as the sulfating agent inhibited the function of both FIIa and FXa.178 A

sulfated propylene glycol ester of lowMW alginate known as PSS (24, Figure 14) has been used as a drug in China for

more than 30 years for the treatment of CVDs. Lin et al. fractionated PSS and found that fractions with average MWs

of ∼52 or ∼26 kDa inhibited FIIa mediated by AT and HCII, while the lower MW fraction (∼12 kDa) weakly inhibited

FXamediated by AT.179,180

The naturally occurring CSs have poor anticoagulant activity. However, complete O-sulfonation of CSA results in

enhancedanticoagulant activity (similar to that of LMWH)by inhibiting the functionof FIIa viaHCII,181 while, complete

sulfonation of CSC (to produce “oversulfated CS” or OCS) increases prothrombin time more than 200-fold compared

with nativeCSCbut only one fourth the activity ofUFH.182 AlthoughOCShas anticoagulant activity, itwas responsible

for the deaths of more than 100 patients in 2007/8 when used to adulterate UFH, due to it causing severe anaphylac-

toid reactions10,14 Therefore the application of oversulfated CSs as anticoagulant drugs is unlikely.

Fully O-sulfated DS containing 4.0 sulfate groups per disaccharide unit showed FIIa inhibition via HCII.183 Acha-

ran sulfate, a glycosaminoglycan isolated from Achatina fulica, with a major disaccharide repeating unit of 𝛼-D-

GlcNAc(1→4)-𝛼-L-IdoA2S, shows no anticoagulant activity despite the structural similarity to heparin . However, after

chemical sulfonation the polysulfated acharan sulfate exhibited AT independent anti-IIa activity.184,185

4.3.3 Synthetic sulfated glycopolymers

The synthesis of sulfated glycopolymers, that is, mono- or oligosaccharides appended to a non-carbohydrate polymer

backbone, is another approach to prepare heparin mimetics possessing anticoagulant activity. The glycopolymers are

generally prepared by variousmethods of polymerization such as ring opening polymerization, free radical polymeriza-

tion, or ring-openingmetathesis polymerization (ROMP), utilizing as themonomers either sulfated saccharide units, or

nonsulfated saccharide units which are subsequently sulfonated after polymerization. The preparation of glycopoly-

mers and their biological activities have recently been reviewed byMiura et al., andMaynard and co-workers.166,186

The anticoagulant activity of a sulfated glycopolymer was first reported by Akashi et el.187 Poly(glucosyloxyethyl

methacrylate) was prepared by free radical polymerization using ammonium peroxodisulfate as an initiator. The gly-

copolymerwas then sulfonated using sulfur trioxide/DMF complex to give poly(glucosyloxyethyl methacrylate)sulfate

(25, Figure 15).187 The anticoagulant activity for 25, evaluated as the total human blood clotting time by the method

of Lee-White, was modest compared with UFH and DS, respectively. In subsequent studies, the mechanism of action

of 25 was determined to be acceleration of thrombin inhibition via formation of an insoluble fibrin complex with

fibrinogen188 and inhibition of thrombin function via HCII.187,189
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F IGURE 15 Structures of synthetic polysulfated glycopolymers with anticoagulant activity

Recently, Ayres and co-workers used a post-polymerization sulfonation strategy to prepare polyurea based

glycopolymers bearing pendant sulfated glucose (26), mannose (27), lactose (28), or glucosamine (29) residues

(Figure 15).190 The polymerswere synthesized by step-growth polymerization, using hexamethylene diisocyanate and

the corresponding glycosylated secondary diamine dimers, followed by sulfonation with SO3 pyridine complex. All the

sulfatedglycopolymersprolonged theAPTTby>300secat500𝜇g/mL,with26and29 found tobe themostpotent. The

mechanism of action for the thrombin inhibition was unclear but it was suggested that coagulation timewas increased

via both AT dependent and independent pathways.

The Chaikof group prepared lactose heptasulfate-based homopolymers 30 and acrylamide co-glycopolymers 31

via cyanoxyl mediated free-radical polymerization using sulfated monomers (Figure 15).191 Before polymerization,

acrylamide derivatized lactose heptasulfate was prepared as the monomer. The anticoagulant activity of 30 was

found to increase with increasing MW, but the high MW 30 (114,000) was still almost 20-fold less potent than

UFH. Interestingly, the low MW hetero-glycopolymer 31 (MW 9,300,) was more potent than homo-glycopolymer

30 which indicated that the acrylamide played an important role to increase coagulation time. Both of the gly-

copolymers acted as anticoagulants via selective sequestration of fibrinogen or potentiating the effect of other

proteases associated with coagulation, such as HCII. The lactose hepta-sulfated based homo- and copolymers

increased the coagulation time. However, the analogous trisulfated GlcNAc based homo- and copolymers failed

to show any anticoagulant activity, indicating that at least a sulfated disaccharide is required for anticoagulant

activity.

The glycopolymers 32 and 33 (Figure 16), consisting of the G (L-iduronic acid) andH (glucosamine) units of the ABD

pentasaccharide, were synthesized via ROMPbyHsieh-Wilson and co-workers.192 Although it is accepted that the full
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F IGURE 16 Structure of the synthetic glycopolymers 32 and 33, synthesized via ROMP by Hsieh-Wilson and co-
workers, consisting of the G (IdoA) and H (GlcN) unit of the ABD pentasaccharide

ABD pentasaccharide is required for AT-mediated anti-Xa activity, only the GH disaccharide of the ABD was utilized

as the monomer in the hope that a multivalent presentation on a polymeric scaffold would enhance binding affinity

to AT. Glycopolymer 32 also possesses an additional 3-O-sulfate on the H unit which has been shown to confer even

greater specificity for AT activation. Partially benzylated sulfated monomers were polymerized inMeOH/CH2Cl2 and

the resultant polymers were then deprotected by hydrogenolysis to give the final products. Glycopolymer 32, consist-

ing of 45 repeating tetrasulfated disaccharide units (MW∼ 43,000) was found to exhibit 100-foldmore potent anti-Xa

activity than UFH, LMWH, and Arixtra. However, the overall effect on APTT was less than for UFH (119 sec vs. > 180

sec at 150 𝜇g/mL). The FXa activity of 32 decreased significantly with decreasingMW. The single alteration in the sul-

fation pattern of theHunit to give the3-O-desulfated glycopolymer (33) totally abrogatedboth the anti-Xa and anti-IIa

activity.

4.3.4 Synthetic sulfated polymers

Considering the polyanionic behavior of UFH, particularly the presence of sulfate groups, a variety of anionic

homopolymers and copolymers have been prepared either from polymerization of anionic monomers or sulfonation

of hydroxyl groups after polymerization. The anticoagulant activity of homopolymers of water-insoluble sulfonated

styrene (SS), prepared by the sulfonation of polystyrene resin, was first reported by Fougnot and Jozefonvicz.193,194

Zhao and co-workers have developed a range of copolymers, consisting of SS (following post-polymerization sul-

fonation of styrene in the polymer) and other monomers, such as poly(sulfonated styrene-co-acrylic acid)-block-

poly(vinyl pyrrolidone)-block-poly(sulfonated styrene-co-acrylic acid) [poly(SS-co-AA)-b-PVP-b-P(SS-co-AA)] (34),195

poly(sulfonated styrene-co-methyl methacrylate) [poly(SS-co-MMA)] (35),196 and poly(sulfonated styrene-co-acrylic

acid-co-methyl methacrylate) [poly(SS-co-AA-co-MMA)] (36) by RAFT polymerization using a trithiocarbonate as the

RAFT agent (Figure 17).195,196 These polymers displayed APTT values of 300 sec to more than 400 sec at concen-

trations of 5.0 and 20.0mg/mL, respectively. Subsequently, poly(sodium 4-styrene sulfonate-co-sodiummethacrylate)

[poly(SSS-co-SMA)] (37) and poly(dopamine-g- sodium 4-styrene sulfonate-co-sodiummethacrylate) [poly(DA-g-SSS-

co-SMA)] (38) (Figure 17) were found to increase blood coagulation time at much lower concentrations than that of

34, 35 and 36.197 Recently, this group synthesized poly(SSS) (39) on carbon nanotubes by surface initiated atom trans-

fer polymerizationwhere bromide-functionalizedmultiwalled carbon nanotubeswere used as themacro initiators.198

The composite was found to inhibit the function of FXIIa, the first protease of the intrinsic pathway of the coagula-

tion cascade. Li et al. synthesized p(AA), p(SSS), and p(SSS-co-AA), and investigated their anticoagulant activity after

grafting onto poly(vinyl alcohol) p(VA).199 The PVA-g-p(SSS) was found to bemore efficient than PVA-g-p(AA), and the

p(SSS-co-AA) was themost potent anticoagulant among the three.

Williams and co-workers prepared polyurethaneswith varying ratios (30–80%) of propyl sulfonate groups to obtain

anticoagulants.200 The polymers displayed anticoagulant activity via thrombin inhibition, interference with fibrin
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F IGURE 17 Chemical structures of synthetic sulfated (noncarbohydrate) polymers

polymerization, and by forming a complex through interaction between the polymer, thrombin, fibrin, and the plasma

antiproteases. Ito et al. introduced sulfamate and carboxylate groups to their synthesized polyurethaneureas using

N-chlorosulfonyl isocyanate as the sulfonating agent.201 These polymers were also found to increase APTT with

increasing sulfate content.
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Sulfonation of polyethersulfone membranes, which was further blended with poly (acrylonitrile-co-acrylic acid-co-

vinyl pyrrolidone) [poly(AN-co-AA-co-VP)] to introduce carboxyl groups, was found to exhibit significant heparin-like

anticoagulant activity and to suppress platelet adhesion.202

Machovich et al. prepared sulfated poly(vinyl alcohol-co-acrylic acid) (40) and sulfated poly(viny alcohol) (41) hav-

ing different MWs (Figure 17).203 To exhibit effective anticoagulation, at least 20% charged groups were required.

The polymers were found to accelerate thrombin inhibition via AT, and inhibit the reaction between thrombin and

fibrinogen.203,204 Polymer 40was also found to inhibit both thrombin and plasmin activity.205

Tamada et al. prepared a series of sulfonated polyisoprenes (SPIPs) having various MW and different degrees of

sulfonation.206 The SPIPs were found to increase APTT values with increasing MW. Subsequently, it was found that

SPIPs interact strongly with fibrinogen and fibrin monomers by forming a complex that prevents the conversion of

fibrinogen to fibrin monomers and the polymerization of fibrin monomers.207

Min and co-workers prepared sulfonated poly(ethylene oxide) using propane sultone which displayed 14% antico-

agulant activity (based on APTT test) of UFH, and inhibited thrombin function rather than FXa.208

Joung et al. developed supramolecular structured sulfonated polyrotaxane, (a polyrotaxane is composed of

𝛼-cyclodextrin and polyethylene glycol (PEG)), which displayed anticoagulant activity by AT mediated thrombin

inhibition.209 Themost important feature of this polymer is its sliding and rotation of free 𝛼-cyclodextrins with anionic

groups which played an important role to enhance the anticoagulant activity.209,210

Besides linear synthetic sulfonated polymers, other shaped polymers such as hyperbranched or dendritic polymers

prepared from sulfonated monomers have been reported to act as anticoagulants. For example, hyper-branched sul-

fonated polyester nanoparticles inhibited both intrinsic and/or common pathways and thrombin activity or fibrin for-

mation from fibrinogen.211 Alban's group prepared tree-like structured dendritic polyglycerol sulfate whose anticoag-

ulant activity does not depend on theMWdue to the globular 3D structure.212

Several zwitterionic polymers have also been reported with anticoagulant activity, such as zwitterionic

poly(2-oxazoline), prepared using 1,3-propane sultone and 𝛽-propiolactone,213 and zwitterionic poly(sulfobetaine

methacrylate).214

4.3.5 Sulfated aromatic compounds/flavonoids and derivatives

Both synthetic and naturally occurring sulfated flavonoids and derivatives have been reported to possess anticoagu-

lant activity and this area has been recently reviewed by Pinto and co-workers.215 Of particular note are some tetrahy-

droisoquinolines which have been found to act as allosteric inhibitors of AT inhibition of FXa.216,217 Sulfated benzo-

furans have been found to possess more potent anti-Xa activity than FIIa activity. Cabrera and co-workers reported

the anticoagulant activity of trisulfated (42, Figure 18) and tetrasulfated quercetin (a flavonol) (43) which accelerated

thrombin inhibition via HCII while the fully sulfated quercetin persulfate accelerated FXa inhibition via AT.218 Sulfated

flavanols were found to exhibit ATmediated anti-Xa activity where the orientation of the sulfate groups influences the

potency, for example, (+)-catechin sulfate (44) was twofold more potent than (-)-catechin sulfate (45).219,220

Taking advantage of the activity of sulfated flavonoids and sulfated oligosaccharides, Pinto and co-workers devel-

oped a series of persulfated flavonoid-saccharide conjugates.221 The study found that 3-O-rutinosides (46 and 47)

directly inhibited FXa and 7-O-rutinosides (48 and 49) inhibited FXa via AT. Subsequently, trans-resveratrol 3-𝛽-D-

glucopyranoside persulfate (50) was prepared as a dual anticoagulant/antiplatelet agent.222

4.3.6 Nonsulfated anionic compounds as anticoagulants

In addition to the above mentioned sulfated compounds, the anticoagulant activity of heparin mimetic compounds

without any sulfate groups has also been reported. For example, the Desai group found that p(AA) (51, Figure 19)

increased the activation of AT which subsequently accelerated the inhibitory functions of FXa and thrombin depend-

ing on pH.223,224 At pH 6.0 poly(AA) was found to form a bridge between AT and FXa, however, this was completely

abolished at pH 7.4.
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F IGURE 18 Structures of sulfated flavonoids and derivatives with anticoagulant activity

F IGURE 19 Chemical structure of poly(acrylic acid) p(AA) (51)
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Both DNA and RNA aptamers have also been reported to inhibit blood coagulation by increasing the

inhibitory function of the coagulation factors. Bock and co-workers isolated single-stranded a 15mer-oligonucleotide

consensus sequence which inhibited thrombin-catalyzed fibrin-clot formation at nanomolar concentrations and dis-

played its anticoagulant activity via bindingwith exosite I ofAT.225,226 On theother hand, RNAaptamers have alsobeen

reported to increase blood coagulation time by acceleration of the inhibitory function of FXa, FVIIa, and FIXa.227,228

5 CONCLUSIONS

Since the discovery of UFH significant time and resources have been expended in the search for new anticoagulants

with similar properties to UFH but without its drawbacks. These ongoing research efforts, based on a mechanistic

understanding of the anticoagulant activity of UFH, have been largely directed toward mimicking the common pen-

tasaccharide sequence ABD, TBD, and the spacing between these two domains. This has resulted in the development

of commercially available LMWHs andULMWH (fondaparinux), all of which contain theABDofUFH, and are obtained

from the chemical and/or enzymatic modification of UFH or by total synthesis. More recently, and of particular note,

we have observed the development of tailor-made glycoconjugates with the full range of anticoagulant properties as

UFH but with improved pharmacodynamic profiles, as well as additional useful properties such as the ability to be

rapidly neutralized. Such conjugates offer an impressive array of biological properties that can be fine tuned to suit

the intended cardiovascular indication and hold much promise as anticoagulant therapeutics of the future, with some

having progressed to clinical trials. However, these glycoconjugates require long and complex syntheses for their man-

ufacture. Other, more simple strategies to heparinmimetics have thus been pursued, including themodification of nat-

urally occuring oligo- and polysaccharides and the development of heparin mimetic polymers derived from carbohy-

drate and non-carbohydrate monomers. The latter approaches have shown some promise with polymers identified

with significant anti-Xa activity, although most of these polymers are not as potent as UFH. In the future, we expect

thatmore structure-activity relationships will be unravelled and this may lead to the development of heparinmimetics

with improved properties, suitable for progression into the clinic.

ACKNOWLEDGMENTS

Wegratefully acknowledge support from theAustralian ResearchCouncil (DP170104431 toVF) and theUniversity of

Queensland (IPRS/UQCent PhD Scholarship to AAN), and CSIROManufacturing. We thank Dr Craig Francis (CSIRO)

for useful discussions.

ORCID

Vito Ferro http://orcid.org/0000-0003-3306-2550

REFERENCES

1. Gustafsson D, Bylund R, Antonsson T, et al. A new oral anticoagulant: the 50-year challenge. Nat Rev Drug Discov.
2004;3:649–659.

2. Furie B, Furie BC.Mechanisms of thrombus formation.New Engl J Med. 2008;359:938–949.

3. Raskob GE, Angchaisuksiri P, Blanco AN, et al. Thrombosis: a major contributor to global disease burden. Thromb Res.
2014;134:931–938.

4. Cardiovascular Diseases (CVDs). World Health Organization Fact Sheet. 2017. http://www.who.int/mediacentre/

factsheets/fs317/en/.

5. Walenga JM, Bick RL. Heparin-induced thrombocytopenia, paradoxical thromboembolism, and other side effects of hep-

arin therapy.Med Clin North Am. 1998;82:635–658.

6. Shen JI, WinkelmayerWC. Use and safety of unfractionated heparin for anticoagulation during maintenance hemodial-

ysis. Am J Kidney Dis. 2012;60:473–486.

http://orcid.org/0000-0003-3306-2550
http://orcid.org/0000-0003-3306-2550
http://www.who.int/mediacentre/factsheets/fs317/en/
http://www.who.int/mediacentre/factsheets/fs317/en/


NAHAIN ET AL. 23

7. Hirsh J, Warkentin TE, Shaughnessy SG, et al. Heparin and low-molecular-weight heparin: mechanisms of action, phar-

macokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001;119:64S–94S.

8. Hirsh J,Warkentin TE, Raschke R, Granger C, Ohman EM, Dalen JE. Heparin and low-molecular-weight heparin: mecha-

nisms of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest. 1998;114:489S–510S.

9. Arepally GM, Ortel TL. Clinical practice. Heparin-induced thrombocytopenia.New Engl J Med. 2006;355:809–817.

10. Liu H, Zhang Z, Linhardt RJ. Lessons learned from the contamination of heparin.Nat Prod Rep. 2009;26:313–321.

11. Rabenstein DL. Heparin and heparan sulfate: structure and function.Nat Prod Rep. 2002;19:312–331.

12. Weitz JI, CrowtherM. Direct thrombin inhibitors. Thromb Res. 2002;106:V275–V284.

13. Pineo GF, Hull RD. Low-molecular-weight heparin: prophylaxis and treatment of venous thromboembolism. Annu Rev
Med. 1997;48:79–91.

14. Xu Y, Cai C, Chandarajoti K, et al. Homogeneous low-molecular-weight heparins with reversible anticoagulant activity.

Nat Chem Biol. 2014;10:248–250.

15. Macfarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier.Nature.
1964;202:498–499.

16. WilsonMR, Campbell Tait R. Hemostasis and anticoagulants. In: Padmanabhan S, ed.Handbook of Pharmacogenomics and
StratifiedMedicines. San Diego, CA: Academic Press; 2014:479–496.

17. Adams RLC, Bird RJ. Review article: coagulation cascade and therapeutics update: relevance to nephrology. Part 1:

overview of coagulation, thrombophilias and history of anticoagulants.Nephrology. 2009;14:462–470.

18. Walenga JM, Lyman GH. Evolution of heparin anticoagulants to ultra-low-molecular-weight heparins: a review of phar-

macologic and clinical differences and applications in patients with cancer. Crit Rev Oncol Hemat. 2013;88:1–18.

19. MulloyB, Gray E, Barrowcliffe TW.Characterization of unfractionated heparin: comparison ofmaterials from the last 50

years. Thromb Haemost. 2000;84:1052–1056.

20. Linhardt RJ, Gunay NS. Production and chemical processing of low molecular weight heparins. Semin Thromb Hemost.
1999;25(Suppl 3):5–16.

21. CasuB. Structure and active domains of heparin. In: GargHG, Linhardt RJ,HalesCA, eds.Chemistry andBiology of Heparin
and Heparan Sulfate. Amsterdam, the Netherlands: Elsevier; 2005:1–28.

22. Bianchini P, Liverani L, Mascellani G, Parma B. Heterogeneity of unfractionated heparins studied in connection with

species, source, and production processes. Semin Thromb Hemost. 1997;23:3–10.

23. LaneDA, Denton J, Flynn AM, Thunberg L, Lindahl U. Anticoagulant activities of heparin oligosaccharides and their neu-

tralization by platelet factor 4. Biochem J. 1984;218:725–732.

24. Al Dieri R, Wagenvoord R, van Dedem GW, Beguin S, Hemker HC. The inhibition of blood coagulation by heparins of

different molecular weight is caused by a common functional motif–the C-domain. J Thromb Haemost. 2003;1:907–914.

25. Gray E,Mulloy B, Barrowcliffe TW. Heparin and low-molecular-weight heparin. Thromb Haemost. 2008;99:807–818.

26. Higashi K, Hosoyama S, Ohno A, et al. Photochemical preparation of a novel low molecular weight heparin. Carbohydr
Polym. 2012;87:1737–1743.

27. Monograph 01/2008:0828Heparins, Low-Molecular mass. European Pharmacopoeia. 6.0 edition, 2008:2041–2042.

28. JeskeWP,Walenga JM, Hoppensteadt DA, et al. Differentiating low-molecular-weight heparins based on chemical, bio-

logical, and pharmacologic properties: implications for the development of generic versions of low-molecular-weight

heparins. Semin Thromb Hemost. 2008;34:74–85.

29. Maddineni J, Walenga JM, Jeske WP, et al. Product individuality of commercially available low-molecular-weight hep-

arins and their generic versions: therapeutic implications. Clin Appl Thromb Hemost. 2006;12:267–276.

30. PetitouM,Duchaussoy P, Lederman I, et al. Synthesis of heparin fragments: amethyl alpha-pentaosidewith high affinity

for antithrombin III. Carbohydr Res. 1987;167:67–75.

31. PetitouM, Duchaussoy P, Herbert JM, et al. The synthetic pentasaccharide fondaparinux: first in the class of antithrom-

botic agents that selectively inhibit coagulation factor Xa. Semin Thromb Hemost. 2002;28:393–402.

32. Petitou M, van Boeckel CAA. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next?

Angew Chem Int Ed. 2004;43:3118–3133.

33. Herbert JM, Herault JP, Bernat A, et al. Biochemical and pharmacological properties of SANORG 34006, a potent and

long-acting synthetic pentasaccharide. Blood. 1998;91:4197–4205.

34. Olson ST, Chuang Y-J. Heparin activates antithrombin anticoagulant function by generating new interaction sites

(exosites) for blood clotting proteinases. Trends Cardiovasc Med. 2002;12:331–338.



24 NAHAIN ET AL.

35. Casu B, Naggi A, Torri G. Re-visiting the structure of heparin. Carbohydr Res. 2015;403:60–68.

36. Walker FJ, Esmon CT. Themolecular mechanisms of heparin action III. The anticoagulant properties of polyanetholesul-

fonate. Biochem Biophys Res Commun. 1978;83:1339–1346.

37. Rosenberg RD, Damus PS. The purification and mechanism of action of human antithrombin heparin cofactor. J Biol
Chem. 1973;248:6490–6505.

38. Rosenberg RD. Chemistry of the hemostatic mechanism and its relationship to the action of heparin. Fed Proc.
1977;36:10–18.

39. Hirsh J, Dalen JE, Deykin D, Poller L. Heparin: mechanism of action, pharmacokinetics, dosing considerations, monitor-

ing, efficacy, and safety. Chest. 1992;102:337S–351S.

40. Olson ST, Shore JD. Demonstration of a two-step reaction mechanism for inhibition of alpha-thrombin by antithrombin

III and identification of the step affected by heparin. J Biol Chem. 1982;257:14891–14895.

41. Danielsson A, Raub E, Lindahl U, Bjork I. Role of ternary complexes, in which heparin binds both antithrombin

and proteinase, in the acceleration of the reactions between antithrombin and thrombin or factor Xa. J Biol Chem.
1986;261:15467–15473.

42. Mourier PAJ, Guichard OY, Herman F, Viskov C. Isolation of a pure octadecasaccharide with antithrombin activity from

an ultra-low-molecular-weight heparin. Anal Biochem. 2014;453:7–15.

43. Thunberg L, Bäckström G, Lindahl U. Further characterization of the antithrombin-binding sequence in heparin. Carbo-
hydr Res. 1982;100:393–410.

44. Choay J, Petitou M, Lormeau JC, Sinay P, Casu B, Gatti G. Structure-activity relationship in heparin: a synthetic pen-

tasaccharidewith high affinity for antithrombin III and eliciting high anti-factor Xa activity.BiochemBiophys Res Commun.
1983;116:492–499.

45. Bedsted T, Swanson R, Chuang YJ, Bock PE, Bjork I, Olson ST. Heparin and calcium ions dramatically

enhance antithrombin reactivity with factor IXa by generating new interaction exosites. Biochemistry. 2003;42:
8143–8152.

46. Whisstock JC, Pike RN, Jin L, et al. Conformational changes in serpins: II. The mechanism of activation of antithrombin

by heparin. J Mol Biol. 2000;301:1287–1305.

47. Schreuder HA, de Boer B, Dijkema R, et al. The intact and cleaved human antithrombin III complex as amodel for serpin-

proteinase interactions.Nat Struct Mol Biol. 1994;1:48–54.

48. Petitou M, Herault J-P, Bernat A, et al. Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature.
1999;398:417–422.

49. Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun.
1976;69:570–577.

50. Oosta GM, GardnerWT, Beeler DL, Rosenberg RD. Multiple functional domains of the heparin molecule. Proc Natl Acad
Sci U S A. 1981;78:829–833.

51. Sheehan JP, Sadler JE. Molecular mapping of the heparin-binding exosite of thrombin. Proc Natl Acad Sci U S A.
1994;91:5518–5522.

52. Heuck CC, Schiele U, Horn D, Fronda D, Ritz E. The role of surface charge on the accelerating action of heparin on the

antithrombin III-inhibited activity of alpha-thrombin. J Biol Chem. 1985;260:4598–4603.

53. Hatanaka K, Yoshida T, Miyahara S, et al. Synthesis of new heparinoids with high anticoagulant activity. J Med Chem.
1987;30:810–814.

54. Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides: part I. Synthesis and structure–activity relation-

ships of new pullulan sulfates. Carbohydr Polym. 2002;47:267–276.

55. Agarwal A, Danishefsky I. Requirement of free carboxyl groups for the anticoagulant activity of heparin. Thromb Res.
1986;42:673–680.

56. Wessel HP, Hosang M, Tschopp TB, Weimann BJ. Heparin, carboxyl-reduced sulfated heparin, and trestatin A sulfate.

Antiproliferative and anticoagulant activities. Carbohydr Res. 1990;204:131–139.

57. Church FC, Treanor RE, Sherrill GB, Whinna HC. Carboxylate polyanions accelerate inhibition of thrombin by heparin

cofactor II. Biochem Biophys Res Commun. 1987;148:362–368.

58. Stone AL, Beeler D, OostaG, Rosenberg RD. Circular dichroism spectroscopy of heparin-antithrombin interactions. Proc
Natl Acad Sci U S A. 1982;79:7190–7194.

59. Xu Y, Masuko S, Takieddin M, et al. Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins.

Science. 2011;334:498–501.



NAHAIN ET AL. 25

60. Xu Y, Pempe EH, Liu J. Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor

IIa activities. J Biol Chem. 2012;287:29054–29061.

61. Chandarajoti K, Xu Y, Sparkenbaugh E, Key NS, Pawlinski R, Liu J. De novo synthesis of a narrow size distribution low-

molecular-weight heparin.Glycobiology. 2014;24:476–486.

62. Hsieh P-H, Xu Y, Keire DA, Liu J. Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic

acid-containing heparan sulfate hexasaccharides.Glycobiology. 2014;24:681–692.

63. Harenberg J. Development of idraparinux and idrabiotaparinux for anticoagulant therapy. Thromb Haemost.
2009;102:811–815.

64. Savi P, Herault JP, Duchaussoy P, et al. Reversible biotinylated oligosaccharides: a new approach for a better manage-

ment of anticoagulant therapy. J Thromb Haemost. 2008;6:1697–1706.

65. de KortM, Buijsman RC, van Boeckel CAA. Synthetic heparin derivatives as new anticoagulant drugs.Drug Discov Today.
2005;10:769–779.

66. Westerduin P, Basten JEM, Broekhoven MA, de Kimpe V, Kuijpers WHA, van Boeckel CAA. Synthesis of tailor-made

glycoconjugates showing AT III-mediated inhibition of blood coagulation factors Xa and thrombin. Angew Chem Int Ed
Engl. 1996;35:331–333.

67. Buijsman RC, Basten JEM, van Dinther TG, van der Marel GA, van Boeckel CAA, van Boom JH. Design and synthesis

of a novel synthetic NAPAP-penta-saccharide conjugate displaying a dual antithrombotic action. Bioorg Med Chem Lett.
1999;9:2013–2018.

68. Vogel GMT, Meuleman DG, Van Dinther TG, Buijsman R, Princen AWM, Smit MJ. Antithrombotic properties of a

direct thrombin inhibitor with a prolonged half-life and AT-mediated factor Xa inhibitory activity. J Thromb Haemost.
2003;1:1945–1954.

69. Olson ST, Swanson R, PetitouM. Specificity and selectivity profile of EP217609: a new neutralizable dual-action antico-

agulant that targets thrombin and factor Xa. Blood. 2012;119:2187–2195.

70. Hechler B, Freund M, Alame G, et al. The antithrombotic activity of EP224283, a neutralizable dual factor Xa

inhibitor/glycoprotein IIbIIIa antagonist, exceeds that of the coadministered parent compounds. J Pharmacol Exp Ther.
2011;338:412–420.

71. Sankarayanarayanan NV, Strebel TR, Boothello RS, et al. A hexasaccharide containing rare 2-O-sulfate-glucuronic acid

residues selectively activates heparin cofactor II. Angew Chem Int Ed. 2017;56:2312–2317.

72. Wall D, Douglas S, Ferro V, Cowden W, Parish C. Characterisation of the anticoagulant properties of a range of struc-

turally diverse sulfated oligosaccharides. Thromb Res. 2001;103:325–335.

73. LiaoBY,WangZ,Hu J, et al. PI-88 inhibits postoperative recurrence of hepatocellular carcinoma via disrupting the surge

of heparanase after liver resection. Tumour Biol. 2016;37:2987–2998.

74. Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB. Identification of sulfated oligosaccharide-based inhibitors

of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res.
1999;59:3433–3441.

75. Khachigian LM, Parish CR. Phosphomannopentaose sulfate (PI-88): heparan sulfate mimetic with clinical potential in

multiple vascular pathologies. Cardiovasc Drug Rev. 2004;22:1–6.

76. RaakeW, Klauser RJ, Elling H, Meinetsberger E. Anticoagulant and antithrombotic properties of synthetic sulfated bis-

lactobionic acid amides. Thromb Res. 1989;56:719–730.

77. Klauser RJ. Interaction of the sulfated lactobionic acid amide LW 10082 with thrombin and its endogenous inhibitors.

Thromb Res. 1991;62:557–565.

78. OfosuFA, Fareed J, Smith LM,AnvariN,HoppensteadtD,BlajchmanMA. Inhibitionof factorX, factorVandprothrombin

activation by the bis(lactobionic acid amide) LW10082. Eur J Biochem. 1992;203:121–125.

79. Martin DJ, Toce JA, Anevski PJ, Tollefsen DM, Abendschein DR. Anticoagulant and antithrombotic activity of malto-

dapoh, a novel sulfated tetrasaccharide. J Pharmacol Exp Ther. 1999;288:516–521.

80. Desai BJ, Boothello RS,Mehta AY, Scarsdale JN,Wright HT, Desai UR. Interaction of thrombinwith sucrose octasulfate.

Biochemistry. 2011;50:6973–6982.

81. RashidQ, AbidM,GuptaN, Tyagi T, AshrafMZ, JairajpuriMA. Polysulfated trehalose as a novel anticoagulant agentwith

dual mode of action. BioMed Res Int. 2015;2015:1–11.

82. Bjornsson TD, Nash PV, Schaten R. The anticoagulant effect of chondroitin-4-sulfate. Thromb Res. 1982;27:15–21.

83. Teien AN, Abildgaard U, Höök M. The anticoagulant effect of heparan sulfate and dermatan sulfate. Thromb Res.
1976;8:859–867.



26 NAHAIN ET AL.

84. Hatton MWC, Berry LR, Ragoeczl E. Inhibition of thrombin by antithrombin III in the presence of certain glycosamino-

glycans found in themammalian aorta. Thromb Res. 1978;13:655–670.

85. Fernandez F, Ryn JV, Ofosu FA, Hirsh J, Buchanan MR. The haemorrhagic and antithrombotic effects of dermatan sul-

phate. Br J Haematol. 1986;64:309–317.

86. Tollefsen DM, Peacock ME, MonafoWJ. Molecular size of dermatan sulfate oligosaccharides required to bind and acti-

vate heparin cofactor II. J Biol Chem. 1986;261:8854–8858.

87. MaimoneMM, Tollefsen DM. Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high

affinity. J Biol Chem. 1990;265:18263–18271.

88. Farias WRL, Valente A-P, Pereira MS, Mourão PAS. Structure and anticoagulant activity of sulfated galactans: isolation

of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant actionwith

that of sulfated galactans from invertebrates. J Biol Chem. 2000;275:29299–29307.

89. PereiraMS, Vilela-Silva A-CES, ValenteA-P,Mourão PAS. A 2-sulfated, 3-linked 𝛼-l-galactan is an anticoagulant polysac-

charide. Carbohydr Res. 2002;337:2231–2238.

90. Colliec S, Fischer AM, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J. Anticoagulant properties of a fucoidan

fraction. Thromb Res. 1991;64:143–154.

91. Nishino T, Aizu Y, Nagumo T. Antithrombin activity of a fucan sulfate from the brown seaweed Ecklonia kurome. Thromb
Res. 1991;62:765–773.

92. Nishino T, Aizu Y, Nagumo T. The influence of sulfate content and molecular weight of a fucan sulfate from the brown

seaweed Ecklonia kurome on its antithrombin activity. Thromb Res. 1991;64:723–731.

93. Colliec S, Boisson-vidal C, Jozefonvicz J. A low molecular weight fucoidan fraction from the brown seaweed Pelvetia
canaliculata. Phytochemistry. 1994;35:697–700.

94. Paulo ASM. Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr Pharm Des.
2004;10:967–981.

95. Pomin VH,Mourão PAS. Structure, biology, evolution, andmedical importance of sulfated fucans and galactans.Glycobi-
ology. 2008;18:1016–1027.

96. PominV,Mourão P. Specific sulfation and glycosylation—a structural combination for the anticoagulation ofmarine car-

bohydrates. Front Cell Infect Microbiol. 2014;4:33.

97. BuyueY, Sheehan JP. Fucosylated chondroitin sulfate inhibits plasma thrombin generation via targeting of the factor IXa

heparin-binding exosite. Blood. 2009;114:3092–3100.

98. WuM,XuS, Zhao J,KangH,DingH.Physicochemical characteristics andanticoagulant activities of lowmolecularweight

fractions by free-radical depolymerization of a fucosylated chondroitin sulphate from sea cucumber Thelenata ananas.
Food Chem. 2010;122:716–723.

99. GaoN, Lu F, Xiao C, et al. 𝛽-Eliminative depolymerization of the fucosylated chondroitin sulfate and anticoagulant activ-

ities of resulting fragments. Carbohydr Polym. 2015;127:427–437.

100. WuM,WenD, Gao N, et al. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and

their derivatives as selective inhibitors of intrinsic factor Xase. Eur J Med Chem. 2015;92:257–269.

101. Mou J,Wang C, LiW, Yang J. Purification, structural characterization and anticoagulant properties of fucosylated chon-

droitin sulfate isolated fromHolothuria mexicana. Int J Biol Macromol. 2017;98:208–215.

102. Mourao PAS, Pereira MS, Pavo MSG, et al. Structure and anticoagulant activity of a fucosylated chondroitin sulfate

from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem.
1996;271:23973–23984.

103. Fonseca RJC, Mourão PAS. Fucosylated chondroitin sulfate as a new oral antithrombotic agent. Thromb Haemost.
2006;96:822–829.

104. Liu X, Hao J, Shan X, et al. Antithrombotic activities of fucosylated chondroitin sulfates and their depolymerized frag-

ments from two sea cucumbers. Carbohydr Polym. 2016;152:343–350.

105. Chen S, Xue C, La Y, Tang Q, Yu G, Chai W. Comparison of structures and anticoagulant activities of fucosylated chon-

droitin sulfates from different sea cucumbers. Carbohydr Polym. 2011;83:688–696.

106. WuM, Huang R, Wen D, et al. Structure and effect of sulfated fucose branches on anticoagulant activity of the fucosy-

lated chondroitin sulfate from sea cucumber Thelenata ananas. Carbohydr Polym. 2012;87:862–868.

107. Mourão PAS, Pereira MS, Pavão MSG, et al. Structure and anticoagulant activity of a fucosylated chondroitin sulfate

from echinoderm: sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem.
1996;271:23973–23984.



NAHAIN ET AL. 27

108. TollefsenDM,PestkaCA,MonafoWJ.Activationof heparin cofactor II bydermatan sulfate. JBiol Chem. 1983;258:6713–
6716.

109. Tollefsen DM. The interaction of glycosaminoglycans with heparin cofactor II: structure and activity of a high-affinity

dermatan sulfate hexasaccharide. In: Lane DA, Björk I, Lindahl U, eds. Heparin and Related Polysaccharides. Boston, MA:

Springer; 1992:167–176.

110. Mascellani G, Liverani L, Bianchini P, et al. Structure and contribution to the heparin cofactor II-mediated inhibition of

thrombin of naturally oversulphated sequences of dermatan sulphate. Biochem J. 1993;296:639–648.

111. Mascellani G, Liverani L, ParmaB, Bergonzini G, Bianchini P. Active site for heparin cofactor II in lowmolecularmass der-

matan sulfate. Contribution to the antithrombotic activity of fractions with high affinity for heparin cofactor II. Thromb
Res. 1996;84:21–32.

112. Maaroufi RM, JozefowiczM, Tapon-Bretaudière J, Fischer A-M.Mechanism of thrombin inhibition by antithrombin and

heparin cofactor II in the presence of heparin. Biomaterials. 1997;18:203–211.

113. Maaroufi RM, JozefowiczM, Tapon-Bretaudière J, Jozefonvicz J, FischerA-M.Mechanismof thrombin inhibition by hep-

arin cofactor II in the presence of dermatan sulphates, native or oversulphated, and a heparin-like dextran derivative.

Biomaterials. 1997;18:359–366.

114. Kindness G, Long WF, Williamson FB. The anticoagulant activity of dermatan sulphates: evidence against the involve-

ment of antithrombin III. Br J Pharmacol. 1981;72:81–88.

115. He L, Giri TK, Vicente CP, Tollefsen DM. Vascular dermatan sulfate regulates the antithrombotic activity of heparin

cofactor II. Blood. 2008;111:4118–4125.

116. Mansour MB, Dhahri M, Hassine M, et al. Highly sulfated dermatan sulfate from the skin of the ray Raja montagui: anti-
coagulant activity andmechanism of action. Comp Biochem Phys B. 2010;156:206–215.

117. Souza MLS, Dellias JMM, Melo FR, Silva L-CF. Structural composition and anticoagulant activity of dermatan sulfate

from the skin of the electric eel, Electrophorus electricus (L.). Comp Biochem Phys B. 2007;147:387–394.

118. BenMansourM,MajdoubH, Bataille I, et al. Polysaccharides from the skin of the rayRaja radula. Partial characterization
and anticoagulant activity. Thromb Res. 2009;123:671–678.

119. BenMansourM, DhahriM, Bertholon I, et al. Characterization of a novel dermatan sulfatewith high antithrombin activ-

ity from ray skin (Raja radula). Thromb Res. 2009;123:887–894.

120. Dellias João MM, Onofre Glaucia R, Werneck Cláudio C, et al. Structural composition and differential anticoagulant

activities of dermatan sulfates fromthe skinof four species of rays,Dasyatis americana,Dasyatis gutatta,Aetobatus narinari
and Potamotrygon motoro. Biochimie. 2004;86:677–683.

121. LinhardtRJ,DesaiUR, Liu J, PervinA,HoppensteadD, Fareed J. Lowmolecularweight dermatan sulfate as an antithrom-

botic agent. Structure-activity relationship studies. Biochem Pharmacol. 1994;47:1241–1252.

122. Fernández JA, Petäjä J, Griffin JH. Dermatan sulfate and LMW heparin enhance the anticoagulant action of activated

protein C. Thromb Haemost. 1999;82:1462–1468.

123. PominVH.Review: an overviewabout the structure–function relationship ofmarine sulfated homopolysaccharideswith

regular chemical structures. Biopolymers. 2009;91:601–609.

124. Yoon S-J, Pyun Y-R, Hwang J-K, Mourão PAS. A sulfated fucan from the brown alga Laminaria cichorioides has mainly

heparin cofactor II-dependent anticoagulant activity. Carbohydr Res. 2007;342:2326–2330.

125. PereiraMS,MulloyB,MourãoPAS. Structure and anticoagulant activity of sulfated fucans: comparison between the reg-

ular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown

algae. J Biol Chem. 1999;274:7656–7667.

126. Muzzarelli RAA, Tanfani F, EmanuelliM, PaceDP,Chiurazzi E, PianiM. SulfatedN-(carboxymethyl)chitosans: novel blood

anticoagulants. Carbohydr. Res. 1984;126:225–231.

127. WolfromML, Shen TM, Summers CG. Sulfated nitrogenous polysaccharides and their anticoagulant activity. J Am Chem
Soc. 1953;75:1519.

128. WolfromML, Han TMS. The sulfonation of chitosan. J Am Chem Soc. 1959;81:1764–1766.

129. Doczi J, Fischman A, King JA. Direct evidence of the influence of sulfamic acid linkages on the activity of heparin-like

anticoagulants. J Am Chem Soc. 1953;75:1512–1513.

130. Whistler RL, Kosik M. Anticoagulant activity of oxidized and N- and O-sulfated chitosan. Arch Biochem Biophys.
1971;142:106–110.

131. HortonD, Just EK. Preparation from chitin of (1→4)-2-amino-2-deoxy-𝛽-D-glucopyranuronan and its 2-sulfoamino ana-

log having blood-anticoagulant properties. Carbohydr Res. 1973;29:173–179.



28 NAHAIN ET AL.

132. Hirano S, Tanaka Y, HasegawaM, Tobetto K, Nishioka A. Effect of sulfated derivatives of chitosan on some blood coagu-

lant factors. Carbohydr Res. 1985;137:205–215.

133. Huang R, Du Y, Yang J, Fan L. Influence of functional groups on the in vitro anticoagulant activity of chitosan sulfate.

Carbohydr Res. 2003;338:483–489.

134. Ronghua H, Yumin D, Jianhong Y. Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan

sulfates. Carbohydr Polym. 2003;51:431–438.

135. Vikhoreva G, Bannikova G, Stolbushkina P, et al. Preparation and anticoagulant activity of a low-molecular-weight sul-

fated chitosan. Carbohydr Polym. 2005;62:327–332.

136. Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol.
2007;40:175–181.

137. AlvesNM,Mano JF. Chitosan derivatives obtained by chemicalmodifications for biomedical and environmental applica-

tions. Int J Biol Macromol. 2008;43:401–414.

138. Suwan J, Zhang Z, Li B, et al. Sulfonation of papain-treated chitosan and its mechanism for anticoagulant activity. Carbo-
hydr Res. 2009;344:1190–1196.

139. Xiong W, Yi Y, Liu H, Wang H, Liu J, Ying G. Selective carboxypropionylation of chitosan: synthesis, characterization,

blood compatibility, and degradation. Carbohydr Res. 2011;346:1217–1223.

140. Fan L,Wu P, Zhang J, et al. Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates. Int J Biol
Macromol. 2012;50:31–37.

141. Wang T, Zhou Y, Xie W, Chen L, Zheng H, Fan L. Preparation and anticoagulant activity of N-succinyl chitosan sulfates.
Int J Biol Macromol. 2012;51:808–814.

142. Yang J, Luo K, Li D, et al. Preparation, characterization and in vitro anticoagulant activity of highly sulfated chitosan. Int J
Biol Macromol. 2013;52:25–31.

143. Nishimura S-I, Nishi N, Tokura S, Okiei W, Somorin O. Inhibition of the hydrolytic activity of thrombin by chitin hepari-

noids. Carbohydr Res. 1986;156:286–292.

144. Nishimura S, Tokura S. Preparation and antithrombogenic activities of heparinoid from 6-O-(carboxymethyl)chitin. Int J
Biol Macromol. 1987;9:225–232.

145. Nishimura S, Nishi N, Tokura S. Interaction of chitin heparinoids with bovine antithrombin III. Int J Biol Macromol.
1987;9:305–307.

146. Warner DT, Coleman LL. Selective sulfonation of amino groups in amino alcohols. J Org Chem. 1958;23:1133–1135.

147. Zou Y, Khor E. Preparation of sulfated-chitins under homogeneous conditions. Carbohydr Polym. 2009;77:516–525.

148. Subhapradha N, Ramasamy P, Srinivasan A, Madeswaran P, Shanmugam V, Shanmugam A. Sulfation of 𝛽-chitosan and

evaluation of biological activity from gladius of Sepioteuthis lessoniana. Int J Biol Macromol. 2013;62:336–340.

149. Vongchan P, Sajomsang W, Subyen D, Kongtawelert P. Anticoagulant activity of a sulfated chitosan. Carbohydr Res.
2002;337:1239–1242.

150. Muzzarelli RA, Tanfani F, Emanuelli M, Pace DP, Chiurazzi E, Piani M. SulfatedN-(carboxymethyl)chitosans: novel blood

anticoagulants. Carbohydr Res. 1984;126:225–231.

151. Magnani A, Lamponi S, Rappuoli R, Barbucci R. Sulphated hyaluronic acids: a chemical and biological characterisation.

Polym Int. 1998;46:225–240.

152. Magnani A, AlbaneseA, Lamponi S, Barbucci R. Blood-interaction performance of differently sulphated hyaluronic acids.

Thromb Res. 1996;81:383–395.

153. Ricketts CR. Dextran sulphate—a synthetic analogue of heparin. Biochem J. 1952;51:129–133.

154. Walton KW. The biological behaviour of a new synthetic anticoagulant (dextran sulphate) possessing heparin-like prop-

erties. Br J Pharmacol Chemother. 1952;7:370–391.

155. Ricketts CR. The blood anticoagulant effect of short chain-length dextran sulphates. Br J Pharmacol Chemother.
1954;9:224–228.

156. Forwell GD, IngramGIC. The anticoagulant activity of dextran sulphate. J Pharm Pharmacol. 1956;8:530–543.

157. IngramGIC, Forwell GD. The anticoagulant activity of dextran sulphate. J Pharm Pharmacol. 1956;8:589–601.

158. ChaubetF,Champion J,MaïgaO,MaurayS, Jozefonvicz J. Synthesis and structure—anticoagulantproperty relationships

of functionalized dextrans: CMDBS. Carbohydr Polym. 1995;28:145–152.

159. Krentsel L, Chaubet F, Rebrov A, et al. Anticoagulant activity of functionalized dextrans. Structure analyses of car-

boxymethylated dextran and firstMonte Carlo simulations. Carbohydr Polym. 1997;33:63–71.



NAHAIN ET AL. 29

160. Maiga-Revel O, Chaubet F, Jozefonvicz J. New investigations on heparin-like derivatized dextrans: CMDBS, synergistic

role of benzylamide and sulfate substituents in anticoagulant activity. Carbohydr Polym. 1997;32:89–93.

161. Logeart-Avramoglou D, Jozefonvicz J. Carboxymethyl benzylamide sulfonate dextrans (CMDBS), a family of biospecific

polymers endowedwith numerous biological properties: a review. J BiomedMater Res. 1999;48:578–590.

162. MauzacM, Aubert N, Jozefonvicz J. Antithrombic activity of some polysaccharide resins. Biomaterials. 1982;3:221–224.

163. MauzacM, Jozefonvicz J. Anticoagulant activity of dextran derivatives. Part I: synthesis and characterization. Biomateri-
als. 1984;5:301–304.

164. Crepon B, Maillet F, KazatchkineMD, Jozefonvicz J. Molecular weight dependency of the acquired anticomplementary

and anticoagulant activities of specifically substituted dextrans. Biomaterials. 1987;8:248–253.

165. Huynh R, Chaubet F, Jozefonvicz J. Anticoagulant properties of dextranmethylcarboxylate benzylamide sulfate

(DMCBSu); a new generation of bioactive functionalized dextran. Carbohydr Res. 2001;332:75–83.

166. Paluck SJ, Nguyen TH, Maynard HD. Heparin-mimicking polymers: synthesis and biological applications. Biomacro-
molecules. 2016;17:3417–3440.

167. Aubert N,MauzacM, GulinoD, Jozefonvicz J. Anticoagulant hydrogels derived from crosslinked dextran. Part II: mecha-

nism of thrombin inactivation. Biomaterials. 1987;8:100–104.

168. Fischer AM,MauzacM, Tapon-Bretaudiere J, Jozefonvicz J. Anticoagulant activity of dextran derivatives. Part II: mech-

anism of thrombin inactivation. Biomaterials. 1985;6:198–202.

169. Yamagishi R,NiwaM, SakuragawaN. Thrombin inhibitory activity of heparin cofactor II dependson themolecularweight

and sulfate amount of dextran sulfate. Thromb Res. 1986;44:347–354.

170. Nagasawa K, Harada H, Hayashi S, Misawa T. Sulfation of dextran with piperidine-N-sulfonic acid. Carbohydr Res.
1972;21:420–426.

171. Mendes SF, SantosOJr, BarbosaAM, et al. Sulfonation andanticoagulant activity of botryosphaeran fromBotryosphaeria
rhodinaMAMB-05 grown on fructose. Int J Biol Macromol. 2009;45:305–309.

172. Vasconcelos AFD, Dekker RFH, Barbosa AM, et al. Sulfonation and anticoagulant activity of fungal exocellular 𝛽-(1→6)-

D-glucan (lasiodiplodan). Carbohydr Polym. 2013;92:1908–1914.

173. Alban S, JeskeW,Welzel D, FranzG, Fareed J. Anticoagulant and antithrombotic actions of a semisynthetic 𝛽-1,3-glucan

sulfate. Thromb Res. 1995;78:201–210.

174. Muschin T, Budragchaa D, Kanamoto T, et al. Chemically sulfated natural galactomannans with specific antiviral and

anticoagulant activities. Int J Biol Macromol. 2016;89:415–420.

175. MestechkinaN, Shcherbukhin V, BannikovaG, et al. Anticoagulant activity of low-molecular-weight sulfated derivatives

of galactomannan from Cyamopsis tetragonoloba (L.) seeds. Appl BiochemMicrobiol. 2007;43:650–654.

176. Ronghua H, Yumin D, Jianhong Y. Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized

derivatives. Carbohydr Polym. 2003;52:19–24.

177. Ma L, Cheng C, Nie C, et al. Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings.

J Mater Chem B. 2016;4:3203–3215.

178. Fan L, Jiang L, Xu Y, et al. Synthesis and anticoagulant activity of sodium alginate sulfates. Carbohydr Polym.
2011;83:1797–1803.

179. Lin C-Z, Guan H-S, Li H-H, Yu G-L, Gu C-X, Li G-Q. The influence of molecular mass of sulfated propylene glycol ester of

low-molecular-weight alginate on anticoagulant activities. Eur Polym J. 2007;43:3009–3015.

180. Wu J, Zhang M, Zhang Y, Zeng Y, Zhang L, Zhao X. Anticoagulant and FGF/FGFR signal activating activities

of the heparinoid propylene glycol alginate sodium sulfate and its oligosaccharides. Carbohydr Polym. 2016;136:
641–648.

181. Maruyama T, Toida T, Imanari T, Yu G, Linhardt RJ. Conformational changes and anticoagulant activity of chondroitin

sulfate following itsO-sulfonation. Carbohydr Res. 1998;306:35–43.

182. Amarasekara AS, Opoku G, Qiu X, Doctor V. Effect of oversulfation on the chemical and biological properties of

chondroitin-6-sulfate. Carbohydr Polym. 2007;68:116–121.

183. Toida T, Maruyama T, Ogita Y, et al. Preparation and anticoagulant activity of fully O-sulphonated glycosaminoglycans.

Int J Biol Macromol. 1999;26:233–241.

184. Li D-W, Lee IS, Sim J-S, Toida T, Linhardt RJ, Kim YS. Long duration of anticoagulant activity and protective effects of

acharan sulfate in vivo. Thromb Res. 2004;113:67–73.

185. Wu SJ, Chun MW, Shin KH, et al. Chemical sulfonation and anticoagulant activity of acharan sulfate. Thromb Res.
1998;92:273–281.



30 NAHAIN ET AL.

186. Miura Y, Fukuda T, Seto H, Hoshino Y. Development of glycosaminoglycan mimetics using glycopolymers. Polym J.
2016;48:229–237.

187. Akashi M, Sakamoto N, Suzuki K, Kishida A. Synthesis and anticoagulant activity of sulfated glucoside-bearing polymer.

Bioconjugate Chem. 1996;7:393–395.

188. Sakamoto N, Kishida A, Maruyama I, Akashi M. The mechanism of anticoagulant activity of a novel heparinoid sulfated

glucoside-bearing polymer. J Biomater Sci Polym Ed. 1997;8:545–553.

189. Onishi M, Miyashita Y, Motomura T, Yamashita S, Sakamoto N, Akashi M. Anticoagulant and antiprotease activities of a

heparinoid sulfated glucoside-bearing polymer. J Biomater Sci Polym Ed. 1998;9:973–984.

190. Huang Y, ShawMA,Mullins ES, Kirley TL, Ayres N. Synthesis and anticoagulant activity of polyureas containing sulfated

carbohydrates. Biomacromolecules. 2014;15:4455–4466.

191. SunX-L, GrandeD, Baskaran S,Hanson SR, Chaikof EL. Glycosaminoglycanmimetic biomaterials. 4. Synthesis of sulfated

lactose-based glycopolymers that exhibit anticoagulant activity. Biomacromolecules. 2002;3:1065–1070.

192. Oh YI, Sheng GJ, Chang S-K, Hsieh-Wilson LC. Tailored glycopolymers as anticoagulant heparin mimetics. Angew Chem
Int Ed. 2013;52:11796–11799.

193. Fougnot C, Jozefonvicz J, SamamaM, Bara L. New heparin-like insoluble materials: part I. Ann Biomed Eng. 1979;7:429–
439.

194. Fougnot C, JozefowiczM, SamamaM, Bara L. Newheparin-like insolublematerials: part II.Ann Biomed Eng. 1979;7:441–
450.

195. Ran F, Nie S, Li J, Su B, Sun S, Zhao C. Heparin-like macromolecules for the modification of anticoagulant biomaterials.

Macromol Biosci. 2012;12:116–125.

196. Ran F, Nie S, Yin Z, et al. Synthesized negatively chargedmacromolecules (NCMs) for the surfacemodification of antico-

agulant membrane biomaterials. Int J Biol Macromol. 2013;55:269–275.

197. Ma L, Qin H, Cheng C, et al. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioac-

tivity via dopamine grafted heparin-like polymers and heparin. J Mater Chem B. 2014;2:363–375.

198. Nie C, Ma L, Xia Y, et al. Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes

for safe and efficient blood purification. J Membr Sci. 2015;475:455–468.

199. Li R, Wu G, Cai X, Ye Y. In vitro anticoagulant activity of polyanionic graft chains modified poly(vinyl alcohol) particles.

Radiat Phys Chem. 2017;134:27–32.

200. Silver JH, Hart AP, Williams EC, et al. Anticoagulant effects of sulphonated polyurethanes. Biomaterials. 1992;13:339–
344.

201. Ito Y, Iguchi Y, Imanishi Y. Synthesis and non-thrombogenicity of heparinoid polyurethaneureas. Biomaterials.
1992;13:131–135.

202. Tang M, Xue J, Yan K, Xiang T, Sun S, Zhao C. Heparin-like surface modification of polyethersulfone membrane and its

biocompatibility. J Colloid Interface Sci. 2012;386:428–440.

203. Machovich R, Nagy M, Gyorgyi-Edelenyi J, Csomor K, Horvath I. Anticoagulant effect of sulphated poly/vinyl alcohol-

acrylic acid/copolymers. Thromb Haemost. 1986;56:397–400.

204. Csomor K, Kárpáti E, NagyM, Györgyi-Edelényi J, Machovich R. Blood coagulation is inhibited by sulphated copolymers

of vinyl alcohol and acrylic acid under in vitro as well as in vivo conditions. Thromb Res. 1994;74:389–398.

205. Vörös G, Kolev K, Csomor K, Machovich R. Inhibition of plasmin activity by sulfated polyvinylalcohol–acrylate copoly-

mers. Thromb Res. 2000;100:353–361.

206. Tamada Y, Murata M, Makino K, Yoshida Y, Yoshida T, Hayashi T. Anticoagulant effects of sulphonated polpisoprenes.

Biomaterials. 1998;19:745–750.

207. Tamada Y, Murata M, Hayashi T, Goto K. Anticoagulant mechanism of sulfonated polyisoprenes. Biomaterials.
2002;23:1375–1382.

208. Han DK, Lee NY, Park KD, Kim YH, Ik Cho H, Min BG. Heparin-like anticoagulant activity of sulphonated poly(ethylene

oxide) and sulphonated poly(ethylene oxide)-grafted polyurethane. Biomaterials. 1995;16:467–471.

209. Joung YK, SengokuY,Ooya T, Park KD, Yui N. Anticoagulant supramolecular-structured polymers: synthesis and antico-

agulant activity of taurine-conjugated carboxyethylester-polyrotaxanes. Sci Technol AdvMater. 2005;6:484–490.

210. Park HD, Lee WK, Ooya T, Park KD, Kim YH, Yui N. Anticoagulant activity of sulfonated polyrotaxanes as blood-

compatible materials. J BiomedMater Res. 2002;60:186–190.

211. HanQ, ChenX,Niu Y, et al. Preparation ofwater-soluble hyperbranched polyester nanoparticleswith sulfonic acid func-

tional groups and their micelles behavior, anticoagulant effect and cytotoxicity. Langmuir. 2013;29:8402–8409.



NAHAIN ET AL. 31

212. Türk H, Haag R, Alban S. Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the comple-

ment system. Bioconjugate Chem. 2003;15:162–167.

213. Tauhardt L, Pretzel D, Kempe K, Gottschaldt M, Pohlers D, Schubert US. Zwitterionic poly(2-oxazoline)s as promising

candidates for blood contacting applications. Polym Chem. 2014;5:5751–5764.

214. Shih Y-J, Chang Y. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of

zwitterionic nonfouling nature in aqueous solution. Langmuir. 2010;26:17286–17294.

215. Correia-da-Silva M, Sousa E, Pinto MMM. Emerging sulfated flavonoids and other polyphenols as drugs: nature as an

inspiration.Med Res Rev. 2014;34:223–279.

216. Al-Horani RA, Liang A, Desai UR. Designing nonsaccharide, allosteric activators of antithrombin for accelerated inhibi-

tion of factor Xa. J Med Chem. 2011;54:6125–6138.

217. Raghuraman A, Liang A, Krishnasamy C, Lauck T, Gunnarsson GT, Desai UR. On designing non-saccharide, allosteric

activators of antithrombin. Eur J Med Chem. 2009;44:2626–2631.

218. Guglielmone HA, Agnese AM, NúñezMontoya SC, Cabrera JL. Anticoagulant effect and action mechanism of sulphated

flavonoids from Flaveria bidentis. Thromb Res. 2002;105:183–188.

219. GunnarssonGT, Desai UR. Designing small, nonsugar activators of antithrombin using hydropathic interaction analyses.

J Med Chem. 2002;45:1233–1243.

220. Gunnarsson GT, Desai UR. Interaction of designed sulfated flavanoids with antithrombin: lessons on the design of

organic activators. J Med Chem. 2002;45:4460–4470.

221. Correia-da-Silva M, Sousa E, Duarte B, et al. Flavonoids with an oligopolysulfated moiety: a new class of anticoagulant

agents. J Med Chem. 2011;54:95–106.

222. Correia-da-SilvaM, Sousa E, Duarte B,Marques F, Cunha-Ribeiro LM, PintoMMM.Dual anticoagulant/antiplatelet per-

sulfated small molecules. Eur J Med Chem. 2011;46:2347–2358.

223. Monien BH, Desai UR. Antithrombin activation by nonsulfated, non-polysaccharide organic polymer. J Med Chem.
2005;48:1269–1273.

224. Monien BH, Cheang KI, Desai UR. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin:

implications for the design of novel heparin mimics. J Med Chem. 2005;48:5360–5368.

225. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNAmolecules that bind and inhibit

human thrombin.Nature. 1992;355:564–566.

226. WuQ, TsiangM, Sadler JE. Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite. J
Biol Chem. 1992;267:24408–24412.

227. Rusconi CP, Yeh A, Kim Lyerly H, Lawson JH, Sullenger BA. Blocking the initiation of coagulation by RNA aptamers to

factor VIIa. Thromb Haemost. 2000;84:841–848.

228. Rusconi CP, Scardino E, Layzer J, et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature.
2002;419:90–94.

AUTHOR'S BIOGRAPHIES

Abdullah Al Nahain is currently completing his PhD studies at the University of Queensland under the guidance of

A/Prof. Vito Ferro and Dr. John Tsanaktsidis (CSIRO). His present research focuses on the development of biologically

active polymers byRAFTpolymerization.He completedhisBPharm in2007 from theUniversity ofDevelopmentAlter-

native, Bangladesh, and obtained an MSc in chemical and biological engineering from Chungju National University,

South Korea, in 2012where he conducted research into nanocarrier drug delivery systems for anticancer drugs.

Vera Ignjatovic received her PhD in 2000 fromMonash University. She began her research career by establishing de

novo the Haematology Research Laboratory at the Murdoch Childrens Research Institute (MCRI), a part of the Mel-

bourne Children's Campus, inmid-2001. Since then she has developed a highly productive, internationally competitive

research laboratory in the field of pediatric hemostasis. Her team is acknowledged as being at the forefront of this

research field internationally, and is the only team focusing on pediatric hemostasis nationally. A/Prof Ignjatovic is in

the top ranking research scientists in pediatric hemostasis research worldwide. She has published 100 papers, cited

more than 1800 times, and is a principle investigator or co-investigator on projects receiving peer reviewed funding



32 NAHAIN ET AL.

of more than $5.2 M. A/Prof Ignjatovic has presented widely in forums ranging from Thrombosis and Haemostasis to

Proteomics conferences, both nationally and internationally. Her research career has been supported by the Univer-

sity of Melbourne which in 2012 awarded her the title of Associate Professor and Principal Fellow, and by MCRI that

promoted her to the Co-Group leader position in 2013.

Paul Monagle is a professor of Haematology at the Royal Children's Hospital Melbourne and the University of Mel-

bourne, a recognized world leader in the field of pediatric hemostasis and antithrombotic therapy. This is evidenced

by: being a past chair of the paediatric/perinatal Scientific Subcommittee of International Society of Haemostasis and

Thrombosis (ISTH); leader of the pediatric chapter of theAmericanCollege of Chest Physicians (ACCP) antithrombotic

guidelines formore than a decade; member of theNIHworking party into thrombotic disorders in pediatric cardiology

patients; member of theAmerican Society ofHaematology venous thrombosis guideline steering committee, and chair

of the pediatric panel; on International steering committees of multiple industry sponsored trials of anticoagulation in

children; coauthor ofmultiple textbooks; 27 chapters inmajor international textbooks and9 ISTHposition statements.

He has more than 200 publications, with more than 3000 citations. This includes more than 60 publications in the last

3 years and major clinical studies published in JAMA and JACC. He has given more than 100 invited presentations,

locally, nationally, and internationally. He haswritten invited reviews/editorials forNature Reviews Cardiology,Hematol-

ogy Am. Soc. Hematol. Educ. Program, Blood, Blood Reviews, and Thrombosis Research.

John Tsanaktsidis is a research director at CSIRO Manufacturing. He is an experienced synthetic organic chemist

focused on the development and translation of chemistry solutions to the chemical industry, by applying his extensive

background and experience in scientific research,management, business development, technology commercialization,

and business leadership. Dr Tsanaktsidis has authored or coauthoredmore than 60 peer reviewed papers, patents, and

book chapters, and has an h-index of 17. He is a Distinguished Alumnus of The Flinders University of South Australia

(2006), a Fellow of the RACI, the peak body for chemists in Australia, and a former Chair of the Organic Chemistry

Division of the RACI.

Vito Ferro obtained his PhD from the University of Western Australia in 1992. Following postdoctoral studies at the

Carlsberg Laboratory,Denmark, and theUniversity of BritishColumbia, Canada, he joinedProgenPharmaceuticals Ltd

where he spent 12 years in various positions, includingDirector of DrugDiscovery. Following a brief period atQueens-

land University of Technology as Deputy Program Leader in the Cooperative Research Centre for Polymers, hemoved

to the University of Queensland in 2010 where he is Associate Professor of Biotechnology in the School of Chemistry

and Molecular Biosciences and is also a member of the Australian Infectious Diseases Research Centre. His research

interests are in carbohydrate and medicinal chemistry with a particular focus on glycosaminoglycans (especially hep-

aran sulfate and heparin) and their mimetics as potential drugs for a range of diseases.

How to cite this article: Nahain AA, Ignjatovic V, Monagle P, Tsanaktsidis J, Ferro V . Heparin mimetics with

anticoagulant activity.Med Res Rev. 2018;1–32. https://doi.org/10.1002/med.21489

https://doi.org/10.1002/med.21489

