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Abstract 

 

In the majority of patients with advanced breast cancer, there is metastatic spread to bones resulting 

in pain. Clinically available drug treatments for alleviation of breast cancer-induced bone pain 

(BCIBP) often produce inadequate pain relief due to dose-limiting side-effects. A major 

impediment to the discovery of novel well-tolerated analgesic agents for the relief of pain due to 

bony metastases is the fact that most rodent models of cancer induced bone pain were induced by 

systemic injection of cancer cells, resulting in widespread formation of cancer metastases and poor 

general animal health necessitating early euthanasia on welfare grounds. 

 

In my thesis, Chapter 1 explores briefly the literature on concepts involving pain processing, 

pathophysiology of breast cancer and Walker 256 breast cancer cell- induced bone pain model in 

rats. 

 

My first aim was to establish and comprehensively characterise a clinically relevant and optimised 

Wistar Han female rat model of BCIBP involving unilateral intra-tibial injection (ITI) of Walker 

256 breast carcinoma cells. The results described in Chapter 2 portray the establishment and 

optimisation of this model. I found the optimum number of Walker 256 cells producing bilateral 

hypersensitivity in the hind paws of rats whilst maintaining satisfactory animal health to be 4.5 x 

105 cells / 10 µL. The rats unilaterally injected with cancer cells developed bilateral mechanical 

allodynia and mechanical hyperalgesia, but not thermal hyperalgesia. I further characterised this 

model using tibial bone histology and micro-computed tomography (µCT) scans, which confirmed 

the presence of osteolytic lesions due to cancer induced bone destruction. Interestingly, the pain 

hypersensitivity in the hind paws of rats given an ITI of Walker 256 cells resolved after 

approximately 25 days, which was reversed by administration of the opioid receptor antagonist, 

naloxone, suggesting a possible role of endogenous opioid system. Further, I fully validated the 

model pharmacologically by testing the clinically used standard analgesic drugs viz. morphine, 

gabapentin, amitriptyline and meloxicam and found their corresponding ED50-Ipsilateral values for 

anti-allodynia to be 1.3 mg/kg, 47.1 mg/kg, 20.1 mg/kg and 3.9 mg/kg, respectively. 

 

Although, Walker 256 cell line is one of the most commonly used rat breast cancer cell lines in 

experimental research, the molecular genetic profile of this cell line is not known. One of the aims 

of Chapter 3 was therefore to perform gene expression characterisation of Walker 256 cell line 

using next-generation RNA sequencing. The gene expression profile of Walker 256 cell line 

resembled to Basal-B subtype of human breast cancer cell lines. Specifically, Walker 256 cells 
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express the marker Her2 (Erbb2), but not estrogen or androgen receptors, and also lack 

progesterone receptor typically found in human Her2-positive breast cancers. To gain additional 

insight into the pathophysiological mechanisms contributing to the development of BCIBP, in this 

Chapter, I also assessed gene expression changes in dorsal root ganglia (DRGs) and spinal cord of 

rats using next-generation sequencing. In the spinal cord of BCIBP rats during the pain state (day 

10 post-ITI), 294 genes were differentially expressed in the spinal cord compared to sham rats, 

including several genes known to have roles in pain processing pathway. In addition, 25 genes were 

differentially expressed in the DRGs of BCIBP rats at the resolved-pain state (day 48 post-ITI) 

compared to BCIBP rats in pain state. 

 

The last aim of my project, described in Chapter 4, was to assess the analgesic efficacy of J-2156, a 

somatostatin receptor– 4 (SST4) agonist, in the optimized rat model of BCIBP. J-2156 elicited anti-

allodynia and anti-hyperalgesia in the BCIBP model in a dose-dependent manner. In BCIBP rats, 

the vast majority of cell bodies of small peptidergic (77 %) and non-peptidergic C fibre neurons (86 

%) as well as medium-large diameter neurons (92 %) in the DRGs expressed the SST4 receptor. 

This distribution in BCIBP rats did not significantly differ from that in the sham rats. Consistent 

with a peripheral mechanism of action, treatment with J-2156 caused a decrease in phosphorylated 

extracellular signal-regulated kinase (pERK) expression in the spinal dorsal horn. 

 

In summary, in my PhD project, I have successfully established, optimized and characterized a rat 

model of BCIBP, which is well-suited for probing the mechanisms underpinning BCIBP and for 

efficacy profiling of new molecules. I have performed transcriptomic characterization of Walker 

256 rat breast cancer cell line, which gave detailed insights into the potentials and limitations of 

Walker 256 as a breast cancer cell line. I have also performed transcriptomic characterization of the 

DRGs and spinal cord of BCIBP rats compared to sham rats, which has given important 

information on gene-level changes associated with BCIBP. Lastly, I have found that J-2156 has 

potential to alleviate BCIBP and hence, this provides valuable insight into the role of SST4 receptor 

as an analgesic drug target in the pathophysiological state of BCIBP. 



iv 
 

Declaration by author 

 

This thesis is composed of my original work, and contains no material previously published or 

written by another person except where due reference has been made in the text. I have clearly 

stated the contribution by others to jointly-authored works that I have included in my thesis. 

 

I have clearly stated the contribution of others to my thesis as a whole, including statistical 

assistance, survey design, data analysis, significant technical procedures, professional editorial 

advice, and any other original research work used or reported in my thesis. The content of my thesis 

is the result of work I have carried out since the commencement of my research higher degree 

candidature and does not include a substantial part of work that has been submitted to qualify for 

the award of any other degree or diploma in any university or other tertiary institution. I have 

clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. 

 

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, 

subject to the policy and procedures of The University of Queensland, the thesis be made available 

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has 

been approved by the Dean of the Graduate School.  

 

I acknowledge that copyright of all material contained in my thesis resides with the copyright 

holder(s) of that material. Where appropriate I have obtained copyright permission from the 

copyright holder to reproduce material in this thesis. 

 



v 
 

Publications during candidature 

 

Peer-reviewed papers: 

 SHENOY, P. A., KUO, A., VETTER, I. & SMITH, M. T. 2016. The Walker 256 Breast 

Cancer Cell- Induced Bone Pain Model in Rats. Frontiers in Pharmacology, 7. 

 

 SHENOY, P., KUO, A., VETTER, I. & SMITH, M. T. 2017. Optimization and In Vivo 

Profiling of a Refined Rat Model of Walker 256 Breast Cancer Cell-Induced Bone Pain 

Using Behavioral, Radiological, Histological, Immunohistochemical and Pharmacological 

Methods. Frontiers in Pharmacology, 8. 

 

 

Conference presentations: 

 Presented Poster entitled “Establishment, Optimization and Characterization of a Rat Model 

of Breast Cancer ‐induced Bone Pain” in “7th International Postgraduate Symposium in 

Biomedical Sciences”, School of Biomedical Sciences, The University of Queensland, 

Brisbane, Australia held during 31st October – 01st November 2016. 

 

 Presented Poster entitled “Establishment, Optimization and Characterization of a Rat Model 

of Breast Cancer ‐induced Bone Pain” in “International Association for the Study of Pain’s 

World Congress on Pain”, Yokohama, Japan held during 26-30th September 2016. 

 

 Presented talk entitled “Establishment, Optimization and Characterization of a Rat Model of 

Breast Cancer Induced Bone Pain” in “6th International Postgraduate Symposium in 

Biomedical Sciences”, School of Biomedical Sciences, The University of Queensland, 

Brisbane, Australia held during 02nd-04th November 2015. 

 

 Presented Poster entitled “Establishment and Optimization of a Rat Model of Breast Cancer 

‐induced Bone Pain” in “2015 Australian Pain Society 35th Annual Scientific Meeting”, 

Brisbane, Australia held during 15-18th March 2015. 

 

 Presented talk entitled “Breast Cancer induced Bone Pain” in “Three Minute Thesis (3 MT) 

Competition”, School of Pharmacy, The University of Queensland, Brisbane, Australia held 

on 22nd July 2014. 



vi 
 

Publications included in this thesis 

 

1. SHENOY, P. A., KUO, A., VETTER, I. & SMITH, M. T. 2016. The Walker 256 Breast 

Cancer Cell- Induced Bone Pain Model in Rats. Frontiers in Pharmacology, 7. – 

incorporated in Chapter 1. 

 

Contributor Statement of contribution 

Priyank A. Shenoy (Candidate) Wrote (100 %) 

Edited paper (25 %) 

Andy Kuo Edited paper (25 %) 

Irina Vetter Edited paper (25 %) 

Maree T. Smith Edited paper (25 %) 

 

 

2. SHENOY, P. A., KUO, A., VETTER, I. & SMITH, M. T. 2017. Optimization and In Vivo 

Profiling of a Refined Rat Model of Walker 256 Breast Cancer Cell-Induced Bone Pain 

Using Behavioral, Radiological, Histological, Immunohistochemical and Pharmacological 

Methods. Frontiers in Pharmacology, 8. – incorporated as Chapter 2. 

 

Contributor Statement of contribution 

Priyank A. Shenoy (Candidate) Designed experiments (30 %) 

Laboratory work (100 %) 

Analysis and interpretation of data (50 %) 

Wrote paper (100 %)  

Edited paper (20 %) 

Andy Kuo Designed experiments (10 %) 

Analysis and interpretation of data (15 %) 

Edited paper (10 %) 

Irina Vetter Designed experiments (10 %) 

Analysis and interpretation of data (15 %) 

Edited paper (20 %) 

Maree T. Smith Designed experiments (50 %) 

Analysis and interpretation of data (20 %) 

Edited paper (50 %) 



vii 
 

Contributions by others to the thesis 

 

My PhD Advisors, Dr Irina Vetter, Professor Maree T. Smith and Dr Andy Kuo have made 

significant contributions towards the work presented in this thesis including conception and design 

of the project, interpretation of data and drafting and revising the written parts of this work. RNA-

seq samples of Walker 256 cell line were processed by Institute for Molecular Bioscience, the 

University of Queensland (Australia). Boehringer Ingelheim Pharma Gmbh & Co. KG (Germany) 

processed the RNA-seq samples of neural tissues and supplied the data of affinity/potency 

experiments on J-2156. Dr John Mackie and Dr Karine Mardon kindly helped me with 

histopathological analysis and radiological analysis of rat tibial bones, respectively. 

 

Statement of parts of the thesis submitted to qualify for the award of another degree 

 

None 



viii 
 

Acknowledgements 

 

I would firstly thank Lord Hanuman, whose limitless power and grace drives my life. I am very 

thankful to my Advisors, Dr Irina Vetter, Professor Maree T. Smith and Dr Andy Kuo, for 

providing me necessary infrastructure, funds and all the guidance and support required throughout 

my PhD candidature. I will always remain very thankful to Dr Vetter who chose me as a PhD 

student and provided me with a life-changing opportunity of studying in Australia. My PhD project 

work was conducted in Professor Smith’s laboratory at Centre for Integrated Preclinical Drug 

Development (CIPDD/TetraQ) (Centre for Clinical Research, Faculty of Medicine). I have seen 

Professor Smith as a strict mentor, yet certainly one of the kindest, most compassionate and revered 

persons I have ever met. These years of my professional associations with Professor Smith have left 

deep positive imprints on me, and I will cherish them for the rest of my life. Without Professor 

Smith’s solid support throughout my candidature, I would have never seen this day of my life. 

Words will never be enough to express my feelings, but all I can very genuinenly say is that I have 

experienced the Almighty God in Professor Smith. I am grateful to Dr Kuo for his persistent 

support in my candidature. 

 

I am thankful to the University of Queensland for providing me with an International PhD 

Scholarship. I acknowledge the Queensland Government Smart State Research Programme for 

supporting CIPDD research infrastructure. CIPDD is also supported by Therapeutic Innovation 

Australia (TIA). TIA is supported by the Australian Government through the National Collaborative 

Research Infrastructure Strategy (NCRIS) program. 

 

I would specially thank Dr Ai-Leen Lam and Dr Nemat Khan, who stood by me when I needed 

them the most; I owe them a lot. I am thankful to Dr Felicity Han, Dr Jia Yu Peppermint Lee and Dr 

Drew Brockman from CIPDD for their expert guidance in various parts of my research. I am also 

thankful to Ms Suzanne O’Hagan, Dr Arjun Muralidharan, Mr Michael Osborne, Ms Kelly 

Sweeney, Ms Angela Raboczyj and all the students and staff members from Professor Smith’s 

laboratory at CIPDD/TetraQ for their continuous support. I am also grateful to Dr Kathleen Yin, Mr 

Bryan Tay and all other members from Dr Vetter’s laboratory at IMB for their kind assistance in 

my project. 

 

Finally, I am very thankful to my mother, father, brother and all other family, friends and well-

wishers who have been persistently supporting me through these years of my PhD. 

 



ix 
 

Keywords 

Breast cancer induced bone pain, bony metastases, Walker 256 cell, Wistar Han female rat model, 

transcriptomic characterisation, somatostatin receptor 4, J-2156 

 

 

Australian and New Zealand Standard Research Classifications (ANZSRC) 

 

ANZSRC code: 111501, Basic Pharmacology, 55% 

ANZSRC code: 110905, Peripheral Nervous System, 30% 

ANZSRC code: 110903, Central Nervous System, 15% 

 

 

Fields of Research (FoR) Classification 

 

FoR code: 1115, Pharmacology and Pharmaceutical Sciences, 60% 

FoR code: 1109, Neurosciences, 30% 

FoR code: 1112, Oncology and Carcinogenesis, 10% 



x 
 

Table of Contents 

Title Page no. 

Abstract 

 

Declaration by author 

 

Publications during candidature 

 

Publications included in this thesis 

 

Contributions by others to the thesis 

 

Acknowledgements 

 

Table of contents 

 

List of figures 

 

List of tables 

 

List of abbreviations 

 

1. Chapter 1: Literature Review 

 

1.1. Foreword 

 

1.2.  Breast cancer 

 

1.3. Cancer-induced bone pain 

 

1.4. Overview of signalling pathways 

 

1.5. Involvement of ion channels in signalling mechanisms 

 

1.6. Signalling molecules of peripheral pain sensitivity 

 

1.7. Role of G-protein-coupled receptors 

 

1.8. Involvement of central signalling 

 

1.9. Role of neuro-glia 

 

1.10. Analgesic drugs 

 

1.11. The Walker 256 breast cancer cell-induced bone pain model in 

rats 

 

1.11.1. Rat as species of choice 

 

ii 

 

iv 

 

v 

 

vi 

 

vii 

 

viii 

 

x 

 

xvi 

 

xxiv 

 

xxvii 

 

 

 

1 

 

1 

 

3 

 

4 

 

6 

 

11 

 

12 

 

13 

 

16 

 

17 

 

18 

 

 

18 

 



xi 
 

1.11.2. Suitability of Walker 256 cells 

 

1.11.3. General methodology 

 

1.11.4. Time frame for development of pain behaviors and analgesic  

efficacy testing 

 

1.11.5. Nature of pain manifestation 

 

1.11.6. Regression of tumour and resolution of pain 

 

1.11.7. Targets for novel analgesic drug discovery 

 

1.11.8. Limitations and potential improvement of the model 

 

1.11.9. Conclusion 

 

1.12. Summary 

 

1.13. Hypotheses and aims 

 

1.13.1. Hypotheses 

 

1.13.2. Aims 

 

2. Chapter 2: Optimization and in vivo profiling of a refined rat  

model of Walker 256 breast cancer cell-induced bone pain using  

behavioral, radiological, histological, immunohistochemical and  

pharmacological methods 

 

2.1. Foreword 

 

2.2. Introduction 

 

2.3. Material and methods 

 

2.3.1. Drugs, chemicals and reagents 

 

2.3.2. Cell culture 

 

2.3.3. Animals 

 

2.3.4. Surgical procedure 

 

2.3.5. Animal groups and experimental timeline 

 

2.3.6. General health characteristics 

 

2.3.7. Pain behavioral studies 

 

2.3.7.1. Assessment of mechanical allodynia in the hindpaws 

 

19 

 

21 

 

21 

 

 

22 

 

27 

 

27 

 

34 

 

34 

 

35 

 

35 

 

35 

 

36 

 

 

 

 

 

 

37 

 

37 

 

38 

 

38 

 

39 

 

39 

 

40 

 

41 

 

43 

 

43 

 

43 

 



xii 
 

2.3.7.2. Assessment of mechanical hyperalgesia in the hindpaws 

 

2.3.7.3. Assessment of thermal hyperalgesia in the hindpaws 

 

2.3.7.4. Test compound administration 

 

2.3.7.4.1. Effect of naloxone on pain phenotypes 

 

2.3.7.4.2. Anti-allodynic effect of morphine, gabapentin, amitriptyline 

and meloxicam 

 

2.3.7.4.3. Anti-hyperalgesic effect of morphine, gabapentin, 

amitriptyline and meloxicam 

 

2.3.8. Tibial bone µCT scan 

 

2.3.9. Tibial bone histology 

 

2.3.10. Immunocytochemistry of Walker 256 cells: Cytokeratin 18 

 

2.3.11. Tibial bone immunohistochemistry 

 

2.3.12. Image acquisition 

 

2.3.13. Data analysis 

 

2.3.14. Statistical analysis 

 

2.4. Results 

 

2.4.1. General health characteristics 

 

2.4.2. Assessment of mechanical allodynia in the hindpaws 

 

2.4.3. Assessment of mechanical hyperalgesia in the hindpaws 

 

2.4.4. Assessment of thermal hyperalgesia in the hindpaws 

 

2.4.5. Test compound administration 

 

2.4.5.1. Effect of naloxone on pain behavioral phenotypes 

 

2.4.5.2. Anti-allodynic effect of morphine, gabapentin, amitriptyline 

and meloxicam 

 

2.4.5.3. Anti-hyperalgesic effect of morphine, gabapentin, amitriptyline 

and meloxicam 

 

2.4.6. Tibial bone µCT scan 

 

2.4.7. Tibial bone histology 

 

44 

 

44 

 

45 

 

45 

 

45 

 

 

45 

 

 

45 

 

46 

 

46 

 

47 

 

48 

 

48 

 

49 

 

49 

 

49 

 

51 

 

54 

 

56 

 

60 

 

60 

 

66 

 

 

73 

 

 

76 

 

78 

 



xiii 
 

2.4.8. Immunocytochemistry of Walker 256 cells: Cytokeratin 18 

 

2.4.9. Tibial bone immunohistochemistry 

 

2.5. Discussion 

 

3. Chapter 3: Transcriptomic characterisation of the optimised rat 

model of Walker 256 breast cancer cell-induced bone pain 

 

3.1. Foreword 

 

3.2. Introduction 

 

3.3. Material and methods 

 

3.3.1. Drugs, Chemicals and reagents 

 

3.3.2. Cell culture 

 

3.3.3. Animals, surgical procedure, assessment of health characteristics 

and measurement of mechanical allodynia 

 

3.3.4. RNA-Seq and bioinformatics analysis 

 

3.4. Results 

 

3.4.1. Presence of genes with breast cancer implications in Walker 256 

cell line 

 

3.4.2. Genes marking the mammary origin of the Walker 256 cell line 

 

3.4.3. Molecular classification of Walker 256 cell line 

 

3.4.4. Genes of prognostic / therapeutic / invasiveness markers of 

breast cancer in the Walker 256 cell line 

 

3.4.5. Gene ontology analysis on the Walker 256 cell line RNA sample: 

Biological Process 

 

3.4.6. Gene expression changes in BCIBP rats’ ipsilateral lumbar L4-6 

DRGs during the pain-state 

 

3.4.7. Gene expression changes in BCIBP rats’ lumbar L4-6 spinal cord 

during the pain-state 

 

3.4.8. Gene expression changes in BCIBP rats’ ipsilateral lumbar L4-6 

DRGs at the resolved pain-state 

 

3.4.9. Gene ontology analysis on differentially expressed genes in the 

lumbar spinal cord during the pain state- Biological Process 

 

3.4.10. Gene ontology analysis on differentially expressed genes in the 

79 

 

80 

 

82 

 

 

 

 

103 

 

103 

 

104 

 

104 

 

104 

 

104 

 

 

105 

 

107 

 

108 

 

 

111 

 

112 

 

113 

 

 

113 

 

 

114 

 

 

114 

 

 

115 

 

 

115 

 

 

117 



xiv 
 

lumbar spinal cord during the pain state- Cellular Component 

 

3.4.11. Gene ontology analysis on differentially expressed genes in the 

lumbar spinal cord during the pain state- Molecular Function 

 

3.4.12. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis on differentially expressed genes in the lumbar spinal cord 

during the pain state 

 

3.4.13. STRING network analysis on differentially expressed genes in 

the lumbar spinal cord during the pain state 

 

3.5. Discussion 

 

4. Chapter 4: Analgesic efficacy of J-2156, a somatostatin receptor–  

4 agonist, in a rat model of breast cancer induced bone pain 

 

4.1. Foreword 

 

4.2. Introduction 

 

4.3. Material and methods 

 

4.3.1. Drugs, chemicals and reagents 

 

4.3.2. Radioligand binding assays 

 

4.3.2.1. Assessment of reactivity of J-2156 to receptors of somatostatin 

family 

 

4.3.2.2. Assessment of cross-reactivity of J-2156 to other 

pharmacological targets 

 

4.3.3. Potency of J-2156: cAMP inhibition 

 

4.3.4. Cell culture 

 

4.3.5. Animals 

 

4.3.6. Surgical procedure 

 

4.3.7. Behavioral studies 

 

4.3.7.1. Assessment of mechanical allodynia in the hindpaws 

 

4.3.7.2. Assessment of mechanical hyperalgesia in the hindpaws 

 

4.3.8. Administration of J-2156 and behavioural testing 

 

4.3.9. Immunohistochemistry 

 

4.3.10. Acquisition of images and analysis 

 

 

118 

 

 

120 

 

 

 

122 

 

 

126 

 

 

 

 

132 

 

132 

 

134 

 

134 

 

134 

 

134 

 

 

135 

 

 

135 

 

136 

 

137 

 

137 

 

138 

 

138 

 

138 

 

139 

 

139 

 

140 



xv 
 

 

4.3.11. Data analysis and statistical analysis 

 

4.4. Results 

 

4.4.1. Radioligand binding assays 

 

4.4.1.1. Assessment of reactivity of J-2156 to receptors of somatostatin 

family 

 

4.4.1.2. Assessment of cross-reactivity of J-2156 to other 

pharmacological targets 

 

4.4.2. Potency of J-2156: cAMP inhibition 

 

4.4.3. Development of mechanical allodynia and mechanical 

hyperalgesia in the bilateral hindpaws 

 

4.4.4. Anti-allodynic effect of J-2156 in BCIBP 

 

4.4.5. Anti-hyperalgesic effect of J-2156 in BCIBP 

 

4.4.6. Validation of the anti-SST4 receptor antibody 

 

4.4.7. Expression of SST4 receptor in DRGs and spinal cord in BCIBP 

 

4.4.8. Expression of somatostatin in DRGs and spinal cord in BCIBP 

 

4.4.9. Distribution of the SST4 receptor in the ipsilateral lumbar DRGs 

of BCIBP-rats 

 

4.4.10. Effect of J-2156 on pERK levels in the lumbar spinal cord of 

BCIBP-rats 

 

4.5. Discussion 

 

5. Chapter 5: Summary, conclusions and future directions 

 

5.1. Summary and conclusions 

 

5.2. Future Directions 

 

Bibliography 

 

Appendices 

 

141 

 

142 

 

142 

 

142 

 

 

143 

 

 

143 

 

143 

 

 

144 

 

145 

 

146 

 

147 

 

149 

 

151 

 

 

152 

 

 

154 

 

 

 

169 

 

171 

 

178 

 

243 

 

 

 



xvi 
 

List of Figures 

Chapter 1 

Figure 1.1. The biology of breast cancer. 

Figure 1.2. Ascending circuits involved in physiological pain. 

 

Chapter 2 

 

Figure 2.1. Timeline of assessments performed in individual experiments. AM, amitriptyline; C, 

clinical observations; GB, gabapentin; H, Hargreaves testing; HK, heat-killed; HT, histological 

assessment; I, immunohistochemical assessment; MP, morphine; MX, meloxicam; 

MP/GB/AM/MX-P, paw pressure testing after drug injection; MP/GB/AM/MX-V, von Frey testing 

after drug injection; N-H, Hargreaves testing after naloxone injection; N-P, paw pressure testing 

after naloxone injection; N-V, von Frey testing after naloxone injection; P, paw pressure testing; R, 

radiological assessment; V, von Frey testing; W256, Walker 256 cells. 

 

Figure 2.2. Body weight of rats from individual experiments. Panels in the figure show mean 

(±SEM) body weight of rats from (A) experiment 2, (B) experiment 3 and (C) experiment 5. HK, 

heat-killed; W256, Walker 256 cells. There were no statistically significant differences in body 

weight between any treatment groups (p>0.05; experiment 2, Two-way ANOVA, posthoc 

Bonferroni test; experiment 3 and 5, Mann-Whitney test). 

 

Figure 2.3. Paw withdrawal thresholds (PWTs) of ipsilateral and contralateral hindpaws of rats. 

Panels in the figure show mean (±SEM) PWTs of rats from (A) experiment 2, (B) experiment 3 and 

(C) experiment 5. Rats with PWTs < 6 g in the ipsilateral hindpaw were considered to have fully 

developed mechanical allodynia as indicated by the dotted line. HK, heat-killed; W256, Walker 256 

cells. *p<0.05 (Two-way ANOVA, posthoc Bonferroni test) c.f. rats given an ITI of HK W256 

cells. 

 

Figure 2.4. Paw pressure thresholds (PPTs) of ipsilateral and contralateral hindpaws of rats. Panels 

in the figure show mean (±SEM) PPTs of rats from (A) experiment 2, (B) experiment 3 and (C) 

experiment 5. Rats with PPTs < 80 g in the ipsilateral hindpaw were considered to have fully 

developed mechanical hyperalgesia as indicated by the dotted line. HK, heat-killed; W256, Walker 



xvii 
 

256 cells. *p<0.05 (Two-way ANOVA, posthoc Bonferroni test) c.f. rats given an ITI of HK W256 

cells. 

 

Figure 2.5. Paw thermal thresholds (PTTs) of ipsilateral and contralateral hindpaws of rats. Panels 

in the figure show mean (±SEM) PTTs of rats from (A) experiment 2, (B) experiment 3 and (C) 

experiment 6. HK, heat-killed; W256, Walker 256 cells. There were no statistically significant 

differences in PTTs between the treatment groups in any of these experiments (p>0.05; Two-way 

ANOVA, posthoc Bonferroni test). 

 

Figure 2.6. Effect of naloxone on ipsilateral and contralateral paw withdrawal thresholds (PWTs) of 

rats. Panels in the figure show mean (±SEM) PWT versus time curves from experiment 5 following 

naloxone or vehicle injection between (A) day 43-51 post-ITI and (B) day 53-66 post-ITI. The 

dotted line indicates the threshold PWT value at / below which the rats were considered to have 

fully developed mechanical allodynia. BCIBP (4 x 105), group of rats given an ITI of 4 x 105 W256 

cells; HK, heat-killed; NAL, naloxone (15 mg/kg s.c.); Sham (4 x 105), group of rats given an ITI of 

4 x 105 HK W256 cells; VEH, vehicle; W256, Walker 256 cells. *p<0.05 (Two-way ANOVA, 

posthoc Bonferroni test) c.f. rats given an ITI of HK W256 cells. 

 

Figure 2.7. Temporal changes in the paw withdrawal thresholds (PWTs) of BCIBP rats in the 

ipsilateral hindpaws following the administration of single bolus doses of analgesic and adjuvant 

drugs. Panels in the figure show temporal changes in mean (±SEM) PWT versus time curves 

following injection of (A) morphine, (B) gabapentin, (C) amitriptyline and (D) meloxicam. 

 

Figure 2.8. Dose response curves of morphine and gabapentin in BCIBP rats. Panels in the figure 

show % MAX AUC ΔPWT (representative of response) versus log10 dose (representative of dose) 

curves of (A) morphine and (B) gabapentin in the ipsilateral and contralateral hindpaws. ED50-IPSI 

and ED50-CONTRA values for morphine were found to be 1.3 and 1.4 mg/kg, respectively, and for 

gabapentin were found to be 47.1 and 30.8 mg/kg, respectively. 

 

Figure 2.9. Dose response curves of amitriptyline and meloxicam in BCIBP rats. Panels in the 

figure show % MAX AUC ΔPWT (representative of response) versus log10 dose (representative of 

dose) curves of (A) amitriptyline and (B) meloxicam in the ipsilateral and contralateral hindpaws. 

ED50-IPSI and ED50-CONTRA values for amitriptyline were found to be 20.1 and 21.4 mg/kg, 

respectively, and for meloxicam were found to be 3.9 and 3.5 mg/kg, respectively. 

 



xviii 
 

Figure 2.10. Temporal changes in the paw pressure thresholds (PPTs) of BCIBP rats in the 

ipsilateral hindpaws following administration of single bolus doses of analgesic and adjuvant drugs. 

Panels in the figure show temporal changes in mean (±SEM) PPT versus time curves following 

injection of (A) morphine, (B) gabapentin, (C) amitriptyline and (D) meloxicam. 

 

Figure 2.11. Radiological assessment of tibiae from BCIBP rats and the corresponding sham rats. 

Panels in the figure show (A) 3D-µCT radiological image of a sham rat’s tibia at day 10 post-ITI, 

(B) trabecular bone of a sham rat’s tibia at day 10 post-ITI, (C) 3D-µCT radiological image of a 

BCIBP rat’s tibia at day 10 post-ITI, (D) trabecular bone of a BCIBP rat’s tibia at day 10 post-ITI, 

(E-H) morphometric changes in BCIBP rats’ tibiae relative to sham rats’ tibiae at day 10 post-ITI, 

(I) 3D-µCT radiological image of a sham rat’s tibia at day 48 post-ITI, (J) trabecular bone of a sham 

rat’s tibia at day 48 post-ITI, (K) 3D-µCT radiological image of a BCIBP rat’s tibia at day 48 post-

ITI, (L) trabecular bone of a BCIBP rat’s tibia at day 48 post-ITI, (M-P) morphometric changes in 

BCIBP rats’ tibiae relative to sham rats’ tibiae at day 48 post-ITI. *p<0.05 (Two-way ANOVA, 

posthoc Bonferroni test). Scale bar – 5 mm. 

 

Figure 2.12. Histological assessment of tibiae from BCIBP rats and corresponding sham rats. Panels 

in the figure show representative images of H&E staining of tibial sections of (A) sham rat at day 

10 post-ITI, (B) BCIBP rat at day 10 post-ITI, (C) sham rat at day 48 post-ITI and (D) BCIBP rat at 

day 48 post-ITI. Black arrowheads show destruction of cortical bone of tibiae. Scale bar – 1 mm. 

 

Figure 2.13. Immunocytochemical staining of the Walker 256 cell line for Cytokeratin 18 using the 

ab187573 (Abcam) antibody. Panels in the figure show (A) cytokeratin 18 (B) DAPI and (C) A and 

B merged. 

 

Figure 2.14. Immunohistochemical staining of Cytokeratin 18 in tibial sections of BCIBP rats and 

the corresponding sections from sham rats using the ab187573 (Abcam) antibody. Panels in the 

figure show immunofluorescence imaging of tibial sections of (A) sham rat at day 7 post-ITI, (B) 

BCIBP rat at day 7 post-ITI, (C) sham rat at day 38 post-ITI and (D) BCIBP rat at day 38 post-ITI. 

 

Supplementary Figure 2.1. Form used to record clinical observations in rats. 

 

Supplementary Figure 2.2. Body weight of rats from various experiments. Panels in the figure show 

mean (±SEM) body weight of rats from (A) experiment 1, (B) experiment 4, (C) experiment 6, (D) 

experiment 7, (E) experiment 8, (F) experiment 9, (G) experiment 10, (H) experiment 11, (I) 
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experiment 12, (J) experiment 13, (K) experiment 14, (L) experiment 15 and (M) experiment 16. 

HK, heat-killed; W256, Walker 256 cells. 

 

Supplementary Figure 2.3. Paw withdrawal thresholds (PWTs) of ipsilateral and contralateral 

hindpaws of rats. Panels in the figure show mean (±SEM) PWTs of rats from (A) experiment 4, (B) 

experiment 8, (C) experiment 9, (D) experiment 15 and (E) experiment 16. HK, heat-killed; W256, 

Walker 256 cells. 

 

Supplementary Figure 2.4. Paw pressure thresholds (PPTs) of the ipsilateral and contralateral 

hindpaws of rats from experiment 4. 

 

Supplementary Figure 2.5. Paw thermal thresholds (PTTs) of the ipsilateral and contralateral 

hindpaws of rats. Panels in the figure show mean (±SEM) PTTs of rats from (A) experiment 4 and 

(B) experiment 5. HK, heat-killed; W256, Walker 256 cells. 

 

Supplementary Figure 2.6. Effect of naloxone on ipsilateral and contralateral PWT / PPT / PTT 

values of rats. Panels in the figure show changes in mean (±SEM) (A) PWTs in experiment 3 

following naloxone injection between day 81-91 post-ITI, (B) PPTs in experiment 3 following 

naloxone injection between day 82-92 post-ITI, (C) PWTs in experiment 4 following naloxone 

injection between days 81-93 post-ITI, (D) PPTs in experiment 4 following naloxone injection 

between days 82-94 post-ITI and (E) PTTs in experiment 7 following naloxone injection between 

days 21-24 post-ITI. BCIBP (1.5 x 105), group of rats given an ITI of 1.5 x 105 W256 cells; BCIBP 

(4 x 105), group of rats given an ITI of 4 x 105 W256 cells; DPBS, group of rats given an ITI of 10 

µL DPBS; HK, heat-killed; NAL, naloxone (15 mg/kg s.c.); Sham (1.5 x 105), group of rats given 

an ITI of 1.5 x 105 HK W256 cells; Sham (4 x 105), group of rats given an ITI of 4 x 105 HK W256 

cells; VEH, vehicle; W256, Walker 256. 

 

Supplementary Figure 2.7. Temporal changes in the paw withdrawal thresholds (PWTs) of the 

contralateral hindpaws for BCIBP rats following administration of single bolus doses of analgesic 

and adjuvant drugs. Panels in the figure show temporal changes in mean (±SEM) PWTs versus time 

curves following injection of (A) morphine, (B) gabapentin, (C) amitriptyline and (D) meloxicam. 

 

Supplementary Figure 2.8. Temporal changes in the paw pressure thresholds (PPTs) of the 

contralateral hindpaws for BCIBP rats following administration of single bolus doses of analgesic 
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and adjuvant drugs. Panels in the figure show temporal changes in mean (±SEM) PPTs versus time 

curves following injection of (A) morphine, (B) gabapentin, (C) amitriptyline and (D) meloxicam. 

 

Supplementary Figure 2.9. Immunocytochemical staining of the Walker 256 cell line for 

Cytokeratin 18 using the ab668 (Abcam) antibody. Panels in the figure show (A) cytokeratin 18 (B) 

DAPI and (C) A and B merged. 

 

Supplementary Figure 2.10. Immunohistochemical staining of Cytokeratin 18 in tibial sections from 

BCIBP rats and the corresponding sections from sham rats using the ab668 (Abcam) antibody. 

Panels in the figure show immunofluorescence imaging of tibial sections from (A) sham and (B) 

BCIBP rats at day 7 post-ITI. 
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Figure 3.2. Molecular classification of the Walker 256 cell line. Green tick mark, meets the gene 

expression requirement of the given cell line subtype; Red cross mark, does not meet the gene 

expression requirement of the given cell line subtype. 

 

Figure 3.3. Genes of common prognostic / therapeutic / invasiveness markers of breast cancer in the 
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Figure 3.5. STRING network analysis of upregulated genes in the lumbar spinal cord of BCIBP rats 
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xxi 
 

Chapter 4 

 

Figure 4.1. Temporal changes in mean (+SEM) paw withdrawal thresholds (PWTs) and paw 

pressure thresholds (PPTs) in the hindpaws of rats following a unilateral ITI of 4 x 105 Walker 256 

cells (BCIBP group) and 4 x 105 heat-killed Walker 256 cells (sham group). Panels in the figure 

show (A) PWTs in the ipsilateral hindpaws, (B) PWTs in the contralateral hindpaws, (C) PPTs in 

the ipsilateral hindpaws and (D) PPTs in the contralateral hindpaws. The dotted line shows the 

threshold criterion for full development of mechanical allodynia (PWTs ≤ 6 g, panel A-B) and 

mechanical hyperalgesia (PPTs ≤ 80 g, panel C-D). *p≤0.05 (Two-way ANOVA, posthoc 

Bonferroni test) c.f. sham rats. 

 

Figure 4.2. Anti-allodynic effect of single bolus doses (i.p.) of J-2156 on ipsilateral and 

contralateral hindpaw withdrawal thresholds (PWTs) in BCIBP-rats. Panels in the figure show 

mean (+SEM) (A) ipsilateral PWT versus time curves and (B) contralateral PWT versus time 

curves. The dotted line shows the threshold criterion of fully developed mechanical allodynia (≤ 6 

g). 

 

Figure 4.3. Anti-hyperalgesic effect of single bolus doses (i.p.) of J-2156 on ipsilateral and 

contralateral hindpaw pressure thresholds (PPTs) in BCIBP rats. Panels in the figure show mean 

(+SEM) (A) ipsilateral PPT versus time curves and (B) contralateral PPT versus time curves. The 

dotted line shows the threshold criterion of fully developed mechanical hyperalgesia (≤ 80 g). 

 

Figure 4.4. Expression levels of the SST4 receptor in sections of ipsilateral lumbar L4-L6 dorsal 

root ganglia (DRGs) and in sections of the lumbar spinal dorsal horns of BCIBP-rats and the 

corresponding sections from sham rats (n=3-4/group). Panels in the figure show representative 

sections of (A) DRG of a sham rat, (B) DRG of a BCIBP-rat, (C) spinal dorsal horn of a sham rat 

and (D) spinal dorsal horn of a BCIBP-rat. Panel (E) shows fold-change in immunofluorescence of 

ipsilateral lumbar DRG sections of the BCIBP group relative to the sham group and (F) shows fold-

change in immunofluorescence of lumbar spinal cord sections of the BCIBP group relative to the 

sham group. ns, statistically not significant (p>0.05, Mann-Whitney test). 

 

Figure 4.5. Expression levels of somatostatin in sections of ipsilateral lumbar L4-L6 dorsal root 

ganglia (DRGs) and spinal dorsal horns of BCIBP-rats and the corresponding sections from sham 

rats (n=3-4/group). Panels in the figure show representative sections of (A) a lumbar DRG from a 

sham rat, (B) a lumbar DRG from a BCIBP-rat, (C) a lumbar spinal dorsal horn from a sham rat and 
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(D) a lumbar spinal dorsal horn from a BCIBP-rat. Panel (E) shows fold-change in 

immunofluorescence of ipsilateral lumbar DRG sections from the BCIBP group relative to the 

corresponding sections from the sham group and (F) shows the fold-change in immunofluorescence 

of lumbar spinal cord sections from the BCIBP group relative to the sham group. ns, statistically not 

significant (p>0.05, Mann-Whitney test). 

 

Figure 4.6. Immunostaining showing co-localization of the SST4 receptor with (A) substance P 

(SP), (B) isolectin B4 (IB4) and (C) neurofilament 200 kDa (NF200) in representative sections from 

ipsilateral lumbar L4-L6 dorsal root ganglia (DRGs) of BCIBP-rats (n=3-4/group). 

 

Figure 4.7. Effect of a single bolus dose of J-2156 (10 mg/kg, i.p.) on expression levels of 

phosphorylated extracellular signal-regulated kinase (pERK) in lumbar L4-L6 spinal dorsal horns of 

BCIBP-rats (n=3-4/group). Panels in the figure show (A) representative section from a drug-naïve 

BCIBP-rat, (B) representative section from a BCIBP-rat administered J-2156 (10 mg/kg, i.p.) and 

(C) fold-change in immunofluorescence of sections from the BCIBP group administered J-2156 

relative to the corresponding sections from the drug-naïve BCIBP group. *p≤0.05 (Mann-Whitney 

test). 

 

Supplementary Figure 4.1. Anti-allodynic effect of single bolus doses (i.p.) of J-2156 on ipsilateral 

and contralateral ΔPWT and % MAX ΔPWT AUC values in BCIBP-rats. Panels in the figure show 

(A) ipsilateral ΔPWT versus time curves, (B) ipsilateral % MAX ΔPWT AUC at each dose, (C) 

contralateral ΔPWT versus time curves and (D) contralateral % MAX ΔPWT AUC at each dose. 

Panel B: *p≤0.05 (F(3,20) = 11.0) and Panel D: *p≤0.05 (F(3,20) = 6.6), One-way ANOVA, posthoc 

Dunnett’s multiple comparisons test c.f. BCIBP-rats that received single bolus doses of vehicle. 

 

Supplementary Figure 4.2. Anti-hyperalgesic effect of single bolus doses (i.p.) of J-2156 on 

ipsilateral and contralateral ΔPPT and % MAX ΔPPT AUC values in BCIBP-rats. Panels in the 

figure show (A) ipsilateral ΔPPT versus time curves, (B) ipsilateral % MAX ΔPPT AUC at each 

dose, (C) contralateral ΔPPT versus time curves and (D) contralateral % MAX ΔPPT AUC at each 

dose. Panel B: *p≤0.05 (F(3,20) = 10.1) and Panel D: *p≤0.05 (F(3,20) = 14.5), One-way ANOVA, 

posthoc Dunnett’s multiple comparisons test c.f. BCIBP-rats that received single bolus doses of 

vehicle. 

 

Supplementary Figure 4.3. Validation of the anti-SST4 receptor antibody using IHC staining. 

Panels in the figure show (A) a representative coronal section of rat brain used as a positive control 
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for the SST4 receptor and (B) a representative rat liver section used as a negative control for the 

SST4 receptor. 
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Chapter 1 

Literature review 

 

1.1. Foreword 

Pain is a significant health problem and a huge socio-economic burden across the world. This 

chapter gives a brief introduction to the concept of pain as well as pathways and signalling involved 

in pain pathophysiology in cancer and other diseases. Metastases of cancer cells to the skeleton, in 

particular breast cancer in the advanced stages, causes excruciating pain in patients so affected. This 

is because clinically available medications to treat this type of pain are not efficacious enough and 

also exhibit severe dose-limiting side effects. Hence it is very important to seek new analgesic drugs 

that are more efficacious and safer than those currently available. One of the very important steps in 

discovery of new analgesic drugs for treating this condition is employing suitable preclinical animal 

models of breast cancer-induced bone pain. Walker 256 breast cancer cell induced bone pain model 

in rats is one of the highly used models in experimental research and closely mimics the 

pathophysiology of human breast cancer-induced bone pain. Hence, this chapter also reviews 

various aspects of prevailing studies in the literature that have used this model. 

 

A part of this chapter has been adopted with permission from a previously published review article 

that arose from this thesis (Shenoy et al., 2016), published by Frontiers in Pharmacology 

(http://journal.frontiersin.org/article/10.3389/fphar.2016.00286/full). 

 

1.2. Breast cancer 

Breast cancer, a leading cause of cancer death worldwide among females, is the most frequently 

diagnosed type of cancer (Torre et al., 2015). Amongst numerous cancer types, breast cancer by 

itself accounts for around 25 % of all cancer occurrence cases in females (Torre et al., 2015). Breast 

cancer is a group of heterogeneous diseases with diverse histopathological, genetic and clinical 

(outcomes) features, rather than a single disease (Vargo-Gogola and Rosen, 2007) (Figure 1.1). 

Clinically, there are five molecular subtypes of breast cancer tumours: luminal-A, luminal-B, 

Erbb2, basal-like and normal-like (Kao et al., 2009). 

 

http://journal.frontiersin.org/article/10.3389/fphar.2016.00286/full
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Figure 1.1. The biology of breast cancer. Adapted by permission from Macmillan Publishers Ltd: 

[Nature Reviews Cancer] (Vargo-Gogola and Rosen, 2007), copyright (2007). a) In breast cancer, 

the cells can exhibit continuous genotypic and phenotypic changes as the disease progresses. 

Lobules and ducts in the normal breast terminal ductal lobular unit (TDLU) are made of bi-layered 

epithelium consisting of luminal and myoepithelial cells. Certain abnormility in the layers of cells 

within the ducts / lobules can manifest as a premalignant lesion called atypical ductal hyperplasia 

(ADH). ADH might be considered to be the precursor of ductal carcinoma in situ (DCIS). DCIS is a 

non-invasive breast cancer lesion. As the disease progresses, there is an increase in the risk of 

conversion into a malignant state or invasive breast cancer (IBC). DCIS can have the potential to 

worsen to IBC (shown by a blue star adjacent to a DCIS lesion). Breast cancer cells very often 

metastasize to the lymph nodes (MET; shown by a blue star). b) The panel shows a schematic 

representation to demonstrate how the breast cancer progresses. Different genetic and epigenetic 
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changes and interactions of cells with the microenvironment drive the transformation of epithelial 

cells of breast to metastatic breast cancer. Via invasion through the basement membrane and the 

vasculature, cells establish themselves as a metastasized tumour in the new microenvironment, 

away from the tissue of origin. c) Due to the similarities between normal breast stem or progenitor 

cells and cancer cells, it is proposed that cancer cells having stem cell-like characteristics, known as 

‘cancer stem cells’ or ‘tumour-initiating cells’, are the drivers of breast cancer progression. The 

given hypothesis is potrayed as epigenetic and genetic changes that occur in various stem or 

progenitor cells, including the long term (LT), short term (ST) and luminal or basal / myoepithelial 

progenitors, and leads to production of tumour subtypes consisting of different cell types (mixed, 

luminal or basal lineage). These may exhibit characteristic genetic profiles and have distinct 

prognoses. 

 

1.3. Cancer-induced bone pain 

Pain is a necessary, physiological phenomenon which is important for survival of the animals 

(including human beings). Simultaneously, pain is one of the most common symptoms of a wide 

variety of diseases and disorders and hence may be a severe clinical encounter (Gangadharan and 

Kuner, 2013). It is a subjective experience which varies individually for different persons (Coghill 

et al., 2003). In Australia, chronic pain is a huge public health burden and the cost associated with 

chronic pain has been estimated to be near $34.3 billion per year, or around $11,000 per person 

suffering from chronic pain (The MBF Foundation, 2007) (Miller et al., 2017, Henderson et al., 

2013). Knowledge on the multiplicity of cellular and molecular mechanisms underpinning acute 

(physiological) pain as well as that in a pathophysiological context (persistent pain), has increased 

significantly in the past two decades (Argoff, 2011, Basbaum et al., 2009, Julius and Basbaum, 

2001). Additionally, our collective understanding of various signalling pathways participating in the 

development of pain hypersensitivity induced by various diseases, is improving (Gangadharan and 

Kuner, 2013). The most common cause of pain in cancer arises from bone metastasis, and around 

73% of patients with terminal breast cancer exhibit indications of bone metastases (Currie et al., 

2013, Coleman, 2006, Bu et al., 2014). Of these, 75% suffer severe bone pain and pathological 

fractures (Ibrahim et al., 2013). This is in contrast to primary breast tumors in the tissue of origin 

that cause very little or no pain at all (Lozano-Ondoua et al., 2013b). Clinically, nonsteroidal anti-

inflammatory drugs are the mainstay of treatment, often in combination with strong opioid 

analgesics, radiotherapy in the initial stages of metastasis, and adjuvant agents that inhibit osteoclast 

activity such as bisphosphonates and denosumab (Mantyh et al., 2002, Colvin and Fallon, 2008, 

Fallon et al., 2016, Fernandes et al., 2016). The principal challenge in understanding the 

pathophysiological mechanisms of cancer-induced bone pain (CIBP) is the development of an 
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animal model which has characteristics in common with that of human CIBP (Slosky et al., 2015). 

It is only recently that preclinical studies have begun to determine how metastatic cancers may 

interact with the bone microenvironment resulting in pain (Lozano-Ondoua et al., 2013b). Until the 

late twentieth century, all animal models of CIBP relied on systemic injection of carcinoma cells, 

which resulted in poor animal health because of metastases in vital organs such as the liver, lungs, 

brain and multiple sites in bone (Urch, 2004, Simmons et al., 2015). Subsequently, the more 

efficient method of local infusion of cancer cells into a single bone was developed, thereby avoiding 

systemic spread of cancer cells and the maintenance of good general animal health (Schwei et al., 

1999). Although multiple breast cancer cell lines have been used to induce bone tumors in rats and 

mice, the focus of this mini-review (Shenoy et al., 2016) is confined to research in which Walker 

256 rat breast cancer cells have been used to induce bone pain in rats. 

 

1.4. Overview of signalling pathways 

The International Association for the Study of Pain (IASP) defines pain as “an unpleasant sensory 

and emotional experience associated with actual or potential tissue damage, or described in terms of 

such damage” (Katz et al., 2015). While the term ‘nociception’ is defined as “the neural process of 

encoding noxious stimuli” (IASP). Peripheral sensory neurons that are involved in nociception form 

the nociceptive system (Schaible, 2007). Peripheral nociceptive neurons sense the noxious stimuli 

like mechanical, thermal and chemical stimuli and are classified as C or A-delta (Aδ) fibre types 

based upon the level of myelination and hence velocity of action potential conduction along the 

nerve fiber, the size of the cell somata, and the axon diameter (Albrecht and Rice, 2010). A-beta 

(Aβ) fibers, a third type, are responsible for conducting the non-nociceptive impulses generated by 

light touch, vibration and movement in the normal conditions of physiology (Gangadharan and 

Kuner, 2013) but can transmit nociceptive signals under pathophysiological conditions (Figure 1.2). 
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Figure 1.2. Ascending circuits involved in physiological pain. Adapted (and modified) by 

permission from Macmillan Publishers Ltd: [Nature Medicine] (Kuner, 2010), copyright (2010). 

 

Peripheral C-, Aδ, and Aβ-fibers, the peripheral axons of sensory neurons having their cell bodies in 

the dorsal root ganglion (DRG), transform chemical, mechanical and thermal stimuli into electrical 

signals that are conducted to the spinal cord (Albrecht and Rice, 2010). Besides DRGs, other 

somatosensory neurons also have their cell bodies residing in the trigeminal ganglia, at the base of 

the skull (Le Pichon and Chesler, 2014). In the spinal cord, central projections synapse with neurons 

forming the spinoparabrachial and lateral spinothalamic tract to transmit pain signals to higher pain 

centres (Kuner, 2010). 

 

Most nociceptors are activated by noxious mechanical, thermal, and chemical stimuli and are hence 

polymodal (Dubin and Patapoutian, 2010). Nociceptors can also have efferent functions by the 

release of neuropeptides like substance P (SP) and calcitonin gene-related peptide (CGRP) from 

their terminals and are responsible for induction of vasodilatation, plasma extravasation, attracting 
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macrophages or inducing mast cell degranulation, etcetera, which is known as a neurogenic 

inflammatory response (Lynn, 1996, Schaible et al., 2005). Nociceptors project into the spinal cord 

and they form synaptic junctions with second order neurons in the grey matter of the spinal dorsal 

horn (Abraira and Ginty, 2013). Nociceptors from nerves having their cell bodies in trigeminal 

ganglia synapse on second order neurons in the trigeminal subnucleus caudalis (Dubin and 

Patapoutian, 2010). A fraction of second-order neurons project to the higher centres that process 

pain as a response to noxious stimuli (Mantyh, 2006). There are other spinal cord neurons that have 

involvement in nociceptive motor reflexes and complex motor behaviour such as avoiding 

movement, and also generating the autonomic reflexes which are produced by noxious stimulation 

(Fitzgerald, 2005). The role of the somata of somatosensory neurons is not restricted to neuronal 

survival and synthesis of proteins which impart or alter cell function (Delmas et al., 2011). It is now 

recognised that the somata of DRG neurons are an important centre of various mechanisms 

regulating aberrant excitation and cell-cell interactions especially in chronic pain states (Devor, 

2006). Descending tracts may curtail or enhance the processing of spinal nociception (Millan, 

2002). The descending tracts are made up of pathways which originate from brain stem nuclei, 

specifically the periaqueductal grey and the rostral ventromedial medulla and subsequently descend 

in the spinal cord’s dorsolateral funiculus (D'Mello and Dickenson, 2008). Descending inhibition is 

an important aspect of intrinsic antinociception (Schaible, 2007). 

 

1.5. Involvement of ion channels in signalling mechanisms 

Different stimuli act on variety of ion channels and receptors which leads to depolarisation of the 

membrane, and this is termed as the generator potential (Muroi and Undem, 2014). As a 

consequence, the voltage-gated sodium channels are activated, that are responsible for generation of 

action potential and the conduction of impulses to the central terminals (Muroi and Undem, 2014). 

Calcium channels are activated on membrane depolarisation and drive the influx of calcium as a 

response to action potentials and subthreshold depolarising signals (Catterall, 2011). Calcium that 

enters the cell through the voltage gated calcium channels serves as a second messenger in 

conduction of electrical impulses (Catterall, 2011). Similarly, a negative membrane potential is 

crucial for inhibition of peripheral excitability, and potassium ion channels are key contributors to 

resting membrane potential (Li and Toyoda, 2015). Choride ion channels are also important 

affectors of resting membrane potential (De Koninck, 2007). The intracellular concentration of 

chloride ions in neurons is low, and the potential of reversal for chloride ion currents is close to the 

resting potential of the membrane, hence, even small changes in intracellular choride concentration 

can significantly affect the transmission (De Koninck, 2007). In most chronic pain conditions 

arising from peripheral nerve damage or inflammatory processes, peripheral nerve block using non-
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selective NaV inhibitors can achieve complete pain relief in humans, proving that peripheral input is 

critical to chronic pain (Aguirre et al., 2012). Non-specific blockade of sodium channels, results 

into blockade of complete sensory and motor impulses leading to loss of all the senses and 

development of numbness, paralysis and loss of autonomic function (Roberson et al., 2011). 

Accordingly, voltage-gated sodium channels (NaV) have received considerable interest in regards to 

their role in the pathogenesis of pain as they are involved in action potential generation and 

propagation (Dib-Hajj et al., 2010). However, the precise role of specific NaV isoforms in modality- 

and disease-specific pain pathways remains unclear. Nine NaV α-subunits, designated NaV1.1– 

NaV1.9, have been functionally characterised (Devor, 2006). Classifying between different isoforms 

has been made easier with the discovery of subtype selective neurotoxins like tetrodotoxin (TTX), 

which distinguishes TTX-sensitive (NaV1.1, 1.2, 1.3, 1.4, 1.6 and 1.7) from TTX-resistant subtypes 

(NaV1.5, 1.8, 1.9) (Catterall, 2000). NaV1.3 is normally expressed during embryogenesis, but its 

expression is continued in sympathetic neurons in adults. It is upregulated in DRG neurons after 

injury (Dib-Hajj et al., 2010). This isoform plays an important role in pain sensation. Peripheral 

nerve injury leads to upregulated NaV1.3 expression in the DRG (Black et al., 1999, Dib-Hajj et al., 

1996, Kim et al., 2001, Lindia et al., 2005), dorsal horn (Hains et al., 2004), and also thalamic 

neurons (Zhao et al., 2006). Also, spinal cord injury causes increased expression of NaV1.3 within 

the dorsal horn (Hains et al., 2003). Nav1.3 channel produces rapid-repriming TTX-sensitive 

current and quickly recovers from inactivation (Cummins et al., 2001, Yang et al., 2016). NaV1.7 is 

expressed in DRG and sympathetic ganglion neurons (Dib-Hajj et al., 2010). Nav1.7 generates a 

fast-activating and –inactivating and slow-repriming, TTX-sensitive current (Klugbauer et al., 

1995). Also, slow closed-state NaV1.7 inactivation produces a significant ramp current as a response 

to small and slow depolarizations (Cummins et al., 1998, Herzog et al., 2003). Studies of human 

monogenic disorders of pain perception have drawn particular attention to NaV1.7, because loss of 

function in this channel leads to chronic insensitivity to pain (Cox et al., 2006, Goldberg et al., 

2007). However, the deletion of NaV1.7 specifically in nociceptors, did not eliminate the 

neuropathic pain in mice (Nassar et al., 2005). NaV1.8 ion channels are selectively expressed in 

DRG neurons and trigeminal ganglia, and are also present along the peripheral axon shafts. The 

biophysical properties of NaV1.8, together with its important contribution in repetitive firing, and 

the fact that it is also located in free nerve terminals where pain-signalling is initiated, indicate that 

NaV1.8 can critically influence nociceptor activity and thus contribute towards pain (Dib-Hajj et al., 

2010). NaV1.8 mediates inflammatory pain as documented by studies in NaV1.8-null mice showing 

diminished responses to carrageenan- and nerve growth factor (NGF)-induced hyperalgesia 

(Akopian et al., 1999, Kerr et al., 2001), as well as diminished visceral pain sensitivities, which 

remains consistent with the fact that NaV1.8 channels are expresses in all DRG neurons innervating 
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the colon (Gold et al., 2002). Similarly, NaV1.8-gene deleted mice show a drastic decrease in 

ectopic discharge in A- and C-fibers which are associated with formation of neuroma after 

transection of the saphenous nerve (Roza et al., 2003). Behavioural experiments have proven that 

NaV1.8-null animals are less sensitive to noxious cold, consistent with an important role of NaV1.8 

in action potential generation at cold temperatures (Zimmermann et al., 2007). However, NaV1.8 

knock-out mice were not devoid of neuropathic pain, indicating that there are other ion channels 

and proteins that concurrently contribute to the pain signalling, depending on the pathophysiology 

(Nassar et al., 2005, Kerr et al., 2001). NaV1.9 is expressed in small diameter, nonpeptidergic DRG 

neurons, and in the trigeminal ganglion and myenteric neurons (Dib-Hajj et al., 2010). Experimental 

data suggest that NaV1.9 has an important role in the sensation of pain (Chen et al., 2012a). 

Expression of NaV1.9 in DRG neurons innervating the inflamed rat hindpaw is increased (Tate et 

al., 1998). PGE2, acting via G-protein–coupled receptors (GPCRs), enhances the current density of 

NaV1.9 in DRG neurons in vitro, along with hyperpolarised shifts of activation and inactivation 

(Rush and Waxman, 2004), and treatment with IL-1β enhances persistent TTX-R mediated current 

by a p38 MAPK-dependent mechanism (Binshtok et al., 2008). 

 

A wide variety of ion channels which are expressed on sensory nerve terminals mediate the 

transduction of various stimuli into membrane potential changes (Cho et al., 2012, Julius and 

Basbaum, 2001). A graded local change in membrane potential usually occurs in response to 

physicochemical stimuli, for example through activation of Transient Receptor Potential (transducer 

protein molecules) (TRP) channels, and once a threshold of depolarisation is achieved, this leads to 

the generation of action potentials (Zhao and Boulant, 2005). Voltage-gated ion channels that are 

present in the plasma membrane of the cell generate action potentials (Waszkielewicz et al., 2013). 

NaV channels in particular are responsible for the upstroke of the action potential (Kress and 

Mennerick, 2009). These channels remain closed when the membrane potential is around the resting 

potential of the cell, however, they begin to rapidly open when the membrane potential reaches to 

the threshold value (Carter and Bean, 2009). When the channels open (as a response to depolarising 

transmembrane potential), they allow sodium ions to flow inwards. This changes the 

electrochemical gradient, and produces a further rise in the membrane potential. This then leads to 

opening of more channels, thereby producing greater electric current across the cell membrane. This 

self-growing process goes on rapidly, until all the ion channels are opened. This results in a large 

increase in the membrane potential (Endo, 2000). The rapid influx of sodium ions is responsible for 

reversing the polarity of the plasma membrane, and subsequently the ion channels are rapidly 

inactivated. With the closure of sodium channels, sodium ions cannot enter the neuron any longer, 

and they get transported actively across the plasma membrane (Ashrafuzzaman and Tuszynski, 

http://encyclopedia.thefreedictionary.com/Transient+Receptor+Potential
http://encyclopedia.thefreedictionary.com/Transient+Receptor+Potential
http://en.wikipedia.org/wiki/Voltage-gated_ion_channel
http://en.wikipedia.org/wiki/Plasma_membrane
http://en.wikipedia.org/wiki/Resting_potential
http://en.wikipedia.org/wiki/Resting_potential
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2013). The large membrane depolarisation that occurs as a result of activation of NaV channels in 

turn triggers activation of voltage-gated potassium (KV) channels. An outward current of potassium 

ions is observed, thereby returning the electrochemical gradient to the resting state. Following the 

occurrence of an action potential, a negative shift is generated in a transient manner, which is called 

the after hyperpolarisation or refractory period, because of the additional potassium currents (Bean, 

2007). 

 

Hot and warm temperatures are detected by TRP channels like TRPV1 and TRPV2 (Transient 

Receptor Potential Vanilloid 2) along with the calcium-gated chloride channel, ANO1 (Anoctamin-

1) (Cho et al., 2012, Julius and Basbaum, 2001, Roberts and Connor, 2006). TRPV3 (Transient 

Receptor Potential Vanilloid 3), TRPV4 (Transient Receptor Potential Vanilloid 4 (cation channel)) 

and TRPM3 (Transient Receptor Potential Melastatin 3) also play important roles in transduction of 

warm temperatures (Chung et al., 2004, Vriens et al., 2011, Watanabe et al., 2002). Protons are 

predominantly sensed by acid-sensing ion channels along with TRPV1 (Julius and Basbaum, 2001). 

There are also proton-sensitive GPCRs (Tomura et al., 2005). TRPM8 (Transient Receptor Potential 

Melastatin 8) senses cold temperatures, while NaV1.8 is essential for cold-associated pain (Bautista 

et al., 2007, Zimmermann et al., 2007). TRPA1 (Transient Receptor Potential Ankyrin 1) and 

TRPC5 (Transient Receptor Potential Canonical (protein) 5) also play an important role in cold 

sensation (Kwan and Corey, 2009, Zimmermann et al., 2011). Piezo1 and Piezo2 act as mechanical 

transducers (Coste et al., 2010), though TRPA1 and the ATP-gated purinergic ion-channel P2X3 

also act as mediators of mechanical hyperalgesia (Kwan et al., 2006, Petrus et al., 2007, Tsuda et 

al., 2000). When these ion channels are activated, they cause the generation of a transient potential, 

which amplifies in the form of a regenerative potential by sodium (Na+) channels like NaV1.7, 

NaV1.8 and NaV1.9 (Raouf et al., 2010). At this point, the signal may be curbed by endogenous 

inhibition occurring by the mediation of potassium (K+) channels like the two-pore channels 

TREK1 (mechanogated and arachidonic acid- activated TWIK-related K+ 1) and TRAAK1 (TWIK-

related arachidonic acid- stimulated channels). TWIK channels comprise a tandem of p domains 

and produce a weak inwardly rectifying K+ channel (Honore, 2007). The activation of other voltage 

gated Na+ channels like NaV1.7 initiates an action potential which transduces nociceptive signals 

from the periphery to the central nervous system (Raouf et al., 2010, Wood et al., 2004). A mutation 

in the SCN9A gene encoding the NaV1.7 ion channel resulting in loss of its function causes 

complete inability to sense pain in humans (Cox et al., 2006). Conversely, another mutation in 

SCN9A resulting in gain of function leads to congenital paroxysmal disorders with extreme pain and 

congenital erythromelalgia (Fertleman et al., 2006). Analogous to these clinical findings, 

nociceptor-specific deletion of NaV1.7 in mice causes reduced hypersensitivity (Nassar et al., 2004). 

http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Afterhyperpolarization
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A Na+-channel blocker, XEN402, is also known to relieve NaV1.7 mediated spontaneous pain in 

patients with inherited erythromelalgia (Goldberg et al., 2012). 

 

Sodium channels may be important contributors in the pathology of cancer induced bone pain (Liu 

et al., 2014c). Increased expression levels of NaV1.8 and NaV1.9 point towards possible 

involvement of these NaV isoforms in breast cancer induced bone pain (Qiu et al., 2012). It has been 

observed that enhanced SCN7A/Nax expression, a gene that encodes an atypical sodium channel 

named ‘Nax’, contributes to bone cancer pain by increasing excitability of DRG neurons in a rat 

model of breast cancer induced bone pain (Ke et al., 2012). It is becoming increasingly evident that 

different pain phenotypes, although seemingly similar at the symptom level, can differ vastly in the 

signalling pathways and underlying molecular mechanisms involved (Baron, 2006). Recently a 

study found abolition of constriction injury dependent neuropathic pain in mice with sensory 

neurons-specific deletion of NaV1.7, while pain-relief of nerve transection related pain required 

deletion of NaV1.7 from sensory neurons and sympathetic neurons (Minett et al., 2014). Similarly, 

oxaliplatin induced pain and cancer induced bone pain, did not require the presence of NaV1.7 

sodium ion channels or nociceptors positive for NaV1.8 (Minett et al., 2014). NaV 1.6 is a very 

important and major sodium channel isoform present at the nodes of Ranvier in myelinated axons 

and also distributed along the unmyelinated C-fibers of sensory neurons. Modulation of the sodium 

channel current by NaV1.6 may critically impact axonal conduction. NaV1.6 is modulated by 

MAPKs that are expressed in neurons and are activated subsequent to injury, such as after sciatic 

nerve transection and hypoxia (Wittmack et al., 2005). NaV1.6 has been found to accumulate along 

the degenerating axons in demyelinated regions of the central nervous system of the autoimmune 

encephalitis (EAE) mouse model of multiple sclerosis and also in patients suffering from multiple 

sclerosis (MS) (Craner et al., 2004a, Craner et al., 2004b). Moreover, NaV1.6 is upregulated in 

activated microglia and macrophages in EAE mice and also in acute MS lesions (Craner et al., 

2005). Hence, NaV1.6 has a major role in normal axonal conduction and can significantly influence 

the pathophysiological condition of the nervous system that is injured. Some preclinical studies 

found, that expression of NaV1.6 at mRNA (Messenger Ribonucleic Acid) and protein levels 

remained unchanged in the DRGs in the carrageenan induced inflammatory pain, while the NaV1.6 

mRNA levels decreased in the neuropathic pain models (Wang et al., 2011c). However, the 

assessment of global gene level and protein level changes in different models might provide key 

insights into the pathophysiology of pain in different conditions. 

 

Some of the key ion channels known to be involved in processing of CIBP include NaV 1.8 and 1.9, 

acid-sensing ion channels and TRPV1 channels (Mantyh, 2014). Other ion channels including 
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potassium ion channels and high-voltage activated calcium channels have also been implicated in 

CIBP (Shenoy et al., 2016). 

 

1.6. Signalling molecules of peripheral pain sensitivity 

In conditions of chronic pain like cancer and inflammation, nociceptive and non-nociceptive 

sensory afferent neurons are sensitised (Lozano-Ondoua et al., 2013b). Peripheral sensitisation is 

characterised by increased response of the peripheral sensory nerve endings, which are activated by 

chemical mediators released from nociceptors and cells of non-neuronal origin like mast cells, 

basophils, platelets, neutrophils, macrophages, endothelial cells, fibroblasts and keratinocytes at the 

site of inflammation or tissue damage (Gangadharan and Kuner, 2013). A wide variety of signalling 

molecules like protons, adenosine triphosphate (ATP), prostaglandins (PGE2), leukotrienes, 

thromboxanes, endocannabinoids, growth factors such as neurotrophins (NGF) and granulocyte- or 

granulocyte-macrophage colony stimulating factors (G-CSF, GM-CSF), cytokines (interleukin 6 

(IL-6), interleukin 1β (IL-1β), tumour necrosis factor-α (TNFα)), chemokines, neuropeptides 

[CGRP, SP, bradykinin, histamine], proteases and lipids take part in mediation of peripheral pain 

sensitisation (Binshtok et al., 2008, Gangadharan and Kuner, 2013, Gold and Gebhart, 2010, Julius 

and Basbaum, 2001, Schweizerhof et al., 2009). Glutamate, a major excitatory amino acid 

neurotransmitter at central synapses, might also act in the peripheral nervous system by modulating 

the activation properties of nociceptive neurons, and by controlling the conduction of nociceptive 

impulses from periphery to the central nervous system (Gangadharan et al., 2011). Upon activation 

by chemical mediators, the activity of transduction proteins controlling the signalling of nociceptor 

terminals is altered at the transcriptional or post-translational level (Woolf and Ma, 2007). For 

instance, growth factors like NGF acting through its high affinity receptor, the tyrosine kinase A 

receptor (TrkA), or GM-CSF acting through tyrosine kinase receptors and Janus Kinase and Signal 

Transducer and Activator of Transcription (JAK-STAT) signalling, employ various downstream 

enzymes like phospholipase C (PLC), phosphoinositide 3-kinase (PI3K) and mitogen-activated 

protein kinase (MAPK). These enzymes are responsible for phosphorylation of transducer and 

amplifier molecules like TRPV1 (Transient Receptor Potential Vanilloid 1) and voltage gated 

sodium ion channel 1.8 (NaV1.8) and also increase the expression of such molecules by 

transcriptional regulation through employment of STAT transcription factors. This leads to both 

short term and long term enhancement of the excitability of nociceptors (Dib-Hajj et al., 1998, 

Julius and Basbaum, 2001, Schweizerhof et al., 2009, Zhang et al., 2005, Wu et al., 2012a). In 

summary, there is a close interaction between the external signals generated by mechanical, 

chemical and thermal stimuli and the intrinsic factors, and this interface leads to the functional 

plasticity of neurons, which underpins the development of a response to the noxious stimuli that is 
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mediated by the higher centres of pain processing pathway (Woolf and Ma, 2007). Cancer cells and 

the associated immune cells are also responsible for secreting mediators like prostaglandins (Urch, 

2004). Tumor cells also mediate the release other pro-nociceptive compounds like NGF, 

endothelins, bradykinins, histamine, etc. that assist in maintaining the associated pain (Middlemiss 

et al., 2011, Mantyh, 2014). 

 

1.7. Role of G-protein-coupled receptors 

GPCRs are cell surface targets that are highly important in normal cell signalling and mediate the 

physiological response to a variety of stimuli from light, odorants, hormones, neurotransmitters, etc. 

as well as clinically used drugs to treat ailments (Gurevich and Gurevich, 2017). Signalling 

mediated by GPCRs makes an important contribution in peripheral sensitisation (Gold and Gebhart, 

2010). Various peptides, bioactive lipids and metabolic products are responsible for activating 

GPCRs in sensory neurons. These receptors couple with various G-proteins like Gq, G11, Gs, Gi, 

Go, G12 and G13. Gq/G11 signalling causes the activation of PLC-β and protein kinase C, releases 

Ca2+ from intracellular storage, and modulates extracellular regulated kinases ERK1 and ERK2 

(Kuner, 2010). Gs signalling is connected to cAMP–protein-kinase-A -mediated sensitisation 

mechanisms (Hucho and Levine, 2007). Gs proteins act mainly through the activation of adenylyl 

cyclase, leading to increased intracellular levels of cAMP, which consequentially leads to the 

activation of downstream effectors like PKA (Stone and Molliver, 2009). The functional role of 

Gq/G11 signalling in nociceptors in vivo not only governs sensitisation mechanisms in pathological 

conditions of pain but also governs basal nociception along with acute pain conditions (Tappe-

Theodor et al., 2012). This consists of tonic modulation of TREK channels (Chen et al., 2006), Na+ 

channels (Tappe-Theodor et al., 2012), TRPV1 (Zhang et al., 2012) and mechanosensory currents 

(Lechner and Lewin, 2009). Generally, GPCRs which signal via Gq and G11 also couple with G12 

and G13 proteins, which activate the RhoGTPase RhoA (RhoGTPase = any member of Rho family 

of GTPases; RhoA = Ras homolog gene family member A; GTPase = family of hydrolase enzyme 

that can bind and hydrolyse guanosine triphosphate) and subsequently, a downstream kinase, 

ROCK (Rho Kinase). The contribution of RhoA-ROCK signalling in nociception is not clearly 

established. It is well known that Gq/11 coupled receptors process via the activation of ERK 

(Extracellular Signal-Regulated Kinase) (Della Rocca et al., 1997). Gi-mediated inhibition is an 

important barrier that determines nociceptor excitability. Gi/o proteins participate in the inhibitory 

effects of several neurotransmitters (Stone and Molliver, 2009). Several mechanisms of actions of 

the dimer Gi/o proteins have been proposed, like inhibition of adenylyl cyclase, inhibition of 

voltage dependent calcium channels and direct hyperpolarisation of neurons by activation of GIRK 

(G-Protein-Gated Inwardly Rectifying K+) channels (Stone and Molliver, 2009). The anti-
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nociceptive activities of cannabinoids and opioids that bind to GPCRs are mediated through 

peripheral mechanisms as well (Agarwal et al., 2007, Kinsey et al., 2009, Lever et al., 2009, Stein 

and Lang, 2009). While ERK activation is reputed to be pro-nociceptive (Kawasaki et al., 2006, Ji 

et al., 2009a), drugs like opioids and cannabinoids might activate the molecular players of the ERK 

cascade (Korzh et al., 2008). Several molecular and cellular features of receptors like opioid 

receptors might not easily be co-related to any physiological or behavioural effects and hence need 

further investigations (Al-Hasani and Bruchas, 2011). Opioids and cannabinoids induce analgesia 

by inhibition of adenylyl cyclase, inhibition of voltage dependent calcium channels and activation 

of GIRK channels (Korzh et al., 2008). An agonist acting through a receptor can activate multiple 

signalling pathways (Ibsen et al., 2017). On these grounds, transactivation of other targets like 

vascular endothelial growth factor receptors (Rubovitch et al., 2004), epidermal growth factor 

receptors (Belcheva et al., 2001) and fibroblast growth factor receptors (Belcheva et al., 2002) 

might be involved in cannabinoid and opioid receptors- mediated activation of ERK. Similarly, 

different agonists can activate different pathways to activate ERK, consequentially (Korzh et al., 

2008). Accordingly, other than analgesia, opioids are known to underpin a variety of behavioural 

and physiological effects like reward, depression, anxiety and addiction (Al-Hasani and Bruchas, 

2011). Hence, the behavioural and physiological implication of the agonist-induced modulation of a 

signalling pathway could probably depend on how the pathway is triggered, the upstream and 

downstream contributors and the other parallel pathways involved. Some of the key GPCRs 

involved in processing CIBP include prostaglandin receptors, bradykinin receptors and endothelin 

receptors (Mantyh, 2014). Recent studies have demonstrated possibile roles of several receptors in 

CIBP, including receptors like chemokine receptors, purinergic receptors, adenosine receptors and 

protease activated receptors (Shenoy et al., 2016). 

 

1.8. Involvement of central signalling 

Excitatory synaptic transmission between primary afferents and neurons of the spinal cord is 

fundamentally mediated by glutamate, along with other co-transmitters like SP, CGRP and brain-

derived growth factor (BDNF) (Gangadharan and Kuner, 2013). Ionotropic as well as metabotropic 

glutamatergic receptors critically contribute towards the determination of the strength of synaptic 

transmission and alterations in the spinal cord as a response to the continuing nociceptive activity 

(Gangadharan and Kuner, 2013). Activity-dependent modulation in spinal function includes long-

term potentiation of individual synapses along with an enhancement of neuronal and non-neuronal 

(facilitated by glial cells) spinal excitation in the dorsal horn, causing enhanced pain sensitivity, 

which is termed ‘central sensitisation’ (Ji et al., 2003, Sandkuhler, 2009). An important trigger for 

both of these changes is the activation of spinal postsynaptic NMDARs as a response to continuing 
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nociceptive activity (Woolf and Salter, 2000). The resultant increase in the intracellular Ca2+ 

activates protein kinases like CaMKIIα, which leads to a greater number of AMPA-type glutamate 

receptors in postsynaptic membranes by recruiting AMPAR interacting proteins such as GRIP1 

(Kuner, 2010). This increases postsynaptic excitation as well as causes further influx of Ca2+ by 

recruiting Ca2+-permeable AMPAR (Galan et al., 2004, Hartmann et al., 2004, Park et al., 2009). 

More Ca2+- dependent enzymes like cyclooxygenases (COX-2) (Zhou et al., 2014) and nitric oxide 

synthases (NOS) (Fleming et al., 1997) are also activated, to generate PGE2 and nitric oxide, 

respectively. Such molecules are considered to act as retrograde messengers, which facilitate release 

of neurotransmitter from primary afferent terminals in the spinal dorsal horn. Several synaptic-

interacting proteins significantly contribute to the optimal arrangement of NMDAR and AMPAR 

channels in the postsynaptic membrane (Kuner, 2010). The persistent nociceptive activity also 

employs synaptic proteins which inhibit central sensitisation. This inhibition takes place either by 

inhibiting important enzymes or by disassembling the complexes of metabotropic glutamate 

receptors 1 and 5 (mGluR1,5) along with inositol triphosphate receptors (IP3R) (physical tether 

linking mGLuR with IP3R formed by protein like Homer) which are coupled to intracellular Ca2+  

stores (Gangadharan and Kuner, 2013, Tu et al., 1998). Downstream of glutamatergic ion channels 

and GPCRs, the MAPKs, ERK1 and ERK2, are activated. The MAPKs then directly govern the 

excitability of neurons in the spinal cord by regulating the Kv4.2 channel, that generates A-type K+ 

currents which regulate neuronal excitability (Gangadharan and Kuner, 2013). The ERK1/2 

mediated phosphorylation of the Kv4.2 channel reduces A-type currents and enhances excitability 

of the superficial neurons of the spinal dorsal horn (Hu et al., 2006). Moreover, ERK1 and ERK2 

increase AMPAR- and NMDAR-mediated currents in neurons of the dorsal horn of the spinal cord 

(Kohno et al., 2008). 

 

Despite the fact that the majority of work on spinal mechanisms involved in chronic pain are based 

on postsynaptic targets, presynaptic involvement is increasingly recognised as being important. For 

instance, long term potentiation at synapses between nociceptors and neurons of the spinal cord that 

project to the periaqueductal gray matter needs activation of postsynaptic NMDAR for induction 

(Ikeda et al., 2006), but also employs a cGMP-regulated enhancement in the release of presynaptic 

neurotransmitter (Luo et al., 2012). The step occurs by activation of protein kinase G1 at the 

presynaptic level, which leads to phosphorylation of presynaptic IP3Rs along with myosin light 

chain subunits, leading to a Ca2+-triggered enhancement in actin-myosin coupling and employment 

of synaptic vesicles. Also, nerve injury by itself is linked to an enhancement of neurotransmitter 

release from nociceptors (Inquimbert et al., 2012). 

 



15 
 

One of the most important concerns in pain research currently is the process leading to conversion 

of acute to chronic pain (Mifflin and Kerr, 2014). Activation and mediation of genomic changes is 

considered an important contributing mechanism in the development of pathological pain (Buchheit 

et al., 2012). In this regard, ERK1, ERK2, cAMP (cyclic adenosine monophosphate) and CaMKIV 

(calcium/calmodulin- dependant protein kinase type IV) act as communicators between synapse and 

nucleus to initiate the cAMP response element-binding protein (CREB) activation that regulates the 

expression of several proteins related to pain hypersensitivities like COX-2, TRPV1 and Ca2+ 

channels (Kawasaki et al., 2004). Ca2+ ions are transported into nuclei of excitatory neurons of the 

spinal cord in a manner dependent on nociceptive activity, thereby regulating a set of unique 

genomic changes which govern the functional and structural plasticity involved in inflammatory 

pain (Simonetti et al., 2013). The transcription of genes in neurons of the spinal cord is also 

governed by expression of transcriptional repressors like MeCP2 (Methyl-CpG-binding protein 2), 

that regulates inflammatory pain states (Geranton et al., 2007), and DREAM (downstream 

regulatory element antagonistic modulator), which functions to inhibit the expression of 

prodynorphin in the neurons of spinal cord, thereby producing hyperalgesia (Cheng et al., 2002). 

 

Continuing nociceptive activity-evoked pronociceptive actions and central sensitisation are kept in 

control by spinal inhibitory mechanisms consisting of GABAergic and glycinergic 

neurotransmission (Ben-Ari et al., 2007, Legendre, 2001). Cannabinoids, opioids and adenosine 

released endogenously also exhibit an inhibitory function (Freund et al., Homayounfar et al., 2005). 

Local enkephalins that are secreted by enkephalinergic neurons lead to the inhibition of release of 

neurotransmitters and supress excitation at the postsynaptic level by inhibiting voltage-gated Ca2+ 

channels and activating GIRK channels respectively. Such inhibition based enkephalinergic 

processes are employed in the spinal cord by descending serotonergic and noradrenergic pathways, 

forming brainstem control of central sensitisation (Gangadharan and Kuner, 2013). There are also 

various molecular signalling events that are linked with disinhibition following nerve injury. PGE2, 

as an example, induces phosphorylation of the glycine receptor α3 subunit, which in turn 

counteracts glycinergic inhibition and hence underlies central inflammatory pain sensitisation 

(Harvey et al., 2004). Collapse of the chloride (Cl–) gradient after nerve injury, caused by loss of the 

postsynaptic potassium chloride (K+ Cl–) exporter KCC2 (K-Cl (Potassium Chloride) Cotransporter 

2) to decrease GABA-mediated inhibitory currents at the postsynaptic level is also another 

mechanism for disinhibition of neurons of the spinal cord (Beggs et al., 2012, Coull et al., 2003). 

 

Along these lines, c-FOS and dynorphin expression levels are increased in the deeper laminae of the 

spinal cord in CIBP state (Falk and Dickenson, 2014, Peters et al., 2005). c-FOS and dynorphin 
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levels were also found to be changed in other inflammatory and neuropathic pain models, implying 

some mechanistic resemblances with parts of CIBP state (Abbadie and Besson, 1992, Wagner et al., 

1993). Similar to the observations in inflammatory and neuropathic pain states, spinal cord neurons 

exhibit hyper-responsiveness towards evoked stimuli in CIBP (Urch et al., 2003, Donovan-

Rodriguez et al., 2004). CIBP animals were found to exhibit increased number of wide dynamic 

range neurons in the superficial dorsal horn, resulting in hyper-responsiveness to peripheral stimuli 

of low thresholds (Donovan-Rodriguez et al., 2005). Descending controls from brain to spinal cord 

and periphery might also play crucial role in manifestations of CIBP (Falk and Dickenson, 2014). 

 

1.9. Role of neuro-glia 

Recently, signalling mechanisms that regulate interactions between neurons of the spinal cord and 

various glial cell types have become important targets in pain research. Purinergic signalling 

mechanisms consisting of P2X4 (Beggs et al., 2012), P2X7 (Clark et al., 2010a, Clark et al., 2010b) 

and P2Y12 (Tozaki-Saitoh et al., 2008) receptors contribute to recruitment and activation of 

microglia and are important regulators of central sensitisation (Gao and Ji, 2010a, McMahon and 

Malcangio, 2009). As a response to nerve injury, chemokines such as CX3CL1 (chemokine (C-X3-

C motif) ligand 1), CCL2 (chemokine C-C motif ligand 2) and TNFα are released from primary 

afferent terminals, as well as ATP to activate their receptors CX3CR1 (chemokine (C-X3-C motif) 

receptor 1), CCR2 (chemokine C-C motif receptor 2), TNFR, P2X and P2Y on microglia (Beggs et 

al., 2012, Clark et al., 2010a, Gao and Ji, 2010a). These receptors being activated cause induction of 

p38 MAPK signalling in microglia, which contributes towards the synthesis and release of several 

molecular players like BDNF, TNFα, IL-1β, IL-6 and cathepsin S, which modulate the functions of 

neurons (Clark et al., 2009, Kawasaki et al., 2008). The released BDNF from microglia acts on 

tyrosine kinase B (TrkB) receptors in neurons at the postsynaptic level, causing downregulation of 

potassium chloride co-transporter KCC2 expression in the adjacent neurons, hence making them 

more susceptible to excitation (Coull et al., 2003). The TNFα secreted from microglia activates the 

Jun N-terminal Kinase (JNK) signalling in astrocytes, causing release of IL-1β, CCL2 and MMP 

(matrix metalloproteinase)-2, which alter the central sensitisation (Gangadharan and Kuner, 2013). 

TNFα also activates TNFR on presynaptic endings, causing glutamate release and enhanced 

excitatory postsynaptic potential (EPSP) by the activation of TRPV1 (Park et al., 2011). CCL2 and 

IL-1β that are released from astrocytes bind on their respective receptors (CCR2 and ILR) at 

presynaptic and postsynaptic locations, causing increased release of neurotransmitters and 

activation of NMDAR and AMPAR (Gao and Ji, 2010b). MMP-9 and MMP-2 are responsible for 

cleaving and activating the IL-1β, subsequently activating the microglia and astrocytes, hence 

playing an important role in developing and maintaining the neuropathic pain state (Gangadharan 
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and Kuner, 2013). Cathepsin S that is released from the microglia, mediates the cleavage of a 

transmembrane protein, fractalkine (FKN), which is expressed in neurons of the spinal cord and 

releases soluble FKN (s-FKN) which binds to its receptor, CX3CR1, present on microglia (Clark 

and Malcangio, 2012). This subsequently activates the p38 MAPK signalling process in microglia, 

thereby developing positive feed-forward and feed-back modulatory cycles, which possibly 

contribute to maintaining the chronic pain even long after the occurrence of an initial injury (Clark 

et al., 2007). In states of chronic pain, astrocyte activation causes negative and positive modulation 

of excitatory amino-acid transporter (EAAT) and GABA transporters, respectively (Gangadharan 

and Kuner, 2013). This increases the availability of excitatory amino acids like glutamate and 

decreases the availability of the major inhibitory amino acid neurotransmitter GABA, the net result 

of which is increased synaptic transmission (Gangadharan and Kuner, 2013). On similar grounds, 

massive astrocyte hypertrophy in the spinal cord has been observed in CIBP, suggesting the 

importance of glia in maintaining this pain state (Honore et al., 2000). Other studies have also 

reported microglial activation and involvement of mediators like MAPK family members in spinal 

cord, in facilitation of CIBP state (Hu et al., 2012a). 

 

1.10. Analgesic drugs 

Based on the above-described mechanisms, a range of approaches have been utilised to treat pain. 

Morphine, an agonist predominantly at the -opioid (MOP) receptor, is one of the most important 

members of the strong opioid analgesic class (Cao et al., 2010). All four opioid receptor types i.e. µ 

type, δ type, κ type and opioid receptor-like 1 / ORL1 type, belong to the superfamily of G i /G o -

protein-coupled receptors (McDonald and Lambert, 2005). Opioid agonists enhance the opening of 

GIRK channel and also inhibit the opening of voltage-gated calcium channels (McDonald and 

Lambert, 2005, Connor et al., 2004). GIRK channels in neurons are key determinants of spinal 

analgesia (Tsantoulas and McMahon, 2014). These membrane changes decrease neuronal 

excitability as the increased K+ conductance leads to hyperpolarisation of the membrane thereby 

causing the cell to be less likely to fire action potentials (McDonald and Lambert, 2005). Opioid 

receptors mediate presynaptic inhibition of calcium channels and inhibition of neurotransmitter 

release (Henderson, 2015). Drugs like morphine are well known to inhibit adenylyl cyclase (Connor 

et al., 2004). The net effect is inhibition of nociception (Rosenblum et al., 2008). Gabapentin is one 

of the drugs used in both epilepsy and neuropathic pain (Sills, 2006). It inhibits calcium currents via 

high-voltage-activated channels containing the α2δ-1 subunit, that in turn decrease neurotransmitter 

release and to reduce postsynaptic excitability (Sills, 2006). Other mechanisms have also been 

proposed like modest actions on voltage gated potassium channels (Sills, 2006). NSAIDs (Non-

steroidal anti-inflammatory drugs) like meloxicam inhibit COX, the enzyme responsible for the 

http://en.wikipedia.org/wiki/Enzyme
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conversion of arachidonic acid into prostaglandin H2, which is the first step in the synthesis of 

PGE2 (mediators of inflammation) (Ricciotti and FitzGerald, 2011). Meloxicam, especially at 

therapeutic doses, has modest selectivity for inhibition of COX-2 over COX-1 (Noble and Balfour, 

1996). Bisphosphonates like ibandronate are able to effectively improve the basic pathogenesis of 

bone disorders by reducing bone resorption (Ringe and Body, 2007). Hence they are considered to 

be an important part of palliative care in bone malignancy related pain especially that due to breast 

cancer metastasis (Ringe and Body, 2007). Tricyclic antidepressant drugs such as amitriptyline are 

also used as analgesic adjuvant drugs, which augment descending noradrenergic inhibition and are 

utilised for the management of neuropathic pain conditions (Tura and Tura, 1990). Drugs like 

gabapentin and amitriptyline are called adjuvant analgesics because they are the drugs with a 

primary indication other than pain; gabapentin being used as an anticonvulsant drug and 

amitriptyline being used as an antidepressant drug (Lussier et al., 2004, Mitra and Jones, 2012). 

Besides the conventionally used analgesic drugs like these, used for treatment of different pain 

conditions, several new drug candidates are being researched for their analgesic efficasy. For 

example, some of the key GPCR ligands in the preclinical or clinical phase of development include 

MS-Contin (extended release opioids), CR845 (peripherally restricted κ-opioid agonist), EMA401 

(angiotensin type 2 receptor blocker), tizanidine (α2a adrenergic agonist) and AZD2423 

(chemokine receptor 2 antagonist) (Yekkirala et al., 2017). Some of the new ligands targeting ion 

channels involved in pain transduction include JNJ-38893777 (TRPV1), Z944 (calcium channels), 

TV-45070 (Nav1.7) and PF-04531083 (Nav1.8) (Yekkirala et al., 2017). Some of the novel ligands 

targeting different enzymes modulating the pain processes include 2-MPPA (glutamate 

carboxypeptidase II), SUN (D-Amino acid oxidase) and Sivelestat (leukocyte elastase) (Yekkirala 

et al., 2017). In CIBP state, the most common treatment options used to alleviate bone pain are such 

analgesic drugs, bisphosphonates, radiopharmaceuticals, as well as the commonly used radiotherapy 

(Rades et al., 2010). Commonly used opioids in CIBP include morphine, codeine, oxycodone, 

hydromorphone, methadone, oxymorphone, levorphanol, fentanyl and meperidine (Rades et al., 

2010). 

 

1.11. The Walker 256 breast cancer cell-induced bone pain model in rats 

1.11.1. Rat as the species of choice 

Rats and mice are the most commonly used animal species for pain research (Walker et al., 1999), 

with rats being superior to mice in many practical respects (Mogil, 2009, Wilson and Mogil, 2001). 

The advantage of mouse pain models is the availability of transgenic mice for dissecting 

pathophysiological mechanisms (Mogil and Grisel, 1998) and mouse models of breast cancer might 

recapitulate key aspects of human breast cancer including poor immunogenicity and high metastatic 

http://en.wikipedia.org/wiki/Arachidonic_acid
http://en.wikipedia.org/wiki/Prostaglandin_H2
http://en.wikipedia.org/wiki/COX-2
http://en.wikipedia.org/wiki/COX-1
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potential (Hahn et al., 2006). However, the main disadvantage of mice is their small size, making 

direct injection of tumor cells into the bone technically challenging (Pacharinsak and Beitz, 2008). 

By contrast, rat models are considered very suitable for efficacy assessment of therapeutic 

interventions for the treatment of breast CIBP (Medhurst et al., 2002). Walker 256 cell induced 

bone pain model is extensively induced in “rat” as the experimental species (Shenoy et al., 2016). 

This is mainly because the Walker 256 cell line is derived from rat breast tumour, and hence is 

syngeneic to the species of “rat” (Rattus norvegicus). There are hardly any studies that induced this 

model in other species. In one report, for example, Walker 256 cell-induced bone pain model was 

induced in mouse as the experimental species (Ji et al., 2017). The number of genes encoded by the 

rat genome is about same as the human genome (Gibbs et al., 2004). Importantly, almost all the 

human genes that are known to be associated with disease states have their orthologues in the rat 

genome, that have been highly conserved through the process of mammalian evolution (Gibbs et al., 

2004). With such close mechanistic resemblance of physiological and pathophysiological 

processing in rats and humans, rat is an indispensable model to mimic human diseases and to study 

the efficacy and toxicity of novel drug moieties (Mullins and Mullins, 2004). The model using 

Walker 256 cells can be induced in both sexes of rats (Liu et al., 2010, Liu et al., 2011) and 

different rat strains are compatible with these cells (Earle, 1935, Jensen and Muntzing, 1970). Stage 

of the estrous cycle in female rats does not alter the development of CIBP (Zhu et al., 2014b). 

 

1.11.2. Suitability of Walker 256 cells 

The Walker tumor was first discovered in the breast of a pregnant albino rat (Rattus norvegicus) in 

1928 by Dr. George Walker in Baltimore and it is regarded as a carcinosarcoma (Simpkins et al., 

1991, McEuen and Thomson, 1933). It is one of the most widely used transplantable tumors in 

experimental research (Brigatte et al., 2007, Justice, 1985, Sroka et al., 2016, Wu et al., 2016b, 

Gambeta et al., 2016, Fan et al., 2016, Gao et al., 2016). Indeed, these cells are one of the most 

preferred cell lines because of the ease with which they can be standardized, maintained and 

propagated in vitro, as well as their extensive use in vivo since 1937 (Michaelson and Orcutt, 1957, 

Pigatto et al., 2016, Brigatte et al., 2016, Galuppo et al., 2016, Yalovenko et al., 2016, Trashkov et 

al., 2016). 

 

Walker 256 cells cause significant bone resorption and increase skeletal fragility at the site of 

implantation in rats (Kurth et al., 2000), consistent with the phenotype observed in breast cancer 

patients with bone metastasis (Shih et al., 2004). In addition to being a reproducible method for 

inducing skeletal metastasis (Blouin et al., 2005, Mao-Ying et al., 2006, Badraoui et al., 2009), this 

model mimics key features of human breast CIBP, including pharmacological profile (Mao-Ying et 
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al., 2012, Mao-Ying et al., 2006, Cao et al., 2010). Walker 256 cells can be used in a variety of rat 

strains (Lu et al., 2015, Hang et al., 2015b) because these cells produce uniformly rapid growth, 

show very little regression, and are readily adaptable (Lewis et al., 2013, Oliveira and Gomes-

Marcondes, 2016).  

 

Growth of Walker 256 cells in the form of tumor is generally considered to be independent of the 

age and weight of the animals at the time of their inoculation (Walpole, 1951), however osteolysis 

and tumor growth might be greater in the bones of younger animals (Bassani et al., 1990). Another 

advantage is that after unilateral intra-tibial injection (ITI), tumor cells do not metastasize to the 

contralateral tibia during the experimental period and they only cause structural degradation of 

bones in the ipsilateral limb but not the contralateral limb (Kurth et al., 2002, Kurth et al., 2001). 

They also generally do not metastasize to highly perfused organs such as the lungs (Brigatte et al., 

2007), in contrast to other cell lines such as the 13762 rat mammary carcinoma cell line or the c-

SST2 rat mammary carcinoma cell line, which spontaneously metastasize (Blouin et al., 2005).  

 

Although many scientists tend to presume that tumor cell lines behave indefinitely in a uniform 

manner (Lewis et al., 2013), changes may be induced by factors such as extended in vitro growth 

time, high passage number and cross contamination with other cell lines (Sacchi et al., 1984, 

Chang-Liu and Woloschak, 1997, Buehring et al., 2004, Liscovitch and Ravid, 2007). Immortalized 

cancer cell lines may also evolve in vivo over time in the animal models in which cancer is induced 

(Poste et al., 1982b). Various heterogeneous subpopulations of tumor cells within a tumor mass 

possess diverse metastatic potential and different propensities for metastasis to various organs 

(Poste et al., 1982a, Fidler, 1978). Similarly, immortalized Walker 256 cancer cell lines from 

different cell banks may possess diverse characteristics and behavior in vivo despite the fact that 

these cell lines are from rat origin and are without contamination (Lewis et al., 2013). In general, 

cell lines may be authenticated by short tandem repeat (STR) profiling of the microsatellite regions 

of DNA (Nims et al., 2010). However, as there is no reference DNA profile of the Walker 256 cell 

line (Lewis et al., 2013), researchers typically procure cells of a defined passage number from 

reputable cell banks. To minimize within- and between- laboratory variability in the use of these 

cells in vivo, it is important that cultured cells are banked and frozen at early passages, and that 

culture conditions including growth media, temperature, humidity and exposure to drugs are 

standardized (Marx, 2014). 
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1.11.3. General methodology  

Although there are minor between-laboratory variations, the general method for induction of breast 

CIBP in rats has several aspects in common. The procedure generally involves making an incision 

to the skin and muscle around the knee joint of the anesthetized rat and injecting cancer cells into 

the tibial bone, followed by sealing of the drilled hole with bone wax, suturing of the wound and 

close monitoring of animals during post-surgical recovery (Mao-Ying et al., 2006). Cells can also 

be injected in the femur (Gui et al., 2013, Gui et al., 2015). Small differences in the number of 

injected Walker 256 cancer cells due to experimental errors typically have a minimal effect on the 

study outcome (Kurth et al., 2001). The physical process for injection of Walker 256 cells into the 

medullary canal of the bone does not impact the study outcome adversely as emphasized by the 

normal fibroblastic healing response around the drilled hole of injected bone (Kurth et al., 2002, 

Mao-Ying et al., 2006). Although outflow of cells during the injection process can be a common 

occurrence associated with the model, the syringe can be left in place inside the medullary canal of 

the bone for an additional one or two minutes to avoid leakage of cells along the injection track 

(Mao-Ying et al., 2006, Yu et al., 2009, Miao et al., 2010, Dong et al., 2011, Hu et al., 2012c). 

  

1.11.4. Time frame for development of pain behaviors and analgesic efficacy testing 

One of the most important and critical factors in the study of pain behavior and extent of bone 

destruction in this model is the timing of observations post-surgery (Qiu et al., 2012). Large tumors 

can develop in just a few days (Justice, 1985). However, the time period for development of pain 

behaviors may vary between studies based upon factors such as cell invasiveness and sex of the 

experimental animals (Wang et al., 2011b). Pain behavior due to the surgical process may be 

evoked in the ipsilateral (injected) hind paws if the animals are tested immediately after the 

inoculation surgery (Lan et al., 2010, Dong et al., 2011). Hence a recovery period of two to three 

days post-surgery must be provided for the animals (Wang et al., 2011b). For the purposes of 

studying different mechanisms of breast CIBP and for efficacy profiling of molecules with potential 

to be developed as novel analgesic agents, it is best to avoid extending the model beyond 20 to 25 

days post-surgery (Hang et al., 2014, Yu et al., 2009, Mao-Ying et al., 2006, Tong et al., 2010a, Cao 

et al., 2010) due to overall poor animal health and ethical concerns (Kurth et al., 2001). In 

particular, prolonged observation times may be associated with more complex pathophysiology 

arising from systemic metastasis due to severe osteolysis (Qiu et al., 2012). Hence, the period 

between days 6 and 18 post-ITI is typically chosen for investigation of breast CIBP mechanisms 

and the efficacy testing of novel compounds with potential as analgesic agents (Wang et al., 2011b, 

Hu et al., 2012a, Wang et al., 2012c). 
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1.11.5. Nature of pain manifestation 

In Walker 256 cell-CIBP, up-regulated expression and release of pro-inflammatory mediators 

including prostaglandin E2 (PGE2), nerve growth factor (NGF) and proinflammatory cytokines 

including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the spinal cord and 

dorsal root ganglia contributes to the pathogenesis of bone pain in rats (Cao et al., 2010, Liu et al., 

2010, Lan et al., 2010, Mao-Ying et al., 2012, Dong et al., 2011, Yao et al., 2016, Zhu et al., 2016). 

Hence, neuroinflammation is an important pathogenic characteristic of this model (Hu et al., 2012c, 

Song et al., 2015). 

 

Similar to the clinical situation, Walker 256 cell-CIBP manifests as spontaneous pain, hyperalgesia, 

allodynia as well as ambulatory pain, the severity of which largely depends upon the number of 

inoculated cells, but can also be affected by other experimental factors including cell origin as well 

as strain or sex of the animals used (Liu et al., 2010, Mao-Ying et al., 2006). Similarly, hind paw 

hypersensitivity induced by ITI with Walker 256 cells may be either unilateral (Wang et al., 2012c, 

Tong et al., 2010a, Liu et al., 2010, Wang et al., 2012a, Dong et al., 2011) or bilateral (Li et al., 

2014a, Zhao et al., 2013, Mao-Ying et al., 2006, Mao-Ying et al., 2012). Peripheral mechanisms 

including circulating factors and transmedian sprouting, or central mechanisms such as signalling 

via commissural interneurons in the spinal cord and brain stem may underpin unilateral injury-

induced contralateral mirror effects (Koltzenburg et al., 1999). This mirror image effect may also be 

correlated with spinal glia cell activation, proinflammatory cytokine production, and morphological 

changes within the local nerve, suggesting the involvement of glia (Chacur et al., 2001). The mirror 

image pain behavior induced in the contralateral hind paw in this model may be observed when the 

tumors are in the advanced stage (Miao et al., 2010, Zhao et al., 2013, Li et al., 2014a) Typically 

though, contralateral pain behaviors are of reduced intensity compared with the ipsilateral hind paw 

(Miao et al., 2010). 

 

Thermal and mechanical pain behaviors are underpinned by different mechanisms (Paqueron et al., 

2003, Wang et al., 2012a). Cutaneous nociceptors are particularly sensitized by thermal stimuli and 

nociceptors present in deep somatic tissues such as joints and muscle exhibit pronounced 

sensitization to mechanical stimuli (Schaible, 2007). Although thermal hyperalgesia has been 

reported in this model (Wang et al., 2012a, Duan et al., 2012, Liu et al., 2011), there are several 

studies in which hindpaw hypersensitivity to an applied noxious heat stimulus is not observed in 

rats following a unilateral ITI of Walker 256 cells (Wang et al., 2011b, Mao-Ying et al., 2006, Mao-

Ying et al., 2012, Miao et al., 2010, Yao et al., 2008). Again, these differences may be attributed to 

various factors including between-vendor differences in animals and cancer cell-related factors. For 
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this reason, thermal hyperalgesia is not typically used as a pain behavioral endpoint in this model 

(Yu et al., 2009, Tong et al., 2010a, Zhao et al., 2010, Cao et al., 2010, Dong et al., 2011). A 

between-study comparison of Walker 256 cell- CIBP rat model is presented in Table 1.1. 
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Table 1.1. Comparative summary of previous work by others using the Walker 256 cell-CIBP model in rats. 

 

Number 

of cells 

injected 

Rat Sex, 

Strain- 

(Number of 

studies) 

Time frame of 

hindpaw 

hypersensitivity 

post- ITI (Days) 

Nature of pain behavioral 

responses in the hind paw 

Reference/s 

M

A 

MH TH S/MEP  

4x103 F, W- (1) 14-19 + NA NA + (Cao et al., 2010) 

5x103 F, SD- (1) 6-14 + NA NA NA (Zhao et al., 2013) 

1x104 F, W- (1) 9-21 + NA NA + (Ke et al., 2013) 

1x104 F, SD- (1) 7-18 + NA + + (Yao et al., 2016) 

3x104 F, SD- (1) Tested day 10 + NA NA NA (Liu et al., 2012) 

4x104 F, W- (3) 

F, SD- (2) 

3-16 + NA NA NA (Dong et al., 2011, Xia et al., 2014, Bu et al., 2014, Ye et al., 

2014a, Guan et al., 2015) 

5x104 F, SD- (2) 7-18 + NA + NA (Wang et al., 2016b, Qiu et al., 2014) 

5x104 F, SD- (1) 5-14 NA + + NA (Qiu et al., 2012) 

1x105 F, W- (2) 12-24 + NA + + (Bao et al., 2014b, Bao et al., 2015c) 

1x105 M&F, SD- 

(4) 

M&F, W- (3) 

5-28 + NA + NA (Liu et al., 2011, Jiang et al., 2014, Bao et al., 2015a, Fan et al., 

2015, Jiang et al., 2015, Jiang et al., 2016, Ren et al., 2015) 

1x105 F, SD- (8) 6-21 + NA NA + (Liu et al., 2010, Lan et al., 2010, Chen et al., 2012b, Wang et 
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al., 2012c, Hang et al., 2012, Bian et al., 2016, Jin et al., 2014, 

Wang et al., 2012b) 

1x105 F, SD- (8) 

F, W- (1) 

5-21 + NA NA NA (Wang et al., 2011b, Hu et al., 2012a, Hu et al., 2012b, Hu et al., 

2013, Hang et al., 2013c, Hang et al., 2013b, Hang et al., 2015b, 

Zhu et al., 2015a, Hang et al., 2015a) 

1x105 F, SD- (1) 6-15 NA + NA + (Hang et al., 2014) 

1x105 F, SD- (1) 6-15 NA + NA NA (Hang et al., 2013a) 

1x105 F, W- (1) Tested day 14 NA NA NA + (Bao et al., 2015b) 

2x105 F, SD- (2) 

F, W- (1) 

3-21 + NA NA NA (Huang et al., 2014, Pan et al., 2015, Jin et al., 2015, Wu et al., 

2016a) 

2x105 F, W- (1) 7-21 NA + - + (Miao et al., 2010) 

2x105 F, SD- (1) 7-25 NA + - NA (Li et al., 2014a) 

2x105 F, W- (1) 7-21 NA + + + (Wu et al., 2012b) 

3.5x105 F, SD- (2) 5-21 + NA + NA (Wang et al., 2012a, Wang et al., 2015) 

4x105 F, SD- (1) 5-21 + NA - + (Yin et al., 2010) 

4x105 F, SD- (1) 

F, W- (1) 

4-32 + NA - NA (Mao-Ying et al., 2012, Huang et al., 2012) 

4x105 F, W- (2) 

F, SD- (1) 

7-21 + NA + + (Duan et al., 2012, Yang et al., 2015, Zhou et al., 2015) 

4x105 SD- (1) 3-21 + NA NA + (Cheng et al., 2014) 
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4x105 M&F, W- 

(10) 

F, SD- (2) 

3-21 + NA NA NA (Yu et al., 2009, Tong et al., 2010a, Wang et al., 2012d, Wang et 

al., 2012e, Hu et al., 2012c, Zhang et al., 2013, Li et al., 2013, 

Gong et al., 2014, Zhu et al., 2014a, Hu et al., 2015a, Song et al., 

2016, Li et al., 2016) 

4x105 F, W- (1) 6-20 NA NA + NA (Xu et al., 2013) 

5x105 F, SD- (1) 7-21 + NA + + (Liu et al., 2013b) 

5x105 F, SD- (5) 

F, W- (1) 

5-21 + NA + NA (Shen et al., 2014, Bao et al., 2014a, Liu et al., 2014b, Hu et al., 

2015b, Zhu et al., 2016, Zhang et al., 2015) 

5x105 F, SD- (1) 7-10 + NA NA + (Lu et al., 2015) 

5x105 F, SD- (3) 9-21 + NA NA NA (Chen et al., 2013a, Chen et al., 2015, Song et al., 2015) 

5x105 F, SD- (1) 7-10 NA + NA + (Lu et al., 2016) 

5x105 M, SD- (1) 5-14 NA + NA NA (Xu et al., 2015) 

1x108 F, SD- (1) 7-25 + NA NA NA (Zhao et al., 2010) 

+, observed; -, not observed; F, female; M, male; MA, mechanical allodynia; MH, mechanical hyperalgesia; NA, not assessed; SD, Sprague Dawley; 

S/MEP, spontaneous or movement- evoked pain; TH, thermal hyperalgesia; W, Wistar 
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1.11.6. Regression of tumor and resolution of pain 

Similar to the well-known human scenario of breast cancer regression (Barry, 2009, Hutter, 1982, 

Lewison, 1976, Onuigbo, 2012, Burnside et al., 2006), Walker 256 breast cancer cells may also 

potentially transform into a regressive variant in vivo (Guimarães et al., 2010) resulting in complete 

regression if the study is prolonged (Cavalcanti et al., 2003, Schanoski et al., 2004, Jensen and 

Muntzing, 1970). The mechanisms underlying spontaneous regression are not entirely clear but may 

involve development of an adaptive immune response (Pardoll and Topalian, 1998, Rees and Mian, 

1999), differential propagation of tumor sub-clones in their microenvironment (Khong and Restifo, 

2002) and consequent elimination by immune cells, antibodies, cytokines and chemokines (Dunn et 

al., 2002, Dunn et al., 2006, Bui and Schreiber, 2007, Jaganjac et al., 2008). Physical activity of the 

animals, exercise (Hoffman et al., 1962, Deminice et al., 2016b), dietary factors (Kwong et al., 

1984, Bekesi and Winzler, 1970, Luty et al., 2016, DeWys et al., 1970) or hormonal levels (Khegay 

and Ivanova, 2015, Khegai, 2013) may  influence the regression of these cells or inhibit the 

activities driven by these cells (Cruz et al., 2016, Deminice et al., 2016a, Fracaro et al., 2016, 

Campos-Ferraz et al., 2016, Toneto et al., 2016). In most studies, tumor regression is generally 

overlooked as the tumor-bearing rats are sacrificed before regression is evident (Guimarães et al., 

2010). Thus, the verification of tibial tumor burden post-mortem is very important. However, the 

beginning of pain behavior resolution at 20-25 days post-surgery is typically not due to tumor 

regression, but may involve neurogenic and immunity-based factors (Zhao et al., 2010, Xu et al., 

2013, Huang et al., 2014). In previous work by others using different cancer cell lines, upregulation 

of the endogenous opioid system is implicated in spontaneous pain behavior resolution 

(Muralidharan et al., 2013). Similarly, the endogenous opioid system could also have a role in 

Walker 256 cell-CIBP model (Li et al., 2016). In addition, lipoxins and endogenous lipoxygenase-

derived eicosanoids, which represent a unique class of lipid mediators, have a broad spectrum of 

anti-inflammatory and antinociceptive activities. These are known to suppress the expression of 

spinal pro-inflammatory cytokines and might also contribute to spontaneous resolution of Walker 

256 cell-CIBP in rats (Hu et al., 2012c). Inflammation, which is an important component of cancer 

pain (Falk and Dickenson, 2014) mostly involves active endogenous processes targeted at 

protecting the host, and is generally self-limiting and self-resolving (Chiang et al., 2005, Serhan and 

Savill, 2005, Schwab and Serhan, 2006). 

 

1.11.7. Targets for novel analgesic drug discovery 

The pathobiology of Walker 256 cell-CIBP in rats is complex involving inflammatory, neuropathic 

and tumorigenic components (Cao et al., 2010). Following injection, these cells cause osteolysis 

and bone resorption (Kurth et al., 2000, Kurth et al., 2001, Yu et al., 2009) and increase oxidative 
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stress and impair the antioxidant system in the bone microenvironment  (Badraoui et al., 2009). 

They cause enhanced synthesis of IL-1β and TNF-α at the mRNA or protein level along with 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which indicates that 

increased neuroimmune responses is one of the important factors responsible for pain in this model 

(Cao et al., 2010, Song et al., 2016). Injection of these cells in the bones sequentially activates the 

extracellular signal-regulated protein kinase (ERK) / mitogen-activated protein kinase (MAPK) 

pathway in various cell types in the spinal cord of rats (Wang et al., 2011b, Wang et al., 2012e, 

Bian et al., 2016). A study has shown that the expression of sodium channels Nav1.8 and Nav1.9 is 

increased within the DRGs of rats in this model (Qiu et al., 2012). Similarly, A-type K+ channels in 

the DRG are also involved in neuropathy in this model and the functions of these ion channels in 

the DRG neurons were found to change dynamically (Duan et al., 2012). By using whole patch 

clamp recordings from DRG neurons, a study has shown that the sensitivity of TRPV1 channels 

was significantly increased in this model (Xu et al., 2013). Spinal expression of KATP channels was 

reduced in this model and activation of these channels reduced associated pain hypersensitivities 

(Xia et al., 2014). In another study, the protein expression levels and mRNA levels of acid-sensing 

ion channel 3 were upregulated in the DRGs of rats in this model (Qiu et al., 2014). Hence, these 

ion channels may be important determinants of enhanced neuronal excitability in this breast CIBP 

model in rats. 

 

Pain behavior and its relief in Walker 256 cell-CIBP in rats is mediated by the endogenous effectors 

of several targets interacting with their cognate receptors as summarized in Table 1.2. These include 

important targets like opioid receptors, toll like receptors, chemokine receptors and purinergic 

receptors. Some of the targets listed in this table might need further studies (e.g. use of antagonists) 

to confirm the pharmacological role of these receptors in the modulation of pain hypersensitivities 

in this model. Nevertheless, they provide important preliminary information on possible 

involvement of these targets. 
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Table 1.2. Role of endogenous effectors interacting with their cognate targets that mediate pain and analgesia in the Walker 256 cell- CIBP model in 

rats. 

Receptor Ligand Downstream 

molecule / effector 

In vivo 

pharmacological 

modulator used 

Anatomical 

location of the 

receptor 

Outcome of 

receptor 

activation 

Reference/s 

Toll like receptor 4 

(TLR4) 

Lipopolysaccharide 

(Saitoh et al., 2004) 

TNF- 𝛼, IL-1𝛽; IL-6; 

p38MAPK 

Inducible Lentivirus-

Mediated small 

interfering RNA 

(siRNA) against TLR4; 

p38MAPK inhibitor- 

SB203580; TLR4 

blocker- 

lipopolysaccharide 

Rhodobacter 

sphaeroides (LPSRS) 

Spinal cord Hypersensitivity (Pan et al., 2015, 

Liu et al., 2010, 

Lan et al., 2010, 

Mao-Ying et al., 

2012, Li et al., 

2013, Liu et al., 

2013b) 

Lysophosphatidic 

acid 1 (LPA1) 

receptor 

Lysophosphatidic 

acid 

Ras homolog gene 

family (Rho), Rho 

Kinase (ROCK) 

LPA1 receptor blocker- 

VPC32183; Rho 

inhibitor- BoTXC3; 

ROCK inhibitor- 

Y27632 

DRGs, spinal 

cord 

Hypersensitivity (Zhao et al., 2010, 

Wu et al., 2016a) 

Erythropoietin-

producing human 

EphrinB1, EphrinB2 IL-1, IL-6 and TNF- 

𝛼; Matrix 

EphB1 receptor 

blocker- EphB1-Fc; 

Spinal cord Hypersensitivity (Dong et al., 2011, 

Liu et al., 2011) 
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hepatocellular 

carcinoma 

receptor B1 

(EphB1) 

metalloproteinase 

(MMP)-2/9 

EphB1 receptor 

blocker- EphB2-Fc 

Epidermal growth 

factor-like receptor 

ErbB2 

Neuregulin 1 

(NRG1) 

Akt-1, p38MAPK ErbB2 inhibitor Spinal cord Hypersensitivity (Jiang et al., 2014) 

CX3C chemokine 

receptor 1 

(CX3CR1) 

Fractalkine p38MAPK Anti-CX3CR1 antibody Spinal cord Hypersensitivity (Hu et al., 2012a, 

Yin et al., 2010, 

Cheng et al., 2014) 

CC chemokine 

receptor-2 (CCR2) 

Chemokine 

monocyte 

chemoattractant 

protein-1 (MCP-1) 

phosphatidylinositol 

3-kinase (PI3K), Akt 

Anti-MCP-1 antibody; 

PI3K inhibitor 

LY294002; exogenous 

recombinant MCP-1; 

CCR2 antagonist 

RS102895 

Spinal cord Hypersensitivity (Jin et al., 2015, Hu 

et al., 2012b, Hu et 

al., 2013, Ren et 

al., 2015) 

Chemokine (C-X-

C motif) receptor 

CXCR3 

CXCL9, CXCL10, 

CXCL11 

Akt, ERK 1/2  Recombinant CXCL10 

protein, anti-CXCL10 

antibody, CXCR3 

antagonist 

Spinal cord Hypersensitivity (Bu et al., 2014, 

Guan et al., 2015) 

CXC motif 

receptor 4 

CXCL12 TNF-α, NF-κB, IL-6 

and MAPKs 

Anti-CXCL12 

neutralizing 

Spinal cord Hypersensitivity (Shen et al., 2014, 

Hu et al., 2015b) 
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(CXCR4) Antibody, CXCR4 

inhibitor- 

AMD3100, Jun N-

terminal Kinase (JNK) 

inhibitor SP600125, 

MAPK inhibitor 

U0126, p38 inhibitor 

SB503580  

Purinergic P2Y1 

receptor 

(P2Y1R) 

Extracellular 

Adenosine 

triphosphate (ATP) 

(Webb et al., 1994) 

ERK1/2 P2Y1R antagonist 

MRS2179 

DRGs, spinal 

cord 

Hypersensitivity (Chen et al., 

2012b) 

Purinergic P2X3 

receptor (P2X3R) 

Extracellular ATP NF-κB P2X3 receptor 

antagonist- A-317491 

DRGs Hypersensitivity (Wu et al., 2012b, 

Zhou et al., 2015) 

Purinergic P2X4 

receptor (P2X4R) 

Extracellular ATP 

(North, 2002) 

p38MAPK P2X4R siRNA Spinal cord Hypersensitivity (Jin et al., 2014) 

Purinergic P2X7 

receptor (P2X7R) 

ATP IL-18, phosphorylated 

p38 

inhibitor of P2X7R- 

Brilliant Blue G (BBG); 

RNA interference 

targeting the P2X7R 

Spinal cord Hypersensitivity (Huang et al., 2014, 

Yang et al., 2015) 

a3 glycine 

receptors 

Glycine None siRNA targeting a3 

GlyR, glycine receptor 

Spinal cord Alleviated 

hypersensitivity 

(Zhang et al., 2013) 
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antagonist- strychnine 

Adenosine A1 

receptor 

Adenosine None Adenosine A1 receptor 

antagonist- DPCPX 

Spinal cord Alleviated 

hypersensitivity 

(Chen et al., 2013a) 

Protease-activated 

receptor 2 (PAR2) 

Trypsin and trypsin-

like proteinases 

NF-κB PAR2 antagonist- 

FSLLRY-NH2 

DRGs, Spinal 

cord 

Hypersensitivity (Bao et al., 2014a, 

Bao et al., 2014b) 

Protease-activated 

receptor 4 (PAR4) 

Thrombin None None DRGs Hypersensitivity (Bao et al., 2015c) 

Glucagon like 

peptide-1 receptor 

(GLP-1R) 

Glucagon like 

peptide-1 (GLP-1) 

Cyclic adenosine 

monophosphate 

(cAMP),  protein 

kinase A (PKA) 

GLP-1R agonists GLP-

1(7–36) 

Spinal cord Alleviated 

hypersensitivity 

(Gong et al., 2014) 

Cannabinoid 

receptor type 2 

(CB2) 

2-

arachidonoylglycerol 

(Basu et al., 2011) 

IL-1β, IL-6, IL-18, 

TNF-α 

CB2-selective 

antagonist- AM630; 

CB2-selective agonist- 

JWH-015 

Spinal cord Alleviated 

hypersensitivity 

(Lu et al., 2015, Lu 

et al., 2016) 

Prokineticin 

receptor 2 

(PKR2) 

Bv8 (prokineticin 2) TNF- α Bv8 neutralizing 

antibody 

Spinal cord Hypersensitivity (Hang et al., 

2015b) 

Corticotropin-

releasing factor 

(CRF) receptor 

Corticotropin-

releasing factor 

(CRF) 

None CRF receptor 

antagonist 

(α-helical-CRF) 

Spinal cord Hypersensitivity (Fan et al., 2015) 

µ-opioid receptor Endomorphin-2 PI3K, PKA MOR antagonist-  β- Spinal cord Alleviated (Chen et al., 2015, 

https://en.wikipedia.org/wiki/2-arachidonoylglycerol
https://en.wikipedia.org/wiki/2-arachidonoylglycerol


33 
 

(MOR) funaltrexamine 

(β-FNA)   

hypersensitivity Jiang et al., 2016, 

Yao et al., 2016) 

Sigma-1 Receptor Tryptaminergic trace 

amines, as well as 

neuroactive steroids 

such as 

dehydroepiandroster

one (DHEA) and 

pregnenolone 

(Fontanilla et al., 

2009) 

Inositol trisphosphate 

(IP3)  

Sigma-1 receptor 

antagonist -BD1047 

Spinal cord Hypersensitivity (Zhu et al., 2015a) 

N-Methyl-D-

Aspartate (NMDA) 

Receptor 

Glutamate, glycine 

or D-serine (Hogan-

Cann and Anderson, 

2016) 

None None DRGs, spinal 

cord 

Hypersensitivity (Wang et al., 

2012b) 

 

https://en.wikipedia.org/wiki/Tryptamine
https://en.wikipedia.org/wiki/Trace_amine
https://en.wikipedia.org/wiki/Trace_amine
https://en.wikipedia.org/wiki/Neuroactive_steroid
https://en.wikipedia.org/wiki/Dehydroepiandrosterone
https://en.wikipedia.org/wiki/Dehydroepiandrosterone
https://en.wikipedia.org/wiki/Pregnenolone
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1.11.8. Limitations and potential improvement of the model 

Like many other preclinical models, this model has short-comings which might hinder translation of 

promising preclinical data into successful clinical outcomes. There exist at least subtle mechanistic 

differences in the processing of pain pathways between humans and rodents, which hinders 

translation of findings in rodents to the humans (Low, 2013). Additionally, there are significant 

differences in behavioural outcomes and measures of pain in experimental animals and humans 

(Deuis et al., 2017). Mostly, efficacy profiling in preclinical pain models is driven by a desire to 

reduce the intensity of pain behavioral readouts. However, a reduction in pain intensity is not 

always a good measure of the success of a pain treatment (Ballantyne and Sullivan, 2015). Pain is a 

subjective emotional experience and clinically, a powerful analgesic response can be elicited by 

placebo treatment (Tuttle et al., 2015, Kaptchuk and Miller, 2015). Hence, responses in 

experimental animals may not necessarily correlate with the responses expected from humans in the 

clinical setting. It is also necessary to remember that animals at different ages may process 

nociception differently (McKelvey et al., 2015) and hence, selection of the correct age of animals 

that suits the experimental goals may be critical. 

 

Important factors that significantly affect pain research outcomes, such as the sex of the researchers 

interacting with the animals (Sorge et al., 2014) should not be overlooked in preclinical studies. Sex 

of the experimental animals or human subjects is a key source of variation in pro-nociceptive 

signalling (Wiesenfeld-Hallin, 2005, Sorge et al., 2015). In a recent large-scale gene regulatory 

study (Qu et al., 2015), the main findings were that men and women may require different strategies 

for treatment of pain, and so sex differences in pain research should not be ignored (Cahill and 

Aswad, 2015, Brings and Zylka, 2015, Ferrarelli, 2015, Vacca et al., 2016, Vacca et al., 2014, 

Murphy et al., 2009). 

 

There are many types of breast cancer in the clinical setting (Sharma et al., 2010) with the potential 

to cause pain, and the extent to which this model provides insights into these various subtypes is 

currently unclear. It is also important to have standardized protocols when using such preclinical 

models in order to minimize between-investigator and between-laboratory differences in 

implementation (Freedman and Gibson, 2015). 

 

1.11.9. Conclusion 

Cancer-associated pain, especially intractable bone pain, is very debilitating (Kane et al., 2015). 

Although this model involving ITI of Walker 256 cells in rats might not exactly mimic the 

metastatic spread of breast cancer to the axial skeleton in humans (Kurth et al., 2002, Kurth et al., 
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2001), it provides insights into the pathobiology and mechanisms of breast CIBP and is hence used 

widely in experimental research (Liu et al., 2015, Du et al., 2015, Hu et al., 2015a, Lu et al., 2015, 

Hang et al., 2015b). It might be considered to be a suitable preclinical model for efficacy 

assessment of novel compounds from discovery programs aimed at identifying drugs with potential 

to alleviate breast CIBP in humans. 

 

1.12. Summary 

It is apparent from the literature that pain can manifest via various mechanisms. Specifically, pain 

hypersensitivities developed by metastases of breast cancer cells to the axial skeleton is highly 

complex. Walker 256 breast cancer cell induced bone pain in rats is a useful preclinical tool, 

however, its efficient usage in research warrants further detailed characterization by various 

methods including transcriptomic approaches. A better understanding of this model may assist in 

identifying new mechanisms of pain hypersensitivities associated with breast cancer metastases to 

the axial skeleton and also in discovery of novel analgesic agents targeted against the complex 

pathobiology of breast cancer induced bone pain. While several pharmacological targets have been 

assessed in Walker 256 cell induced bone pain model, novel analgesic drug targets like somatostatin 

receptor type 4 yet remain unexplored, and it will be interesting to assess the potential of such novel 

targets in alleviating pain hypersensitivities in this cancer induced bone pain model. 

 

1.13. Hypotheses and Aims 

 

1.13.1. Hypotheses 

1.13.1.1. The Walker 256 breast cancer cell induced bone pain model in rats closely mimics the 

pathophysiology of breast cancer induced bone pain in patients and is well suited for probing the 

mechanisms of action and assessing new analgesic drug candidates for alleviating this condition. 

 

1.13.1.2. Induction of Walker 256 breast cancer cell induced bone pain in rats is associated with 

differential expression of genes that underpin the pathophysiology of pain, relative to sham-rats.  

 

1.13.1.3. The somatostatin receptor – 4 is a novel pharmacological target mediating analgesia in a 

rat model of Walker 256 breast cancer cell induced bone pain. 
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1.13.2. Aims 

1.13.2.1. To establish, optimize and characterize the Walker 256 breast cancer cell induced bone 

pain model in rats using behavioral, radiological, histological, immunohistochemical and 

pharmacological methods. 

 

1.13.2.2. To perform transcriptomic characterization of the Walker 256 breast cancer cell induced 

bone pain model in rats. 

 

1.13.2.3. To assess the analgesic efficacy of J-2156, a somatostatin receptor– 4 agonist, in a rat 

model of Walker 256 breast cancer cell induced bone pain. 
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Chapter 2 

Optimization and in vivo profiling of a refined rat model of Walker 

256 breast cancer cell-induced bone pain using behavioral, 

radiological, histological, immunohistochemical and pharmacological 

methods 

 

2.1. Foreword 

As described in Chapter 1, there are several factors like animal-based, cancer cell-based, etcetera 

that can affect the nature of pain hypersensitivities developed in the Walker 256 breast cancer cell- 

induced bone pain model in rats. Hence, I thoroughly optimized, validated and characterized this 

model using various techniques. I am thankful to Dr John Mackie 

(Specialist Veterinary Pathologist, Brisbane, Australia) and Dr Karine Mardon (NIF Facility Fellow 

and Molecular Imaging Facility Manager, The Centre for Advanced Imaging, The University of 

Queensland, Brisbane, Australia) for their expert assistance in histopathological analysis and 

radiological analysis of tibiae, respectively. 

 

This chapter has been adopted with permission from a previously published research article that 

arose from this thesis (Shenoy et al., 2017), published by Frontiers in Pharmacology 

(http://journal.frontiersin.org/article/10.3389/fphar.2017.00442/full) 

 

2.2. Introduction 

Unrelenting pain in patients with advanced cancer significantly reduces quality of life (Bu et al., 

2014). Metastases of cancer cells to the skeleton often causes pain in breast cancer patients (Bu et 

al., 2014) with over 70% of patients with terminal breast cancer having bony metastases (Coleman, 

2006, Currie et al., 2013, Cleeland et al., 2016). Bony metastases are often asymptomatic initially 

and are usually diagnosed following the occurrence of bone pain or skeletal complications 

involving damage to the bone structure (Cleeland et al., 2016). In the later stages of metastatic 

breast cancer, bone pain can become excruciating making it very difficult to treat (Kane et al., 

2015). Knowledge on the precise mechanisms by which breast and other cancers metastasize to 

bone and produce pain is incomplete (Zhu et al., 2015b). Primary breast tumours at the original site 

causes less or no pain, yet once these cells have metastasized to bone, patients may suffer 

excruciating pain (Lozano-Ondoua et al., 2013b). In the clinical setting, non-steroidal anti-

inflammatory drugs (NSAIDs), strong opioids, medications that inhibit the activity of osteoclasts 

http://journal.frontiersin.org/article/10.3389/fphar.2017.00442/full
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like bisphosphonates, bone targeted monoclonal antibodies, radiation therapy and surgical 

management are the mainstay of pharmacotherapeutic treatment of breast cancer-induced bone pain 

(BCIBP) (Kane et al., 2015, Milgrom et al., 2017). A major challenge involved in understanding the 

interplay of mechanisms underpinning the pathobiology of BCIBP is establishment of a suitable 

rodent model which exhibits characteristics similar to those of BCIBP in humans (Slosky et al., 

2015). Until the late twentieth century, cancer-induced bone pain (CIBP) models in animals were 

initiated by systemically injecting the cancer cells, causing poor animal health due to tumour in the 

liver and lungs as well as random and multi-sited bone deposits (Urch, 2004). Subsequently, models 

involving local injection of breast cancer cells within a single bone have proven successful, 

avoiding the spread of tumours systemically to the highly perfused organs or neighbouring soft 

tissue (Schwei et al., 1999). 

 

The unique contribution of our study described herein is establishment of a clinically relevant, 

optimised Wistar Han female rat model of BCIBP that we have extensively characterised  using 

behavioural, pharmacological, radiological (micro-computed tomography (µCT)), histological and 

immunohistochemical methods. Our findings show for the first time, that the severity and nature of 

mechanical pain hypersensitivity behaviours developed in the hindpaws of female Wistar Han rats 

depends on the initial number of Walker 256 (W256) cells given by unilateral intra-tibial injection 

(ITI). Additionally, we have thoroughly assessed and documented general animal health in a 

temporal manner in the same animals for up to 66 days post-ITI. A role for opioid-sensitive 

mechanisms in the spontaneous resolution of pain hypersensitivities observed at later stages of the 

model in the continued presence of bone cancer disease was investigated for the first time in this 

model. To the best of our knowledge, our pharmacological data are the first ‘back translation’ 

profiling of this rat model of BCIBP, showing analgesic efficacy of single bolus doses of clinically 

available analgesic drugs (morphine, meloxicam) and adjuvant agents (gabapentin, amitriptyline) 

used to treat various types of chronic pain. 

 

2.3. Material and Methods 

 

2.3.1. Drugs, chemicals and reagents 

Morphine (DBLTM morphine sulfate injection BP- 30 mg in 1mL) was procured from Hospira Pty 

Ltd (Melbourne, Australia). Gabapentin was kindly provided by Dr Ben Ross, School of Pharmacy, 

The University of Queensland (Brisbane, Australia). Amitriptyline (amitriptyline hydrochloride), 

meloxicam (meloxicam sodium salt hydrate), naloxone (naloxone hydrochloride dihydrate), 

TritonTM X-100, Tween 20, paraformaldehyde (PFA) and bovine serum albumin (BSA) were 
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procured from Sigma-Aldrich® (NSW, Australia). Isoflurane (IsoFloTM) was procured from Abbott 

Australasia Pty Ltd (NSW, Australia). Medical oxygen and medical carbon dioxide were procured 

from Coregas Pty Ltd (NSW, Australia). Triple antibiotic powder (Tricin®) was procured from 

Jurox Pty Ltd (NSW, Australia). Benzylpenicillin (BenPenTM, benzylpenicillin sodium for 

injection) was procured from CSL Ltd (VIC, Australia). Pentobarbitone (Lethabarb®, 

pentobarbitone sodium) was procured from Virbac (Australia) Pty Ltd (NSW, Australia). Eye 

ointment (Refresh Night Time®) was purchased from Allergan Australia Pty Ltd (NSW, Australia). 

Ethylenediaminetetraacetic Acid, disodium salt, dihydrate (UltraPureTM EDTA), 4',6-diamidino-2-

phenylindole, dihydrochloride (DAPI), Prolong® Gold antifade reagent, phosphate-buffered saline 

(PBS), medium 199 (1X), horse serum, Dulbecco's phosphate-buffered saline (DPBS, 1X) and 

0.25% trypsin-EDTA (1X) were purchased from Thermo Fisher Scientific Australia Pty Ltd (VIC, 

Australia). Normal goat serum (NGS) was purchased from Cell Signaling Technology® (MA, 

USA). Tissue-Tek® O.C.T. Compound was procured from ProSciTech Pty Ltd (QLD, Australia). 

Water for injection BP was purchased from Pfizer Australia Pty Ltd (NSW, Australia). 10 % 

neutral-buffered formalin (NBF) was purchased from Australian Chemical Reagents (QLD, 

Australia). Methanol and acetone were purchased from EMD Millipore Corporation (MA, USA). 

 

2.3.2. Cell culture 

W256 breast cancer cells [LLC-WRC 256 (ATCC® CCL-38TM)] at passage number 290 were 

procured from the American Type Culture Collection (ATCC; VA, USA). The cells were cultured 

and passaged following the ATCC guidelines. Cells within passage number 292-319 were used in 

the present study. To summarize, the cells were thawed from the frozen stocks and cultured in 

75cm2 Cellstar® flasks (Greiner bio-one) at 37 oC (5% CO2: 95% atmospheric air) in 20 mL of 

Medium 199 (1X) supplemented with 5% horse serum. For detachment of cells, they were initially 

rinsed gently with 3 mL of DPBS (1X), followed by trypsinization using 2 mL of 0.25% trypsin-

EDTA (1X). The cells thus detached were collected by centrifugation with 8 mL of medium for 4 

min at 200 ×g. The resultant supernatant was discarded, the pellet was re-suspended in 3 mL of 

DPBS and cell counting was performed using a hemocytometer. After re-centrifuging the pellet for 

4 min at 200 ×g, the cells obtained were suspended in DPBS in the required concentration (4×103, 

1.5×104, 4×104, 1.5×105 and 4×105 cells/10 μL DPBS). Heat-killed (HK) W256 cells were prepared 

in the same way as the live cells but with an additional step involving heating for 15 min at 90 °C. 

 

2.3.3. Animals 

Female Wistar Han (HsdBrlHan) rats used in these experiments were procured from the Herston 

Medical Research Centre (Brisbane, Australia) of The University of Queensland. On arrival at our 
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facility, rats were approximately 3-4 weeks of age with a body weight in the range of ~50-70 g. 

Rats were caged in groups of two to three in a room with controlled temperature (23 °C ± 2 °C) and 

a 12 h/12 h light–dark cycle. Standard rodent chow (Specialty Feeds, Western Australia, Australia) 

and tap water were available to the rats ad libitum. Kimwipes (Kimberly-Clark Professional, New 

South Wales, Australia) and Rat Chewsticks (Able Scientific, Western Australia, Australia) were 

provided as environmental enrichment. Rats were subject to acclimatization for at least 3 days prior 

to initiating experimentation. All the experiments herein were performed in the light phase. 

Approval of experimental procedures was obtained from the Animal Ethics Committee of The 

University of Queensland (QLD, Australia). The experiments were undertaken in accordance with 

the requirements of the Australia Code of Practice for the Care and Use of Animals for Scientific 

Purposes (8th edition, 2013). 

 

2.3.4. Surgical procedure 

Unilateral intra-tibial injections were performed in a manner similar to that described by others 

(Mao-Ying et al., 2006, Muralidharan et al., 2013) but with some modifications. Briefly, rats (~80–

120 g) were anesthetized deeply with 3% isoflurane delivered in oxygen. Eye ointment was used to 

avoid drying of eyes during the surgical procedure. Benzylpenicillin injection was subcutaneously 

administered at a dose of 60 mg per rat. A unilateral rostro-caudal incision of approximately 1 cm in 

length was created on the upper medial half of the lower left hind limb. After the exposure of the 

tibia, using a 23-gauge needle, the bone was pierced medial to the tibial tuberosity below the knee 

joint. A 10 μL injection containing W256 cells in the required number, or HK cells (sham-rats) or 

DPBS (control rats) was administered into the bone cavity with a Hamilton® syringe 

(80508:705SN 50 µL SYR SPECIAL (22 /2″/4), NV, USA). In all of the experiments (except 

experiment 4), at least one rat received an ITI of HK cells as a control for lack of pain 

hypersensitivity, including the experiments designed for pharmacological testing (Supplementary 

Table 2.1). The bone was immediately sealed using EthiconTM W810 bone wax (Johnson-Johnson 

International, Diegem, Belgium). The muscles and the skin were stitched in place with non-

absorbable USP 5/0 sutures Dysilk® suture (Dynek Pty Ltd, SA, Australia). Topical antibiotic 

powder was then dusted on the wound. The hindpaw of the injected limb is termed as the 

‘ipsilateral’ hindpaw, while that of the non-injected limb is termed as the ‘contralateral’ hindpaw. 

After the surgery, rats were closely monitored. The general animal health and their body weights 

were regularly assessed throughout the experimental period. 
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2.3.5. Animal groups and experimental timelines 

The number of animals involved in individual groups along with the details of each of the 

experiments performed together with their corresponding durations are shown in Figure 2.1. For the 

ease of editing and typesetting the figure, clinical observations have not been denoted for 

experiments 2 to 16 in Figure 2.1, although they were performed. Baseline pain behavioural tests 

prior to surgeries / ITI (referred as day 0) were performed on rats from all the experiments 

(Supplementary Table 2.2). To comprehensively characterise the model, one group of rats received 

an ITI of DPBS and another group (naïve) of animals did not undergo surgery or ITI (experiment 

4). 
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Figure 2.1. Timeline of assessments performed in individual experiments. AM, amitriptyline; 

C, clinical observations; GB, gabapentin; H, Hargreaves testing; HK, heat-killed; HT, histological 

assessment; I, immunohistochemical assessment; MP, morphine; MX, meloxicam; 

MP/GB/AM/MX-P, paw pressure testing after drug injection; MP/GB/AM/MX-V, von Frey testing 

after drug injection; N-H, Hargreaves testing after naloxone injection; N-P, paw pressure testing 

after naloxone injection; N-V, von Frey testing after naloxone injection; P, paw pressure testing; R, 

radiological assessment; V, von Frey testing; W256, Walker 256 cells. 
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2.3.6. General Health Characteristics 

The primary aim of Experiment 1 was to perform clinical observations and document temporal 

changes in general health along with body weights for the study duration. Animal welfare checks 

for mortality, morbidity and food and water levels were performed twice daily until the study 

completion. Body weights and clinical observations (general health parameters) were generally 

monitored at least once per week until the study completion in all the experiments. The observation 

method and the clinical parameters / symptoms were obtained and modified from the previously 

established standard methods (Moser and MacPhail, 1990, Haggerty, 1991) and Guidance 

Document on the Recognition, Assessment, and Use of Clinical Signs as Humane Endpoints for 

Experimental Animals Used in Safety Evaluation (OECD Environmental Health and Safety 

Publications Series on Testing and Assessment No. 19, 2000). Briefly, each rat in the study was 

carefully examined for their appearance, clonic movements, tonic movements, gait, stereotypy and 

bizarre behaviour, if any. Assessment of appearance included parameters such as diarrhoea, 

piloerection, salivation, palpebral closure, lacrimation, lack of grooming, bleeding from orifices and 

moribundity. Assessment of clonic movements included parameters such as wet dog shakes, clonic 

convulsions, myoclonic jerks, severe or whole body tremors, mild tremors, quivers of limbs, skin, 

ears or head, repetitive movements of jaws and mouth. Assessment of tonic movements included 

severe clonic and / or tonic convulsions causing dyspnoea, postictal depression or death, jumps with 

all feet leaving the surface, rigid forward extension of head and body, head and body rigidly arched 

backward and contraction of extensors. Assessment of gait included lameness, body drags, tiptoe 

walk, dragging or extension of forelimbs or inability to support weight, feet markedly point outward 

from the body, exaggerated or over-compensated movements of hind limbs, excessive sway, rocks 

or lurches and ataxia. Assessment of stereotypy involved repetitive sniffing, pacing, stereotypic 

grooming and circling. Assessment of bizarre behaviour involved writhing or flopping, retropulsion, 

straub tail, self-mutilation and head weaving amongst others. The form used for recording clinical 

observations in experimental rats is shown in Supplementary Figure 2.1. 

 

2.3.7. Pain behavioral studies 

 

2.3.7.1. Assessment of mechanical allodynia in the hindpaws 

Assessment of development of mechanical allodynia (hypersensitivity to applied non-noxious 

mechanical stimuli) in both hindpaws was performed using calibrated von Frey filaments (Stoelting 

Co., Wood Dale, IL, USA) by determining the lowest mechanical threshold that elicits a paw 

withdrawal response (Ren, 1999). Rats were individually positioned into wire mesh cages and they 

were acclimatized for around 15 to 30 min before von Frey testing. Until the filaments buckled 
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slightly, they were physically applied on the plantar surface of the hindpaws. Absence of a response 

after 3 s suggested the use of a higher filament in the ascending order (2, 4, 6, 8, 10, 12, 14, 16, 18, 

and 20 g) until the response was observed. By contrast, a withdrawal response observed within 3 s 

suggested the use of a filament evoking a lower force than before. Testing was initiated with a 6 g 

filament, and the filaments were subsequently changed to obtain an increased or decreased force 

based upon the earlier response. The baseline paw withdrawal thresholds (PWTs) for individual 

hindpaws were the mean of three observed readings with an interval of 5 min between two 

successive readings. For pharmacological testing of compounds at regular intervals over a 3-h post-

dosing period, the starting filament at each time point was dependent upon the previous reading. 

Rats with PWTs < 6 g in the ipsilateral hindpaw were defined as having fully developed mechanical 

allodynia. All of the von Frey assessments were performed in a blinded manner. 

 

2.3.7.2. Assessment of mechanical hyperalgesia in the hindpaws 

Temporal development of mechanical hyperalgesia (hypersensitivity to applied noxious mechanical 

stimuli) in the bilateral hindpaws was determined using an Analgesy-meter (Ugo Basile, Italy). The 

mechanical force required to elicit withdrawal of each of the hindpaws (paw pressure thresholds 

(PPTs)) of the animal was measured (Randall et al., 1957). Specifically, each hindpaw was 

positioned on a small plinth under a rounded cone-shaped pusher which avoids tissue damage. 

Depressing the pedal-switch started the mechanism of exertion of force. As soon as the rat 

struggled, the pedal was immediately released and the applied force was recorded. A cut-off of 200 

g maximum was used to avoid hindpaw injury. Baseline PPTs were the mean of three observations 

for a hindpaw with at interval of at least 5-min between consecutive assessments. Rats with 

ipsilateral PPTs < 80 g were considered to have fully developed mechanical hyperalgesia. All of the 

PPT assessments were performed in a blinded manner. 

 

2.3.7.3. Assessment of thermal hyperalgesia in the hindpaws 

Development of thermal hyperalgesia (hypersensitivity to applied noxious heat stimuli) in the 

hindpaws was studied using the plantar test / Hargreaves apparatus (Ugo Basile, Italy) to assess the 

time required to elicit a withdraw response (paw thermal thresholds (PTTs)) to an applied noxious 

heat stimulus (Hargreaves et al., 1988). Rats were individually positioned in Perspex chambers 

having a glass floor and acclimatized for at least 30 min before performing the test. A noxious heat 

stimulus (infrared (IR) intensity value-30; 135 mW/cm2) was radiated to the plantar surface of the 

hindpaws and the PTT values were noted. A cut-off time of a maximum of 30 s was used to avoid 

damage to the tissue. Baseline PTTs were the mean of three observations for a hindpaw with an 
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interval of 5-min between consecutive tests. All of the PTT assessments were performed in a 

blinded manner. 

 

2.3.7.4. Test compound administration 

Animals were dosed by the first person and assessments were performed by the second person to 

ensure that study blinding was not compromised. Each rat received a maximum of five 

intraperitoneal (i.p.) or subcutaneous (s.c.) doses of test compounds or vehicle with at least 2 days 

of ‘washout’ between consecutive doses. Test compound dosing solutions in the present work were 

prepared using Water for injection BP as the vehicle. Doses of all test compounds are expressed in 

terms of their water-soluble salts similar to previous studies from our laboratory (Varamini et al., 

2012, Han et al., 2014a, Kuo et al., 2015, Smith et al., 2013, South et al., 2009) and by others 

(Maguire et al., 2013, Samal et al., 2015, Negus et al., 2012). 

 

2.3.7.4.1. Effect of naloxone on pain phenotypes 

Rats from experiments 3, 4, 5 and 7 were given single bolus doses of naloxone (15 mg/kg s.c.) or 

vehicle after the apparent hypersensitivity of the hindpaws to applied mechanical stimuli had 

resolved. After injecting naloxone or vehicle, PWTs, PPTs or PTTs were assessed in the hindpaws 

at pre-defined intervals during a 3 hour period post-dosing. 

 

2.3.7.4.2. Anti-allodynic effect of morphine, gabapentin, amitriptyline and meloxicam 

Rats having fully developed mechanical allodynia in their ipsilateral hindpaws were administered 

single bolus doses of morphine (0.3, 1 and 3 mg/kg s.c.), gabapentin (30, 70 and 100 mg/kg i.p.), 

amitriptyline (3, 10 and 30 mg/kg i.p.) and meloxicam (2.5, 5.0 and 7.5 mg/kg i.p.) or vehicle. 

PWTs were measured in both hindpaws immediately pre-dose and at 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 

2 and 3 h post-dosing.  

 

2.3.7.4.3. Anti-hyperalgesic effect of morphine, gabapentin, amitriptyline and meloxicam 

PPTs were measured in both hindpaws of rats with fully developed mechanical hyperalgesia 

following administration of single bolus doses of morphine (3 mg/kg s.c.), gabapentin (100 mg/kg 

i.p.), amitriptyline (30 mg/kg i.p.), meloxicam (7.5 mg/kg i.p.) or vehicle. PPTs were assessed 

immediately before dosing and at 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2 and 3 h post-dosing. 

 

2.3.8. Tibial bone µCT scan 

Rats (ITI of 4 x 105 W256 cells, n=3; ITI of 4 x 105 HK W256 cells, n=3) from Experiments 8 and 9 

were euthanized on day 10 and day 48 with an overdose of pentobarbitone sodium (1 mL/kg of 
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325.73 g/L; Lethabarb®). The tibiae were collected and fixed in 10 % NBF for at least 2 days. 

Micro-CT scanning was conducted using a preclinical Inveon Multimodality PET/CT Scanner 

(Siemens Medical Soln., TN, USA) at the Centre for Advanced Imaging (CAI) at The University of 

Queensland. The -CT images were obtained using Inveon Acquisition Workstation software (IAW 

version 2.0, Siemens). The X-ray source voltage was set to 80 kV and the current to 250 μA. The 

scans were conducted using 360° rotation with 360 rotation steps using a medium–high 

magnification and with a binning factor of 2. The exposure time was 2300 ms and the CT scanning 

process totally took approximately 60 min. The -CT images were reconstructed using a Feldkamp 

reconstruction software (Siemens) resulting in an isotropic voxel dimension of 27.9 μm. The CT 

data were calibrated in Hounsfield units (HU) defined such that the water and air have 0 and 1000 

HU values, respectively. The images were analysed using Inveon Research Workstation software 

(IRW version 4.1, Siemens) to measure the bone volume / total volume (BV/TV ratio), trabecular 

thickness (Tb.Th), trabecular spacing (Tb.Sp) and trabecular number (Tb.N) in the proximal 

diaphyseal regions of the ipsilateral tibial bones, as described previously (Muralidharan et al., 

2013). 

 

2.3.9. Tibial bone histology 

Rats (ITI of 4 x 105 W256 cells, n=3; ITI of 4 x 105 HK W256 cells, n=3) from Experiments 8 and 9 

were euthanized on day 10 and day 48 with pentobarbitone sodium (1 mL/kg of 325.73 g/L; 

Lethabarb®). Tibiae were harvested and fixed by immersing in 10 % neutral-buffered formalin (Liu 

et al., 2016, Jin et al., 2016) for at least 2 days. These tibiae were then immersed in 15 % w/v 

solution of UltraPureTM EDTA in phosphate buffer for at least 4 weeks, with the EDTA solution 

being changed twice per week (Hald et al., 2009). The soft decalcified bones were then rinsed, and 

after dehydration they were embedded in paraffin and cut into 4 μm cross-sections with a RM2235 

rotary microtome (Leica Microsystems, Wetzlar, Germany) at the QIMR Berghofer Medical 

Research Institute, Brisbane, Australia. Sections of proximal diaphyseal regions of ipsilateral tibiae 

were mounted on Uber slides (InstrumeC Pty Ltd, Vic, Australia) and stained using hematoxylin 

and eosin (H&E) (Mao-Ying et al., 2006) to assess histological changes in the tibial structure. 

 

2.3.10. Immunocytochemistry of W256 cells: Cytokeratin 18 

W256 cells were seeded onto sterile coverslips in 24 well-plates. Once the cells were 80-90 % 

confluent, the culture medium was aspirated and the cells were briefly rinsed using PBS. The cells 

were fixed with ice-cold methanol (4 min at -20 oC). The fixing agent was aspirated and the cells 

were washed with 0.2 % Tween 20 and 0.1 % TritonTM X-100 in PBS for 10 min. The fixed cells 

were subsequently blocked for 30 min with 1 % BSA in PBS at 23 °C ± 2 °C. Anti-Cytokeratin 18 
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antibody [C04] (Alexa Fluor® 488) ab187573 (1:20 dilution, Abcam, VIC, Australia), prepared in 1 

% BSA in PBS, was added to the wells containing the coverslips and the plate was incubated at 37 

oC for 3 hours in the dark (~0.002 lux). The antibody solution in the wells was then aspirated and 

the cells were rinsed with PBS thrice for 5 minutes each. A 0.5 µg/mL solution of DAPI was added 

and the cells were incubated for 5-10 min. The DAPI solution was then aspirated and the cells were 

washed with PBS. Next, the processed cells on coverslips were mounted on Superfrost® Plus slides 

(Lomb Scientific Pty Ltd., NSW, Australia) using Prolong® Gold antifade reagent. The mounted 

slides were allowed to dry and stabilise in the dark at 4-8 oC overnight, prior to image capture using 

a fluorescence microscope as mentioned in section 2.3.12. 

 

To validate the above results of immunocytochemical staining, anti-Cytokeratin 18 antibody [C-04] 

ab668 (1:100 dilution, Abcam, VIC, Australia), which was used in both immunocytochemistry and 

immunohistochemistry applications in other works (Leong et al., 2008, Wang et al., 2009b), was 

used as a second confirmatory antibody. The procedure for staining of cells with the second 

antibody was similar to that of the previous antibody as described above. However, after the 

primary antibody treatment, the cells were incubated with Goat anti-Mouse IgG (H+L) Secondary 

Antibody, Alexa Fluor 546 A-11030 (1:500 dilution, Thermo Fisher Scientific, IL, USA) in PBS 

with 0.1 % Tween 20 (PBST) for around 2 hours in the dark (~0.002 lux) at 23 °C ± 2 °C, followed 

by 2 × 5 min washes with PBST and 1 x 5 min wash with PBS before treatment with DAPI. 

 

2.3.11. Tibial bone immunohistochemistry 

Rats (ITI of 4 x 105 W256 cells, n=3; ITI of 4 x 105 HK W256 cells, n=2) from experiment 15 and 

16 were euthanized on days 7 and 38 with an overdose of pentobarbitone and then perfusion-fixed 

using 4% PFA. The tibiae were collected and further post-fixed with 4 % PFA. The tibiae were 

stored in 10 % NBF for 2 days at 4-8 oC. These tibiae were then decalcified in a manner similar to 

that described in section 2.3.9. The decalcified bones were allowed to post-fix for 2 h in 4% PFA 

solution (4-8 °C), cryoprotected successively in 15% sucrose/PBS and 30% sucrose/PBS at 4-8 °C 

and subsequently placed in a 1:1 mixture of OCT:30% sucrose/PBS at 4-8 °C, after which they 

were freeze-mounted in Tissue-Tek® O.C.T. Compound. Frozen tibial longitudinal sections (7 μm 

thick) were cut using a Cryostar NX70, (Thermo Fisher Scientific, Waltham, USA) and mounted on 

Uber Plus charged slides (InstrumeC, Vic, Australia). In order to identify the tumor infiltration by 

using immunohistochemistry, tibial sections were washed with a 1X PBS (pH 7.4) solution (3 × 5 

min), followed by blocking with 10% NGS containing 0.3 % TritonTM X-100 in PBS for 1-2 hour at 

room temperature. The sections were allowed to incubate with anti-Cytokeratin 18 antibody [C04] 

(Alexa Fluor® 488) ab187573 (1:20 dilution) diluted in 2 % NGS in PBST overnight at 4-8 °C. 
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This was followed by 2 × 5 min washes using PBST and 1 x 5 min wash with PBS. The sections 

were allowed to incubate with DAPI for 5-10 min and subsequently washed with PBS (2 x 5 min) 

and the cover-slips were placed along with Prolong® Gold antifade reagent. 

 

Similar to the procedure outlined in section 2.3.10, anti-Cytokeratin 18 antibody [C-04] ab668 

(1:100 dilution) was also used to validate the results of immunohistochemical staining. The 

procedure for staining of tibial sections with the second antibody was similar to that of the previous 

antibody described above. However, the sections were allowed to incubate with primary antibody 

overnight at 23 °C ± 2 °C, and then incubated with Goat anti-Mouse IgG (H+L) Secondary 

Antibody, Alexa Fluor 546 A-11030 (1:600 dilution) in PBST for 2 hours in the dark (~0.002 lux) 

at 23 °C ± 2 °C. This was followed by 2 × 5 min washes using PBST and 1 x 5 min wash with PBS 

and the sections were subsequently treated with DAPI and mounted as described above. 

 

2.3.12. Image acquisition 

For the histology experiments, images were captured with an Aperio ScanScope XT system (Leica 

Biosystems, Nussloch, Germany) located at the School of Biomedical Sciences, The University of 

Queensland and processed using Aperio ImageScope v12.3.0.5056 software (Leica Biosystems). 

Images from immunocytochemistry and immunohistochemistry experiments were captured with an 

Axioskop 40 microscope (Carl Zeiss, Göttingen, Germany) attached to an Axiocam MRm camera 

(Carl Zeiss) and processed using AxioVision Rel. v4.8 software (Carl Zeiss). For the 

immunocytochemistry and immunohistochemistry experiments, images were acquired at a fixed 

exposure time, optimised using auto-exposure settings of AxioVision Rel. v4.8 software and by 

using filters suitable for the fluorophore of the secondary antibody. Immunohistochemistry based 

images from at least 3-4 non-adjacent sections per rat were acquired randomly. 

 

2.3.13. Data analysis 

All the values have been expressed as mean + standard error of the mean (SEM). For treatments 

having n<2, the values are expressed as mean or absolute value, without calculating the error. 

Generation of graphs and data processing were done using the GraphPad PrismTM (v7.00) software 

package. The PWT values of rats administered single bolus doses of test compound or vehicle were 

normalized by subtracting the pre-dosing baseline values so as to obtain ΔPWT values as follows: 

 

 

Area under the curve (AUC) for ΔPWT versus time curves (ΔPWT AUC values) were calculated 

using trapezoidal integration to determine the extent and duration of action of test compounds for 
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relief of allodynia. ΔPWT AUC values were then converted into a percentage of the maximum 

possible ΔPWT AUC (% MAX ΔPWT AUC) with the following formula: 

 

 

Dose–response curves were generated by plotting mean (±SEM) % MAX ΔPWT AUC values 

versus log dose of each of the test compounds. The PPT data and the naloxone data were processed 

in a similar way as described above. Non-linear regression (GraphPad Prism™ v7.00) was used to 

determine the ED50 values for each drug treatment against mechanical allodynia in the ipsilateral as 

well as the contralateral hindpaws. 

 

2.3.14. Statistical analysis 

Statistical analyses were performed using the GraphPad PrismTM v7.00 software package. The 

criterion of statistical significance was p < 0.05. Two-way analysis of variance (ANOVA) followed 

by the Bonferroni test was used to analyse between-group differences in body weights, behavioural 

data, pharmacological data and tibial bone morphometric changes. The Mann-Whitney test was 

used to assess between group body weight differences with missing intermediate values and to 

compare differences in ΔPPT AUC values for each test compound- and vehicle-treated group. One-

way ANOVA followed by the Dunnett’s test was used in order to compare differences in ΔPWT 

AUC values for each test compound- and vehicle-treated groups. The unpaired t test was used in 

order to compare the extent and duration of naloxone induced rescue of the pain phenotype. For 

statistical comparisons using ANOVA, F values were reported along with their associated degrees 

of freedom (treatment, time, interaction and residual). For two-way ANOVA, F values were 

expressed as F(df of treatment, time, interaction/residual). Whereas, for one-way ANOVA, F values 

were expressed as F(df of treatment, residual). 

 

2.4. Results 

 

2.4.1. General Health Characteristics 

In terms of body weight, there were no significant differences between animals given an ITI of 

W256 and HK W256 cells in experiment 1 (F(7, 17, 119/238) = 1.2, 1125, 1.5; p > 0.05), experiment 2 

(F(1, 43, 43/387) = 2.2, 619.7, 0.9; p > 0.05) (Figure 2.2A), experiment 3 (p > 0.05) (Figure 2.2B), 

experiment 5 (p > 0.05) (Figure 2.2C), experiment 7 (F(1, 14, 14/98) = 0.7, 766.6, 1.3; p > 0.05), 

experiment 8 (F(1, 8, 18/64) = 0.4, 400.8, 2.7; p > 0.05), experiment 9 (F(1, 11, 11/88) = 1.1, 364, 0.05; p > 

0.05), experiment 10 (F(1, 8, 8/64) = 0.3, 180.6, 2.8; p > 0.05), experiment 11 (F(1, 8, 8/64) = 1.0, 314.8, 
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1.6; p > 0.05), experiment 12 (F(1, 7, 7/63) = 0.5, 66.0, 0.2; p > 0.05), experiment 13 (F(1, 7, 7/49) = 1.1, 

195.4, 0.8; p > 0.05) and experiment 14 (F(1, 9, 9/63) = 0.7, 141.5, 1.6; p > 0.05). Additionally, there 

were no significant differences in between body weights of animals given an ITI of DPBS and age-

matched control female Wistar Han rats in experiment 4 (p > 0.05). Although there were slight 

differences between body weights of rats administered W256 and HK W256 cells in experiment 6 

(F(1, 12, 12/108) = 8.9, 508.1, 3.1; p < 0.05), experiment 15 (F(1, 6, 6/18) = 11.9, 84.1, 1.3; p < 0.05) and 

experiment 16 (F(1, 11, 11/33) = 62.6, 314.2, 0.6; p < 0.05) at some time points, these were either due to 

differences in initial body weights or due to non-cancer factors. Importantly, there were consistent 

gains in the body weights of all animals throughout the experiments (Supplementary Figure 2.2). 

 

A total of 173 rats were used in this study, out of which 9 rats (5%) were found to have health-

related issues and of these 3 (1.7%) were euthanized for ethical reasons as outlined below. One rat 

from experiment 1 given an ITI of 4 x 103 W256 cells had a slight tumour like appearance in the 

bone near the injection site. Nevertheless, the overall health of the animal was satisfactory and no 

other complications were observed. Another rat from experiment 1 given an ITI of 1.5 x 105 W256 

cells had a mild infection at the sight of surgery with visible pus exudate. Under anaesthesia, the 

infected site was cleaned and topical antibiotic powder was applied, followed by a subcutaneous 

injection of benzylpenicillin at a dose of 60 mg. Subsequently, the infection resolved. One rat given 

an ITI of 4 x 103 W256 cells, two rats given an ITI of 1.5 x 105 W256 cells and one rat given an ITI 

of 4 x 105 HK W256 cells from experiment 1 had mild swelling at the injection site, which resolved 

spontaneously. One rat from experiment 4 given an ITI of DPBS was excluded from the study and 

euthanized due to lack of normal body weight gain due to a crooked incisor. One rat given an ITI of 

4 x 105 W256 cells from experiment 5 was excluded and euthanized due to the presence of a large 

external tumour growth on the injected tibia. One rat from experiment 6 given an ITI of 4 x 105 

W256 cells was excluded and euthanized due to lethargic behaviour and low body weight; upon 

post-mortem investigation, a large metastatic lesion was observed on the intestine. 
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Figure 2.2. Body weight of rats from individual experiments. Panels in the figure show mean 

(±SEM) body weight of rats from (A) experiment 2, (B) experiment 3 and (C) experiment 5. HK, 

heat-killed; W256, Walker 256 cells. There were no statistically significant differences in body 

weight between any treatment groups (p>0.05; experiment 2, Two-way ANOVA, posthoc 

Bonferroni test; experiment 3 and 5, Mann-Whitney test). 

 

2.4.2. Assessment of mechanical allodynia in the hindpaws 

The aim of these experiments was to assess the development of mechanical allodynia in the BCIBP 

rats after inoculation of W256 cells. ITI of lower number of W256 cells in BCIBP rats produced 

unilateral mechanical allodynia, whereas increasing the number of inoculated cells produced 

hypersensitivities in the bilateral hindpaws. The magnitude of hypersensitivities also depended on 

the number of cells inoculated. The hypersensitivities spontaneously resolved after around 3-4 

weeks. 

2.4.2.1. Experiment 2 

Unilateral ITI of 4 x 104 W256 cells in rats did not significantly reduce PWTs in either the 

ipsilateral (F(1, 9, 9/81) = 0.8, 2.1, 1.3; p > 0.05) or the contralateral (F(1, 9, 9/81) = 4.2, 2.9, 1.2; p > 0.05) 

hindpaws throughout the experiment c.f. rats administered a unilateral ITI of 4 x 104 HK W256 cells 

(Figure 2.3A). 

2.4.2.2. Experiment 3 

Unilateral ITI of 1.5 x 105 W256 cells in rats significantly reduced the PWTs in the ipsilateral (F(1, 

16, 16/208) = 66.9, 13.4, 8.6; p < 0.05) hindpaw between days 4 and 20 after surgery and in the 

contralateral (F(1, 16, 16/208) = 14.7, 3.3, 2.4; p < 0.05) hindpaws between days 16 and 20 after surgery 

c.f. rats given an ITI of 1.5 x 105 HK W256 cells, with a maximum reduction of 50.6 % and 23.0 % 

in the ipsilateral and contralateral PWTs relative to the corresponding baseline PWTs, respectively 

(Figure 2.3B). 
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2.4.2.3. Experiment 4 

Unilateral ITI of DPBS in rats did not significantly reduce PWTs in either the ipsilateral (F(1, 15, 

15/135) = 0.4, 1.9, 1.2; p > 0.05) or the contralateral (F(1, 15, 15/135) = 0.4, 1.6, 1.1; p > 0.05) hindpaws 

throughout the experiment c.f. age-matched control (naïve) rats (Supplementary Figure 2.3A). 

2.4.2.4. Experiment 5 

Unilateral ITI of 4 x 105 W256 cells in rats significantly reduced the PWTs in both the ipsilateral 

(F(1, 16, 16/208) = 228.0, 35.5, 25.8; p < 0.05) and contralateral (F(1, 16, 16/208) = 154.4, 28.0, 20.5; p < 

0.05) hindpaws between days 7 and 25 after surgery c.f. rats given an ITI of 4 x 105 HK W256 cells, 

with a maximum reduction of 58.9 % and 42.3 % in the ipsilateral and contralateral PWTs relative 

to the corresponding baseline PWTs, respectively (Figure 2.3C). 

2.4.2.5. Experiment 8 

Unilateral ITI of 4 x 105 W256 cells in rats significantly reduced the PWTs in both the ipsilateral 

(F(1, 1, 1/8) = 81.6, 140.5, 45.5; p < 0.05) and contralateral (F(1, 1, 1/8) = 39.6, 103.7, 55.8; p < 0.05) 

hindpaws at day 7 after surgery c.f. rats given a unilateral ITI of 4 x 105 HK W256 cells, with an 

observed decrease of 58.8 % and 51.3 % in the ipsilateral and contralateral PWTs relative to the 

corresponding baseline PWTs, respectively (Supplementary Figure 2.3B). 

2.4.2.6. Experiment 9 

Unilateral ITI of 4 x 105 W256 cells in rats significantly reduced the PWTs in both the ipsilateral 

(F(1, 2, 2/16) = 26.1, 79.3, 41.9; p < 0.05) and contralateral (F(1, 2, 2/16) = 25.2, 47.9, 26.6; p < 0.05) 

hindpaws at day 7 after surgery c.f. rats administered a unilateral ITI of 4 x 105 HK W256 cells, 

with a reduction of 58.6 % and 52 % in the ipsilateral and contralateral PWTs respectively. At day 

46 after surgery there was no significant difference between PWTs of both ipsilateral (F(1, 2, 2/16) = 

26.1, 79.3, 41.9; p > 0.05) and contralateral (F(1, 2, 2/16) = 25.2, 47.9, 26.6; p > 0.05) hindpaws c.f. rats 

administered a unilateral ITI of 4 x 105 HK W256 cells (Supplementary Figure 2.3C). 

2.4.2.7. Experiment 15 

Unilateral ITI of 4 x 105 W256 cells in rats significantly reduced the PWTs in both the ipsilateral 

(F(1, 1, 1/3) = 171.6, 25.4, 15.0; p < 0.05) and contralateral (F(1, 1, 1/3) = 95.3, 28.9, 28.9; p < 0.05) 

hindpaws at day 7 after surgery c.f. rats administered a unilateral ITI of 4 x 105 HK W256 cells, 

with a reduction of 52.2 % and 27.9 % in the ipsilateral and contralateral PWTs respectively 

(Supplementary Figure 2.3D). 

2.4.2.8. Experiment 16 

Unilateral ITI of 4 x 105 W256 cells in rats significantly reduced the PWTs in both the ipsilateral 

(F(1, 4, 4/12) = 98.7, 13.2, 12.7; p < 0.05) and contralateral (F(1, 4, 4/12) = 67.6, 6.0, 5.1; p < 0.05) 

hindpaws between days 7 and 21 after surgery c.f. rats administered a unilateral ITI of 4 x 105 HK 
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W256 cells, with a maximum reduction of 55.6 % and 33.3 % in the ipsilateral and contralateral 

PWTs relative to the corresponding baseline PWTs, respectively (Supplementary Figure 2.3E). 

 

 

Figure 2.3. Paw withdrawal thresholds (PWTs) of ipsilateral and contralateral hindpaws of 

rats. Panels in the figure show mean (±SEM) PWTs of rats from (A) experiment 2, (B) experiment 

3 and (C) experiment 5. Rats with PWTs < 6 g in the ipsilateral hindpaw were considered to have 

fully developed mechanical allodynia as indicated by the dotted line. HK, heat-killed; W256, 
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Walker 256 cells. *p<0.05 (Two-way ANOVA, posthoc Bonferroni test) c.f. rats given an ITI of 

HK W256 cells. 

 

2.4.3. Assessment of mechanical hyperalgesia in the hindpaws 

The aim of these experiments was to assess the development of mechanical hyperalgesia in the 

BCIBP rats after inoculation of W256 cells. ITI of lower number of W256 cells in BCIBP rats 

produced unilateral mechanical hyperalgesia, whereas increasing the number of inoculated cells 

produced hypersensitivities in the bilateral hindpaws. The magnitude of hypersensitivities also 

depended on the number of cells inoculated. The hypersensitivities spontaneously resolved after 

around 3-4 weeks. 

2.4.3.1. Experiment 2 

Unilateral ITI of 4 x 104 W256 cells in rats did not significantly reduce PPTs in either the ipsilateral 

(F(1, 9, 9/81) = 0.1, 0.5, 0.7; p > 0.05) or the contralateral (F(1, 9, 9/81) = 0.1, 1.5, 0.5; p > 0.05) hindpaws 

throughout the experiment c.f. rats administered a unilateral ITI of 4 x 104 HK W256 cells (Figure 

2.4A). 

2.4.3.2. Experiment 3 

Unilateral ITI of 1.5 x 105 W256 cells in rats significantly reduced the PPTs in the ipsilateral (F(1, 15, 

15/195) = 185.4, 22.0, 20.4; p < 0.05) hindpaws between days 4 and 20 after surgery and in the 

contralateral (F(1, 15, 15/195) = 68.0, 7.5, 2.6; p < 0.05) hindpaws between days 4 and 16 after surgery 

c.f. rats administered a unilateral ITI of 1.5 x 105 HK W256 cells, with a maximum reduction of 50 

% and 12.7 % respectively in the ipsilateral and the contralateral PPTs relative to corresponding 

baseline PPTs (Figure 2.4B). 

2.4.3.3. Experiment 4 

Unilateral ITI of DPBS in rats did not significantly reduce PPTs in either the ipsilateral (F(1, 15, 15/135) 

= 0.001, 2.3, 1.6; p > 0.05) or the contralateral (F(1, 15, 15/135) = 1.3, 3.1, 1.3; p > 0.05) hindpaws 

throughout the experiment c.f. naïve non-injected rats (Supplementary Figure 2.4). 

2.4.3.4. Experiment 5 

Unilateral ITI of 4 x 105 W256 cells in rats significantly reduced the PPTs in the ipsilateral (F(1, 16, 

16/208) = 1262, 137.6, 91.8; p < 0.05) hindpaws between days 4 and 25 after surgery and in the 

contralateral (F(1, 16, 16/208) = 203.7, 55.4, 37.1; p < 0.05) hindpaws between days 7 and 25 c.f. rats 

administered a unilateral ITI of 4 x 105 HK W256 cells, with a maximum reduction of 52.1 % and 

44.1 % in the ipsilateral and the contralateral PPTs relative to the corresponding baseline PPTs, 

respectively (Figure 2.4C). 
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Figure 2.4. Paw pressure thresholds (PPTs) of ipsilateral and contralateral hindpaws of rats. 

Panels in the figure show mean (±SEM) PPTs of rats from (A) experiment 2, (B) experiment 3 and 

(C) experiment 5. Rats with PPTs < 80 g in the ipsilateral hindpaw were considered to have fully 

developed mechanical hyperalgesia as indicated by the dotted line. HK, heat-killed; W256, Walker 
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256 cells. *p<0.05 (Two-way ANOVA, posthoc Bonferroni test) c.f. rats given an ITI of HK W256 

cells. 

 

2.4.4. Assessment of thermal hyperalgesia in the hindpaws 

The aim of these experiments was to assess the development of thermal hyperalgesia in the BCIBP 

rats after inoculation of W256 cells. ITI of W256 cells in BCIBP rats did not produce thermal 

hyperalgesia. 

2.4.4.1. Experiment 2 

Unilateral ITI of 4 x 104 W256 cells in rats did not significantly reduce PTTs in either the ipsilateral 

(F(1, 8, 8/72) = 2.7, 0.5, 1.1; p > 0.05) or the contralateral (F(1, 8, 8/72) = 0.3, 1.1, 0.6; p > 0.05) hindpaws 

throughout the experiment c.f. rats administered a unilateral ITI of 4 x 104 HK W256 cells (Figure 

2.5A). 

2.4.4.2. Experiment 3 

Unilateral ITI of 1.5 x 105 W256 cells in rats did not significantly reduce PTTs in either the 

ipsilateral (F(1, 6, 6/78) = 0.4, 1.5, 1.8; p > 0.05) or the contralateral (F(1, 6, 6/78) = 6.1, 0.9, 1.1; p > 0.05) 

hindpaws throughout the experiment c.f. rats administered a unilateral ITI of 1.5 x 105 HK W256 

cells (Figure 2.5B). 

2.4.4.3. Experiment 4 

Unilateral ITI of DPBS in rats did not significantly reduce PTTs in either the ipsilateral (F(1, 6, 6/54) = 

0.1, 1.3, 2.5; p > 0.05) or the contralateral (F(1, 6, 6/54) = 1.9, 0.6, 1.0; p > 0.05) hindpaws throughout 

the experiment c.f. naïve non-injected rats (Supplementary Figure 2.5A). 

2.4.4.4. Experiment 5 

Unilateral ITI of 4 x 105 W256 cells in rats did not significantly reduce PTTs in either the ipsilateral 

(F(1, 1, 1/13) = 0.0002, 0.1, 0.2; p > 0.05) or the contralateral (F(1, 1, 1/13) = 1.1, 0.7, 0.7; p > 0.05) 

hindpaws at day 14 after surgery c.f. rats administered a unilateral ITI of 4 x 105 HK W256 cells 

(Supplementary Figure 2.5B). 

2.4.4.5. Experiment 6 

Unilateral ITI of 4 x 105 W256 cells in rats did not significantly reduce PTTs in either the ipsilateral 

(F(1, 8, 8/72) = 1.0, 3.1, 0.7; p > 0.05) or the contralateral (F(1, 8, 8/72) = 0.8, 6.7, 0.3; p > 0.05) hindpaws 

throughout the experiment c.f. rats administered a unilateral ITI of 4 x 105 HK W256 cells (Figure 

2.5C). 
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Figure 2.5. Paw thermal thresholds (PTTs) of ipsilateral and contralateral hindpaws of rats. 

Panels in the figure show mean (±SEM) PTTs of rats from (A) experiment 2, (B) experiment 3 and 

(C) experiment 6. HK, heat-killed; W256, Walker 256 cells. There were no statistically significant 

differences in PTTs between the treatment groups in any of these experiments (p>0.05; Two-way 

ANOVA, posthoc Bonferroni test). 
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Based upon the cell number-dependent experimental results in female Wistar Han rats administered 

with a unilateral ITI of W256 cells, 400,000 cells/10 μL DPBS was found to be the optimum cell 

number as it produced distinct bilateral hindpaw hypersensitivity whilst maintaining satisfactory 

animal health throughout the study (Table 2.1). 
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Table 2.1. Summary of W256 cell number-dependent variations in the experimental outcomes in female Wistar Han rats administered a unilateral ITI 

of these cells. 

 

Number 

of cells 

injected 

Gain in 

body 

weight 

Animal 

health 

Mechanical allodynia Mechanical hyperalgesia Thermal 

hyperalgesia 

Ipsi Contra Ipsi Contra Ipsi Contra 

Obs. Dur. 

(days) 

Ext. 

(%) 

Obs. Dur. 

(days) 

Ext. 

(%) 

Obs. Dur. 

(days) 

Ext. 

(%) 

Obs. Dur. 

(days) 

Ext. 

(%) 

40,000 ✓ ✓ - N/A N/A - N/A N/A - N/A N/A - N/A N/A - - 

150,000 ✓ ✓ + 4-20 50.6 + 16-20 23.0 + 4-20 49.9 + 4-16 12.7 - - 

400,000 ✓ ✓ + 7-25 58.8 + 7-25 42.2 + 4-25 52.1 + 7-25 44.0 - - 

✓, satisfactory; +, observed; -, not observed; Contra., contralateral hindpaws; Dur., duration in days post-ITI; Ext., extent of percentage reduction in 

PWTs / PPTs; Ipsi., ipsilateral hindpaws; N/A, not applicable; Obs., observation 
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2.4.5. Test compound administration 

The aim of these experiments was to chatacterise the model by pharmacological testing of various 

drugs in the BCIBP rats. Administration of naloxone to the BCIBP rats in the resolved-pain state 

rescued the pain phenotype. Standard analgesic drugs morphine, gabapentin, amitriptyline and 

meloxicam alleviated the mechanical allodynia in a dose-dependant manner. Similarly, these 

standard analgesic drugs also alleviated the mechanical hyperalgesia in the BCIBP rats at the doses 

tested in the study. 

 

2.4.5.1. Effect of naloxone (s.c.) on pain behavioural phenotypes 

2.4.5.1.1. Experiment 3 

Administration of naloxone in the time interval, day 81-day 91, to a group of rats administered a 

unilateral ITI of 1.5 x 105 W256 cells significantly reduced the PWTs from 0.25 to 0.75 h after 

injection in both the ipsilateral (F(1, 8, 8/104) = 12.8, 5.3, 1.1; p < 0.05) and contralateral (F(1, 8, 8/104) = 

9.6, 5.2, 2.8; p < 0.05) hindpaws c.f. rats administered a unilateral ITI of 1.5 x 105 HK W256 cells, 

with a maximum reduction of 24 % and 26.4 % in the ipsilateral and contralateral PWTs relative to 

the corresponding baseline PWTs, respectively (Supplementary Figure 2.6A). Administration of 

naloxone to these rats in the interval, day 82-day 92, significantly (F(1, 8, 8/104) = 3.1, 1.4, 4.3; p < 

0.05) reduced the PPTs from 0.75 to 1 h after injection in the ipsilateral hindpaw and significantly 

(F(1, 8, 8/104) = 3.7, 1.9, 2.3; p < 0.05) reduced the PPTs at 0.75 h after injection in the contralateral 

hindpaw c.f. rats injected with the corresponding number of HK W256 cells, with a maximum 

reduction of 15.2 % and 10.5 % in the ipsilateral and the contralateral PPTs relative to the 

corresponding baseline PPTs, respectively (Supplementary Figure 2.6B). 

2.4.5.1.2. Experiment 4 

Administration of naloxone to group of rats given an ITI of DPBS or naïve control rats did not 

significantly alter PWTs in either the ipsilateral (F(1, 8, 8/72) = 0.2, 0.5, 0.9; p > 0.05) or the 

contralateral (F(1, 8, 8/72) = 0.01, 0.1, 0.9; p > 0.05) PWTs (Supplementary Figure 2.6C). Similarly, 

naloxone did not significantly alter the ipsilateral (F(1, 8, 8/72) = 0.3, 1.2, 0.9; p > 0.05) or contralateral 

(F(1, 8, 8/72) = 1.3, 1.8, 0.5; p > 0.05) PPTs throughout the testing period in the same animals 

(Supplementary Figure 2.6D). 

2.4.5.1.3. Experiment 5 

Administration of naloxone to group of rats administered a unilateral ITI of 4 x 105 W256 cells in 

the time interval, day 43-day 51, post-ITI significantly (F(1, 8, 8/104) = 173.7, 33.8, 22.5; p < 0.05) 

reduced the PWTs from 0.25 to 1.25 h after naloxone injection in the ipsilateral hindpaw. Similarly, 

there was a significant (F(1, 8, 8/104) = 130.9, 27.5, 17.9; p < 0.05) reduction in PWTs from 0.25 to 1 h 

after injection, in the contralateral hindpaws c.f. rats injected with 4 x 105 HK W256 cells. The 
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maximum decreases were 60.7 % and 51.1 % in the ipsilateral and contralateral PWTs relative to 

the corresponding baseline PWTs, respectively (Figure 2.6A). Administration of naloxone to these 

rats in the interval, day 53-day 66 post-ITI significantly (F(3, 8, 24/208) = 7.3, 9.8, 1.9; p < 0.05) 

reduced the PWTs from 0.25 to 0.75 h in the ipsilateral hindpaws and significantly (F(3, 8, 24/208) = 

6.5, 7.5, 1.8; p < 0.05) reduced PWTs from 0.5 to 0.75 h in the contralateral hindpaws. The 

maximum PWT decreases were 35.8 % and 20.4 % in the ipsilateral and contralateral hindpaws 

relative to the corresponding baseline PWTs, respectively (Figure 2.6B).These findings were in 

contrast to the lack of effect observed in naloxone injected rats administered a unilateral ITI of 4 x 

105 HK W256 cells or vehicle injected rats administered a unilateral ITI of 4 x 105 W256 cells and 

4 x 105 HK W256 cells.  

2.4.5.1.4. Experiment 7 

Administration of naloxone to rats administered a unilateral ITI of 4 x 105 W256 cells did not 

significantly reduce the PTTs in either the ipsilateral (F(3, 8, 24/112) = 2.7, 0.9, 0.8; p > 0.05) or the 

contralateral (F(3, 8, 24/112) = 0.2, 0.3, 1.1; p > 0.05) hindpaws throughout the testing (Supplementary 

Figure 2.6E). 
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Figure 2.6. Effect of naloxone on ipsilateral and contralateral paw withdrawal thresholds 

(PWTs) of rats. Panels in the figure show mean (±SEM) PWT versus time curves from experiment 

5 following naloxone or vehicle injection between (A) day 43-51 post-ITI and (B) day 53-66 post-

ITI. The dotted line indicates the threshold PWT value at / below which the rats were considered to 

have fully developed mechanical allodynia. BCIBP (4 x 105), group of rats given an ITI of 4 x 105 

W256 cells; HK, heat-killed; NAL, naloxone (15 mg/kg s.c.); Sham (4 x 105), group of rats given an 

ITI of 4 x 105 HK W256 cells; VEH, vehicle; W256, Walker 256 cells. *p<0.05 (Two-way 

ANOVA, posthoc Bonferroni test) c.f. rats given an ITI of HK W256 cells. 

 

The extent and duration of naloxone induced rescue of the pain phenotype in rats from these 

experiments are tabulated in Table 2.2. 
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Table 2.2. Extent and duration of naloxone induced rescue of pain phenotype. 

 

Exp. 

No. 

Days 

post ITI 

ITI Drug 

treatment 

ΔPWT AUC (g.h) ΔPPT AUC (g.h) ΔPTT AUC (sec.h) Time (h) 

    Ipsi Contra Ipsi Contra Ipsi Contra Peak effect ~Duration 

of action 

3 82-92 1.5 x 105 

W256 

 

1.5 x 105 

HK W256 

Naloxone 

 

 

Naloxone 

- 

 

 

- 

- 

 

 

- 

22.2 (+ 

4.76) 

 

9.3 (+ 

4.44) 

14.8 (+ 

3.91) 

 

4.2 (+ 2.13) 

- 

 

 

- 

- 

 

 

- 

0.75 

 

 

 

NE 

1 

 

 

 

NE 

3 81-91 1.5 x 105 

W256 

 

1.5 x 105 

HK W256 

Naloxone 

 

 

Naloxone 

4.1 (+ 

1.18) 

 

1.8 (+ 

0.50) 

4.4 (+ 

1.13) 

 

1.5 (+ 

0.25) 

- 

 

 

- 

- 

 

 

- 

- 

 

 

- 

- 

 

 

- 

0.5 

 

 

NE 

1 

 

 

NE 

4 82-94 

 

 

 

DPBS 

 

 

Naïve 

Naloxone 

 

 

Naloxone 

- 

 

 

- 

- 

 

 

- 

7.2 (+ 

2.30) 

 

5.3 (+ 

1.75) 

10.7 (+ 

5.75) 

 

13.2 (+ 

5.41) 

- 

 

- 

- 

 

- 

NE 

 

NE 

NE 

 

NE 

4 81-93 DPBS Naloxone 0.9 (+ 0.7 (+ - - - - NE NE 
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Naïve 

 

 

Naloxone 

0.35) 

 

0.9 (+ 

0.56) 

0.33) 

 

1.3 (+ 

0.72) 

 

- 

 

- 

 

- 

 

- 

 

NE 

 

NE 

5 43-51 4 x 105 

W256 

 

4 x 105 HK 

W256 

Naloxone 

 

 

Naloxone 

6.2 (+ 

0.75)* 

 

2.5 (+ 

0.55) 

5.5 (+ 

0.70)* 

 

1.7 (+ 

0.39) 

- 

 

 

- 

- 

 

 

- 

- 

 

 

- 

- 

 

 

- 

0.5 

 

 

NE 

1.5 

 

 

NE 

5 53-66 4 x 105 

W256 

 

4 x 105 

W256 

 

4 x 105 HK 

W256 

 

4 x 105 HK 

W256 

Naloxone 

 

 

Vehicle 

 

 

Naloxone 

 

 

Vehicle 

2.5 (+ 

0.35) 

 

1.1 (+ 

0.74) 

 

1.9 (+ 

0.38) 

 

1.7 (+ 

0.48) 

1.8 (+ 

0.57) 

 

1.1 (+ 

0.50) 

 

1.6 (+ 

0.44) 

 

0.6 (+ 

0.18) 

- 

 

 

- 

 

- 

 

 

- 

- 

 

 

- 

 

- 

 

 

- 

- 

 

 

- 

 

- 

 

 

- 

- 

 

 

- 

 

- 

 

 

- 

0.5-0.75 

 

 

NE 

 

 

NE 

 

 

NE 

1.25 

 

 

NE 

 

 

NE 

 

 

NE 

7 21-24 4 x 105 

W256 

Naloxone 

 

- 

 

- 

 

- 

 

- 

 

2.2 (+ 1.06) 

 

3.3 (+ 

1.06) 

NE 

 

NE 
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4 x 105 

W256 

 

4 x 105 HK 

W256 

 

4 x 105 HK 

W256 

 

Vehicle 

 

 

Naloxone 

 

 

Vehicle 

 

- 

 

 

- 

 

 

- 

 

- 

 

 

- 

 

 

- 

 

- 

 

 

- 

 

 

- 

 

- 

 

 

- 

 

 

- 

3.1 (+ 0.77) 

 

2.1 (+ 1.33) 

 

0.7 (+ 0.33) 

 

1.4 (+ 

0.59) 

 

2.1 (+ 

1.31) 

 

0.9 (+ 

0.16) 

 

NE 

 

 

NE 

 

 

NE 

 

NE 

 

 

NE 

 

 

NE 

Contra, contralateral hindpaws; Ipsi, ipsilateral hindpaws; NE, no drug effect; -, not assessed. *p<0.05 (Unpaired t test) c.f. rats administered a 

unilateral ITI of 4 x 105 HK W256 cells that received single bolus dose of naloxone 
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2.4.5.2. Anti-allodynic effect of morphine (s.c.), gabapentin (i.p.), amitriptyline (i.p.) and 

meloxicam (i.p.) 

BCIBP-rats having fully developed mechanical allodynia (PWTs ≤ 6g) in the ipsilateral hindpaws 

and administered single bolus doses of the clinically available analgesic drugs (morphine and 

meloxicam) or the adjuvant agents (gabapentin and amitriptyline), evoked unique pharmacological 

profiles consistent with their distinct modes of action. Anti-allodynia was produced in a dose-

dependent manner by each of these drugs in both the ipsilateral (Figure 2.7A-D) and the 

contralateral hindpaws (Supplementary Figure 2.7A-D). Extent and duration of anti-allodynia 

(ΔPWT AUC) and ED50s of each of the test compounds against mechanical allodynia in the 

ipsilateral and contralateral hindpaws, is summarized in Table 2.3. The dose response curves of 

morphine and gabapentin in BCIBP rats have been shown in Figure 2.8, and those of amitriptyline 

and meloxicam have been shown in Figure 2.9. Some of the effects of these pharmacological 

characterization experiments were modest, in alignment with the variable potencies of different 

drugs to alleviate cancer pain hypersensitivities in clinic. 

2.4.5.2.1. Experiment 10 

Administration of 0.3 mg/kg morphine did not produce significant (F(3, 8, 24/160) = 35.3, 18.1, 5.7; p > 

0.05) anti-allodynia in the ipsilateral hindpaw throughout the testing, while it produced significant 

(F(3, 8, 24/160) = 44.8, 17.6, 4.8; p < 0.05) anti-allodynia between 0.5 and 0.75 h after injection in the 

contralateral hindpaw c.f. rats injected with vehicle. Administration of 1 mg/kg morphine produced 

significant (F(3, 8, 24/160) = 35.3, 18.1, 5.7; p < 0.05) anti-allodynia between 0.25 and 1.25 h after 

injection in the ipsilateral hindpaw, while it produced significant (F(3, 8, 24/160) = 44.8, 17.6, 4.8; p < 

0.05) anti-allodynia between 0.25 and 1 h after injection in the contralateral hindpaw c.f. rats 

injected with vehicle. Administration of 3 mg/kg morphine produced significant anti-allodynia 

between 0.25 and 1.5 h after injection in both ipsilateral (F(3, 8, 24/160) = 35.3, 18.1, 5.7; p < 0.05) and 

contralateral (F(3, 8, 24/160) = 44.8, 17.6, 4.8; p < 0.05) hindpaws c.f. rats injected with vehicle. 

2.4.5.2.2. Experiments 11 and 12 

Gabapentin induced anti-allodynia was characterised by an onset of action which was delayed in 

nature. Administration of 30 mg/kg gabapentin produced significant (F(3, 8, 24/160) = 32.2, 7.9, 1.0; p < 

0.05) anti-allodynia in the ipsilateral hindpaw at 1.25 h after injection, while it did not produce 

significant (F(3, 8, 24/160) = 25.0, 7.0, 1.0; p > 0.05) anti-allodynia in the contralateral hindpaw 

throughout the testing c.f. rats injected with vehicle. Administration of 70 mg/kg gabapentin 

produced significant anti-allodynia between 1.25 and 1.5 h after injection in both ipsilateral (F(3, 8, 

24/160) = 32.2, 7.9, 1.0; p < 0.05) and contralateral (F(3, 8, 24/160) = 25.0, 7.0, 1.0; p < 0.05) hindpaws c.f. 

rats injected with vehicle. Administration of 100 mg/kg gabapentin produced significant (F(3, 8, 24/160) 

= 32.2, 7.9, 1.0; p < 0.05) anti-allodynia in the ipsilateral hindpaw from 0.75 h to at least 3 h after 
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injection, and it produced significant (F(3, 8, 24/160) = 25.0, 7.0, 1.0; p < 0.05) anti-allodynia in the 

contralateral hindpaw from 1 h to at least 3 h after injection c.f. rats injected with vehicle. 

Administration of 3 mg/kg amitriptyline did not produce significant (F(3, 8, 24/160) = 15.3, 8.4, 2.0; p > 

0.05) anti-allodynia in the ipsilateral hindpaw throughout the testing, whereas it produced 

significant (F(3, 8, 24/160) = 17.7, 9.2, 2.9; p < 0.05) anti-allodynia at 0.75 h after injection in the 

contralateral hindpaw c.f. rats injected with vehicle. Administration of 10 mg/kg amitriptyline 

produced significant anti-allodynia between 0.5 and 1 h after injection in both ipsilateral (F(3, 8, 24/160) 

= 15.3, 8.4, 2.0; p < 0.05) and contralateral (F(3, 8, 24/160) = 17.7, 9.2, 2.9; p < 0.05) hindpaws c.f. rats 

injected with vehicle. Administration of 30 mg/kg amitriptyline produced significant anti-allodynia 

between 0.5 and 1.5 h after injection in both ipsilateral (F(3, 8, 24/160) = 15.3, 8.4, 2.0; p < 0.05) and 

contralateral (F(3, 8, 24/160) = 17.7, 9.2, 2.9; p < 0.05) hindpaws c.f. rats injected with vehicle. 

2.4.5.2.3. Experiment 13 

Meloxicam induced anti-allodynia was characterised by an onset of action which was delayed in 

nature. Administration of 2.5 mg/kg meloxicam produced significant (F(3, 8, 24/160) = 54.1, 11.2, 2.3; p 

< 0.05) anti-allodynia in the ipsilateral hindpaw at 1.25 h after injection, whereas it did not produce 

significant (F(3, 8, 24/160) = 50.6, 12.3, 2.0; p > 0.05) anti-allodynia in the contralateral hindpaw c.f. 

rats injected with vehicle. Administration of 5 mg/kg meloxicam produced significant anti-allodynia 

between 1 and 2 h after injection in both the ipsilateral (F(3, 8, 24/160) = 54.1, 11.2, 2.3; p < 0.05) and 

contralateral (F(3, 8, 24/160) = 50.6, 12.3, 2.0; p < 0.05) hindpaws c.f. rats injected with vehicle. 

Administration of 7.5 mg/kg meloxicam produced significant anti-allodynia between 0.75 to at least 

3 h after injection in both the ipsilateral (F(3, 8, 24/160) = 54.1, 11.2, 2.3; p < 0.05) and contralateral 

(F(3, 8, 24/160) = 50.6, 12.3, 2.0; p < 0.05) hindpaws c.f. rats injected with vehicle. 
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Figure 2.7. Temporal changes in the paw withdrawal thresholds (PWTs) of BCIBP rats in the 

ipsilateral hindpaws following the administration of single bolus doses of analgesic and 

adjuvant drugs. Panels in the figure show temporal changes in mean (±SEM) PWT versus time 

curves following injection of (A) morphine, (B) gabapentin, (C) amitriptyline and (D) meloxicam. 
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Figure 2.8. Dose response curves of morphine and gabapentin in BCIBP rats. Panels in the 

figure show % MAX AUC ΔPWT (representative of response) versus log10 dose (representative of 

dose) curves of (A) morphine and (B) gabapentin in the ipsilateral and contralateral hindpaws. 

ED50-IPSI and ED50-CONTRA values for morphine were found to be 1.3 and 1.4 mg/kg, respectively, 

and for gabapentin were found to be 47.1 and 30.8 mg/kg, respectively. 
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Figure 2.9. Dose response curves of amitriptyline and meloxicam in BCIBP rats. Panels in the 

figure show % MAX AUC ΔPWT (representative of response) versus log10 dose (representative of 

dose) curves of (A) amitriptyline and (B) meloxicam in the ipsilateral and contralateral hindpaws. 

ED50-IPSI and ED50-CONTRA values for amitriptyline were found to be 20.1 and 21.4 mg/kg, 

respectively, and for meloxicam were found to be 3.9 and 3.5 mg/kg, respectively. 
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Table 2.3. Extent and duration of anti-allodynia (ΔPWT AUC) and potencies of test compounds. 

 

Test compound 

and route of 

administration 

Time (h) Mean ΔPWT at peak 

effect (g) 

ΔPWT AUC (g.h) ED50 for the alleviation of mechanical 

allodynia in the bilateral hindpaws (mg/kg) 

Peak 

effect 

~Duration 

of action 

Ipsilateral Contralateral 

Ipsi Contra Ipsi Contra Mean 95% CI Mean 95% CI 

Morphine (s.c.)  

 

0.5 – 

0.75 

 

 

2 

     

 

1.3 

 

 

0.90 - 1.83 

 

 

1.4 

 

 

0.98 – 2.08 

0.3 mg/kg 1.9 (+ 

0.76) 

2.2 (+ 

1.07) 

3.7 (+ 0.88) 3.9 (+ 1.28) 

1 mg/kg 4.1 (+ 

0.70) 

4.2 (+ 

0.72) 

4.7 (+ 0.38)* 4.8 (+ 0.49)* 

3 mg/kg 6.9 (+ 

1.00) 

6.2 (+ 

0.72) 

9.6 (+ 1.22)* 10.2 (+ 1.28)* 

Vehicle NA NA 1.8 (+ 0.44) 2.2 (+ 0.38) 

Gabapentin 

(i.p.) 

 

 

1.25 - 

1.5 

 

 

>3 

     

 

47.1 

 

 

35.25 – 

63.04 

 

 

30.8 

 

 

21.9 – 43.2 30 mg/kg 2.6 (+ 

0.83) 

2.4 (+ 

0.78) 

4.5 (+ 0.73) 4.5 (+ 0.61) 

70 mg/kg 3.7 (+ 

0.61) 

3.7 (+ 

0.68) 

6.8 (+ 0.46)* 7.5 (+ 0.63)* 

100 mg/kg 4.1 (+ 

0.70) 

4.1 (+ 

0.58) 

8.4 (+ 1.08)* 8.3 (+ 0.83)* 
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Vehicle NA NA 2.0 (+ 0.43) 3.0 (+ 0.76) 

Amitriptyline 

(i.p.) 

 

 

0.75 – 

1.25 

 

 

2 

     

 

20.1 

 

 

13.82 – 

29.11 

 

 

21.4 

 

 

14.27 – 32.19 3 mg/kg 2 (+ 

0.81) 

2.1 (+ 

0.78) 

2.6 (+ 0.80) 2.6 (+ 0.75) 

10 mg/kg 3.3 (+ 

0.99) 

2.8 (+ 

0.78) 

4.5 (+ 0.89) 4.0 (+ 0.99) 

30 mg/kg 5.8 (+ 

1.15) 

4.9 (+ 

0.89) 

7.8 (+ 1.28)* 7.4 (+ 1.42)* 

Vehicle NA NA 1.4 (+ 0.45) 1.7 (+ 0.27) 

Meloxicam (i.p.)  

 

1.25 – 

1.5 

 

 

>3 

     

 

3.9 

 

 

2.79 – 5.43 

 

 

3.5 

 

 

2.51 – 4.79 

2.5 mg/kg 2.6 (+ 

0.83) 

2.2 (+ 

0.66) 

4.5 (+ 0.67)* 4.5 (+ 0.65)* 

5 mg/kg 4.3 (+ 

0.45) 

4.3 (+ 

0.45) 

8.1 (+ 1.07)* 8.2 (+ 1.00)* 

7.5 mg/kg 6.1 (+ 

0.96) 

5.3 (+ 

0.62) 

11.5 (+ 1.22)* 10.3 (+ 1.04)* 

Vehicle NA NA 1.8 (+ 0.64) 2.0 (+ 0.68) 

CI, confidence interval; Contra., contralateral hindpaws; Ipsi., ipsilateral hindpaws; NA, not applicable; *p<0.05 (One-way ANOVA, posthoc 

Dunnett’s multiple comparisons test) c.f. rats that received single bolus doses of vehicle 
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2.4.5.3. Anti-hyperalgesic effect of morphine (s.c.), gabapentin (i.p.), amitriptyline (i.p.) and 

meloxicam (i.p.) 

BCIBP-rats having fully developed mechanical hyperalgesia (PPTs ≤ 80g) in the ipsilateral 

hindpaws and administered single bolus doses of the clinically available analgesic drugs (morphine 

and meloxicam) or the adjuvant agents (gabapentin and amitriptyline), evoked anti-hyperalgesia in 

both the ipsilateral (Figure 2.10A-D) and the contralateral hindpaws (Supplementary Figure 2.8A-

D). Extent and duration of anti-hyperalgesia (ΔPPT AUC) of each of the test compounds in the 

ipsilateral and the contralateral hindpaws, is summarized in Table 2.4. 

2.4.5.3.1. Experiment 14 

Administration of 3 mg/kg morphine produced significant anti-hyperalgesia between 0.5 and 1 h in 

the ipsilateral hindpaw (F(1, 8, 8/64) = 5.5, 1.8, 2.7; p < 0.05) and between 0.5 and 0.75 h in the 

contralateral hindpaw (F(1, 8, 8/64) = 5.1, 1.7, 2.4; p < 0.05) c.f. rats injected with vehicle. Gabapentin 

induced anti-hyperalgesia was characterised by a delayed onset of action. Administration of 100 

mg/kg gabapentin produced significant anti-hyperalgesia between 1 and 1.5 h in the ipsilateral 

hindpaw (F(1, 8, 8/64) = 9.8, 1.6, 1.2; p < 0.05) and between 1 and 1.25 h in contralateral hindpaw (F(1, 

8, 8/64) = 11.6, 1.2, 1.7; p < 0.05)  c.f. rats injected with vehicle. Administration of 30 mg/kg 

amitriptyline produced significant relief of hyperalgesia at 0.75 h in both the ipsilateral (F(1, 8, 8/64) = 

5.1, 3.9, 2.3; p < 0.05) and contralateral (F(1, 8, 8/64) = 4.9, 3.9, 2.4; p < 0.05) hindpaws c.f. rats 

injected with vehicle. Meloxicam induced anti-hyperalgesia was characterised by a delayed onset of 

action. Administration of 7.5 mg/kg meloxicam did not produce anti-hyperalgesia in the ipsilateral 

hindpaws F(1, 8, 8/64) = 5.9, 3.0, 2.6; p > 0.05). By contrast, meloxicam at 7.5 mg/kg produced 

significant (F(1, 8, 8/64) = 7.1, 2.7, 3.4; p < 0.05) anti-hyperalgesia from 1.25 to at least until 3 h in the 

contralateral hindpaws c.f. rats injected with vehicle. 
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Figure 2.10. Temporal changes in the paw pressure thresholds (PPTs) of BCIBP rats in the 

ipsilateral hindpaws following administration of single bolus doses of analgesic and adjuvant 

drugs. Panels in the figure show temporal changes in mean (±SEM) PPT versus time curves 

following injection of (A) morphine, (B) gabapentin, (C) amitriptyline and (D) meloxicam. 

 

 

 

 

 

 

 

 



75 
 

Table 2.4. Extent and duration of anti-hyperalgesia (ΔPPT AUC). 

 

Test compound and 

route of 

administration 

Time (h) Mean ΔPPT at peak effect (g) ΔPPT AUC (g.h) 

Peak effect ~Duration of 

action 

Ipsilateral Contralateral Ipsilateral Contralateral 

Morphine (s.c.)  

 

0.5 

 

 

2 

    

3 mg/kg 40 (+ 11.62) 36.7 (+ 10.88) 49.5 (+ 17.28)* 46.7 (+ 17.21)* 

Vehicle NA NA 10.0 (+ 4.18) 9.2 (+ 4.85) 

Gabapentin (i.p.)  

 

1.25 

 

 

>3 

    

100 mg/kg 32.5 (+ 10.7) 30.8 (+ 10.60) 64.2 (+ 19.79) 61.8 (+ 18.71) 

Vehicle NA NA 9.7 (+ 3.48) 5.4 (+ 3.35) 

Amitriptyline (i.p.)  

 

0.75 

 

 

2 

    

30 mg/kg 38.9 (+ 14.55) 36.7 (+ 13.42) 54.7 (+ 17.69) 53.3 (+ 17.30) 

Vehicle NA NA 11.6 (+ 2.36) 10.5 (+ 3.69) 

Meloxicam (i.p.)  

 

1.25 – 1.5 

 

 

>3 

    

7.5 mg/kg 41.7 (+ 14.64) 38.6 (+ 13.22) 85.0 (+ 33.62) 82.0 (+ 32.52) 

Vehicle NA NA 8.1 (+ 4.69) 4.1 (+ 4.06) 

NA, not applicable; *p<0.05 (Mann-Whitney test) c.f. rats that received single bolus doses of vehicle 

 

 



76 
 

2.4.6. Tibial bone µCT scan 

The aim of these experiments was to assess the effect of inoculation of W256 cells in the tibiae of 

BCIBP rats, compared to the corresponding sham rats. Significant decreases in the BV/TV ratio and 

in Tb.N, coupled with an increase in the Tb.Sp were indicative of tumour induced osteolysis in the 

W256 cell injected tibiae. 

2.4.6.1. Experiments 8 and 9  

The 3D- µCT radiological images and 2D-trabecular bone images of rats were obtained at day 10 

post-ITI (Figure 2.11A-D) and day 48 post-ITI (Figure 2.11I-L). 

2.4.6.1.1. Bone volume / total volume (BV/TV ratio) 

The BV/TV ratios for the proximal diaphyseal regions of tibiae from rats given an ITI of 4 x 105 

W256 cells and euthanized on day 10 (Figure 2.11E) (F(1, 1, 1/4) = 11.0, 0.03, 0.2; p < 0.05) and day 

48 (Figure 2.11M) (F(1, 1, 1/4) = 11.0, 0.03, 0.2; p < 0.05) post-ITI, were significantly lower c.f. rats 

given an ITI of 4 x 105 HK W256 cells and euthanized at the respective time points. 

2.4.6.1.2. Trabecular thickness (Tb.Th)  

The Tb.Th of the proximal diaphyseal regions of tibiae from rats given an ITI of 4 x 105 W256 cells 

and euthanized at day 10 (Figure 2.11F) (F(1, 1, 1/4) = 2.1, 167.9, 230.2; p > 0.05) or day 48 (Figure 

2.11N) (F(1, 1, 1/4) = 2.1, 167.9, 230.2; p > 0.05) post-ITI did not significantly change c.f. rats given 

an ITI of 4 x 105 HK W256 cells and euthanized at the respective time points. 

2.4.6.1.3. Trabecular spacing (Tb.Sp) 

The Tb.Sp of the proximal diaphyseal regions of tibiae of rats given an ITI of 4 x 105 W256 cells and 

euthanized at day 10 (Figure 2.11G) (F(1, 1, 1/4) = 21.1, 4.9, 0.1; p < 0.05) and day 48 (Figure 2.11O) 

(F(1, 1, 1/4) = 21.1, 4.9, 0.1; p < 0.05) post-ITI was significantly higher c.f. rats given an ITI of 4 x 105 

HK W256 cells and euthanized at the respective time points. 

2.4.6.1.4. Trabecular number (Tb.N) 

The Tb.N ratio of the proximal diaphyseal regions of tibiae of rats given an ITI of 4 x 105 W256 

cells and euthanized at day 48 (Figure 2.11P) post-ITI was significantly (F(1, 1, 1/4) = 9.0, 0.6, 0.007; 

p < 0.05) lower than that for rats given an ITI of 4 x 105 HK W256 cells on day 48 post-ITI. By 

contrast, for rats euthanized on day 10 (Figure 2.11H) post-ITI, the ratio was not significantly 

different (F(1, 1, 1/4) = 9.0, 0.6, 0.007; p > 0.05) from that of rats given an ITI of 4 x 105 HK W256 

cells and euthanized at day 10 post-ITI. 
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Figure 2.11. Radiological assessment of tibiae from BCIBP rats and the corresponding sham 

rats. Panels in the figure show (A) 3D-µCT radiological image of a sham rat’s tibia at day 10 post-

ITI, (B) trabecular bone of a sham rat’s tibia at day 10 post-ITI, (C) 3D-µCT radiological image of 

a BCIBP rat’s tibia at day 10 post-ITI, (D) trabecular bone of a BCIBP rat’s tibia at day 10 post-ITI, 

(E-H) morphometric changes in BCIBP rats’ tibiae relative to sham rats’ tibiae at day 10 post-ITI, 

(I) 3D-µCT radiological image of a sham rat’s tibia at day 48 post-ITI, (J) trabecular bone of a sham 

rat’s tibia at day 48 post-ITI, (K) 3D-µCT radiological image of a BCIBP rat’s tibia at day 48 post-

ITI, (L) trabecular bone of a BCIBP rat’s tibia at day 48 post-ITI, (M-P) morphometric changes in 

BCIBP rats’ tibiae relative to sham rats’ tibiae at day 48 post-ITI. *p<0.05 (Two-way ANOVA, 

posthoc Bonferroni test). Scale bar – 5 mm. 

 

2.4.7. Tibial bone histology 

2.4.7.1. Experiments 8 and 9 

Histological assessment of H&E stained sections showed marked osteolytic lesions due to bone 

destruction and immature de novo formation of bone in the proximal diaphyseal regions of the 

ipsilateral tibiae from groups of rats that had received a unilateral ITI of 4 x 105 W256 cells at both 

day 10 (Figure 2.12B) and day 48 (Figure 2.12D) post-ITI. There were no such changes evident in 

the tibiae of sham-rats that had received a unilateral ITI of 4 x 105 HK W256 cells and euthanized at 

the respective time points (Figure 2.12A and 2.12C). 
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Figure 2.12. Histological assessment of tibiae from BCIBP rats and corresponding sham rats. 

Panels in the figure show representative images of H&E staining of tibial sections of (A) sham rat at 

day 10 post-ITI, (B) BCIBP rat at day 10 post-ITI, (C) sham rat at day 48 post-ITI and (D) BCIBP 

rat at day 48 post-ITI. Black arrowheads show destruction of cortical bone of tibiae. Scale bar – 1 

mm. 

 

2.4.8. Immunocytochemistry of W256 cells: Cytokeratin 18 

Using the anti-Cytokeratin 18 antibody [C04] (Alexa Fluor® 488) ab187573 (Abcam), cultured and 

fixed W256 cells showed immunofluorescent staining (Figure 2.13) which was in accord with 

Cytokeratin 18 expression in ATCC W256 cells reported by others (Lewis et al., 2013). Similar 

results were obtained with anti-Cytokeratin 18 antibody [C-04] ab668 (Abcam) which was used as a 

second confirmatory antibody (Supplementary Figure 2.9). 
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Figure 2.13. Immunocytochemical staining of the Walker 256 cell line for Cytokeratin 18 

using the ab187573 (Abcam) antibody. Panels in the figure show (A) cytokeratin 18 (B) DAPI 

and (C) A and B merged. 

 

2.4.9. Tibial bone immunohistochemistry 

2.4.9.1. Experiment 15 and 16 

The presence of W256 cancer cells in longitudinal sections of the ipsilateral tibiae from rats given 

these cells by unilateral ITI was confirmed by immunohistochemical staining using the anti-

Cytokeratin 18 antibody [C04] (Alexa Fluor® 488) ab187573 (Abcam). Cytokeratin 18 

immunofluorescence was observed in sections from BCIBP-rats’ tibiae collected on both day 7 

(Figure 2.14B) and day 38 (Figure 2.14D) after unilateral ITI of 4 x 105 W256 cells. Importantly, in 

the corresponding tibial sections from sham-rats administered a unilateral ITI of 4 x 105 HK W256 

cells, specific immunofluorescence for Cytokeratin 18 was absent at both time points (Figure 2.14A 

and 14C). Similar results were obtained with another anti-Cytokeratin 18 antibody ([C-04] ab668 

(Abcam)) in the experiment that was used as a confirmatory step (Supplementary Figure 2.10). 
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Figure 2.14. Immunohistochemical staining of Cytokeratin 18 in tibial sections of BCIBP rats 

and the corresponding sections from sham rats using the ab187573 (Abcam) antibody. Panels 

in the figure show immunofluorescence imaging of tibial sections of (A) sham rat at day 7 post-ITI, 

(B) BCIBP rat at day 7 post-ITI, (C) sham rat at day 38 post-ITI and (D) BCIBP rat at day 38 post-

ITI. 
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2.5. Discussion 

In the present study, we have established an optimized model of breast cancer-induced bone pain in 

rats successfully and have comprehensively characterized the model using behavioural, 

radiological, pharmacological, histological and immunohistochemical methods. Our optimised 

model successfully addresses the issue of poor general animal health that is a major limitation of 

previously described models. Using female Wistar Han rats, we are the first to show that the 

severity (magnitude/extent) of Walker 256 cell-induced mechanical allodynia and mechanical 

hyperalgesia, is directly correlated with the initial number of cancer cells inoculated in the tibiae. 

Following unilateral ITI of W256 cells, rats in the present study developed bilateral mechanical 

allodynia and mechanical hyperalgesia, which is the most common manifestation in CIBP (Paley et 

al., 2011). Cancer-induced bone destruction was observed in the tibiae of rats using both 

radiological and histological assessments, in concordance with osteolytic changes seen in patients 

with breast cancer metastases to the skeleton (O’Sullivan et al., 2015, Woolf et al., 2015). The 

model was also found to be suitable for screening of analgesic drugs with diverse mechanisms of 

action. 

 

Animal models involving injection of cancer cells in bone are commonly used in experimental 

research to study pathophysiological mechanisms of pain hypersensitivities and disease progression 

(Kaan et al., 2010, Liu et al., 2016, Taipaleenmäki et al., 2015, Torrano et al., 2016, Graham et al., 

2014). Using mice and rats of different ages, weight ranges, sexes, strains and various breeding and 

housing conditions, CIBP studies employ a wide variety of cultured cancer cell lines including lung 

cancer (e.g. Lewis Lung), prostate cancer (e.g. PC3N, ACE-1, AT-3), breast cancer (e.g. 66.1, 4T1, 

MDA-MB-231, MDA-MB-231-TXSA, MRMT1), colon cancer (e.g. Colon-26), osteosarcoma 

(NCTC 2472) and fibrosarcoma (e.g. MC57G) (Slosky et al., 2015, Pacharinsak and Beitz, 2008, 

Falk and Dickenson, 2014, Lozano-Ondoua et al., 2013b, Currie et al., 2013, Currie et al., 2014). 

These cell lines which are injected into the tibia, humerus, femur and calcaneus in various CIBP 

studies (Falk and Dickenson, 2014) can give rise to distinct pain behaviours and neurochemical 

changes (Sabino et al., 2003). The features of any given animal model of CIBP thus require 

characterisation using standardised protocols to reduce the number of variables affecting the 

experiments to enhance experimental reproducibility. In the present work, W256 cells were selected 

as they are widely used in research (Brigatte et al., 2007, Justice, 1985) and because of the ease with 

which they can be cultured, standardised and reproduced (McEuen and Thomson, 1933, Hang et al., 

2015b). A comparative summary of previous studies using the W256 cell-induced bone pain model 

in rats, has been comprehensively provided in a recent review (Shenoy et al., 2016). 

 



83 
 

Until recently, the animal models of CIBP involved injection of cancer cells systemically, which 

resulted in deterioration of the overall animal health due to metastases to vital organs like the lungs, 

liver, brain and throughout the skeleton (Urch, 2004, Simmons et al., 2015). In CIBP models based 

upon the ITI of cancer cells, distant metastases can occur due to the cells escaping from the drilled 

hole or due to osteolysis of the bones, leading to severe degradation of the animal health and loss of 

body weight (Muralidharan et al., 2013). Hence, it is very important that all of the animals involved 

in the CIBP studies are closely monitored throughout the experimental period. Our work herein is 

the first to systematically assess and document clinical health parameters in animals following ITI 

of W256 cells. We carefully monitored all animals and found that the number with deteriorated 

health was very low. Such animals were immediately excluded from the experiments and were 

humanely euthanized for ethical reasons. 

 

We used changes in threshold values (PPTs) as indicative of mechanical hyperalgesia. Going by the 

technical definition of hyperalgesia, there might be a component of allodynia in the PPT response, 

unless the stimulus is painful from the get-go. One of the possible reasons why researchers 

commonly use this ‘threshold’ method for hyperalgesia assessment could be that it is ethically not 

quite acceptable to burden the hindpaws of the rat (already in pain) with a noxious stimulus from 

the get-go. While slowly ascending the force on the hindpaws of the animal gives that animal the 

freedom to voluntarily withdraw the paw as soon as the pain becomes unbearable or the operator 

can intervene and unload the paw as soon as the animal shows signs of struggle. Hence, 

assessement of mechanical allodynia (Ke et al., 2013, Dong et al., 2011, Bu et al., 2014, Xia et al., 

2014, Bao et al., 2014a) and mechanical hyperalgesia (Al-Rejaie et al., 2015, Whiteside et al., 2004, 

Ferrari et al., 2017, Zambelli et al., 2017, Griggs et al., 2016) in terms of changes in threshold 

values (PWTs and PPTs) is a well established and common practice in the preclinical pain research 

field. Interestingly, mechanical hypersensitivity also developed in the contralateral hindpaws of rats 

given a unilateral ITI of W256 cells, although it was less intense than that evoked in the ipsilateral 

hindpaws. We are the first to show that the number of Walker 256 cells injected in the tibiae is an 

important experimental manipulation influencing the nature of pain hypersensitivities developed. 

With lower number of cells inoculated, the pain hypersensitivities developed are unilateral in nature 

(developed in ipsilateral hindpaws). By increasing the number of cells, pain hypersensitivities 

become bilateral in nature (in both ipsilateral and contralateral hindpaws). Peripherally acting 

mechanisms like the involvement of circulating factors and transmedian sprouting, or centrally 

acting mechanisms like signalling through the commissural interneurons of the spinal cord could be 

the cause of contralateral mirror effects associated with unilateral injury (Koltzenburg et al., 1999). 

These contralateral effects could also be associated with activation of spinal glial cells and 
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proinflammatory cytokine secretion, as well as morphological changes in the local tibial nerves, 

similar to effects that have been reported in a model of sciatic inflammatory neuritis (Chacur et al., 

2001). Inoculation of breast cancer cells in bones is known to produce massive sprouting of sensory 

nerve fibres of the periosteum in rodent models of CIBP (Bloom et al., 2011). Noxious inputs 

persistently coming from the periphery can affect the pain circuitry causing bilateral 

hypersensitivity via the descending pain control system (Ikeda et al., 2007, Meeus and Nijs, 2007). 

Thermal hyperalgesia did not develop in rats given a unilateral ITI of W256 cells. The absence of 

thermal hyperalgesia is in contrast to pain behaviours observed after ITI of AT3B prostate cancer 

cells (Muralidharan et al., 2013), suggesting that tumour-specific interactions with the bone 

environment and/or peripheral nerves innervating the bone contribute to this difference. Thermal 

and mechanical pain behaviours are known to be underpinned by diverse mechanisms (Paqueron et 

al., 2003, Wang et al., 2012a). Nociceptors present in the skin are sensitized by thermal stimuli, 

while the nociceptors which are deeply situated in the somatic tissues like joints and muscle are 

highly sensitive to mechanical stimuli (Schaible, 2007). 

 

After approximately three weeks post-surgery, the mechanical allodynia and mechanical 

hyperalgesia in the hindpaws of rats administered a unilateral ITI of W256 cells spontaneously 

resolved and this state was maintained until the end of the study. While all the existing studies using 

this model typically assess the pain behaviors only until around 20-25 days after injection of cancer 

cells, our findings are the first to successfully investigate the model for up to 66 days and to show 

that W256 cell-induced bone pain can apparently resolve spontaneously at later stages despite the 

ongoing presence of cancer cells, similar to the clinical situation in humans. The beginning of 

resolution of pain hypersensitivity behaviour around 20–25 days after surgery in this model has 

been observed in other studies, although these studies only assessed pain behaviors until 20-25 days 

(Zhao et al., 2010, Xu et al., 2013, Huang et al., 2014). A similar spontaneous reversal of 

mechanical hypersensitivity has been reported in rats administered a unilateral ITI of MRMT-1 

cells in a BCIBP model (Falk et al., 2015b). Cancer metastases to bones without clinical pain or 

other symptoms is not uncommon (Phanphaisarn et al., 2016, Costelloe et al., 2009). In a recent 

retrospective patient record study involving 1105 women with breast cancer skeletal metastases, it 

was found that the burden of symptoms including pain decreased after the diagnosis of bone 

metastases, although there was no substantial increase in use of analgesic medication after the 

diagnosis of bone metastases compared to the scenario before the diagnosis (Cleeland et al., 2016). 

In this study, only a small proportion of patients (~ 16 %) were newly introduced to analgesic 

medications or had the dose of their existing medications increased after the diagnosis of bone 

metastases. These observations are consistent with the notion that the human body has endogenous 
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pain-relieving mechanisms in place to attenuate pain due to progression of metastatic disease and so 

limit the presentation of symptoms. 

 

The work presented herein is the first to use histology, radiology and immunohistochemistry to 

provide evidence that the cancer disease remains persistent in the rat tibiae, despite apparent 

resolution of pain hypersensitivities at later stages of this model. We chose immunohistochemistry 

as a technique to stain tibial sections, because it provides direct evidence of the presence of cancer 

cells (Slade and Coombes, 2007). The presence of cancer cells in the tibiae during both the pain 

state and the resolved-pain state was confirmed with immunohistochemical staining of Cytokeratin 

18. Endogenous opioids potentially play a very important role in cancer pain attenuation (Zhao et 

al., 2016, Lesniak et al., 2016, Roques et al., 2012). We administered naloxone, which is a non-

selective antagonist of opioid receptor (van Dorp et al., 2007), to assess whether similar 

mechanisms might contribute in the present model and we are the first to show that naloxone 

rescued the pain phenotype. The observed re-emergence of pain behaviours after naloxone 

administration not only further supports the continued presence of tumour cells in bone, but also 

supports the hypothesis that the endogenous opioid system could be at least partially responsible for 

the spontaneous resolution of pain hypersensitivity. A CIBP model involving an ITI of prostate 

cancer cells in rats showed similar spontaneous resolution of pain due to endogenous opioid-

sensitive mechanisms (Muralidharan et al., 2013). Studies in mice using osteosarcoma-induced 

bone pain model also showed such a spontaneous resolution of hypersensitivity in the hindpaws that 

was unmasked by administration of naloxone to reverse the analgesia produced by endogenous 

opioids (Baamonde et al., 2006, Menendez et al., 2003). Similarly, several other studies have found 

that the endogenous opioid system might play a key role in resolution of cancer pain 

hypersensitivities (Menendez et al., 2008, Sevcik et al., 2006). While endogenous opioid-sensitive 

mechanisms have been implicated in the resolution of cancer pain in a number of studies (Li et al., 

2016), involvement of other complex neuroimmune mechanisms is also possible. For instance, 

lipoxins and endogenous lipoxygenase-derived eicosanoids – members of the lipid mediators class 

with a wide spectrum of effects against inflammation and nociception– suppress the spinal 

expression of pro-inflammatory cytokines and might also be partially responsible for spontaneous 

resolution of W256 cell-CIBP in this model (Hu et al., 2012c). 

 

One of the reasons for resolution of pain hypersensitivities in this model could be phenotypic 

changes in the cancer cells growing in the bone marrow. Remodeling of bone (Bloom et al., 2011), 

physical outgrowth of tumor and interaction with the nerves (Schmidt, 2014), along with the 

production of algogenic substances secreted by cancer cells colonized in the bone (Tong et al., 
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2010b) can contribute to the pain hypersensitivities. The resolution of hypersensitivities could be a 

consequence of endogenous counteraction at any of these mechanistic levels. To test whether cancer 

cells have changed their phenotype, a comparative proteomic assessment of cancer cells grown in in 

vitro culture with the cells colonizing the bone at the resolved pain-state would need to be 

performed. While the continued presence of tumour load was confirmed by immunohistochemical 

analysis at a state when the pain hypersensitivity was resolved in this model, elimination of cancer 

cells could also contribute to the observed resolution of pain behaviours. The phenomenon of breast 

cancer regression is well-known in humans (Lewison, 1976, Hutter, 1982, Burnside et al., 2006, 

Barry, 2009, Onuigbo, 2012). Similarly, W256 breast cancer cells also have the potential to 

transform into a variant known for its regression in vivo (Guimarães et al., 2010), causing cancer 

regression with the prolonged duration of the study (Jensen and Muntzing, 1970, Cavalcanti et al., 

2003, Schanoski et al., 2004).  

 

Our present work is the first to pharmacologically characterize the W256 cell-induced bone pain 

model in rats and to show that the model is responsive to clinically used analgesic drugs that have 

different mechanisms of action. Morphine, gabapentin, amitriptyline and meloxicam are important 

drugs representing diverse analgesic drug classes used in treating cancer pain (Mantyh et al., 2002). 

Morphine, an agonist predominantly at the -opioid (MOP) receptor, is one of the most important 

members of the strong opioid analgesic class (Cao et al., 2010). All three major opioid receptor 

types () belong to the superfamily of G i /G o -protein-coupled receptors (McDonald and 

Lambert, 2005). Opioid agonists enhance the opening of GIRK channels (Ikeda et al., 2000); inhibit 

the opening of voltage-gated calcium channels, and inhibit cAMP production by adenylate cyclase. 

The net effect is inhibition of nociception (Rosenblum et al., 2008). The ED50-Ipsilateral of morphine in 

this model (1.3 mg/kg) was found to be higher than that in a cisplatin induced peripheral neuropathy 

model (0.8 mg/kg; s.c.) (Han et al., 2014a), similar to that in a neuropathic pain model of spared 

nerve injury (1.2 mg/kg; s.c.) (Zhao et al., 2004), but lower than that in nociceptive paw pressure 

test (2.8 mg/kg; s.c.) (Morgan et al., 2006) in rats. Our findings are aligned with others who showed 

that morphine is effective in alleviating pain hypersensitivities in this model (Guo et al., 2017, Liu 

et al., 2017a). In other studies, mRNA and protein levels of μ-opioid receptors in the spinal dorsal 

horn and dorsal root ganglia of rats were reduced following unilateral ITI of W256 cells in this 

model (Yao et al., 2016, Hou et al., 2017). Gabapentin is used in both epilepsy and neuropathic 

pain. It inhibits calcium currents via high-voltage-activated channels containing the α2δ-1 subunit, 

and decreases the excitatory neurotransmitter glutamate and increases the inhibitory neurotransmitter 

GABA, thereby reducing the excitability (Sills, 2006). Other mechanisms have also been proposed 

including modest actions on voltage gated potassium channels (Sills, 2006). The ED50-Ipsilateral of 

https://en.wikipedia.org/wiki/%CE%9C-opioid_receptor
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gabapentin in this model (47.1 mg/kg) was higher than that reported in a neuropathic pain model of 

spinal nerve ligation (34 mg/kg; i.p.) in rats (Hunter et al., 1997). Tricyclic antidepressant drugs 

such as amitriptyline are also used as analgesic adjuvant drugs, which augment descending 

noradrenergic inhibition and are utilised for the management of neuropathic pain conditions (Tura 

and Tura, 1990). NSAIDs (Non-steroidal anti-inflammatory drugs) such as meloxicam inhibit COX, 

the enzyme responsible for the conversion of arachidonic acid into prostaglandin H2, which is an 

initial step in the synthesis of PGE2, a mediator of inflammation. At therapeutic doses, meloxicam 

has modest selectivity for inhibition of COX-2 over COX-1 (Noble and Balfour, 1996). The ED50-

Ipsilateral of morphine and gabapentin in our optimized model (1.3 and 47.1 mg/kg, respectively) were 

lower than that reported in prostate CIBP model (1.9 and 78.0 mg/kg, respectively), whereas the 

ED50-Ipsilateral of amitriptyline and meloxicam (20.1 and 3.9 mg/kg, respectively) were higher than 

that determined in the prostate CIBP model (14.9 and 2.6 mg/kg, respectively) in rats (Muralidharan 

et al., 2013). Morphine, gabapentin, amitriptyline and meloxicam produced dose-dependent 

analgesia in our optimized rat model of BCIBP, with each of the drugs having a unique 

pharmacological profile in terms of extent and duration of action and time of peak effect. 

Considering the ED50 doses (mg/kg), the potency rank order was: morphine > meloxicam > 

amitriptyline > gabapentin. Hence, our model was found to be suitable for assessing the pain-

relieving effects of compounds from diverse pharmacological drug classes that are used clinically to 

alleviate CIBP. It is worth mentioning that molecular assessments were not performed to confirm 

that the analgesic effects produced by these standard drugs in this model were mediated by their 

putative modes of action. Only morphine, gabapentin, amitriptyline and meloxicam- the drugs 

which are well-known to produce analgesia in humans with cancer pain, were tested in this work. 

However, further validation of the model could be performed by testing of drugs not effective in 

relieving pain in humans, so as to estimate the false positive rate. Nevertheless, anti-hypersensitivity 

effects were not observed in any of the vehicle control groups that were included in each of these 

experiments. 

 

Pain is one of the major problems in cancer patients having metastases to their bones (Tsuzuki et 

al., 2016). CIBP is a complex pathological manifestation of inflammatory, neuropathic and cancer-

specific or tumorigenic components (Cao et al., 2010). Efficient preclinical models of cancer-

induced bone pain are essential to understand the underlying complexities and to assist in the drug 

discovery processes aimed at identifying novel compounds for relieving the debilitating pain 

(Blouin et al., 2005). In the present work, we systematically injected a number of different 

concentrations of W256 cells in a rat model and assessed the health characteristics of the animals. 

The development of pain hypersensitivity depended upon the initial number of cells inoculated, 

http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Arachidonic_acid
http://en.wikipedia.org/wiki/Prostaglandin_H2
http://en.wikipedia.org/wiki/COX-2
http://en.wikipedia.org/wiki/COX-1
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while excellent animal health was maintained at all cell numbers assessed. Analogous to clinical 

practice, we used radiological and histological techniques to evaluate cancer-induced bone changes 

(Mertens et al., 1998, Menezes and Ahmed, 2014, Heck et al., 2006) and found profound osteolysis. 

This observation is in contrast to prostate cancer metastases to bones, in which mixed osteolytic-

osteogenic bone lesions are formed with osteosclerotic effects predominating in both the clinic and 

the animal models (Muralidharan and Smith, 2013, Ibrahim et al., 2010). Although the cancer cells 

were still present in the tibiae of animals herein, the hindpaw hypersensitivity of rats resolved at 

later stages of the model and the endogenous opioid system was at least partially responsible for this 

spontaneous pain resolution. We performed detailed pharmacological profiling using standard 

analgesic drugs used to treat CIBP in the clinical setting and found that this model could be useful 

to assess novel analgesic compounds with diverse mode of actions. 
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Supplementary Table 2.1. Mean (±SEM) values of behavioural tests of rats given an ITI of HK 

cells as a control for lack of pain hypersensitivity. 

Experiment 

no. 

Day 

post-ITI 

Mean PWT (g) Mean PPT (g) Mean PTT (sec) 

Ipsi Contra Ipsi Contra Ipsi Contra 

7 21 - - - - 13.3 (+ 0.25) 13.5 (+ 0.49) 

10 8 

 

13 

10 

 

11.3 

11.3 

 

12 

- - - - 

11 8 

 

10 

 

15 

10.7 

 

10.7 

 

10 

11.3 

 

10.7 

 

10.7 

- - - - 

12 7 

 

9 

 

11 

 

14 

11.3 

 

11.3 

 

12 

 

12 

12 

 

10.7 

 

12.7 

 

12.7 

- - - - 

13 7 

 

9 

 

12 

 

10.7 

 

11.3 

 

10.7 

12 

 

12 

 

12 

- - - - 

14 7 

 

10 

 

12 

 

14 

- - 115 

 

111.7 

 

116.7 

 

110 

125 

 

116.7 

 

123.3 

 

116.7 

- - 

Contra, contralateral hindpaws; Ipsi, ipsilateral hindpaws; -, not assessed 
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Supplementary Table 2.2. Mean (±SEM) values of baseline behavioural tests of rats prior to 

surgeries / ITI. 

 

Experiment 

no. 

Mean pre-surgery baseline PWT (g) Behavioural 

test value; 

unit 

W256 cells’ group HK cells’ group 

Ipsi Contra Ipsi Contra 

7 12.9 (+ 

0.65) 

13.1 (+ 

0.79) 

10.8 (+ 

0.51) 

11.7 (+ 

0.16) 

PTT; sec 

10 10.1 (+ 

0.28) 

10.5 (+ 

0.24) 

9.3 10 PWT; g 

11 10.2 (+ 

0.25) 

10.7 (+ 

0.23) 

9.3 10 PWT; g 

12 10.6 (+ 

0.31) 

10.7 (+ 

0.40) 

10.7 11.3 PWT; g 

13 10.5 (+ 

0.37) 

10.3 (+ 

0.38) 

11.3 10.7 PWT; g 

14 102.1 (+ 

2.41) 

104.8 (+ 

2.55) 

105 108.3 PPT; g 

Contra, contralateral hindpaws; Ipsi, ipsilateral hindpaws 
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Supplementary Figure 2.1. Form used to record clinical observations in rats. 
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Supplementary Figure 2.2. Body weight of rats from various experiments. Panels in the figure 

show mean (±SEM) body weight of rats from (A) experiment 1, (B) experiment 4, (C) experiment 

6, (D) experiment 7, (E) experiment 8, (F) experiment 9, (G) experiment 10, (H) experiment 11, (I) 

experiment 12, (J) experiment 13, (K) experiment 14, (L) experiment 15 and (M) experiment 16. 

HK, heat-killed; W256, Walker 256 cells. 
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Supplementary Figure 2.3. Paw withdrawal thresholds (PWTs) of ipsilateral and 

contralateral hindpaws of rats. Panels in the figure show mean (±SEM) PWTs of rats from (A) 

experiment 4, (B) experiment 8, (C) experiment 9, (D) experiment 15 and (E) experiment 16. HK, 

heat-killed; W256, Walker 256 cells. 
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Supplementary Figure 2.4. Paw pressure thresholds (PPTs) of the ipsilateral and contralateral 

hindpaws of rats from experiment 4. 
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Supplementary Figure 2.5. Paw thermal thresholds (PTTs) of the ipsilateral and contralateral 

hindpaws of rats. Panels in the figure show mean (±SEM) PTTs of rats from (A) experiment 4 and 

(B) experiment 5. HK, heat-killed; W256, Walker 256 cells. 
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Supplementary Figure 2.6. Effect of naloxone on ipsilateral and contralateral PWT / PPT / 

PTT values of rats. Panels in the figure show changes in mean (±SEM) (A) PWTs in experiment 3 

following naloxone injection between day 81-91 post-ITI, (B) PPTs in experiment 3 following 

naloxone injection between day 82-92 post-ITI, (C) PWTs in experiment 4 following naloxone 

injection between days 81-93 post-ITI, (D) PPTs in experiment 4 following naloxone injection 

between days 82-94 post-ITI and (E) PTTs in experiment 7 following naloxone injection between 

days 21-24 post-ITI. BCIBP (1.5 x 105), group of rats given an ITI of 1.5 x 105 W256 cells; BCIBP 

(4 x 105), group of rats given an ITI of 4 x 105 W256 cells; DPBS, group of rats given an ITI of 10 

µL DPBS; HK, heat-killed; NAL, naloxone (15 mg/kg s.c.); Sham (1.5 x 105), group of rats given 

an ITI of 1.5 x 105 HK W256 cells; Sham (4 x 105), group of rats given an ITI of 4 x 105 HK W256 

cells; VEH, vehicle; W256, Walker 256. 
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Supplementary Figure 2.7. Temporal changes in the paw withdrawal thresholds (PWTs) of 

the contralateral hindpaws for BCIBP rats following administration of single bolus doses of 

analgesic and adjuvant drugs. Panels in the figure show temporal changes in mean (±SEM) PWTs 

versus time curves following injection of (A) morphine, (B) gabapentin, (C) amitriptyline and (D) 

meloxicam. 
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Supplementary Figure 2.8. Temporal changes in the paw pressure thresholds (PPTs) of the 

contralateral hindpaws for BCIBP rats following administration of single bolus doses of 

analgesic and adjuvant drugs. Panels in the figure show temporal changes in mean (±SEM) PPTs 

versus time curves following injection of (A) morphine, (B) gabapentin, (C) amitriptyline and (D) 

meloxicam. 
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 Supplementary Figure 2.9. Immunocytochemical staining of the Walker 256 cell line for 

Cytokeratin 18 using the ab668 (Abcam) antibody. Panels in the figure show (A) cytokeratin 18 

(B) DAPI and (C) A and B merged. 
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Supplementary Figure 2.10. Immunohistochemical staining of Cytokeratin 18 in tibial 

sections from BCIBP rats and the corresponding sections from sham rats using the ab668 

(Abcam) antibody. Panels in the figure show immunofluorescence imaging of tibial sections from 

(A) sham and (B) BCIBP rats at day 7 post-ITI. 
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Chapter 3 

Transcriptomic characterisation of the optimised rat model of Walker 

256 breast cancer cell-induced bone pain 

 

3.1. Foreword 

As described in Chapter 2, the Walker 256 cell-induced bone pain model was validated and 

characterised showing that this preclinical model has several similarities in common with breast 

cancer-induced bone pain in humans. Mechanism-based studies are very important to seek new 

analgesic drugs for the treatment of breast cancer induced bone pain. Hence, it is necessary to 

understand the gene-level changes that occur in the pathophysiology of the preclinical model used 

in the drug discovery process. Hence, I performed a transcriptomic characterisation of the Walker 

256 cell-induced bone pain model using the neural tissues, which are known to be key players of 

pain processing pathways. Additionally, I also performed the transcriptomic characterization of the 

Walker 256 cell line cultured in vitro so as to predict the molecular genetic profile of this cell line 

and to be able to comment on the nature of breast cancer disease produced in vivo by this cell line. I 

am thankful to the Institute for Molecular Bioscience Sequencing Facility (The University of 

Queensland, QLD, Australia; mainly Dr Gregory Baillie) and the Boehringer Ingelheim Pharma 

GmbH & Co. KG (Biberach, BW, Germany; mainly Dr German Leparc) for their assistance with 

RNA-seq procedures and bioinformatics analysis of the Walker 256 cell line and rat neural tissues, 

respectively. 

 

3.2. Introduction 

Breast cancer induced bone pain (BCIBIP) is a significant problem in clinic (Kane et al., 2015). 

BCIBP can manifest as neuropathic pain, inflammatory pain as well as mixed hypersensitivity and 

also involves tumour-specific components (Cao et al., 2010). The existing analgesic drug regimens 

used to treat BCIBP are often insufficient to mitigate the associated pain and may also exhibit 

severe side effects particularly in high doses (Bloom et al., 2011). Hence, it is very important to 

seek novel analgesics with reduced side effect profiles to treat BCIBP. One of the key aspects of the 

analgesic drug discovery process is employing preclinical models that aptly mimic the human 

pathophysiology of BCIBP (Slosky et al., 2015). The Walker 256 breast cancer cell-induced bone 

pain model in rats is a useful research tool that mimics key features of the human BCIBP condition 

(Shenoy et al., 2016). 
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The Walker 256 cell line is one of the most common cell lines used in experimental research 

(Justice, 1985, Brigatte et al., 2007, Sroka et al., 2016). However, the molecular genetic profile of 

this cell line is not yet established. It is not even known whether the Walker 256 cell line expresses 

common breast cancer marker genes such as the estrogen receptor, progesterone receptor, androgen 

receptor and Her2. It is important to understand the genetic composition of the Walker 256 cell line 

used in the experimental model of BCIBP, so as to predict the resemblances of the skeletal 

metastases produced in this model to the clinical features of the human cancer disease. In the 

process of seeking new analgesic drugs for treating BCIBP, it is also very important that 

mechanisms of pain hypersensitivities are elucidated (Mantyh, 2014). However, there is insufficient 

information on global gene expression changes at the level of dorsal root ganglia (DRGs) and the 

spinal cord, occurring in the pathophysiology of BCIBP. Similar to the clinical situation, the pain 

hypersensitivities in the Walker 256 BCIBP model resolves at later stages. However, the genetic 

changes in DRGs that underpin the self-resolving nature of pain hypersensitivities in this model 

have not been elucidated before. 

 

To address these gaps in the scientific literature, we have performed RNA-seq analysis of the 

Walker 256 cell line cultured in vitro. We have also performed the RNA-seq analysis of the 

ipsilateral lumbar L4-6 DRGs and lumbar spinal cord tissues of rats from our optimised BCIBP 

model. This chapter describes the molecular genetic profile of the Walker 256 cell line and also 

provides transcriptomic insights into the changes occurring in the neural tissues of rats in the 

pathophysiological state of BCIBP. 

 

3.3. Material and methods 

3.3.1. Drugs, Chemicals and reagents 

The details of drugs, chemicals and regents used have been covered in section 2.3.1 of chapter 2. 

 

3.3.2. Cell culture 

The details of the cell culture procedure used has been described in section 2.3.2 of chapter 2. 

 

3.3.3. Animals, surgical procedure, assessment of health characteristics and measurement of 

mechanical allodynia 

The details of animals, surgical procedure, assessment of health characteristics and measurement of 

mechanical allodynia were as described in sections 2.3.3, 2.3.4, 2.3.6 and 2.3.7.1 of Chapter 2, 

respectively. 
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3.3.4. RNA-Seq and bioinformatics analysis 

The Walker 256 cells were cultured and harvested by using the procedure described in section 2.3.2 

of Chapter 2. The RNA was extracted from the cells using Absolutely RNA Miniprep Kit (Agilent 

Technologies, VIC, Australia) following the manufacturer’s instructions. Library construction and 

the bioinformatics analysis were conducted by the Institute for Molecular Bioscience Sequencing 

Facility (The University of Queensland, QLD, Australia). RNA-Seq was conducted on an Illumina 

NextSeq 500 platform as 75-nucleotide single-end runs and libraries were prepared using TruSeq 

stranded total RNA library preparation. The reads were mapped using STAR aligner (version 

star/2.3.0e) and samtools. The reads were mapped to the Ensembl/Rnor_6.0. Count tables were 

generated using HTSeq_count from HTSeq package (Yin et al., 2016c). Genes were considered to 

be above the noise level if the read count was >10. For sequencing of RNA from neural tissues, on 

day-10 and 48 following intra-tibial injection (ITI) of Walker 256 cells, the rats were euthanized 

with pentobarbitone injection followed by decapitation, and the lumbar L4-L6 DRGs and lumbar 

L4-L6 spinal cord segments were harvested. Three biological replicates (n=3) were used in each of 

the groups. The tissues were treated with RNAlaterTM stabilization solution (Thermo Fisher 

Scientific, VIC, Australia). Total RNAs were individually extracted using the Ambion Magmax™-

96 total RNA isolation kit (Life Sciences) according to the manufacturer’s instructions. Briefly, 5 

mg of tissue was placed in the lysis solution and homogenised in Qiagen Tissuelyzer™ for a period 

of 30 sec. Nucleic acids were captured onto magnetic beads, washed and treated with DNase. Total 

RNA was then eluted in 50 μl elution buffer. RNA quality and concentration was measured using 

an RNA Pico chip on an Agilent Bioanalyzer. Library construction and bioinformatics analysis 

were performed by the Boehringer Ingelheim Pharma GmbH & Co. KG (Biberach, BW, Germany). 

The sequencing library preparation was done using 200 ng of total RNA input with the TruSeq 

RNA Sample Prep Kit v2-Set B (RS-122-2002, Illumina Inc, San Diego, CA) producing a 275bp 

Fragment including Adapters in average size. In the final step before sequencing, 8 individual 

libraries were normalized and pooled together using the adapter indices supplied by the 

manufacturer. Pooled libraries were then clustered on the cBot Instrument form Illumina using the 

TruSeq SR Cluster Kit v3 - cBot - HS(GD-401-3001, Illumina Inc, San Diego, CA). Sequencing 

was then performed as 86 bp, single reads and 7 bases index read on an Illumina HiSeq3000 

instrument using the TruSeq SBS Kit HS- v3 (FC-401-3002, Illumina Inc, San Diego, CA). RNA-

Seq reads were aligned to the rat genome using the STAR Aligner v2.5.2a with the corresponding 

Ensembl 70 reference genome (http://www.ensembl.org). Sequenced read quality was checked with 

FastQC v0.11.2 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and alignment quality 

http://www.ensembl.org/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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metrics were calculated using the RNASeQC v1.18. Following read alignment, duplication rates of 

the RNA-Seq samples were computed with bamUtil v1.0.11 to mark duplicate reads and the 

dupRadar v1.4 Bioconductor R package for assessment. The gene expression profiles were 

quantified using Cufflinks software version 2.2.1 to get the Reads Per Kilobase of transcript per 

Million mapped reads (RPKM) as well as read counts. Differential gene expression (DGE) analysis 

was performed with the uniquely mapping read counts as input for the Bioconductor LIMMA 

analysis R package with normalization factors calculated using trimmed mean of M-values (TMM) 

and subsequently voom normalized. The list of top differentially expressed genes were filtered for 

significant differential expression using an adjusted P-value threshold at 0.05 (after Benjamini–

Hochberg multiple testing correction) and a log2 fold change threshold of >= |0.5|. The comparisons 

of groups made to obtain differentially expressed genes have been tabulated in Table 3.1. Day 10 

post-ITI was chosen as the timepoint at which rats displayed pain behavioural hypersensitivities. 

Day 48 post-ITI was chosen as the timepoint at which the pain hypersensitivities were resolved. 

Three types of comparisions were made as shown in the Table 3.1. Firstly, we compared the DRGs 

of the animals in pain state with the sham control animals that received heat-killed cancer cells. 

Secondly, we compared the changes in gene expression in DRGs during pain state, with respect to 

the animals in resolved-pain state. Lastly, we compared the gene expression in spinal cord tissues of 

animals in pain state with the sham control animals that received heat-killed cancer cells. The 

ontology analyses of genes expressed in the Walker 256 cell line and the differentially expressed 

genes in rat neural tissues were performed using the PANTHER database by following previously 

published protocols (Mi et al., 2013a, Mi et al., 2013b). The Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis was performed using the web-based platform, KOBAS 3.0 

server (Wu et al., 2006, Xie et al., 2011, Zhang et al., 2017, Shi et al., 2017). STRING network 

analysis diagrams were generated using STRING v10.5 (Szklarczyk et al., 2015). 

 

Table 3.1. Schematic of group comparisons of neural tissues in BCIBP rats to obtain differentially 

expressed genes. 

Comparison Group A Group B 

1 Ipsilateral lumbar L4-6 DRGs, 

Heat-Killed cells’ group, Day 

10 post-ITI 

Ipsilateral lumbar L4-6 DRGs, Live cells 

group, Day 10 post-ITI 

2 Ipsilateral lumbar L4-6 DRGs, 

Live cells group, Day 48 post-

ITI 

Ipsilateral lumbar L4-6 DRGs, Live cells 

group, Day 10 post-ITI 
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3 Lumbar L4-6 Spinal cord, 

Heat-Killed cells group, Day 

10 post-ITI 

Lumbar L4-6 Spinal cord, Live cells 

group, Day 10 post-ITI 

 

3.4. Results 

A total of 216233726 reads were generated from all Walker 256 cell line samples (no feature- 

23764566; ambiguous- 292378; alignment not unique- 106349779). In neural tissue samples, all the 

samples had around 90% of reads uniquely mapped to the rat genome (Appendix-1). The principal 

component analysis using the read counts for all genes showed clear clustering and segregation of 

populations in the two dimensional representations (Appendix-2), suggesting that obvious 

differences existed in the RNA expression between different groups, and not as variations within 

groups (Chung et al., 2016). 
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3.4.1. Presence of genes with breast cancer implications in Walker 256 cell line 

The twenty most abundant genes present in the Walker 256 cell line and their roles in breast cancer have been summarised in Table 3.2. These included 

genes important genes like Nedd4, Fn1, Ctsb and Ahnak. 

 

Table 3.2. 20 most abundant genes in Walker 256 cell line and their role in breast cancer. 

Gene 

Abbreviation 

Gene name Reads Possible implication Reference 

RNaseP_nuc Nuclear RNase P 191160 - - 

RNase_MRP RNase 

mitochondrial RNA 

processing 

182336 

 

Proliferative functions of breast cancer (Park and Jeong, 2015) 

Actb Actin Beta 179217 

 

Proliferation and tumour aggressiveness of 

breast cancer 

(Guo et al., 2013) 

7SK RNA, 7SK small 

nuclear 

156254 - - 

AY172581.24  122538 - - 

Nedd4 Neural Precursor 

Cell Expressed, 

Developmentally 

Down-Regulated 4, 

E3 Ubiquitin 

Protein Ligase 

111755 

 

Oncogenic function in breast cancer (Jung et al., 2013, Ye et al., 2014b) 
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Fn1 Fibronectin 1 97292 Aggressive behaviour of breast cancer (Yang et al., 2014) 

Ctsb Cathepsin B 96231 

 

High invasiveness, tumour growth and 

metastasis of breast cancer 

(Kallunki et al., 2013, Bengsch et al., 

2014) 

Ahnak AHNAK 

nucleoprotein, 

Neuroblast 

differentiation-

associated protein 

AHNAK  

93214 

 

Migration and metastasis of breast cancer (Sudo et al., 2014, Shankar et al., 2010) 

Mt-co1 Mitochondrially 

Encoded 

Cytochrome C 

Oxidase I 

92829 

 

Mutation of this gene is implicated in breast 

cancer 

(Gallardo et al., 2006) 

Rplp0 Ribosomal Protein 

Lateral Stalk 

Subunit P0 

83214 

 

- - 

Eef1a1 Eukaryotic 

Translation 

Elongation Factor 1 

Alpha 1 

76805 

 

Formation, progression and metastasis of 

breast cancer 

(Edmonds et al., 1996, Al-Maghrebi et 

al., 2005) 

Vim Vimentin 73350 

 

Invasiveness and metastasis of breast cancer (Hendrix et al., 1997, Domagala et al., 

1994) 
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Eef2 Eukaryotic 

Translation 

Elongation Factor 2 

70931 

 

Oncogenic function in breast cancer cell 

growth 

(Oji et al., 2014) 

Flna Filamin A 67368 Development and progression of breast cancer (Tian et al., 2013) 

Vcan Versican 66480 Formation of suitable tumour 

microenvironment in breast cancer 

(Kischel et al., 2010) 

S100a6 S100 Calcium 

Binding Protein A6 

59680 

 

Progression of breast cancer (McKiernan et al., 2011) 

Fstl1 Follistatin Like 1 56282 

 

Promotion of bone metastasis of breast cancer 

by causing induction of immune dysfunction 

(Kudo-Saito, 2013, Kudo-Saito et al., 

2013) 

Thbs2 Thrombospondin 2 56189 

 

Oncogenic function in breast cancer (Weng et al., 2016) 

Pdia3 Protein Disulfide 

Isomerase Family A 

Member 3 

56172 

 

Carcinogenic process and aggressiveness of 

breast cancer 

(Ramos et al., 2015) 

-, not applicable 
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3.4.2. Genes marking the mammary origin of the Walker 256 cell line 

Several genes that are the markers of mammary origin (Zaha, 2014) were present in the Walker 256 

cell line, while some were absent (Figure 3.1). 

 

Figure 3.1. Genes indicating the mammary origin of the Walker 256 cell line. 
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3.4.3. Molecular classification of Walker 256 cell line 

Gene expression profile of Walker 256 cell line, when compared to human breast cancer cell lines (Kao et al., 2009, Neve et al., 2006), revealed that 

this cell line resembles basal-B subtype of cell lines (Figure 3.2). 

 

Figure 3.2. Molecular classification of the Walker 256 cell line. Green tick mark, meets the gene expression requirement of the given cell line 

subtype; Red cross mark, does not meet the gene expression requirement of the given cell line subtype. 
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3.4.4. Genes of prognostic / therapeutic / invasiveness markers of breast cancer in the Walker 

256 cell line 

Similar to clinical scenario of breast tumours, Walker 256 cell line expressed genes of several 

prognostic / therapeutic / invasiveness markers of breast cancer (Aleskandarany et al., 2015, Zaha, 

2014), while some of the common genes were absent (genes were considered to be above the noise 

level only if the read count was >10; so gene count <10 might be considered to be noise, and hence 

the corresponding gene is considered to be absent) (Figure 3.3). 

 

Figure 3.3. Genes of common prognostic / therapeutic / invasiveness markers of breast cancer 

in the Walker 256 cell line. 

 

3.4.5. Gene ontology analysis on the Walker 256 cell line RNA sample: Biological Process 

The results of Biological Process ontology analysis of the Walker 256 cell line have been provided 

in Table 3.3. 
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Table 3.3. Percentage of the number of genes in Walker 256 cell line classified into subcategories 

of the Biological Process ontology. 

Functional Category Percentage (%) of number of genes 

classified to the Category over the total 

number of genes 

cellular component organization or biogenesis 9.1 

cellular process 41.3 

localization 10.6 

reproduction 1.7 

biological regulation 9.8 

response to stimulus 11 

developmental process 9.3 

multicellular organismal process 7.3 

locomotion 0.7 

biological adhesion 2.5 

metabolic process 35.4 

immune system process 5.2 

cell killing 0.1 

  

3.4.6. Gene expression changes in BCIBP rats’ ipsilateral lumbar L4-6 DRGs during the pain-

state 

No significant changes were found at the mRNA level in the DRGs of BCIBP rats in pain–state 

compared to rats at day 10 post- ITI after an ITI of heat-killed cells. 

 

3.4.7. Gene expression changes in BCIBP rats’ lumbar L4-6 spinal cord during the pain-state 

294 genes were differentially expressed in the lumbar L4-6 spinal cords of BCIBP rats in pain-state 

compared to rats at day 10 post-ITI after an ITI of heat-killed cells, including several upregulated 

genes like Erb-B2 Receptor Tyrosine Kinase 4 (Erbb4), Transforming growth factor-β receptor 1 

(Tgfbr1), Solute Carrier Family 12 Member 2 (Slc12a2 / NKCC1) and Myristoylated Alanine-Rich 

C-Kinase Substrate (Marcks). Downregulated genes included SLC9A3 Regulator 2 (Slc9a3r2), 

Annexin A2 (Anxa2), Cysteine-rich protein 2 (Crip2), RET Receptor Tyrosine Kinase (RET), 

Neuregulin 1 (Nrg1), Potassium Two Pore Domain Channel Subfamily K Member 4 (Kcnk4) and 

Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6 / Ear2). These genes are known to have 

roles in the pain processing pathway. The list of all the upregulated and the downregulated genes in 
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lumbar L4-6 spinal cord of BCIBP rats during the pain state is shown in Appendix-3 and Appendix-

4, respectively. 

 

3.4.8. Gene expression changes in BCIBP rats’ ipsilateral lumbar L4-6 DRGs at the resolved 

pain-state 

25 genes were differentially expressed in the ipsilateral lumbar DRGs of BCIBP rats at the 

resolved-pain state (day 48 post-ITI) compared to BCIBP rats during the pain state (day 10 post-

ITI), including several downregulated genes like Cell Adhesion Molecule 4 (Cadm4), Matrix 

Metalloproteinase-14 (Mmp14), Sphingosine-1-Phosphate Receptor 3 (S1pr3), Glutathione 

Peroxidase 7 (Gpx7) and CD93 Molecule (CD93 / C1qR) known to have roles in the pain 

processing pathway. The list of all the upregulated and the downregulated genes in the ipsilateral 

lumbar L4-6 DRGs of BCIBP rats in the resolved pain state is shown in Appendix-5 and Appendix-

6, respectively. 

 

3.4.9. Gene ontology analysis on differentially expressed genes in the lumbar spinal cord 

during the pain state- Biological Process 

The results of the Biological Process ontology analysis on differentially expressed genes in the 

lumbar spinal cord of BCIBP rats at day 10 post-ITI, compared to rats at day 10 post-ITI after an 

ITI of heat-killed cells, are shown in Table 3.4-3.6. 

 

Table 3.4. Percentage of the number of genes classified into subcategories of the Biological Process 

ontology of differentially expressed genes in spinal cord of BCIBP rats at day 10 post-ITI, 

compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Functional Category Percentage of number of genes classified to 

the Category over the total number of genes 

cellular component organization or biogenesis 

(GO:0071840) 

10.40% 

cellular process (GO:0009987) 45.40% 

localization (GO:0051179) 9.60% 

reproduction (GO:0000003) 1.80% 

biological regulation (GO:0065007) 16.10% 

response to stimulus (GO:0050896) 8.90% 

developmental process (GO:0032502) 11.80% 

multicellular organismal process (GO:0032501) 8.20% 
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biological adhesion (GO:0022610) 2.90% 

locomotion (GO:0040011) 1.10% 

metabolic process (GO:0008152) 31.10% 

immune system process (GO:0002376) 3.20% 

 

Table 3.5. Percentage of the number of genes classified into subcategories of the Biological Process 

ontology of upregulated genes in the lumbar spinal cord of BCIBP rats at day 10 post-ITI, 

compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Functional Category Percentage of number of genes classified to 

the Category over the total number of genes 

cellular component organization or biogenesis 

(GO:0071840) 

8.50% 

cellular process (GO:0009987) 46.30% 

localization (GO:0051179) 12.20% 

reproduction (GO:0000003) 2.40% 

biological regulation (GO:0065007) 13.40% 

response to stimulus (GO:0050896) 8.50% 

developmental process (GO:0032502) 9.80% 

multicellular organismal process (GO:0032501) 2.40% 

biological adhesion (GO:0022610) 2.40% 

locomotion (GO:0040011) 2.40% 

metabolic process (GO:0008152) 32.90% 

 

Table 3.6. Percentage of the number of genes classified into subcategories of the Biological Process 

ontology of downregulated genes in the lumbar spinal cord of BCIBP rats at day 10 post-ITI, 

compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Functional Category Percentage of number of genes classified to 

the Category over the total number of genes 

cellular component organization or biogenesis 

(GO:0071840) 

11.10% 

cellular process (GO:0009987) 44.90% 

localization (GO:0051179) 8.60% 

reproduction (GO:0000003) 1.50% 

biological regulation (GO:0065007) 17.20% 
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response to stimulus (GO:0050896) 9.10% 

developmental process (GO:0032502) 12.60% 

multicellular organismal process (GO:0032501) 10.60% 

biological adhesion (GO:0022610) 3.00% 

locomotion (GO:0040011) 0.50% 

metabolic process (GO:0008152) 30.30% 

immune system process (GO:0002376) 4.50% 

 

3.4.10. Gene ontology analysis on differentially expressed genes in the lumbar spinal cord 

during the pain state- Cellular Component 

The results of Cellular Component ontology analysis on differentially expressed genes in the 

lumbar spinal cord of BCIBP rats at day 10 post-ITI, compared to rats at day 10 post-ITI after an 

ITI of heat-killed cells, are shown in Table 3.7-3.9. 

 

Table 3.7. Percentage of the number of genes classified into subcategories of the Cellular 

Component ontology of differentially expressed genes in the lumbar spinal cord of BCIBP rats at 

day 10 post-ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Functional Category Percentage of number of genes classified to 

the Category over the total number of genes 

synapse (GO:0045202) 0.40% 

cell junction (GO:0030054) 0.40% 

membrane (GO:0016020) 8.60% 

macromolecular complex (GO:0032991) 8.60% 

extracellular matrix (GO:0031012) 1.80% 

cell part (GO:0044464) 28.60% 

organelle (GO:0043226) 11.80% 

extracellular region (GO:0005576) 4.60% 

 

Table 3.8. Percentage of the number of genes classified into subcategories of the Cellular 

Component ontology of upregulated genes in the lumbar spinal cord of BCIBP rats at day 10 post-

ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Functional Category Percentage of number of genes classified to 

the Category over the total number of genes 

synapse (GO:0045202) 1.20% 
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membrane (GO:0016020) 9.80% 

macromolecular complex (GO:0032991) 9.80% 

extracellular matrix (GO:0031012) 2.40% 

cell part (GO:0044464) 28.00% 

organelle (GO:0043226) 9.80% 

extracellular region (GO:0005576) 7.30% 

 

Table 3.9. Percentage of the number of genes classified into subcategories of the Cellular 

Component ontology of downregulated genes in the lumbar spinal cord of BCIBP rats at day 10 

post-ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Functional Category Percentage of number of genes classified to 

the Category over the total number of genes 

cell junction (GO:0030054) 0.50% 

membrane (GO:0016020) 8.10% 

macromolecular complex (GO:0032991) 8.10% 

extracellular matrix (GO:0031012) 1.50% 

cell part (GO:0044464) 28.80% 

organelle (GO:0043226) 12.60% 

extracellular region (GO:0005576) 3.50% 

 

3.4.11. Gene ontology analysis on differentially expressed genes in the lumbar spinal cord 

during the pain state- Molecular Function 

The results of Molecular Function ontology analysis on differentially expressed genes in the lumbar 

spinal cord of BCIBP rats at day 10 post-ITI, compared to rats at day 10 post-ITI after an ITI of 

heat-killed cells, are shown in Table 3.10-3.12. 

 

Table 3.10. Percentage of the number of genes classified into subcategories of the Molecular 

Function ontology of differentially expressed genes in the lumbar spinal cord of BCIBP rats at day 

10 post-ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Functional Category Percentage of number of genes classified to 

the Category over the total number of genes 

binding (GO:0005488) 22.50% 

receptor activity (GO:0004872) 3.20% 

structural molecule activity (GO:0005198) 6.10% 
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signal transducer activity (GO:0004871) 0.70% 

channel regulator activity (GO:0016247) 0.40% 

catalytic activity (GO:0003824) 25.70% 

transporter activity (GO:0005215) 7.50% 

 

Table 3.11. Percentage of the number of genes classified into subcategories of the Molecular 

Function ontology of upregulated genes in the lumbar spinal cord of BCIBP rats at day 10 post-ITI, 

compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Functional Category Percentage of number of genes classified to 

the Category over the total number of genes 

binding (GO:0005488) 23.20% 

receptor activity (GO:0004872) 4.90% 

structural molecule activity (GO:0005198) 2.40% 

signal transducer activity (GO:0004871) 1.20% 

catalytic activity (GO:0003824) 34.10% 

transporter activity (GO:0005215) 7.30% 

 

Table 3.12. Percentage of the number of genes classified into subcategories of the Molecular 

Function ontology of downregulated genes in the lumbar spinal cord of BCIBP rats at day 10 post-

ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Functional Category Percentage of number of genes classified to 

the Category over the total number of genes 

binding (GO:0005488) 22.20% 

receptor activity (GO:0004872) 2.50% 

structural molecule activity (GO:0005198) 7.60% 

signal transducer activity (GO:0004871) 0.50% 

channel regulator activity (GO:0016247) 0.50% 

catalytic activity (GO:0003824) 22.20% 

transporter activity (GO:0005215) 7.60% 
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3.4.12. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on 

differentially expressed genes in the lumbar spinal cord during the pain state 

The results of KEGG analysis on differentially expressed genes in the lumbar spinal cord of BCIBP 

rats at day 10 post-ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells, are 

shown in Table 3.13-3.15. 

 

Table 3.13. KEGG pathway analysis of differentially expressed genes in the lumbar spinal cord of 

BCIBP rats at day 10 post-ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Term ID Input 

number 

P-Value 

Focal adhesion rno04510 8 0.003732282 

Pathways in cancer rno05200 12 0.00411679 

Small cell lung cancer rno05222 5 0.004922272 

Alzheimer's disease rno05010 7 0.0055924 

Protein digestion and absorption rno04974 5 0.0067878 

Amoebiasis rno05146 5 0.008740098 

Apoptosis - multiple species rno04215 3 0.009372294 

Chronic myeloid leukemia rno05220 4 0.016462193 

ECM-receptor interaction rno04512 4 0.017174889 

Aldosterone-regulated sodium reabsorption rno04960 3 0.017475233 

Notch signaling pathway rno04330 3 0.020822029 

Oxidative phosphorylation rno00190 5 0.021025461 

Ovarian steroidogenesis rno04913 3 0.027126126 

Parkinson's disease rno05012 5 0.027311263 

Apoptosis rno04210 5 0.028075749 

Amyotrophic lateral sclerosis (ALS) rno05014 3 0.029901391 

Endocrine resistance rno01522 4 0.033359803 

AGE-RAGE signaling pathway in diabetic 

complications 

rno04933 4 0.043920525 

Glioma rno05214 3 0.044156646 

Butanoate metabolism rno00650 2 0.044401295 

Non-alcoholic fatty liver disease (NAFLD) rno04932 5 0.045217888 

Proteoglycans in cancer rno05205 6 0.045885549 

Pancreatic cancer rno05212 3 0.049536447 
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Table 3.14. KEGG pathway analysis of upregulated genes in the lumbar spinal cord of BCIBP rats 

at day 10 post-ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Term ID Input 

number 

P-Value 

Ovarian steroidogenesis rno04913 3 0.000796151 

Hepatitis B rno05161 4 0.001459407 

Pancreatic cancer rno05212 3 0.00159203 

Hippo signaling pathway rno04390 4 0.001879169 

Pathways in cancer rno05200 6 0.002330001 

Chronic myeloid leukemia rno05220 3 0.002476312 

Small cell lung cancer rno05222 3 0.003387932 

Prostate cancer rno05215 3 0.003731631 

Proteoglycans in cancer rno05205 4 0.005744101 

Cell cycle rno04110 3 0.009551574 

FoxO signaling pathway rno04068 3 0.010186125 

HTLV-I infection rno05166 4 0.01507905 

Glioma rno05214 2 0.019849557 

Colorectal cancer rno05210 2 0.021067562 

p53 signaling pathway rno04115 2 0.022951502 

Melanoma rno05218 2 0.024902353 

Adherens junction rno04520 2 0.026239322 

Focal adhesion rno04510 3 0.030805205 

Hypertrophic cardiomyopathy (HCM) rno05410 2 0.033344055 

TGF-beta signaling pathway rno04350 2 0.034845888 

Dilated cardiomyopathy rno05414 2 0.036373673 

Peroxisome rno04146 2 0.037926988 

Endocrine resistance rno01522 2 0.043558632 
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Table 3.15. KEGG pathway analysis of downregulated genes in the lumbar spinal cord of BCIBP 

rats at day 10 post-ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells. 

Term ID Input 

number 

P-Value 

Alzheimer's disease rno05010 7 0.000926013 

Protein digestion and absorption rno04974 5 0.001729715 

ECM-receptor interaction rno04512 4 0.005765665 

Oxidative phosphorylation rno00190 5 0.005828677 

Parkinson's disease rno05012 5 0.007756017 

Notch signaling pathway rno04330 3 0.008843486 

Amyotrophic lateral sclerosis (ALS) rno05014 3 0.012919977 

Amoebiasis rno05146 4 0.013005997 

Non-alcoholic fatty liver disease (NAFLD) rno04932 5 0.013540325 

Butanoate metabolism rno00650 2 0.024679577 

Huntington's disease rno05016 5 0.027866895 

Focal adhesion rno04510 5 0.033778547 

Apoptosis rno04210 4 0.034497932 

Apoptosis - multiple species rno04215 2 0.037858087 

 

3.4.13. STRING network analysis on differentially expressed genes in the lumbar spinal cord 

during the pain state 

STRING network analysis of differentially expressed genes in the lumbar spinal cord of BCIBP rats 

at day 10 post-ITI, compared to rats at day 10 post-ITI after an ITI of heat-killed cells, is shown in 

Figure 3.4-3.6. The STRING network images show the clusters of functionally related genes based 

on the associated evidence available in the database. 

 



 

123 
 

 

Figure 3.4. STRING network analysis of differentially expressed genes in the lumbar spinal 

cord of BCIBP rats at day 10 post-ITI, compared to sham rats at day 10 post-ITI after an ITI 

of heat-killed cells. 

 

 

 

 



 

124 
 

 

Figure 3.5. STRING network analysis of upregulated genes in the lumbar spinal cord of 

BCIBP rats at day 10 post-ITI, compared to sham rats at day 10 post-ITI after an ITI of heat-

killed cells. 
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Figure 3.6. STRING network analysis of downregulated genes in the lumbar spinal cord of 

BCIBP rats at day 10 post-ITI, compared to sham rats at day 10 post-ITI after an ITI of heat-

killed cells. 
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3.5. Discussion 

The Walker 256 cell line is one of the most commonly used cell lines in breast cancer research, 

however its molecular genetic profile is still unknown. Hence, we used RNA-seq which is a 

powerful tool for gene expression analysis (Yin et al., 2016b). Human breast cancers are quite 

heterogeneous in nature and there are several schemes to classify breast cancers like histological, 

functional and molecular classifications (Malhotra et al., 2010). The most important classification 

system of breast cancer is based on molecular subtypes, because the pharmacotherapeutic treatment 

thereof depends on the molecular subtypes (Kimbung et al., 2015). Clinically, there are five 

molecular subtypes of breast cancer tumours: luminal-A, luminal-B, Erbb2, basal-like and normal-

like; while there are three molecular subtypes of human breast cancer cell lines: luminal, basal-A 

and basal-B (Kao et al., 2009, Neve et al., 2006, Yersal and Barutca, 2014, Cianfrocca and 

Gradishar, 2009). Luminal cell lines resemble either luminal-A or B tumours in the clinical setting, 

whereas basal-A cell lines resemble basal-like tumours (Kao et al., 2009). The work presented in 

this chapter is the first to report that the Walker 256 cell line resembles the basal-B molecular 

subtype of breast cancer cell lines. Basal-B type cell lines represent an uncommon tumour subtype 

which is not yet well-characterised and might resemble basal-like / triple-negative tumors or Erbb2 

tumours or might also display a stem cell like expression profile (Neve et al., 2006, Kao et al., 

2009). These cell lines are typically highly invasive in nature, when compared to basal-A and 

luminal cell lines (Neve et al., 2006). We found that the Walker 256 cell line is estrogen / androgen 

/ progesterone receptor negative and Her2 positive in nature. It is not known in detail whether the 

breast cancer pain phenotype differs between cancer subtypes. Several important genes like Mki67 

and Tp53 known for aggressiveness of breast cancers were expressed in the Walker 256 cell line. 

Overall, several different genes pertaining to progression of breast cancer were identified to be 

present in the Walker 256 cell line. Importantly, the work presented in this chapter is the first to 

report the ontological analysis of genes expressed by the Walker 256 cell line, using the ontological 

classification type- Biological Process. 

 

In the transcriptomic characterization of neural tissues from BCIBP rats herein, the ontological 

analysis and KEGG pathway analysis of differentially expressed genes provided valuable insights 

into different pathological pathways involved in this model. The gene ontology analysis of 

differentially expressed genes in spinal cord tissues of rats in pain-state, identified important 

biological processes (e.g. biological adhesion) and cellular components (e.g. synapse, cell junction, 

extracellular matrix, extracellular region) that are known to be associated with pain (Jamieson et al., 

2014). Similarly, using KEGG pathways enrichment analysis of differentially expressed genes in 

spinal cord of rats in pain-state, we found that KEGG pathways like focal adhesion, pathways in 
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cancer, proteoglycans in cancer, and HTLV-I infection, known to be involved in chronic 

neuropathic pain (Zhang and Yang, 2017), were significantly enriched. STRING network analysis 

provided insights into the interactions between differentially expressed genes. 

 

There were no changes observed in the ipsilateral lumbar DRGs at the mRNA level at day 10 post-

ITI of Walker 256 cells. This is an intriguing finding, in view of the fact that tumour cells grow in 

vicinity of the peripheral nerves within the bone. However, a wide range of possible mechanistic 

changes could underpin the pathophysiology of this model, which has not been studied in this 

thesis. It is possible that mRNA levels of targets change at a different time point (for example, after 

day 15 following cancer inoculation), and RNA-seq analysis at various time points within the pain-

state window might further help to identify the gene level changes contributing to the 

pathophysiology of this model. A significant discordance between genes and protein expression in 

the tissues is also not unexpected, at a given timepoint (Kosti et al., 2016). Additionally, it is 

noteworthy that gross changes in proteins are not always essential in driving the process of 

nociception, as variety of factors like structural changes in target receptors, modulation of signals 

emanating from these targets converging on other targets / ion channels, etc. might contribute in the 

process. Importantly, during the pain state, significant changes in the mRNA levels of several genes 

were clearly evident in the spinal cord, as per the data provided in this thesis. This strongly suggests 

of the spinal mediation in the pain pathophysiology of this model. Additionally, the changes could 

also occur in the brain, which has not been assessed in this study. Changes in protein levels of 

different targets in DRGs, spinal cord or brain might underpin the pathophysiology in this model. 

For example, important proteins like nerve growth factor (NGF) could be responsible at the protein 

level for inducing peripheral sensitization (Jankowski and Koerber, 2010). A variety of mechanistic 

changes could be occurring in different neuronal and non-neuronal tissues, including structural / 

conformational changes as well as modulation of the functions of the receptors, ion channels and 

enzymes involved in pain processing pathways, and alterations in the binding / functional abilities 

of their endogenous ligands, substrates or downstream effectors, as well as altered trafficking of 

various targets. 

 

It is well known that peripheral nerve sensitisation can induce changes in the dorsal horn of the 

spinal cord (Gao and Ji, 2009). Spinal cord is considered to be an important target in gene 

expression studies involving animal models of pain hypersensitivities (Rodriguez Parkitna et al., 

2006, Rojewska et al., 2014). The gene-level changes observed in the spinal cord are in alignment 

to the well-established fact that chronic pain associated with malignant cancer induced bone disease 

is significantly manifested due to the spinal sensitisation and synaptic plasticity in the spinal cord, 
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that is responsible for amplification of the nociceptive signals and transmission of impulses to the 

higher centres (Delaney et al., 2008). Several important proalgesic genes were upregulated in the 

pain state in BCIBP rats’ lumbar spinal cord at day 10 post-ITI, compared to sham rats given an ITI 

of heat-killed cancer cells at day 10 post-ITI. Many genes known to mediate analgesic activity were 

also found to be downregulated in the spinal cord of rats during the pain state. Erbb4 gene was 

upregulated in BCIBP rats’ lumbar spinal cord during the pain state. This could be a result of 

peripheral nerve damage due to cancer growth and osteolysis, as the Erbb4 gene was upregulated in 

the spinal cord of female rats following nerve root injury (LaCroix-Fralish et al., 2006). The 

transforming growth factor-β receptor 1 (Tgfbr1) gene was upregulated in the lumbar spinal cord of 

BCIBP rats during the pain state. Tgfbr1 is known to be an important gene implicated in pain 

processing pathways as the conditional knockout of this gene in trigeminal ganglia and DRGs of 

mice has been shown to attenuate hyperalgesia (Utreras et al., 2012). The solute Carrier Family 12 

Member 2 (Slc12a2 / NKCC1) gene was upregulated in the lumbar spinal cord during the pain state. 

A role of NKCC1, a protein encoded by the Slc12a2 gene, in nociception is well established 

(Gagnon and Delpire, 2013). Myristoylated Alanine-Rich C-Kinase Substrate (Marcks) was 

upregulated in the spinal cord during the pain state in BCIBP rats herein. The phosphorylation of 

Marcks in the lumbar spinal cord is involved in inflammatory pain and the maintenance of 

neuropathic pain (Tatsumi et al., 2005). 

 

The SLC9A3 Regulator 2 (Slc9a3r2) gene was downregulated in BCIBP rat spinal cord during the 

pain state. In work by others, Slc9a3r2 was downregulated in spinal cord, following traumatic 

spinal cord injury in rats (Yang et al., 2017). Another important gene known to mediate analgesic 

activity was downregulated in the lumbar spinal cord during the pain state herein was Annexin A2 

(Anxa2). Anxa2 reduces the availability of TRPA1 channels in sensory neurons and thereby inhibits 

nociceptive signalling (Avenali et al., 2014). However, whether Anxa2 plays any role in modulating 

nociception at the spinal level warrants further investigation. During the pain state in BCIBP rats, 

the gene encoding the protein Cysteine-rich protein 2 (Crip2), which participates in spinal 

nociceptive processing and inhibits the generation of inflammatory pain (Schmidtko et al., 2008), 

was downregulated in the lumbar spinal cord. Endogenous GDNF family ligands/ RET Receptor 

Tyrosine Kinase (Ret) signalling is known to attenuate hypersensitivities associated with 

neuropathic and inflammatory pain (Golden et al., 2010). During the pain state of BCIBP rats, the 

RET gene was downregulated in the lumbar spinal cord, and hence further assessment of the effects 

of downregulation of this gene in facilitating pain hypersensitivities, would be interesting. An 

isoform of Neuregulin 1 (Nrg1) has been shown to decrease in DRGs of rats following spinal nerve 

ligation (Kanzaki et al., 2012). In the present study, Nrg1 was downregulated in BCIBP rats’ 
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lumbar spinal cord during the pain state, suggesting a possible role of Nrg1 gene in nerve injury, 

regeneration and neuropathic pain in this cancer pain model. Potassium Two Pore Domain Channel 

Subfamily K Member 4 (Kcnk4) has an inhibitory role on pain hypersensitivities (Danser and 

Anand, 2014, Schneider et al., 2014). Kcnk4 was downregulated in the spinal cord of BCIBP rats 

during the pain state, which could be one of the factors responsible for enhanced hypersensitivities 

in this model. Another important gene mediating analgesic activity that was downregulated in spinal 

cord during the pain state was Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6 / Ear2). It 

has been shown that Ear2 (Nr2f6) knockout mice exhibit increased nociception (Warnecke et al., 

2005). Additionally, the transient receptor potential vanilloid type 2 (Trpv2) gene, known to be 

involved in pain transduction (Mercado et al., 2010), was downregulated in BCIBP rats’ lumbar 

spinal cord during the pain state. This could be a consequence of body’s endogenous repair 

processes to combat the pain hypersensitivities. 

 

In BCIBP rats’ ipsilateral lumbar DRGs at day-48 post-ITI (resolved pain state), several proalgesic 

genes were found to be downregulated, compared to the BCIBP rats’ ipsilateral lumbar DRGs at 

day-10 post-ITI (pain state). Matrix Metalloproteinase-14 (Mmp14) was one of the genes 

downregulated. Mmp-14 is an activator of Matrix Metalloproteinase-2 (Mmp-2), which is 

implicated in neuropathic pain development in the late phase (Ji et al., 2009b). Sphingosine-1-

Phosphate Receptor 3 (S1pr3) gene was also downregulated in the ipsilateral lumbar DRGs of 

BCIBP rats during the resolved pain state. S1pr3 receptors, which are present on most DRG 

neurons, are known to mediate nociceptor excitation and ongoing pain behaviour in mice and 

humans (Camprubi-Robles et al., 2013). CD93 Molecule (CD93 / C1qR) is another proalgesic gene 

that was downregulated in the ipsilateral lumbar DRGs of rats during the resolved pain state. 

Inhibiting C1qR is suggested to have potential in treating neuropathic pain (Chen et al., 2013b). 

Additionally, two other genes that were downregulated in the ipsilateral lumbar DRGs of rats 

during the resolved pain state were Cell Adhesion Molecule 4 (Cadm4) and Glutathione Peroxidase 

7 (Gpx7). Gene deletion of Cadm4 causes myelin abnormalities that resemble a neuropathic 

condition (Golan et al., 2013). Gpx7 is upregulated in the axonal compartment of rat DRGs in a 

neuropathic pain model of sciatic nerve entrapment (Hirai et al., 2017). Although genes encoding 

components of the opioid system were not changed at the mRNA level in the ipsilateral lumbar 

DRGs of BCIBP rats during the resolved pain state, the fact remains that the resolved pain 

hypersensitivities are reversed by administration of naloxone. This emphasizes that the endogenous 

opioid-sensitive mechanisms could underpin the resolution of pain hypersensitivities at the protein 

level. Also, endogenous opioid-sensitive mechanisms might possibly contribute towards the pain 

resolution at the spinal cord or brain levels, which remains to be investigated in the future. This is 
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the first report of ontological characterisation of differentially expressed genes in neural tissues of 

Walker 256 cell induced BCIBP in rats and it provides important insights. 

 

Total mRNA based gene expression patterns of breast cancer tissues cannot be assumed to be the 

features of breast cancer cells alone, because breast cancer tumours also consist of additional 

components including other types of epithelial cells, adipose cells, stromal cells, components of the 

immune system and vasculature as well as endothelial cells (Perou et al., 1999). So the system used 

to classify breast cancer tumours cannot be accurately extrapolated to classify the breast cancer cell 

lines, and vice versa. The work presented in this chapter was intended to identify the molecular 

subtype of the Walker 256 breast cancer cell line. However, the subtype of breast cancer tumour 

produced by Walker 256 cells in vivo cannot be defined using the present data, and hence is out of 

the scope of present work. 

 

The work presented in this chapter is a pioneering attempt to perform transcriptomic 

characterization of not only the neural tissues of the BCIBP rat model, but also the Walker 256 

breast cancer cell line used to induce this model. It is noteworthy that the application of RNA-seq 

procedures can have some drawbacks like any other scientific technique. For example, the 

sequencing depths can affect the detection of transcripts and the identification of differential 

expression. This increases the number of false positives with an increase in the total number of read 

counts (Tarazona et al., 2011). Improvements in the RNA-seq protocol can be made by altering the 

library preparation methods. Additionally, improving the sequencing accuracy and mapping 

pecision can help in reducing the noise levels and thereby improves the differential expression 

analysis (Tarazona et al., 2011). RNA-seq quantification can also underestimate the expression of 

several genes. Two / multiple stage analysis of RNA-seq data might help in uniquely assigning 

multi-mapped or ambiguous reads to group of genes (Robert and Watson, 2015). In such complex 

exploratory studies, it is hard to attribute a pathological role to a gene, without further assessments. 

To follow up a ‘hit’ identified in such RNA-seq studies, we would need further detailed validations 

using functional and pharmacological assays, as well as studies in knockout animals. However, 

RNA-seq method is a very useful technique in gene-based studies, because RNA-seq analysis of 

cancers has potential to be clinically translated into patient care (Roychowdhury and Chinnaiyan, 

2016). It is well known that there can be significant differences in the genetic expression profile of a 

cancer cell line cultured in vitro and the tumour cells growing in vivo. So the future approach could 

be to isolate tumour cells from rat tibial bone marrow and perform transcriptomic analysis to study 

the genetic expression profile of the actual tumour. The knowledge of differentially expressed genes 

in neural tissues of BCIBP rats has the potential to direct studies aimed at investigating the 
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mechanisms underpinning pain hypersensitivities and also may provide insights into potential 

therapeutic interventions in the management of BCIBP. The neural tissues used for RNA-seq 

analysis in the present study were whole ipsilateral lumbar DRGs and lumbar spinal cord tissues, 

which contain multiple types of neurons, glial cells and other components like vasculature. The 

future approach could be to focus specifically on neuronal subtypes in the DRGs and spinal cord of 

BCIBP rats. 
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Chapter 4 

Analgesic efficacy of J-2156, a somatostatin receptor– 4 agonist, in a 

rat model of breast cancer induced bone pain 

 

4.1. Foreword: 

In the previous two chapters, I have reported a thorough characterization of Walker 256 cell 

induced rat model of bone cancer pain using behavioural, pharmacological, radiological, 

histological, immunohistochemical and transcriptomic approaches. Hence, the last part of my 

research project was to characterize and validate the suitability of this model in assessing novel 

analgesic compounds. Somatostatin receptor 4 (SST4 receptor) is an interesting pharmacological 

target mediating pain pathobiology and analgesia. J-2156, an SST4 receptor agonist, is a novel 

compound known to be effective in alleviating pain hypersensitivities in animal models of 

neuropathic and inflammatory pain. Hence, I performed pharmacological and ex vivo 

characterization of the Walker 256 cell induced bone pain model to assess whether the SST4 

receptor is able to mediate analgesia in a preclinical model of cancer induced bone pain which 

involves both neuropathic and inflammatory pain components, along with unique tumour-specific 

factors. I am thankful to Dr Louise CJ Gorham, Dr Janet Nicholson and Dr Laura Corradini 

(Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, BW, Germany) for supplying the data 

on in vitro binding affinity/potency of J-2156. 

 

This chapter has been adopted from a research manuscript that arose from this thesis, under review 

for publication by the journal Frontiers in Pharmacology. 

 

4.2. Introduction 

Breast cancer is the most frequent type of cancer diagnosed in women and the major cause of 

cancer-associated mortalities in the world (DeSantis et al., 2015). Metastasis of breast cancer cells 

to the skeleton is a significant problem as it may cause excruciating pain (Bu et al., 2014). Bone 

metastases lead to destruction of bones due to increased activity of osteoclasts (Kane et al., 2015). 

Cancer cells in the bones locally stimulate as well as induce the release of inflammatory mediators 

(Kane et al., 2015, Lozano-Ondoua et al., 2013a, Esquivel-Velazquez et al., 2015). Sensory nerve 

fibres innervating tumour bearing bones, undergo pathological sprouting and reorganisation (Bloom 

et al., 2011). Hence, cancer-induced bone pain has a very complex pathophysiology as it is 

underpinned by both inflammatory and neuropathic components, along with an interplay of cancer-

specific factors (Cao et al., 2010). It involves pathobiological alterations of peripheral tissues and 

http://frontiersin.org/people/u/300778
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nerve fibres as well as characteristic neurochemical changes at the level of the spinal cord (Falk and 

Dickenson, 2014). 

 

Presently, non-steroidal anti-inflammatory drugs (NSAIDs), strong opioid analgesics, 

bisphosphonates and monoclonal antibodies targeted to the inhibition of osteoclastic activity are the 

main drug treatments for breast cancer-induced bone pain (BCIBP) (Kane et al., 2015). However, 

these treatments may be inadequate and/or may evoke dose-limiting side effects (Shenoy et al., 

2016). Hence, it is important to identify new targets for development of novel analgesic agents with 

improved efficacy and tolerability for alleviation of BCIBP. One such target is the somatostatin 

receptor type 4 (SST4 receptor) (Abdel-Magid, 2015, Crider and Witt, 2007, Somvanshi and 

Kumar, 2014). J-2156 [(1’S,2S)-4amino-N-(1’-carbamoyl-2’-phenylethyl)-2-(4”-methyl-1”-

naphthalenesulfonylamino)butanamide] is an agonist that binds with nanomolar affinity to the 

human SST4 receptor and that has more than 400-fold selectivity compared with other somatostatin 

receptors (Engstrom et al., 2005). To complete the preclinical profile of J-2156, we tested its in 

vitro potency and selectivity towards human and rat SSTR4 receptor as well as a panel of 67 known 

pharmacological targets.  Although there are several know ligands / agonists of the SST4 receptor 

(Crider and Witt, 2007, Erchegyi et al., 2003a, Erchegyi et al., 2003b, Grace et al., 2003), J-2156 

has high potency and a low propensity to cause receptor desensitisation (Engström et al., 2006, 

Engstrom et al., 2005). Additionally, in work by others, J-2156 has been shown to induce pain relief 

in animal models of both inflammatory and neuropathic pain (Sándor et al., 2006, Schuelert et al., 

2015). 

 

However to date, the efficacy of J-2156 in BCIBP, has not been assessed preclinically. Hence this 

study was primarily designed to assess the efficacy of J-2156 to alleviate mechanical allodynia and 

hyperalgesia in a rat model of BCIBP previously validated in our laboratory (Shenoy et al., 2017). 

Due to limited permeability of the blood-brain barrier, at the doses tested, J-2156 is considered 

likely to act on peripheral SST4 receptors, although it is also capable of inhibiting spinal neurons 

(Schuelert et al., 2015). Peripheral small diameter peptidergic and non-peptidergic C-fibres as well 

as medium-large diameter fibres including A-𝛿 and A-β fibres have key roles in the neural 

signalling of cancer pain (Colvin and Fallon, 2008, Ye et al., 2014c, Mantyh, 2006, Urch et al., 

2003, Mao-Ying et al., 2006, Donovan-Rodriguez et al., 2005). Our work herein is the first to assess 

the distribution of the SST4 receptor in primary somatosensory neurons of the ipsilateral lumbar 

dorsal root ganglia (DRGs) of rats in the BCIBP model. In addition, in the same animal model, we 

have assessed the effect of J-2156 on lumbar spinal dorsal horn expression levels of phosphorylated 
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extracellular signal-regulated kinase (pERK), a protein implicated in the pathobiology of central 

sensitisation and persistent pain (Gao and Ji, 2009). 

 

4.3. Material and methods 

 

4.3.1. Drugs, chemicals and reagents 

TritonTM X-100, Tween 20 and paraformaldehyde (PFA) were purchased from Sigma-Aldrich® 

(NSW, Australia). Isoflurane (IsoFloTM) was purchased from Abbott Australasia Pty Ltd (NSW, 

Australia). Medical oxygen was purchased from Coregas Pty Ltd (NSW, Australia). Triple 

antibiotic powder (Tricin®) was purchased from Jurox Pty Ltd (NSW, Australia). Benzylpenicillin 

(BenPenTM, benzylpenicillin sodium for injection) was purchased from CSL Ltd (VIC, Australia). 

Pentobarbitone (Lethabarb®, pentobarbitone sodium) was purchased from Virbac (Australia) Pty 

Ltd (NSW, Australia). Eye ointment (Refresh Night Time®) was purchased from Allergan Australia 

Pty Ltd (NSW, Australia). 4',6-diamidino-2-phenylindole, dihydrochloride (DAPI), Prolong® Gold 

antifade reagent, phosphate-buffered saline (PBS), medium 199 (1X), horse serum, Dulbecco's 

phosphate-buffered saline (DPBS, 1X) and 0.25% trypsin-EDTA (1X) were purchased from 

Thermo Fisher Scientific Australia Pty Ltd (VIC, Australia). Normal goat serum (NGS) was 

purchased from Cell Signaling Technology® (MA, USA). Tissue-Tek® O.C.T. Compound was 

purchased from ProSciTech Pty Ltd (QLD, Australia). Sodium Chloride injection BP (British 

Pharmacopoeia) (0.9%) was purchased from Pfizer Australia Pty Ltd (NSW, Australia). J-2156 was 

obtained from Boehringer Ingelheim Pharma GmbH & Co. KG, (BW, Germany). 

 

4.3.2. Radioligand binding assays 

4.3.2.1. Assessment of reactivity of J-2156 to receptors of the somatostatin family 

These binding studies were conducted in order to determine the selectivity and affinity of J-2156 to 

different human somatostatin receptors and to the rat SST4 subtype. Radioligand binding assays 

were performed in 96-well ELISA plates (NUNC, Denmark) using binding buffer (10 mM/L 

HEPES; 1 mM/L EDTA; 5 mM/L MgCl2x6H20) containing 30 µg/mL bacitracin (Sigma, 

Germany), and 5 mg/ml protease-free BSA fraction V (Sigma, Germany, A-3059). The pH was 

adjusted to 7.6 using 4 M NaOH. Selectivity of J-2156 was determined using membrane 

preparations from CHO-K1 cells stably-expressing human somatostatin receptor subtypes 1-5. J-

2156 was tested in duplicates, over a range of concentrations from 10-12 M to 10-5 M and the 

endogenous ligands somatostatin 14 (BioTrend, Germany), somatostatin 28 and cortistatin 17 were 

run in parallel as positive controls. Binding curves were derived from competition binding 

experiments against 0.05 nM [125I]-Tyr3-somatostatin-(1-14) (ANAWA Trading SA, Switzerland). 
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The final activity of the label was 80.5 TBq/mM. The end volume was 250µl/well, where initially 

25 µl of compound was added to each well, followed by 25 µl of radioligand and then finally 200 µl 

of cell suspension. Total-binding was defined using only the assay buffer and nonspecific binding 

was defined with 1 μM somatostatin 14. The initial incubation was carried out at room temperature 

(23-24 oC) for 3 hours with constant shaking. The reaction was then terminated by rapid filtration 

through a Packard harvester (Perkin Elmer, Waltham, MA) onto unifilter-96 GF/B filter plates 

(Perkin Elmer, Waltham, MA) which had been pre-soaked in 0.3% polyethyleneimine (Sigma, 

Germany). The plates were washed 3 times using ice-cold (4 oC) physiological (9 g/L) sodium 

chloride (NaCl) solution (Merck, USA) at an approximate volume of 300 μL/well. Following 

addition of 50 μL/well of scintillant (Microscint 20, Packard, USA), the plates were further 

incubated at room temperature (23-24 oC) for 1 hour in the dark. Analysis for radioactivity was 

conducted using the Top Count NXTTM microplate scintillation counter (Packard, USA). 

 

4.3.2.2. Assessment of cross-reactivity of J-2156 to other pharmacological targets 

J-2156 was assessed in a lead profiling binding assay screen (Ricerca Biosciences LLC) consisting 

of 67 pharmacological targets, to identify the affinity of J-2156 for a range of receptors, ion 

channels, transporters, etc. by following standard radioligand binding assay protocols (Guerrero et 

al., 2010b, Guerrero et al., 2010a, Strøbæk et al., 2013). The significance level of inhibition or 

stimulation at 10 µM was predefined at ≥50 % for all the assays. 

 

4.3.3. Potency of J-2156: cAMP inhibition 

Total cAMP accumulation was measured using the LANCE cAMP detection kit (Perkin Elmer, 

Waltham, MA), in 384 optical assay plates. J-2156 was tested at concentrations ranging from 10-12 

M to 10-5 M at a volume of 2 µL/well. All dilutions were prepared in stimulation buffer prepared 

from HBSS 1x solution (Gibco, UK), with an addition of 5 mM HEPES buffer (Gibco, UK), 0.1% 

BSA (Serva, Germany) and 500 mM isobutylmethylxanthine (IBMX, Sigma, Germany). IBMX, an 

inhibitor of cAMP phosphodiesterases, was added to prevent the enzymatic breakdown of the 

produced cAMP. Each concentration of standard or J-2156 was tested in duplicate or triplicate, 

respectively. The cAMP standard was prepared by diluting 8 μL of the 50 µM standard solution 

(provided by Perkin Elmer, Waltham) in 92 μL of stimulation buffer, to make a concentration of 1 

μM. Serial dilutions were then prepared, using the stimulation buffer, from 1000 nM to 0.01 nM, of 

cAMP standard. Initially the compounds or standards were pipetted to each well, the plates were 

then centrifuged at a speed of 1000 revolutions per minute (rpm) to ensure that the solution was at 

the bottom of the well. Intact H4 cells expressing either human or rat SST4 receptors (Perkin Elmer, 

Waltham) were used at 1250 cells/well or 1000 cells/well respectively with a volume of 5 µl/well. 
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The cells were stored in frozen aliquots (1 ml) at – 80°C and defrosted on the day of use. The vial 

was suspended in 9 ml DPBS solution and the number of cells were counted using 0.4% trypan blue 

stain (Invitrogen, Life Technologies, Germany) and the countess automated cell counter 

(Invitrogen, Life Technologies, Germany). A pellet was formed by centrifuging the cell suspension 

at 1200 rpm for 5 minutes, the DPBS was aspirated off and the pellet was re-suspended in the 

calculated volume of assay stimulation buffer. To this, the supplied Alexa Fluor® antibody was 

added at a dilution of 1:100. Next, the cells were added to the plate to allow pre-treatment with the 

compounds for 10 minutes at room temperature (23-24 oC). Following the addition of cells, the 

plates were centrifuged at a speed of 1000 rpm. For the standard, 5 μL of the supplied Alexa Fluor® 

antibody was mixed with 495 μL of stimulation buffer and rather than adding cells, 5 μL of the 

antibody solution was added to the standard wells. After 10 minutes, stimulation was achieved by 

adding either 10 μM or 30 μM forskolin (Sigma, Germany) for human or rat receptors, respectively. 

The plates were again centrifuged at 1000 rpm. The final volume was 10 μL/well. Plates were 

incubated for 1 hour at room temperature (23-24 oC) with constant shaking. Finally, the detection 

buffer (Perkin Elmer, Waltham) was added (10 μL/well) and the plates were centrifuged at 1000 

rpm. This was followed by a further incubation period of 1 hour at room temperature (23-24 oC) in 

the dark. Plates were read using an EnVision Xcite 2104 multilabel reader (Perkin Elmer, Waltham, 

MA) at 665 nm. 

 

4.3.4. Cell culture 

Walker 256 cells were used to induce BCIBP in rats as reported in the literature (Shenoy et al., 

2016). The Walker 256 breast cancer cell line [LLC-WRC 256 (ATCC® CCL-38TM)] at passage 

number 290 was purchased from the American Type Culture Collection (ATCC; VA, USA). The 

cells were cultured and passaged following the ATCC guidelines. The cells were thawed from 

frozen stocks and cultured in 75cm2 Cellstar® flasks (Greiner bio-one) at 37 oC (5% CO2: 95% 

atmospheric air) in 20 mL of Medium 199 (1X) with an additional supplementation of 5% horse 

serum. In order to detach the cells, they were gently rinsed with 3 mL of DPBS (1X), followed by 

treatment with 2 mL of 0.25% trypsin-EDTA (1X). The cells thus detached were harvested by 

centrifuging with 8 mL of medium for 4 min at 200 ×g. The supernatant thus obtained was 

discarded, the pellet re-suspended in 3 mL of DPBS and cell counting was performed with a 

hemocytometer. After again centrifuging the pellet for 4 min at 200 ×g, the cells were suspended in 

DPBS to obtain a final dilution of 4×105 cells/10 μL. Heat-killed Walker 256 cells were prepared 

similarly to the live cells, however, the cells were heated to 90 °C for 15 min.  
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4.3.5. Animals 

Female Wistar Han (HsdBrlHan) rats were used in the experiments. Animals were purchased from 

the Herston Medical Research Centre (Brisbane, Australia) of The University of Queensland. At the 

time of arrival in our research facility, the rats were approximately 3-4 weeks old and their body 

weights were in the range ~50-70 g. Rats were housed in small groups of two to three in 

individually ventilated cages in a room having a controlled temperature (23 °C ± 2 °C) and a 12 

h/12 h light–dark cycle. Standard rodent chow (Specialty Feeds, WA, Australia) and tap water were 

available to all rats ad libitum. Kimwipes (Kimberly-Clark Professional, NSW, Australia) and Rat 

Chewsticks (Able Scientific, WA, Australia) were provided in the individual cages as 

environmental enrichment. Rats were subject to acclimatization in the animal housing facility for at 

least 3 days prior to initiating experiments. The experiments on these rats were performed in the 

light phase. The procedures involving animal experimentation were approved by the Animal Ethics 

Committee of The University of Queensland (QLD, Australia). The experiments described herein 

were performed as per the requirements of the Australia Code of Practice for the Care and Use of 

Animals for Scientific Purposes (8th edition, 2013). 

 

4.3.6. Surgical procedure 

Unilateral intra-tibial injections (ITI) were performed in accordance with the procedures reported 

previously (Mao-Ying et al., 2006, Muralidharan et al., 2013), with some modifications. In brief, 

rats in the weight range ~80–120 g were anesthetized deeply using 3% isoflurane delivered in 

oxygen. To avoid drying of the eyes during the surgical procedure, eye ointment was applied. 

Benzylpenicillin (60 mg per rat) injection was subcutaneously administered. A rostro-caudal 

incision of approximately 1 cm was made on the upper medial half of the lower left hindlimb. 

Following exposure of the tibia, using a 23-gauge needle, a hole was drilled into the bone below the 

knee joint, medial to the tibial tuberosity. Either live (BCIBP group) or heat-killed (sham-injected 

group) Walker 256 cells (4×105 cells in 10 μL DPBS) were injected into the bone cavity with a 

Hamilton® syringe (80508:705SN 50 µL SYR SPECIAL (22 /2″/4), NV, USA). Subsequently, the 

drilled hole in the bone was sealed immediately with EthiconTM W810 bone wax (Johnson-Johnson 

International, Diegem, Belgium). The muscles and the skin were subsequently sutured using non-

absorbable USP 5/0 Dysilk® suture (Dynek Pty Ltd, SA, Australia). Finally, topical antibiotic 

powder was applied to the stitched wound. The hindlimb injected with cells is termed as the 

‘ipsilateral’ hindlimb and the non-injected hindlimb is termed as the ‘contralateral’ hindlimb. 

Following completion of the surgical procedure, rats were closely monitored for recovery and their 

general health was routinely assessed at least once per week until the end of the study. 
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4.3.7. Behavioral studies 

 

4.3.7.1. Assessment of mechanical allodynia in the hindpaws 

Development of mechanical allodynia in the bilateral hindpaws was assessed using calibrated von 

Frey filaments (Stoelting Co., Wood Dale, IL, USA). The lowest mechanical threshold which 

elicited a paw withdrawal response was measured (Ren, 1999). Rats were individually placed in 

wire mesh cages and acclimatized for approximately 15 to 30 min before applying the von Frey 

filaments. The filaments were individually applied to the surface of the plantar region of each 

hindpaw until they were slightly buckled. If there was no response after 3 s of applying the 

filament, the next higher filament was used in the ascending order (2, 4, 6, 8, 10, 12, 14, 16, 18, and 

20 g) until the response was observed. If the hindpaw withdrawal response was observed within 3 s 

the next filament evoking a lower force was used. Initiation of the testing was done using a 6 g 

filament, and the subsequent force was modified depending upon the previous response. The 

baseline paw withdrawal thresholds (PWTs) of the ipsilateral as well as the contralateral hindpaws 

were recorded thrice at an interval of 5 min each and the mean of these readings was calculated. For 

behavioural testing after administration of J-2156 at pre-defined intervals over a 3 h period, the 

starting filament depended on the previous response. Rats having ipsilateral PWTs ≤ 6 g were 

defined as having fully developed mechanical allodynia. All the assessments using von Frey 

filaments were performed by an investigator blinded to the treatment. 

 

4.3.7.2. Assessment of mechanical hyperalgesia in the hindpaws 

Development of mechanical hyperalgesia in the hindpaws was tested using an Analgesy-meter (Ugo 

Basile, Italy). The mechanical force required to produce a withdrawal response in each of the 

hindpaws (paw pressure thresholds (PPTs)) of each rat was assessed (Randall et al., 1957). Briefly, 

each hindpaw was individually placed on a small plinth beneath a cone-shaped pusher with a 

rounded tip so as to avoid damage to the hindpaw tissue. The mechanism of exerting the force was 

started by depressing the pedal-switch. The pedal was released immediately when the rat began to 

struggle and the applied force was subsequently noted. A maximum cut-off force of 200 g was used 

to prevent injury to the hindpaws. Three baseline readings for each of the hindpaws were recorded 

with an interval of 5 min between successive readings. The mean baseline PPTs were calculated for 

each hindpaw. For pharmacological assessment of the anti-hyperalgesic effect of J-2156, rats with 

an ipsilateral PPT ≤ 80 g were considered to have fully developed mechanical hyperalgesia. All the 

PPT assessments were performed by an investigator blinded to the treatment group. 
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4.3.8. Administration of J-2156 and behavioural testing 

Dosing of animals was performed by one investigator while the behavioural assessments were 

subsequently performed by a second investigator blinded to the treatment groups to ensure that the 

investigator bias was minimal throughout the procedure. Each rat received up to four individual 

intraperitoneal (i.p.) doses of test compounds or vehicle with at least 2 days of ‘washout’ between 

successive doses. Sodium Chloride injection BP (0.9 %) was used as vehicle for preparing J-2156 

dosing solutions. Rats with fully developed hindpaw hypersensitivity were administered a single 

bolus dose of J-2156 (1, 3 and 10 mg/kg, i.p.) or vehicle between day 7-14 post-ITI of Walker 256 

cancer cells. PWTs or PPTs were assessed in both the hindpaws immediately before compound or 

vehicle i.p. administration and subsequently at 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2 and 3 h post-dosing. 

 

4.3.9. Immunohistochemistry 

Rats were euthanized on day 7 post-ITI with an injection of pentobarbitone and immediately 

perfusion-fixed with ice-cold 4% PFA. The tissues (brain/liver/spinal cord/DRGs) were harvested 

and further post-fixed with 4 % PFA. The spinal cord tissues used to assess the effect of J-2156 on 

pERK levels, were collected from the rats at the time of peak effect of J-2156. The tissues were 

cryoprotected successively in 15% sucrose/PBS and 30% sucrose/PBS at 4-8 °C and then immersed 

in a 1:1 mixture of OCT:30% sucrose/PBS at 4-8 °C, followed by freeze-mounting in Tissue-Tek® 

O.C.T. Compound. Frozen coronal sections of brain and transverse sections of liver, spinal cord and 

ipsilateral lumbar DRGs (7 μm thick) were obtained using a Cryostar NX70, (Thermo Fisher 

Scientific, Waltham, USA) and mounted on Uber Plus charged slides (InstrumeC Pty Ltd, VIC, 

Australia). The sections were washed with PBS (pH 7.4) solution thrice for 5 min each, and blocked 

with 10% NGS in PBS containing 0.3 % TritonTM X-100 for 1-2 hour at 23 °C ± 2 °C. Further, 

these sections were incubated with the respective primary antibody, diluted in 2 % NGS in PBS 

containing 0.1 % Tween 20, overnight at 4-8 °C. The primary antibodies used in the present study 

were anti-SST4 receptor antibody PA3208 (1:250 dilution, Life Technologies Australia Pty Ltd, 

VIC, Australia), anti-somatostatin antibody ab183855 (1:500 dilution, Abcam, VIC, Australia), 

anti-substance P (SP) antibody ab14184 (1:25 dilution, Abcam, VIC, Australia), anti-neurofilament 

200 kDa (NF200) antibody ab82259 (1:50 dilution, Abcam, VIC, Australia) and anti-pERK 

antibody 4370S (1:50 dilution, Cell Signaling Technology®, MA, USA). Isolectin B4 (IB4) L 2895 

(1:100 dilution, Sigma-Aldrich®, NSW, Australia) was also used. We used SP, IB4 and NF200 as 

specific somatosensory cell markers for peptidergic C-fibres, non-peptidergic C-fibres and medium-

large diameter fibres including A-𝛿 and A-β fibres, respectively (Le Pichon and Chesler, 2014). The 

sections were then washed twice for 5 min each with PBS containing 0.1 % Tween 20 and once for 

5 min with PBS. These sections were further incubated with the corresponding secondary antibody, 
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diluted in PBS containing 0.1 % Tween 20, for 2 h at 23 °C ± 2 °C in the dark (~0.002 lux). The 

secondary antibodies used in the present study were goat anti-mouse IgG (H+L), Alexa Fluor 546 

A-11030 (1:600 dilution, invitrogenTM, OR, USA), goat anti-mouse IgG (H+L), Alexa Fluor 488 A-

11029 (1:500 dilution, invitrogenTM, OR, USA), goat anti-rabbit IgG (H+L), Alexa Fluor 488 A-

11034 (1:600 dilution, invitrogenTM, OR, USA), goat anti-rabbit IgG (H+L), Alexa Fluor 546 A-

11035 (1:1000 dilution, invitrogenTM, OR, USA) and Cy™3 AffiniPure goat anti-rabbit IgG (H+L) 

111-165-003 (1:600 dilution, Jackson ImmunoResearch Inc., PA, USA). For co-localisation 

experiments, a suitable combination of primary antibodies and a combination of secondary 

antibodies were used. The dilutions of the two different antibodies in the same solution were made 

such that the final concentration of each of the antibodies in the solution was achieved as required. 

The sections were then washed twice with PBS containing 0.1 % Tween 20 and once with PBS for 

5 min each. The sections were subsequently incubated with DAPI (0.5 µg/mL solution) for around 

5-10 min and finally washed with PBS twice for 5 min each. The cover-slips were mounted on the 

sections along with Prolong® Gold antifade reagent. The mounted slides thus obtained were set 

aside to dry and stabilise in the dark at 4-8 oC overnight. Finally, the images were captured with a 

fluorescence microscope and analysed. 

 

4.3.10. Acquisition of images and analysis 

Images of experiments from immunohistochemistry were captured with an Axioskop 40 microscope 

that was attached to an Axiocam MRm camera. The images were processed using AxioVision Rel. 

v4.8 software (imaging equipments and software were from Carl Zeiss, Göttingen, Germany). For 

each of the experiments, images were captured at a fixed exposure time, which was optimised using 

auto-exposure settings of AxioVision Rel. v4.8 software. The filters used in the microscope were 

chosen to suit the respective fluorophore of the secondary antibody used in each of the experiments. 

For multiple labelling in co-localisation experiments, suitable filters were manually chosen in the 

microscope, so as to suit multiple fluorophores, for snapping one at a time in each of the 

experiments. For quantitative analysis, at least 3-4 non-adjacent sections per animal from each of 

the groups (n=3-4/group) were randomly selected. Images were assigned codes by the first 

investigator and quantitative analysis was performed by the second investigator in a blinded 

manner. Densitometric counts were quantified using AxioVision Rel. v4.8 software and the data 

was expressed as fold-changes in fluorescence intensity according to the standard 

immunohistochemistry analysis protocol validated in our laboratory (Khan et al., 2014, Khan et al., 

2015, Muralidharan et al., 2014). 
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4.3.11. Data analysis and statistical analysis 

All values have been expressed as mean ± standard error of the mean (SEM). In the radioligand 

binding assays of J-2156 with somatostatin receptors, Ki denotes a dissociation / inhibition 

constant, and can be considered to be the reciprocal of the binding affinity (Cheng and Prusoff, 

1973). Data were obtained by non-linear regression analysis of the concentration response curves. 

The Cheng-Prusoff equation was used to derive the Ki values (Cheng and Prusoff, 1973). This was 

calculated using GraphPad PrismTM (v6.00) software, using the setting of ‘one site – Fit Ki’. The 

constraints applied were: both the concentration of radioligand in nM (HotNM = 0.05 nM) and the 

equilibrium dissociation constant (Kd) of the radioligand in nM (HotKdNM for somatostatin 

receptor 1 = 0.85 nM; somatostatin receptor 2 = 1.2 nM; somatostatin receptor 3 = 0.31 nM; SST4 

receptor = 0.45 nM; somatostatin receptor 5 = 2.0 nM). 

 

In the cAMP inhibition assays, the term IC50 denotes the concentration producing 50 % inhibition 

(Cheng and Prusoff, 1973). The IC50 values were reported as the concentration of J-2156 producing 

50% inhibition of the forskolin-stimulated cAMP production. Data were obtained by non-linear 

regression analysis of the concentration-response curves. The IC50 values were calculated with the 

GraphPad PrismTM (v6.00) software using the equation ‘log(inhibitor) vs. normalised response’. 

Constraints were applied to the bottom value, which was set to the maximal inhibition produced by 

somatostatin 14. 

 

All other graphs were stored, represented and analyzed using the GraphPad PrismTM (v7.00) 

software. The PWT values of individual rats that received single bolus doses of either J-2156 or the 

vehicle were normalized by subtracting pre-dosing baseline values so as to obtain ΔPWT values as 

given below: 

 

Area under the curve (AUC) of ΔPWT versus time graphs (ΔPWT AUC values) for rats was 

calculated using trapezoidal integration to find the extent and duration of the anti-allodynic effect of 

each dose of J-2156. Next, the ΔPWT AUC values were further converted to a percentage of the 

maximum possible ΔPWT AUC (% MAX ΔPWT AUC) by using the following formula: 

 

 

Dose–response curves were produced by plotting mean (±SEM) % MAX ΔPWT AUC values 

versus log dose of J-2156. The PPT data were processed by using similar steps as described above 

for the PWT data. Non-linear regression (GraphPad Prism™ v7.00) was used to calculate the ED50 
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values of J-2156 for the alleviation of mechanical allodynia and mechanical hyperalgesia in each of 

the hindpaws. 

 

GraphPad PrismTM v7.00 software was used to perform statistical analyses. The criterion for 

statistical significance was p ≤ 0.05. To assess the between-group differences of baseline PWT/PPT 

values and PWT/PPT or ΔPWT/ΔPPT values following J-2156 administration, two-way analysis of 

variance (ANOVA) followed by the Bonferroni test was used. To assess differences between 

protein (SST4 receptor, somatostatin and pERK) expression in neural tissues as well as the data 

from co-localisation experiments, the Mann-Whitney test was used. One-way ANOVA followed by 

the Dunnett’s test was used to compare between-group differences in ΔPWT/ΔPPT AUC values and 

% MAX ΔPWT/ΔPPT AUC values. For statistical comparisons using ANOVA, the F values are 

reported along with their associated degrees of freedom (treatment, time, interaction and residual). 

For two-way ANOVA, F values are reported as F(df of treatment, time, interaction/residual). While, 

for one-way ANOVA, F values are reported as F(df of treatment, residual). 

 

4.4. Results 

 

4.4.1. Radioligand binding assays 

 

4.4.1.1. Assessment of reactivity of J-2156 to receptors of the somatostatin family 

The affinity and selectivity of various somatostatin agonists for the five human somatostatin 

receptors and the rat SST4 subtype were established using radioligand binding assays. The 

somatostatin receptor selective endogenous ligands, somatostatin 14 and somatostatin 28, as well as 

the non-selective endogenous ligand, cortistatin 17, were used as positive controls (data not shown). 

These showed nanomolar affinities for all subtypes, thereby indicating no selectivity for a specific 

receptor subtype, but consistently showed least affinity for the somatostatin receptor 2. The log Ki 

(mean ± SEM; n=4) values of J-2156 for human somatostatin receptors 1, 2, 3 and 5 were found to 

be -6.23 ± 0.18, -4.60 ± 0.37, -6.63 ± 0.18 and -6.33 ± 0.17, respectively. By comparison, the log Ki 

(mean ± SEM) values of J-2156 in human (n=4) and rat (n=3) SST4 receptors were found to be -

9.25 ± 0.09 and -9.05 ± 0.40, respectively. The Ki values of J-2156, derived using the Cheng-

Prusoff equation, were found to be 0.6 nM and 0.9 nM for human and rat SST4 receptors, 

respectively. 
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4.4.1.2. Assessment of cross-reactivity of J-2156 to other pharmacological targets 

J-2156 (10 µM) did not significantly stimulate or inhibit any of the pharmacological targets from 

the panel of 67 standard targets at / above the predefined significance level of ≥50 %. The J-2156 

mediated non-cognate stimulation or inhibition of a panel of 67 pharmacological targets including 

various receptors, ion channels, transporters, etc. is summarised in Supplementary Table 4.1. These 

data suggest that J-2156 does not display significant cross-reactivity to any of these known 

pharmacological targets. 

 

4.4.2. Potency of J-2156: cAMP inhibition 

Using cAMP assays, we found that J-2156 is potently efficacious at both human and rat SST4 

receptors. The log IC50 values [mean ± S.E.M (nM; n=3)] of J-2156 for human and rat SST4 

receptors were found to be -10.3 ± 0.2 and -10.1 ± 0.1, respectively. The results also confirmed that 

the SST4 receptor can functionally couple to the adenylyl cyclase pathway potently; the EC50 of J-

2156 being 0.5 nM and 0.8 nM for the human and rat receptors, respectively.  

 

4.4.3. Development of mechanical allodynia and mechanical hyperalgesia in the bilateral 

hindpaws 

Unilateral ITI of Walker 256 cells induced temporal development of mechanical hypersensitivity in 

the bilateral hindpaws in rats, in agreement with our findings in chapter 2 as well as previous 

findings by others (Mao-Ying et al., 2006, Mao-Ying et al., 2012). The mean (±SEM) PWTs in the 

ipsilateral hindpaws of BCIBP-rats were significantly (F(1, 5, 5/65) = 432.1, 34.8, 30.6; p ≤ 0.05) 

reduced from day 4 post-ITI c.f. sham rats (Figure 4.1A). The mean (±SEM) PWTs in the 

contralateral hindpaws of BCIBP-rats were significantly (F(1, 5, 5/65) = 198.8, 17.6, 21.1; p ≤ 0.05) 

reduced from day 7 post-ITI c.f. sham rats (Figure 4.1B). The mean (±SEM) PPTs in the ipsilateral 

hindpaws of BCIBP-rats were significantly (F(1, 5, 5/65) = 1532, 139.3, 75.2; p ≤ 0.05) reduced 

from day 4 post-ITI c.f. sham rats (Figure 4.1C). The mean (±SEM) PPTs in the contralateral 

hindpaws of BCIBP-rats were significantly (F(1, 5, 5/65) = 146.3, 32.0, 27.4; p ≤ 0.05) reduced 

from day 7 post-ITI c.f. sham rats (Figure 4.1D). 
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Figure 4.1. Temporal changes in mean (+SEM) paw withdrawal thresholds (PWTs) and paw 

pressure thresholds (PPTs) in the hindpaws of rats following a unilateral ITI of 4 x 105 

Walker 256 cells (BCIBP group) and 4 x 105 heat-killed Walker 256 cells (sham group). Panels 

in the figure show (A) PWTs in the ipsilateral hindpaws, (B) PWTs in the contralateral hindpaws, 

(C) PPTs in the ipsilateral hindpaws and (D) PPTs in the contralateral hindpaws. The dotted line 

shows the threshold criterion for full development of mechanical allodynia (PWTs ≤ 6 g, panel A-

B) and mechanical hyperalgesia (PPTs ≤ 80 g, panel C-D). *p≤0.05 (Two-way ANOVA, posthoc 

Bonferroni test) c.f. sham rats. 

 

4.4.4. Anti-allodynic effect of J-2156 in BCIBP 

Administration of J-2156 to BCIBP-rats produced dose dependent anti-allodynia in both the 

ipsilateral and the contralateral hindpaws (Figure 4.2). The ED50-Ipsilateral and ED50-Contralateral of J-
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2156 against mechanical allodynia in the BCIBP-rats were found to be 3.7 mg/kg (95% confidence 

interval, 2.5-5.4) and 6.6 mg/kg (95% confidence interval, 4.2-10.5), respectively. 

The extent and duration of efficacy (ΔPWT AUC) of J-2156 for the relief of mechanical allodynia 

in the bilateral hindpaws of rats in the BCIBP model are shown in Supplementary Table 4.2. The 

time courses of the anti-allodynic effect of J-2156 in BCIBP-rats at each of the doses tested have 

been summarised in Supplementary Table 4.3. Temporal changes in ΔPWT and the % MAX ΔPWT 

AUC values of the ipsilateral and contralateral hindpaws at each of the doses of J-2156 tested are 

shown in Supplementary Figure 4.1. 

 

 

 

Figure 4.2. Anti-allodynic effect of single bolus doses (i.p.) of J-2156 on ipsilateral and 

contralateral hindpaw withdrawal thresholds (PWTs) in BCIBP-rats. Panels in the figure show 

mean (+SEM) (A) ipsilateral PWT versus time curves and (B) contralateral PWT versus time 

curves. The dotted line shows the threshold criterion of fully developed mechanical allodynia (≤ 6 

g). 

 

4.4.5. Anti-hyperalgesic effect of J-2156 in BCIBP 

Administration of J-2156 to BCIBP-rats produced dose dependent anti-hyperalgesia in both the 

ipsilateral and the contralateral hindpaws (Figure 4.3). The ED50-Ipsilateral and ED50-Contralateral of J-

2156 for relief of mechanical hyperalgesia in the BCIBP-rats were found to be 8.0 mg/kg (95% 

confidence interval, 5.3-12.2) and 5.0 mg/kg (95% confidence interval, 3.6-6.8), respectively. 

 

The extent and duration of action (ΔPPT AUC values) of J-2156 for the relief of mechanical 

hyperalgesia in the bilateral hindpaws of BCIBP-rats is shown in Supplementary Table 4.4. The 
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time courses of the anti-hyperalgesic effect of J-2156 in BCIBP-rats at each of the doses tested are 

summarised in Supplementary Table 4.5. Temporal changes in the ΔPPT and the % MAX ΔPPT 

AUC values of the ipsilateral and contralateral hindpaws at each of the doses of J-2156 tested are 

shown in Supplementary Figure 4.2. 

 

 

 

Figure 4.3. Anti-hyperalgesic effect of single bolus doses (i.p.) of J-2156 on ipsilateral and 

contralateral hindpaw pressure thresholds (PPTs) in BCIBP rats. Panels in the figure show 

mean (+SEM) (A) ipsilateral PPT versus time curves and (B) contralateral PPT versus time curves. 

The dotted line shows the threshold criterion of fully developed mechanical hyperalgesia (≤ 80 g). 

 

4.4.6. Validation of the anti-SST4 receptor antibody 

In the liver, somatostatin receptors type 1, 2, 3 and 5 are expressed, but expression levels of the 

SST4 receptor are negligible (Jung et al., 2006, Reynaert et al., 2004, Song et al., 2004, Murray et 

al., 2004). Conversely, the SST4 receptor is abundantly expressed in brain tissue (Selmer et al., 

2000a, Selmer et al., 2000b). In coronal sections of rat brain used as a positive control, the SST4 

receptor antibody produced immunofluorescence consistent with expectations. Importantly, in 

sections of rat liver that was used as a negative control, SST4 immunofluorescence was absent 

(Supplementary Figure 4.3). The immunofluorescence patterns of anti-SST4 receptor antibody 

using the afore-mentioned positive and negative control sections demonstrated its specificity for the 

SST4 receptor and absence of cross-reactivity with other somatostatin receptors, thereby validating 

the antibody. 
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4.4.7. Expression of SST4 receptor in DRGs and spinal cord in BCIBP 

Expression levels of the SST4 receptor in sections of either the lumbar DRGs (Figure 4.4A, B and 

E) or the lumbar spinal dorsal horns (Figure 4.4C, D and F) of BCIBP-rats did not change 

significantly (p > 0.05) c.f. the corresponding sections from sham rats. 
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Figure 4.4. Expression levels of the SST4 receptor in sections of ipsilateral lumbar L4-L6 

dorsal root ganglia (DRGs) and in sections of the lumbar spinal dorsal horns of BCIBP-rats 

and the corresponding sections from sham rats (n=3-4/group). Panels in the figure show 

representative sections of (A) DRG of a sham rat, (B) DRG of a BCIBP-rat, (C) spinal dorsal horn 

of a sham rat and (D) spinal dorsal horn of a BCIBP-rat. Panel (E) shows fold-change in 

immunofluorescence of ipsilateral lumbar DRG sections of the BCIBP group relative to the sham 

group and (F) shows fold-change in immunofluorescence of lumbar spinal cord sections of the 

BCIBP group relative to the sham group. ns, statistically not significant (p>0.05, Mann-Whitney 

test). 

 

4.4.8. Expression of somatostatin in DRGs and spinal cord in BCIBP 

Expression levels of somatostatin in sections of either the lumbar DRGs (Figure 4.5A, B and E) or 

the lumbar spinal dorsal horns (Figure 4.5C, D and F) of BCIBP-rats did not change significantly (p 

> 0.05) c.f. the corresponding sections from sham rats. 
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Figure 4.5. Expression levels of somatostatin in sections of ipsilateral lumbar L4-L6 dorsal 

root ganglia (DRGs) and spinal dorsal horns of BCIBP-rats and the corresponding sections 

from sham rats (n=3-4/group). Panels in the figure show representative sections of (A) a lumbar 

DRG from a sham rat, (B) a lumbar DRG from a BCIBP-rat, (C) a lumbar spinal dorsal horn from a 

sham rat and (D) a lumbar spinal dorsal horn from a BCIBP-rat. Panel (E) shows fold-change in 

immunofluorescence of ipsilateral lumbar DRG sections from the BCIBP group relative to the 

corresponding sections from the sham group and (F) shows the fold-change in immunofluorescence 

of lumbar spinal cord sections from the BCIBP group relative to the sham group. ns, statistically not 

significant (p>0.05, Mann-Whitney test). 

 

4.4.9. Distribution of the SST4 receptor in the ipsilateral lumbar DRGs of BCIBP-rats 

In BCIBP-rats, 77 % of SP-positive neurons, 86 % of IB4-positive neurons and 92 % of NF200-

positive neurons expressed the SST4 receptor. By comparison, from total SST4 receptor-positive 

neurons, 28 %, 37 % and 20 % were positive for SP, IB4 and NF200, respectively (Figure 4.6). This 

distribution profile in BCIBP-rats did not differ significantly (p > 0.05) from that of the sham-rats. 

Although there was a statistically significant (p ≤ 0.05) decrease in the percentage of SP-positive 

neurons expressing the SST4 receptor in BCIBP-rats c.f. sham rats, this change was only marginal 

(~ 5 %) and probably not physiologically relevant. 
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Figure 4.6. Immunostaining showing co-localization of the SST4 receptor with (A) substance 

P (SP), (B) isolectin B4 (IB4) and (C) neurofilament 200 kDa (NF200) in representative 

sections from ipsilateral lumbar L4-L6 dorsal root ganglia (DRGs) of BCIBP-rats (n=3-

4/group). 

 

4.4.10. Effect of J-2156 on pERK levels in the lumbar spinal cord of BCIBP-rats 

Several studies have established that pERK expression levels are elevated in the lumbar spinal cord 

of rats that received a unilateral ITI of Walker 256 cells (Hu et al., 2015a, Wang et al., 2011b, Ding 

et al., 2017, Chen et al., 2012b, Sun et al., 2017a, Zhu et al., 2015a). In BCIBP-rats administered a 

bolus dose of J-2156 at 10 mg/kg i.p., p-ERK expression levels in the lumbar spinal dorsal horns at 

the time of peak effect of anti-hypersensitivity were significantly (p ≤ 0.05) decreased c.f. the 

corresponding sections from drug-naïve BCIBP-rats (Figure 4.7). 
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Figure 4.7. Effect of a single bolus dose of J-2156 (10 mg/kg, i.p.) on expression levels of 

phosphorylated extracellular signal-regulated kinase (pERK) in lumbar L4-L6 spinal dorsal 

horns of BCIBP-rats (n=3-4/group). Panels in the figure show (A) representative section from a 

drug-naïve BCIBP-rat, (B) representative section from a BCIBP-rat administered J-2156 (10 mg/kg, 

i.p.) and (C) fold-change in immunofluorescence of sections from the BCIBP group administered J-

2156 relative to the corresponding sections from the drug-naïve BCIBP group. *p≤0.05 (Mann-

Whitney test). 
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4.5. Discussion 

We are the first to show that the small molecule SST4 receptor agonist, J-2156 (Prevot et al., 2017), 

evokes  dose-dependent relief of both mechanical allodynia and mechanical hyperalgesia in the 

bilateral hindpaws in a rat model of BCIBP. For the ipsilateral hindpaws, the ED50 values for J-2156 

induced anti-allodynia and anti-hyperalgesia were 3.7 mg/kg and 8.0 mg/kg, respectively. 

Consistent with these pharmacology data, the SST4 receptor was expressed by the majority of 

peripheral somatosensory neurons in the ipsilateral lumbar DRGs in BCIBP-rats. The distribution 

pattern of the SST4 receptor is consistent with its proposed role in modulating pain and transducing 

endogenous pain relief. Additionally, our findings herein show, for the first time, that a single bolus 

dose of J-2156 at 10 mg/kg reduces pERK expression levels in the lumbar spinal dorsal horn of 

BCIBP-rats. 

 

In the Walker 256 cell induced BCIBP model used in the present study, bilateral (ipsilateral and 

contralateral) hindpaw hypersensitivities were developed following unilateral (ipsilateral) injection 

of cancer cells. This is in agreement with previously published studies using this pain model (Mao-

Ying et al., 2006, Mao-Ying et al., 2012). Peripheral mechanisms like circulating factors and 

transmedian sprouting as well as centrally acting mechanisms like involvement of signalling via 

commissural interneurons of spinal cords may underpin contralateral mirror effects associated with 

unilateral injury (Koltzenburg et al., 1999). Breast cancer cells in the bone cause sprouting of 

sensory nerve fibres innervating the periosteum and these persistent peripheral noxious inputs can 

sensitise certain parts of the brain to trigger bilateral hypersensitivities via modulation of 

descending pain control signalling (Ikeda et al., 2007, Meeus and Nijs, 2007). Activation of spinal 

glial cells and secretion of proinflammatory cytokines can also be responsible for the contralateral 

effects (Chacur et al., 2001). 

 

The SST4 receptor is present in multiple tissues including brain, pancreas, stomach, lungs, placenta 

and kidney (Weckbecker et al., 2003, Caron et al., 1997, Selmer et al., 2000a, Bhandari et al., 2008, 

Selmer et al., 2000b). Additionally, SST4 receptor mRNA is widely distributed in both the 

periphery and the central nervous system (Fehlmann et al., 2000, Bruno et al., 1993, Ludvigsen et 

al., 2015). In female Lewis rats at approximately 10 weeks of age, SST4 receptor immunoreactivity 

was present in about 40% of DRG neurons as well as in some satellite cells of the peripheral 

nervous system (Bär et al., 2004). SST4 receptor immunoreactivity has been shown to be present in 

both the dorsal and ventral horns of the rat spinal cord (Somvanshi and Kumar, 2014), as well as in 

astrocytes (Feindt et al., 1995) and microglia (Feindt et al., 1998). Our findings of expression of the 

SST4 receptor in lumbar spinal cord and ipsilateral lumbar DRGs of rats are aligned with work by 
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others, showing the presence of the SST4 receptor in both the central and peripheral nervous 

system. These findings herein are in agreement with previous work by others, showing that the 

SST4 receptor mediates pain relief in rodent models of both inflammatory and neuropathic pain 

(Elekes et al., 2008, Helyes et al., 2006, Helyes et al., 2009, Sándor et al., 2006, Schuelert et al., 

2015, Szolcsanyi et al., 2011, Varecza et al., 2009). In other work, the δ-opioid receptor was 

heterodimerized with the SST4 receptor, thereby raising the possibility of potentiated endogenous 

pain relief (Somvanshi and Kumar, 2014). In support of this notion, SST4 receptor gene knockout 

mice exhibited exaggerated inflammation and hyperalgesia compared with their wild-type 

counterparts (Helyes et al., 2009). Using gene knockout mice, the SST4 receptor was shown to be 

coupled to the K+ M-current (Qiu et al., 2008), which has the potential to modulate pain behaviours 

(Tsantoulas and McMahon, 2014). All somatostatin receptors, including the SST4 receptor, signal 

via the inhibition of the  adenylyl cyclase-cAMP pathway (Bruns et al., 1995). This pathway is the 

best characterized effector system associated with opioid receptor signalling (Law et al., 2000, 

Lantero et al., 2014) and its role in pain pathobiology and analgesia is very well established (Sadana 

and Dessauer, 2009, Pierre et al., 2009). Using radioligand binding assays, we confirmed that J-

2156 has high affinity not only for the human SST4 receptor, but also for the rat SST4 receptor. The 

potencies of J-2156 towards human and rat SST4 receptors were comparable, with an observed 

difference of less than 3-fold between the two species. Using cAMP assays, we also found that J-

2156 was potent in functionally activating both the human and rat SST4 receptor. The data from 

radioligand binding assays and cAMP inhibition assays overall suggest that J-2156 is a selective 

and potent SST4 receptor agonist, and hence it represents a valid preclinical tool compound to 

investigate the physiological role of the SST4 receptor in preclinical models of pain 

hypersensitivities. 

 

Administration of single bolus doses of J-2156 (i.p.) alleviated Complete Freund’s adjuvant (CFA) 

induced- inflammatory pain at 0.1 - 1.0 mg/kg in male Han-Wistar rats (Schuelert et al., 2015) and 

at 0.001 - 0.01 mg/kg in male Lewis rats (Sándor et al., 2006). Similarly, J-2156 at 0.1 mg/kg 

alleviated carrageenan-induced inflammatory pain (Helyes et al., 2009) and at 0.01 - 0.1 mg/kg 

(i.p.) alleviated formalin-induced inflammatory pain in mice (Sándor et al., 2006). Additionally, J-

2156 at 0.01 - 0.1 mg/kg (i.p.) alleviated neuropathic pain behaviours in rats with sciatic nerve 

ligation (Sándor et al., 2006). However, we required higher doses of J-2156 to observe alleviation 

of BCIBP in this model. This could perhaps be due to the fact that, unlike other pain models, 

cancer-associated pain pathophysiology concurrently involves inflammatory, neuropathic and 

tumour-specific components. 

 

http://www.ncbi.nlm.nih.gov/pubmed/24416361
http://www.ncbi.nlm.nih.gov/pubmed/24416361
http://www.ncbi.nlm.nih.gov/pubmed/24416361
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In the present study in BCIBP-rats, there were no changes in the expression levels of either the 

SST4 receptor or its ligand, somatostatin, in neural tissue sections analysed. Our findings are in 

agreement with those of a previous study whereby neither expression levels of the SST4 receptor 

nor the proportion of neurons expressing the SST4 receptor changed in the lumbar DRGs of rats 

with unilateral antigen-induced arthritis in the knee joint (Bär et al., 2004). 

 

Sensory nerve fibres are in close proximity with cancer cells colonising the bones, in a micro-

environment that is suitable for activation and sensitization of these primary afferents (Voss and 

Entschladen, 2010, Mancino et al., 2011, Cole et al., 2015, Sroka et al., 2010, di Mola and di 

Sebastiano, 2008, Jobling et al., 2015, Yoneda et al., 2015). Functional interactions with cancer 

cells result in hyperexcitability and changes to the morphology of peripheral nerves (Cain et al., 

2001), thereby causing pain hypersensitivities (Sughrue et al., 2008). Tumour tissue and immune 

cell derived endogenous substances such as nerve growth factor have the potential to cause 

sprouting of primary sensory nerve fibres with the net effect being bone pain (Tong et al., 2010b). 

Specifically, Walker 256 cells also secrete pro-inflammatory mediators (Rebeca et al., 2008, 

Pavlaki et al., 2009). Furthermore, cancer invasion and bone loss causes destruction of nerve 

endings of sensory neurons innervating the bones and the bone marrow, thereby causing intense 

hypersensitivities (Kane et al., 2015). Following intravenous administration of J-2156 at 5 mg/kg in 

rats with CFA- induced inflammatory pain, there was significant inhibition of primary afferent 

nerve firing, however, J-2156 showed no effect in the corresponding group of sham rats (Schuelert 

et al., 2015, Gorham et al., 2014b). Thus, J-2156 does not affect neuronal transmission under 

normal physiological conditions (Schuelert et al., 2015, Gorham et al., 2014b). While the 

endogenous ligand, somatostatin is well-known for its inhibitory actions on primary afferent nerve 

fibres (Luo et al., 2010, Wang et al., 2011a, Guo et al., 2008, Wang et al., 2009a, Carlton et al., 

2004), the peptidomimetic compound- J-2156 (Sándor et al., 2006) inhibits TRPV1 currents, 

activates GIRK and inhibits voltage stimulated calcium channels in rat DRG neurons by specifically 

acting on SST4 receptors (Gorham et al., 2014b, Gorham et al., 2014a). However, as knowledge on 

the DRG neuronal subtypes that express SST4 receptors was lacking, we performed co-localisation 

experiments with subtype specific markers to address this open question. Here we show for the first 

time that the SST4 receptor is expressed by the vast majority of small diameter peptidergic and non-

peptidergic lumbar DRG neuronal cell bodies as well as cell bodies from medium/large diameter 

lumbar DRG neurons. 

 

The adenylyl cyclase-cAMP pathway, coupled to the extracellular signal-regulated kinase pathway 

via a small G-protein, Rap1, acts upstream of ERK activation and contributes to the induction of 
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pERK in the spinal cord (Kawasaki et al., 2004, Wei et al., 2006). pERK is a prominent player in 

the development of neural plasticity in the spinal cord, which is a key pathobiological event in the 

development and maintenance of chronic pain (Ji et al., 2009a). pERK is only induced by noxious 

stimuli and not by normally innocuous stimuli and its inhibition is generally utilized in the 

assessment of analgesic efficacy and pain relief mechanisms of novel analgesic compounds (Ji et 

al., 2009a). pERK is very dynamic in nature as the levels of this protein can elevate as well as 

deplete within a few minutes (Ji et al., 1999, Muralidharan et al., 2014, Gao and Ji, 2009). Both 

somatostatin and SST4 receptor-specific agonism can reduce pERK levels (Somvanshi and Kumar, 

2014, Hubina et al., 2006). We are the first to show that administration of a SST4 receptor specific 

agonist J-2156, reduces pERK levels in the spinal dorsal horn of BCIBP-rats. In this context, it is 

plausible that J-2156 decreases primary afferent hyper-excitability, thereby reducing expression 

levels of pERK in the lumbar spinal dorsal horn. 

 

Assessing whether the anti-hypersensitivity effects of J-2156 are ablated by pre-treating the animals 

with an SST4 receptor antagonist, would have been an interesting additional experiment to this 

work. However, fully characterised SST4 receptor selective antagonists are not yet available 

(Helyes et al., 2009) and this is one of the shortcomings of the present study. The doses of J-2156 

that produced pain relief were higher in BCIBP-rats than those reported previously in other rodent 

pain models. Importantly however, there were no discernible side effects observed in any BCIBP-

rat dosed with J-2156. This good tolerability of J-2156 is consistent with the findings in humans 

showing that intravenous infusion of somatostatin in patients with abdominal pain associated with 

pancreatitis, was well-tolerated (Concepcion-Martin et al., 2014). Similarly, administration of 

TT232, a somatostatin analogue acting through peripheral SST4 receptors was devoid of significant 

toxicity or side effects in humans (Szokoloczi et al., 2005, Szolcsanyi et al., 2004). After 

intraperitoneal administration of J-2156 at 1 mg/kg to adult male Han-Wistar rats, the cerebrospinal 

fluid (CSF) concentration of J-2156 was below the detection limit, thereby indicating that this 

compound is unlikely to penetrate the blood-brain barrier to a significant extent, consistent with its 

lack of discernible CNS side-effects in the present study (Schuelert et al., 2015). It was confirmed 

that J-2156 is an SST4 receptor selective agonist with nanomolar affinity and over 300-fold 

selectivity for the SST4 receptor, compared to other receptors of the somatostatin family, which was 

consistent with a previous study by others (Engstrom et al., 2005). Selectivity profile assessment of 

J-2156 against a standard panel of 67 targets at a single concentration of 10 µM, showed that none 

of the targets were inhibited or stimulated at / above the pre-defined significance level of 50 %. 

Minor partial modulation was observed for a few targets ranging from 20 to 35 %. However, at the 

doses found to be efficacious in the present study (3-10 mg/kg; i.p.), the peak plasma concentration 
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of J-2156 is expected to be between 300 and 1000 nM, based on the in house pharmacokinetic 

studies in satellite Wistar Han naive rats conducted by Boehringer Ingelheim (Schuelert et al., 

2015). At these concentrations, the non-specific binding of J-2156 to these off-targets is very low. 

Hence, in the in vivo experimental conditions reported herein the possible effect of J-2156 on these 

non-cognate targets is negligible and the effect of J-2156 is predominantly mediated via SST4 

receptor only. This notion is consistent with a pharmacological study by others showing that the 

pain-relieving effects of J-2156 are abolished in mice null for the SST4 receptor (Helyes et al., 

2009). However, other somatostatin receptor subtypes are also expressed in the anatomical regions 

like DRGs, spinal cord and brain that are involved in the process of nociception (Bär et al., 2004, 

Kumar, 2009). Hence, a very minor contribution by these receptors to the observed effects of J-

2156 cannot be completely ruled out. However, agonists of other somatostatin receptor subtypes 

have not been assessed for their efficacy to alleviate breast cancer-induced bone pain. The findings 

presented herein, for the first time, show significant potential of the SST4 receptor in alleviating the 

complex symptomatology of BCIBP. 
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Supplementary Table 4.1. J-2156 mediated non-cognate stimulation or inhibition of various 

pharmacological targets. 

 

Pharmacological Target Species 

Percent 

(%) 

inhibition 

Adenosine A1 human 19 

Adenosine A2A human -3 

Adenosine A3 human -13 

Adrenergic α1A rat -11 

Adrenergic α1B rat 8 

Adrenergic α1D human 17 

Adrenergic α2A human 4 

Adrenergic β1 human 0 

Adrenergic β2 human 6 

Androgen (Testosterone) AR rat -2 

Bradykinin B1 human 23 

Bradykinin B2 human -6 

Calcium Channel L-Type, 

Benzothiazepine rat 9 

Calcium Channel L-Type, 

Dihydropyridine rat 12 

Calcium Channel N-Type rat -19 

Cannabinoid CB1 human -4 

Dopamine D1 human 3 

Dopamine D25 human 9 
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Dopamine D3 human 10 

Dopamine D4.2 human -4 

Endothelin ETA human 10 

Endothelin ETB human -1 

Epidermal Growth Factor (EGF) human 5 

GABAA, Flunitrazepam, Central rat 6 

GABAA, Muscimol, Central rat -1 

GABAB1A human 4 

Glucocorticoid human 6 

Glutamate, Kainate rat -22 

Glutamate, NMDA, Agonism rat 14 

Glutamate, NMDA, Glycine rat 0 

Glutamate, NMDA, Phencyclidine rat 2 

Histamine H1 human -6 

Histamine H2 human 4 

Histamine H3 human 2 

Imidazoline I2, Central rat -5 

Interleukin IL-1 mouse -4 

Leukotriene, Cysteinyl CysLT1 human -2 

Melatonin MT1 human -1 

Muscarinic M1 human -1 

Muscarinic M2 human 5 

Muscarinic M3 human 0 

Neuropeptide Y Y1 human -1 

Neuropeptide Y Y2 human -5 
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Nicotinic Acetylcholine human -2 

Nicotinic Acetylcholine α1, Bungarotoxin human 2 

Opiate δ (OP1, DOP) human 20 

Opiate κ (OP2, KOP) human 16 

Opiate µ (OP3, MOP) human 7 

Phorbol Ester mouse -7 

Platelet Activating Factor (PAF) human 21 

Potassium Channel [KATP] hamster 0 

Potassium Channel hERG human 11 

Prostanoid EP4 human -1 

Purinergic P2X rabbit 5 

Purinergic P2Y rat -6 

Rolipram rat 9 

Serotonin (5- Hydroxytryptamine) 5-HT1A  human 24 

Serotonin (5- Hydroxytryptamine) 5-HT2B human 1 

Serotonin (5- Hydroxytryptamine) 5-HT3 human 13 

Sigma ϭ1 human -2 

Sodium Channel, Site 2 rat 35 

Tachykinin NK1 human 25 

Thyroid Hormone rat -4 

Transporter, Dopamine (DAT) human 6 

Transporter, GABA rat 6 

Transporter, Norepinephrine (NET) human -19 

Transporter, Serotonin (5- 

Hydroxytryptamine) (SERT) human -3 

n=2; concentration=10 uM; +, inhibition of binding; -, enhanced binding
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Supplementary Table 4.2. Extent and duration of action (ΔPWT AUC) of J-2156 for the relief of mechanical allodynia in the bilateral hindpaws of 

BCIBP-rats. 

 

Dose of J-

2156 (i.p.) 

Time (h) Mean ΔPWT at peak effect 

(g) 

ΔPWT AUC (g.h) 

Peak effect ~Duration of action 

Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral Contralateral 

1 mg/kg 1.25 1.25 2 2 1.8 (± 0.44) 2.2 (± 0.76) 2.9 (± 0.80) 3.1 (± 1.21) 

3 mg/kg 1 1 – 1.5 3 3 2.8 (± 0.76) 3.2 (± 0.53) 6.4 (± 1.27) 6.2 (± 1.31) 

10 mg/kg 0.75 – 

1.25 

0.75 -1.25 >3 >3 4.5 (± 0.56) 3.9 (± 0.80) 10.2 (± 

1.22)* 

8.6 (± 1.64)* 

Vehicle NA NA NA NA NA NA 2.3 (± 1.02) 1.01 (± 0.95) 

i.p., intraperitoneal; NA, not applicable; *p≤0.05 (ipsilateral- F(3,15) = 10.2; contralateral- F(3,15) = 9.3), One-way ANOVA, posthoc Dunnett’s multiple 

comparisons test c.f. BCIBP-rats that received single bolus doses of vehicle 
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Supplementary Table 4.3. Time courses of the anti-allodynic effect of J-2156 in BCIBP-rats. 
 

Dose of J-2156 

(i.p.) 

Hindpaws Time courses (h) of the anti-allodynic effect 

of J-2156 (i.p.) post-treatment 

Effect on PWT Effect on ΔPWT 

1 mg/kg Ipsilateral NE  

a(p > 0.05) 

NE  

c(p > 0.05) 

1 mg/kg Contralateral NE 

b(p > 0.05) 

NE 

d(p > 0.05) 

 

3 mg/kg Ipsilateral 0.75 h to 1.25 h 

a(p ≤ 0.05) 

0.75 h to 1.5 h 

c(p ≤ 0.05) 

3 mg/kg Contralateral 1 h to 1.5 h 

b(p ≤ 0.05) 

1 h to 1.5 h 

d(p ≤ 0.05) 

10 mg/kg Ipsilateral 0.25 h to 2 h 

a(p ≤ 0.05) 

0.25 h to 2 h 

c(p ≤ 0.05) 

10 mg/kg Contralateral 0.5 h to at least 3 h 

b(p ≤ 0.05) 

0.25 h to 2 h 

d(p ≤ 0.05) 

NE, no significant effect; Two-way ANOVA, posthoc Bonferroni test c.f. BCIBP-rats administered 

vehicle; a(F(3, 8, 24/160) = 20.5, 6.4, 1.5); b(F(3, 8, 24/160) = 21.6, 8.0, 1.8); c(F(3, 8, 24/160) = 

13.9, 8.6, 1.5); d(F(3, 8, 24/160) = 8.4, 10.5, 1.7) 
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Supplementary Table 4.4. Extent and duration of action (ΔPPT AUC) of single i.p. bolus doses of J-2156 for the relief of mechanical hyperalgesia in 

the bilateral hindpaws of BCIBP-rats. 

 

Dose of J-

2156 (i.p.) 

Time (h) Mean ΔPPT at peak effect (g) ΔPPT AUC (g.h) 

Peak effect ~Duration of action 

Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral Contralateral 

1 mg/kg 1 1 2 2 15.8 (± 4.10) 21.7 (± 5.43) 21.5 (± 4.75) 35.7 (± 5.38) 

3 mg/kg 1 1 3 3 31.9 (± 8.81) 42.2 (± 8.78) 54.1 (± 

14.82)* 

74.3 (± 11.85)* 

10 mg/kg 1.25 1.25 >3 >3 59.7 (± 5.55) 64.7 (± 4.86) 117.4 (± 

25.26)* 

126.8 (± 18.94)* 

Vehicle NA NA NA NA NA NA 12.5 (± 3.47) 26.3 (± 6.94) 

i.p., intraperitoneal; NA, not applicable; *p≤0.05 (ipsilateral- F(3,15) = 13.5; contralateral- F(3,15) = 16.9), One-way ANOVA, posthoc Dunnett’s multiple 

comparisons test c.f. BCIBP-rats that received single bolus doses of vehicle 
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Supplementary Table 4.5. Time courses of the anti-hyperalgesic effect of J-2156 in BCIBP-rats. 
 

Dose of J-2156 

(i.p.) 

Hindpaws Timeline (h) of anti-hyperalgesic effect of J-

2156 (i.p.) post-treatment 

Effect on PPT Effect on ΔPPT 

1 mg/kg Ipsilateral NE  

a(p > 0.05) 

NE  

c(p > 0.05) 

1 mg/kg Contralateral NE 

b(p > 0.05) 

NE 

d(p > 0.05) 

3 mg/kg Ipsilateral 1 h to 1.5 h  

a(p ≤ 0.05) 

1 h to 1.5 h  

c(p ≤ 0.05) 

3 mg/kg Contralateral 1 h to 1.5 h 

b(p ≤ 0.05) 

1 h to 1.5 h 

d(p ≤ 0.05) 

10 mg/kg Ipsilateral 0.5 h to at least 3 h  

a(p ≤ 0.05) 

0.5 h to at least 3 h  

c(p ≤ 0.05) 

10 mg/kg Contralateral 0.5 h to at least 3 h 

b(p ≤ 0.05) 

0.5 h to at least 3 h  

d(p ≤ 0.05) 

NE, no significant effect; Two-way ANOVA, posthoc Bonferroni test c.f. BCIBP-rats administered 

vehicle; a(F(3, 8, 24/160) = 15.0, 10.1, 3.1); b(F(3, 8, 24/160) = 19.3, 13.2, 2.5); c(F(3, 8, 24/160) = 

11.4, 17.1, 4.3); d(F(3, 8, 24/160) = 14.0, 21.0, 3.2) 
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Supplementary Figure 4.1. Anti-allodynic effect of single bolus doses (i.p.) of J-2156 on 

ipsilateral and contralateral ΔPWT and % MAX ΔPWT AUC values in BCIBP-rats. Panels in 

the figure show (A) ipsilateral ΔPWT versus time curves, (B) ipsilateral % MAX ΔPWT AUC at 

each dose, (C) contralateral ΔPWT versus time curves and (D) contralateral % MAX ΔPWT AUC 

at each dose. Panel B: *p≤0.05 (F(3,20) = 11.0) and Panel D: *p≤0.05 (F(3,20) = 6.6), One-way 

ANOVA, posthoc Dunnett’s multiple comparisons test c.f. BCIBP-rats that received single bolus 

doses of vehicle. 
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Supplementary Figure 4.2. Anti-hyperalgesic effect of single bolus doses (i.p.) of J-2156 on 

ipsilateral and contralateral ΔPPT and % MAX ΔPPT AUC values in BCIBP-rats. Panels in 

the figure show (A) ipsilateral ΔPPT versus time curves, (B) ipsilateral % MAX ΔPPT AUC at each 

dose, (C) contralateral ΔPPT versus time curves and (D) contralateral % MAX ΔPPT AUC at each 

dose. Panel B: *p≤0.05 (F(3,20) = 10.1) and Panel D: *p≤0.05 (F(3,20) = 14.5), One-way ANOVA, 

posthoc Dunnett’s multiple comparisons test c.f. BCIBP-rats that received single bolus doses of 

vehicle. 
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Supplementary Figure 4.3. Validation of the anti-SST4 receptor antibody using IHC staining. 

Panels in the figure show (A) a representative coronal section of rat brain used as a positive control 

for the SST4 receptor and (B) a representative rat liver section used as a negative control for the 

SST4 receptor. 
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Chapter 5 

Summary, conclusions and future directions 

 

5.1. Summary and Conclusions 

Pain is a significant medical problem that co-exists with several diseases including various types of 

cancer. Breast cancer cells metastasize from the tissue of origin and establish themselves in distant 

parts of the axial skeleton. The cancer cells growing in the bone microenvironment cause osteolysis 

and sensitisation of the peripheral nerve endings innervating the bones, thereby causing 

excruciating pain. Breast cancer-induced bone pain causes severe morbidity because of the 

heterogeneous combination of inflammatory, neuropathic and cancer-specific components. The 

existing analgesic/adjuvant medications are often insufficiently efficacious to combat this pain 

condition. Thus it is very important to develop and characterize suitable preclinical models of breast 

cancer induced bone pain so as to assist in drug discovery programs aimed at identifying novel 

compounds having potential to mitigate this often intractable pain condition. 

 

This thesis describes the successful establishment, optimization and characterization of a rat model 

of Walker 256 breast cancer cell-induced bone pain. The health of experimental animals used in 

cancer research is of prime importance. The work described herein involved systematic assessment 

and documentation of clinical health parameters in animals following intra-tibial injection of 

Walker 256 cells. Using female Wistar Han rats, it was found that the severity (magnitude/extent) 

of Walker 256 cell-induced mechanical allodynia and mechanical hyperalgesia in the hindpaws, is 

directly correlated with the initial number of cancer cells inoculated in the tibiae. The number of 

Walker 256 cells injected in the tibiae was found to be a predisposing factor influencing the nature 

of pain hypersensitivities developed. With lower number of cells inoculated, the pain 

hypersensitivities developed are unilateral in nature (developed in ipsilateral hindpaws). By 

increasing the number of cells, pain hypersensitivities become bilateral in nature (in both ipsilateral 

and contralateral hindpaws). While all the existing studies using this model typically assess the pain 

behaviors only until around 20-25 days after injection of cancer cells, the findings reported in this 

thesis are the first to successfully investigate the model for up to ~66 days. It was found that the 

Walker 256 cell-induced bone pain apparently resolves spontaneously at later stages despite the 

ongoing presence of cancer cells, similar to the clinical situation in humans. Histological and 

radiological assessments were used to provide evidence that the cancer disease remains persistent in 

the rat tibiae, despite apparent resolution of pain hypersensitivities at later stages of this model. 

Unlike H&E staining of histology, immunohistochemical staining with a specific antibody is a 



 

170 
 

direct method for detecting the presence of cancer cells in the tibiae. Immunohistochemical staining 

of the cancer cells in tibiae of rats in this model has not been previously reported. The work 

described in this thesis uses immunohistochemistry to provide direct evidence of the presence of 

cancer cells in tibial sections of rats with Walker 256 cell-induced bone pain, not only during the 

pain-state, but also at the apparently resolved-pain state. Also, the injection of naloxone at the 

resolved-pain state of the rats with Walker 256 cell-induced bone pain, rescued the pain phenotype, 

thereby indicating a possible role of endogenous opioidergic signaling in the self-resolution of pain 

hypersensitivities at later stages. The model was further pharmacologically characterized and it was 

found that the model is responsive to clinically used analgesic drugs that have diverse mechanisms 

of action, including morphine, gabapentin, meloxicam and amitriptyline. This shows that the 

optimized model has considerable potential for use in the process of drug discovery of new 

analgesics against breast cancer induced bone pain. 

 

The transcriptomic characterization of the model was performed so as to gain insights into the gene 

level changes occurring in breast cancer induced bone pain. It was found that several genes known 

to be involved in the pathophysiology of pain hypersensitivities were differentially expressed in 

neural tissues in the BCIBP state. Additionally, the transcriptomic characterization of the Walker 

256 cell line revealed that the genetic composition of this cell line resembles the basal-B subtype of 

human breast cancer cell lines. Basal-B cell lines are known to be highly invasive in nature. These 

cell lines may resemble basal tumours / triple negative tumours or Erbb2 tumours or even display 

stem cell like characteristics, and hence are not yet well-characterized. 

 

Finally, the work described in this thesis also shows that the SST4 receptor mediates analgesia in 

the state of breast cancer induced bone pain. J-2156, a SST4 receptor agonist, was found to be 

effective in alleviating the mechanical allodynia and mechanical hyperalgesia in the optimized 

Walker 256 cell- induced bone pain model. Interestingly, the SST4 receptor was found to be 

expressed by the majority of the cell bodies of somatosensory neurons in the ipsilateral lumbar 

DRGs, including peptidergic and non-peptidergic small C-fibre neurons and medium-large diameter 

fibre neurons, consistent with the role of SST4 receptors in the pain processing pathway. 

Administration of J-2156 in rats with breast cancer- induced bone pain reduced the levels of pERK 

in the lumbar spinal dorsal horn. Considering the fact that J-2156 is unlikely to cross the blood 

brain barrier, this reduction of pERK levels can be assumed to be mediated by the action of J-2156 

on peripheral SST4 receptors. Hence, J-2156 can be considered to be a novel analgesic compound 

which is unlikely to develop side effects of the central nervous system. 
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5.2. Future Directions 

In future, it might be a suitable complementary experiment to assess the ambulatory pain or pain 

evoked by weight bearing on the hindpaws of rats in this model. Allodynia and gait behaviours are 

two independent phenomena; allodynia (measured by von Frey testing) being a more reliable 

measure of the neuropathic pain component rather than gait behaviours (weight bearing or 

spontaneous pain during ambulation) (Mogil et al., 2010). Neuropathic pain is one of the key 

components of cancer induced bone pain (Cao et al., 2010). Changes in gait parameters can 

typically be due to the tendency of animals to avoid allodynia produced by the contact of the paw 

with the floor (Coulthard et al., 2003). The gait changes do not necessarily relate well to pain 

hypersensitivities (Mogil et al., 2010, Piesla et al., 2009, Gabriel et al., 2009, Fernihough et al., 

2004, Boettger et al., 2009, Aihara et al., 2017). There are several strong evidences available to say 

that changes in gait parameters like guarding the hindpaw during ambulation or changes in weight 

bearing are significantly driven by the adaptive changes and psychological influences (pain-

avoidance and fear due to cognition), rather than the current levels of pain intensity (Mogil et al., 

2010, Vlaeyen and Linton, 2000, Feinstein et al., 2017, Fingleton et al., 2015, Somers et al., 2009, 

Keefe et al., 2000, Tichonova et al., 2016, Niederstrasser et al., 2015, Haddas et al., 2017, Al-

Obaidi et al., 2003, Vincent et al., 2013). Whereas, both the von Frey and Randall-Selitto tests, that 

are also used in humans to assess pain hypersensitivities, detect the current levels of pain and have 

high clinical relevance (Tena et al., 2012, Reitz et al., 2016, Abrams et al., 2007, Prabhavathi et al., 

2014, Levine et al., 1988, Neuvonen et al., 1985). This is probably one of the most important 

reasons why large number of published studies used stimuli-evoked methods like the von Frey and 

Randall-Selitto tests to assess pain hypersensitivities in the hindpaws of animals following 

unilateral tibial inoculation of cancer cells. 

 

Importantly, a previous study (Sabino et al., 2003) highlights the fact that neither spontaneous pain 

nor ambulatory pain is the best measure of cancer induced bone pain for all models. It showed that 

intra-osseous injection of B16-F10 melanoma cell line in the femur did not produce either the 

spontaneous pain or the ambulatory pain. The bone pain induced by B16-F10 cell line manifested 

only as hindpaw skin hypersensitivity. Similarly, C26 colon cancer cell line did not produce 

spontaneous pain behavior. This clearly highlights a very important fact that spontaneous or 

ambulatory pain are not the universal measures of bone pain at least in some models like B16 cell 

model and C26 cell model. In alignment to this pre-clinical animal based study, a clinical study of 

cancer induced bone pain also reported that in patients with breakthrough pain, which is commonly 

triggered by a stimulus (Caraceni et al., 2013), patients were not more likely to experience pain at 

the weight-bearing bone sites, compared to patients without pain (Laird et al., 2011). 



 

172 
 

 

As per the previous studies published in journals like PAIN (Fang et al., 2015, Liu et al., 2013a, 

Zheng et al., 2013), The Journal of Pain (Shih et al., 2012, Li et al., 2016), European Journal of 

Pain (Li et al., 2014b, Liu et al., 2014a, Zhang et al., 2008), Pain Medicine (Muralidharan et al., 

2014), Molecular Pain (Wang et al., 2011b, Pan et al., 2010) and Nature Neuroscience (Chen et al., 

2017), it is a traditional practice within the pain research fratenerity to test the pain 

hypersensitivities in the “paw”, following inoculation of cancer cells in the “tibia”, without 

deploying gait or weight bearing parameters as a measure of pain. Along these lines, a recent report 

suggested that a vast majority of around ~90 % of the cancer induced bone pain studies in the 

literature using MRMT-1 cells in rats used the response evoked by the cutaneous stimuli applied to 

the foot as a measure of bone pain (De Felice et al., 2016). Based on the experience in our 

laboratory and from the vast literature available on Walker 256 cell induced bone pain model in 

rats, inoculation of Walker 256 cell in the tibia always manifests as hypersensitivities in the 

hindpaws, without any discordance between paw-tibia correlation being reported in the literature to 

the best of our knowledge (Shenoy et al., 2017, Shenoy et al., 2016). Reportedly, there was a 

dissociation of skeletal pain behaviors and skin hypersensitivity in a male C3H mouse model of 

intra-femoral injection of NCTC 2472 osteosarcoma cells in another study (Guedon et al., 2016). 

However, it is known that different types of cell lines / tumours exhibit distinct pain behavioral 

patterns (Sabino et al., 2003). It is the unique interaction between each of the cancers colonising the 

bone and the nerve innervation that predominantly decides the nature of pain manifestation 

(Lozano-Ondoua et al., 2013b). Importantly, the majority of studies in the literature that used the 

Walker 256 breast cancer cell-induced bone pain model in rats, used the hind “paw” as a location to 

test hypersensitivity to evoked pain such as that induced by the von Frey test, rather than 

spontaneous or movement evoked pain (Cheng et al., 2016, Yao et al., 2011, Sima et al., 2016, Pan 

et al., 2016, Fu et al., 2016, Luo et al., 2016, Huang et al., 2016, Du et al., 2016, Wang et al., 2016a, 

Pan et al., 2010, Shenoy et al., 2016). There are many different studies recently published in 2017 to 

date, that used Walker 256 cells to induce bone pain in rats that only used stimuli evoked 

behavioural measures such as von Frey paw withdrawal thresholds in the hindpaws, but not 

spontaneous movement evoked or weight bearing measures to assess pain hypersensitivities (Liu et 

al., 2017b, Liu et al., 2017a, Song et al., 2017, Yao et al., 2017, Sun et al., 2017b, Sun et al., 2017a, 

Guo et al., 2017, Dai et al., 2017, Hou et al., 2017, Hang et al., 2017, Liang et al., 2017, Zhou et al., 

2018, Hu et al., 2017, Chen et al., 2017). However, in the preclinical research field of cancer 

induced bone pain, pioneering efforts are being made to introduce novel methods to assess 

hypersensitivity, like application of stimulus directly to the tibia (Falk et al., 2015a) or assessment 

of grid climbing behaviours (Falk et al., 2017).  
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The plantar hindpaw of rats (the anatomical region where von Frey and Randall-Selitto stimuli are 

applied) is mainly innervated by the tibial nerve (Kambiz et al., 2014, Cobianchi et al., 2014, De 

Koning et al., 1986), and hence tibial bone pain sensations manifest as hypersensitivities in the 

plantar aspect of the hindpaws (Yang et al., 2011). Hence, the traditional and most commonly used 

method to measure tibial bone pain is assessment in the “paws”, with hundreds of studies prevailing 

in the literature using this protocol. By using intra-tibial injections of complete Freund’s adjuvant in 

the tibiae of female Wistar rats, a study has elegantly established that the bone pain induced by 

activation of tibial nerves directly manifests as hindpaw skin hypersensitivity (Yang et al., 2011).  

 

Cutaneous tests like the von Frey testing and Randall-Selitto testings detect the current levels of 

pain and have high clinical relevance as used in humans (Tena et al., 2012, Reitz et al., 2016, 

Abrams et al., 2007, Prabhavathi et al., 2014, Levine et al., 1988, Neuvonen et al., 1985). A study 

involving the Department of Medicine of the University of Florida (Gainesville, USA) has validated 

that mechanically evoked pain is a highly relevant measure of the clinical pain intensity in patients 

with deep pain of muco-skeletal origin (Staud et al., 2012). Similarly, a study conducted in 

Edinburgh Cancer Centre (Edinburgh, UK) also validated that assessing mechanical allodynia using 

von Frey filaments is a direct measure of cancer induced bone pain in humans (Scott et al., 2012). 

Hence the behavioural tests that we have employed are physiologically relevant assessment 

techniques for assessing bone pain. However, a complementary work could be performed in the 

future to assess the ambulatory pain or pain evoked by weight bearing on the hindpaws of rats. 

 

My findings in this thesis show that Walker 256 breast cancer cell-induced bone pain appears to 

resolve spontaneously after around 25 days post-injection of cancer cells and that the administration 

of naloxone, a non-selective opioid receptor antagonist, rescues the pain phenotype. Future studies 

can be directed to investigate the endogenous opioid proteins that are involved in resolution of pain 

hypersensitivities in this model. Other than the DRGs, on which transcriptomic characterization was 

performed, it will be of interest to assess the changes in the spinal cord and brain compartments, 

both in neuronal and non-neuronal cells that may give important information on the self-resolving 

nature of pain hypersensitivities in this model. 

 

Assessing the possible phenotypic and genotypic changes occurring in the cancer cells after bone 

engraftment will be an interesting area to address. Heterogeneity of cancer cells by themselves is 

well known. In breast cancer, it may be difficult to clearly classify the cancer cells as marker-

receptor- “positive” or “negative”, as there can be significant intra-tumoral heterogeneity in their 



 

174 
 

expression (Allott et al., 2016, Bedard et al., 2013). Her2, Muc1 and cytokeratins are some of the 

classical breast cancer markers (Sturgeon et al., 2008, Olofsson et al., 2007). Intra-tumoral 

heterogeneity can typically be observed with such classical markers too, including Her2 (Buckley et 

al., 2016, Kurozumi et al., 2016, Onsum et al., 2013), MUC1 (Rahn et al., 2001) and cytokeratins 

(Cimpean et al., 2008, Orito et al., 1989). Such intra-tumoral heterogeneity in breast cancer occurs 

both at the genetic and morphological levels (Lichy et al., 2000, Denisov et al., 2014, Hiley et al., 

2014, Badve and Nakshatri, 2012, Marusyk et al., 2012). Due to the existence of mixed cell 

populations in the breast cancer tumours, they have the potential to differentially grow into diverse 

types like epithelial and fibroblastic, subject to different growth conditions (Whitescarver, 1974). 

 

One of the hallmark features of cancer cells is their genomic instability and this is what makes a 

cancer a cancer (Hanahan and Weinberg, 2011, Negrini et al., 2010). Cancer immunoediting 

comprises three Es- Elimination (immunosurveillance), Equilibrium and Escape; and the process 

leading from immunosurveillance to tumour escape in the immunocompetent host is well known 

(Dunn et al., 2002). As per the Darwinian selection theory, tumor-specific immune responses are 

responsible for eliminating highly immunogenic tumor cells, while the tumor variants with reduced 

immunogenicity have a better chance of survival in the immunocompetent host (Kmieciak et al., 

2007, Dunn et al., 2004, Dunn et al., 2002). Tumour cells have the ability to shed or restrict the 

presentation of ligands / antigens involved in their recognition by the host’s immune system or 

down-regulate the expression of factors that promote activation of tumour-specific immune 

responses (Mohme et al., 2016). Due to the immune pressure, tumour cell variants with loss of such 

antigens emerge as a consequence of epigenetic mechanisms within the tumor (Sanchez-Perez et al., 

2005, Liu et al., 2005). Likewise, the anti-tumor immune responses themselves can induce changes 

in antigen-positive cells, converting them into antigen-negative cells (Beatty and Paterson, 2000, 

Beatty and Paterson, 2001). Hence, discordance in receptor or biomarker status and genotypic 

heterogeneity between primary breast cancer cells and their metastasised lesions or circulating cells 

in the body is very common, because the biomarker expression of primary tumour cells can change 

significantly during the disease progression (Singh et al., 2013, Thompson et al., 2010, Aktas et al., 

2016, Somlo et al., 2011, Millner et al., 2013, Zhang et al., 2016, Vlems et al., 2003, Deng et al., 

2014, Fehm et al., 2008, El Nemr Esmail et al., 2015). Similarly antigens that can be targeted by the 

immune system are also found to be lost in other types of human cancers (Hanagiri et al., 2013, 

Mendez et al., 2007, Rivoltini et al., 2002). Such immunoediting processes can be strong enough to 

induce very significant changes in morphology and microarray of the breast cancer cells, leading to 

failure in detection of earlier version of cells (Knutson et al., 2006, Gorges et al., 2012, Larue and 
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Bellacosa, 2005, Voulgari and Pintzas, 2009, Foroni et al., 2012, Wu et al., 2016c, Bill and 

Christofori, 2015, Palma et al., 2016). 

 

For example, Muc1 has several major limitations as a breast cancer marker (Duffy et al., 2010) and 

most cancer-expert panels around the world recommend against its use as a reliable marker even in 

the post-operative clinical setup in humans (Sturgeon et al., 2008). Its expression is not always 

constant and its expression changes massively based on the changes in endogenous biological 

processes (DeSouza et al., 1998). Muc1 is known to serve as a target molecule in the killing of 

breast cancer cells by the body’s immune system (Barnd et al., 1989, Agrawal et al., 1996, Pecher 

and Finn, 1996, Magarian-Blander et al., 1998) and hence is also assumed to be a good candidate 

for immunotherapy against human cancers (Akagi et al., 1997). So as to avoid being detected and 

killed by the immune system, the cancer cells can undergo epigenetic changes (Wachowska et al., 

2015) such that they lose Muc1 expression or modulate its antigenicity (Kontani et al., 2001, 

Lakshminarayanan et al., 2016, Anandkumar and Devaraj, 2013, Oudejans et al., 2003, Mukherjee 

et al., 2000, Villalba et al., 2013, Julian et al., 2009, Sanchez et al., 2013). Similarly, 

downregulation of Muc1 can also be induced in cancer cells subjected to anti-cancer drugs, which 

in turn might protect tumours against host’s immunity (Roulois et al., 2012, Dorn et al., 2004). It 

has also been seen in some cases that Muc1 is highly expressed in the normal mammary gland of an 

animal but not in a mammary tumour of the same animal, which suggests that in vivo factors could 

be down regulating the Muc1 expression (Adriance and Gendler, 2004). Similar is the case with 

Her2. Cultured circulating tumour cells maintain discrete Her2+ and Her2− subpopulations and 

these cells can interconvert spontaneously in vivo just within few cell doublings (Jordan et al., 

2016, Wood, 2016). There can be certain factors that selectively pressurise the tumour niche such 

that breast cancer cells in vivo acquire a change in their Her2 status (Arteaga and Engelman, 2014, 

Krawczyk et al., 2009). The cancer cells may express Her2 primarily, but there could be 

discordance as the same cells that are metastasizing or circulating in vivo may not express Her2 or 

the reverse may be possible as well (Houssami et al., 2011, Turner and Di Leo, 2013, Bidard et al., 

2014, Krishnamurthy et al., 2013, Jäger et al., 2015, Pusztai et al., 2010, St. Romain et al., 2012, 

Sighoko et al., 2014). So, in principle, the Her2 status of cancer cells in bone marrow is independent 

of the primary tumour (Hartkopf et al., 2013). Her-2/neu antigen loss can actively occur in primary 

tumors (epigenetic changes) due to the neu-targeted anti-tumor immune responses, which might be 

a part of the selection process of a tumor variant that has reduced ability to induce danger signals 

(Kmieciak et al., 2007, Worschech et al., 2008, Manjili et al., 2006, Knutson et al., 2006, Kmieciak 

et al., 2008, Marth et al., 1990). Neu antigen-negative variants have been reported to be generated 

after neu-specific antibody therapy in a neu transgenic mice model of breast cancer (Knutson et al., 
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2004) and a similar loss of Her2 is observed in humans with gastric or gastroesophageal cancer 

following trastuzumab therapy (Pietrantonio et al., 2016). On similar grounds dysregulation of 

expression of cytokeratins is also possible in cancer cells. For example, downregulation of 

cytokeratin 18 in breast cancer cells is observed in some cases (Woelfle et al., 2004) and such 

dysregulation might also be triggered due to the effect of drugs (Yin et al., 2016a). The anti-tumour 

action drives the process of epithelial-mesenchymal transformation of cancer cells, causing 

downregulation of epithelial markers such as cytokeratins (Mego et al., 2012). Downregulation of 

cytokeratin 18 in metastatic cancer cells in bone marrow can also commonly occur (Pantel et al., 

1994). 

 

Additionally, breast cancer cells can change in vivo such that they are present in a non-proliferative 

state and might possess stem-cell like characteristics (Kasimir-Bauer et al., 2016, Balic et al., 2006, 

Reuben et al., 2011, Kasimir-Bauer et al., 2012, Lawson et al., 2015). Transdifferentiation of cells 

from one cell type to another is another commonly observed phenomenon with cancer cells 

(Shekhani et al., 2013, Huang et al., 2015, Syder et al., 2004, Zelivianski et al., 2001, Choi et al., 

2012, Chen and Wu, 2016, Cerasuolo et al., 2015, Ha et al., 2010, Marcu et al., 2010, Xu et al., 

2016, Fehrenbach et al., 2016). Transdifferentiated cells thus formed can still be malignant in nature 

(Gattenlöhner  et al., 2008, Cichon et al., 2013, Mori et al., 2010, Han et al., 2014b, Scully et al., 

2012, Ul-Mulk et al., 2012, Terry and Beltran, 2014, Polyak and Weinberg, 2009, Hayakawa et al., 

2016, Gao et al., 2014, Kong et al., 2010, Stoecker and Wang, 2013, Pilarski et al., 2010, Ratei et 

al., 2010, Abdul Aziz et al., 2010). Breast cancer cell lines can co-express several types of 

differentiation markers, leading to aberrant multi-lineage transdifferentiation or lineage infidelity 

(Zhang et al., 2010). Hence, in the immunocompetent host, the possible dynamic nature of 

genotypic and phenotypic variations occurring in engrafted breast cancer cells, makes it extremely 

difficult to predict the molecular nature of breast tumour developed in vivo by inoculation of a given 

breast cancer cell line. To obtain insights into these variations, one will require to perform 

comparative genomic and proteomic assessments of cell line cultured in vitro and bone-colonising 

tumour developed in vivo. 

 

My findings show that J-2156 can alleviate hypersensitivities associated with breast cancer induced 

bone pain. The ability of J-2156 to cross the blood-brain barrier and blood-spinal cord barrier at 

concentrations used in this study, needs to be investigated. This will give valuable information on 

whether the J-2156 mediated anti-hypersensitivity effects are also underpinned by its effects on 

SST4 receptors in the central nervous system as well as the peripheral nervous system. 
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Tumour cells and nerves closely interact with each other and cancer cells colonising the bone create 

an environment suitable for activation of sensory neurons innervating the bone and the tumour 

(Voss and Entschladen, 2010, Mancino et al., 2011, Cole et al., 2015, Sroka et al., 2010, di Mola 

and di Sebastiano, 2008, Jobling et al., 2015, Yoneda et al., 2015). Functional interactions between 

tumour and peripheral nerves cause changes in excitability and morphology of primary afferent 

fibres (Cain et al., 2001), thereby producing pain hypersensitivity (Sughrue et al., 2008). Tumour 

tissue derived endogenous substances activate sensory nerve fibres to induce bone pain (Tong et al., 

2010b). Drugs can reach and directly act on the breast cancer cells colonised in the bones to reduce 

secretion of inflammatory mediators and algogenic substances, thereby inhibiting pain 

hypersensitivities (Lozano-Ondoua et al., 2013a, Fazzari et al., 2015, Ungard et al., 2014). SST4 

receptor, activated by somatostatin, is a target known to reduce expression of inflammatory 

mediators (Helyes et al., 2009). Breast cancer tumours as well as breast cancer cell lines like MCF-

7 and MDA-MB-231 commonly express SST4 receptor (Watt and Kumar, 2006, Kumar et al., 

2005, Frati et al., 2014). Additionally, Walker 256 cells are commonly known to secrete pro-

inflammatory mediators (Rebeca et al., 2008, Pavlaki et al., 2009). Like somatostatin (Andoh et al., 

2002, Chowers et al., 2000), J-2156 also inhibits the production of inflammatory mediators (Helyes 

et al., 2006). Hence, it will be an interesting area to assess which analgesic targets are expressed on 

the tumour cells and whether drugs might act on tumour cells colonised in the bones to aid the 

process of analgesia. The ability of analgesic drugs like SST4 agonists to acutely inhibit the cancer 

cell mediated secretion of pro-inflammatory mediators and to contribute towards analgesia can be 

investigated in future. 
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APPENDICES 

 

Appendix- 1. Percent multi versus unique- mapping of reads in all 15 samples of neuronal 

tissues from BCIBP and sham rats. 
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Appendix- 2. The principal component analysis using the read counts for genes in all 15 

samples of neuronal tissues from BCIBP and sham rats. 
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Appendix- 3. List of upregulated genes (abbreviations as per standard gene nomenclature) in 

lumbar spinal cord of BCIBP rats compared to sham rats given heat-killed cancer cells; day 

10 post-ITI. 

 

RGD1563668 Cers4 Hn1l 

Igf1 Cggbp1  

Rtkn2 Usp31  

Igf2 Galnt7  

Igfbp3 Marcks  

Depdc1b Btbd8  

Slc7a11 Cdkl5  

Ago3 Igfbp2  

Gan Ccne2  

Clca1 Xiap  

Cdkn1c Tgfb2  

Anlnl1 Klhl28  

Slitrk6 Cyp2j10  

Vps13a D14Abb1e  

Mob1b Cpd  

AI429214 RGD1306941  

MT-ND4L Mylk  

Entpd5 Tmeff1  

Tmem254 Utp14b  

Fam126b Amot  

Ptar1 Pik3c2a  

Scd1 Cpsf6  

Zdhhc20 Gabrb2  

SPPL2A St18  

Trove2 Ccdc88a  

Agps Pank3  

Tgfbr1 Smc2  

Far1 Yes1  

RGD1566380 Fnip1  

Slc7a2 Kdm5a  

Trim59 Reep3  

Hsd17b7 Pus7  

Ctnna3 Tmed5  

Erbb4 Elovl7  

RGD1563888 Lonrf3  

RGD1305938 Fmnl2  

Zdhhc21 Ptpn4  

Lyrm5 MT-ATP8  

Snap23 Slc12a2  

Agmo Rapgef5  

Fam210a Rb1  

Prrg1 Rabgap1l  
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Appendix- 4. List of downregulated genes (abbreviations as per standard gene nomenclature) 

in lumbar spinal cord of BCIBP rats compared to sham rats given heat-killed cancer cells; 

day 10 post-ITI. 

 

Ngef Hspbp1 Tuba1c Tmem255b Gdf1 

Atp1a1 Agt Mif Mical1 Rab3b 

Tmem86a Tceb2 Ndufs7 Pcbd1 Egfl8 

Wash Ndufb7 Mef2bnb Nefh Tspan17 

Naglu Mt3 PQLC1 Rplp1 Impdh1 

Serp2 Rpusd3 Isoc2a Zic1 Nptx2 

Tox3 Stmn2 Ckb Man2b2 Sfrp5 

Col9a2 Cldn5 Nefl Capn1 Cck 

Arhgdig Ssbp4 Dlgap3 Pomgnt2 Tubb3 

Atp13a2 RGD1561113 Stk32c Slc2a6 Syndig1l 

Hdac7 Enho Rac3 TMEM9 Rab3d 

Traf3ip2 Dos Col4a1 Polr3g Vstm2l 

Fam173a Jag2 Timm13 Acads Rem2 

Rnf208 Inha Pabpc1l2a Slc29a4 Sncg 

Slc9a3r2 Lppr2 Drp2 Cd24 Fxyd7 

Frmpd1 Them6 Fbll1 Kcnd1 Ahnak2 

Nell2 Kcnj12 Sema4f Tesc Palm3 

Samd14 Btbd2 Tmem63c Tldc1 Cpne6 

Hoxd9 Sh3bgrl3 Gpc1 RET Bmyc 

Fbxl16 Ndufa13 S100a10 Fbln2 Shh 

Arvcf Mfng Fam189b BCL7B Anxa2 

Fam213b Spire2 Jund Cacnb3 Uts2 

Tmem151b Nrgn COL4A2 Crip2 Ncmap 

Bok Bid Map1s Flywch2 H1fx 

Nfkbie Josd2 Coro2a Fam69c Susd2 

Tpgs1 Hspb8 Tmem160 Hmgcs2 Dok4 

Shc2 Parp3 Vbp1 Serpinb6 Hspb1 

Adck3 Rhbdl1 RPL37 DHRSX Npy2r 

Cacna1h Bag3 Col5a3 Metrnl Serinc2 

Atp5d Lsm7 Bex1 Alpl Ppm1j 

Nipsnap3b Mest Kcnk4 Crym Kcnf1 

Nr2f6 Dohh Numbl Trpv2 Prph 

Pkdcc Ndufb4 Bcam Ifi27 Calcb 

MAST1 Chpf Camk2n2 Lgals1 Calca 

Rps15 RGD1562390 Lrfn1 Nrg1 Isl2 

Baiap3 Slc7a4 Elfn1 S100a6  

Fam57b H2afz Celf4 Dkc1  

Abhd8 Chchd5 Htra1 Ifi27l2b  

Mien1 Syde1 Pafah1b3 Kcnh6 

 Hoxc10 Pcbp3 Nefm Mt2A 

 Rarg Snx21 Dysf Itga7 

 Sync Cdk5r2 Slc41a3 Rplp2 
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Appendix- 5. List of upregulated genes (abbreviations as per standard gene nomenclature) in 

ipsilateral lumbar DRGs of BCIBP rats at day 48 post-ITI (resolved pain state) compared to 

BCIBP rats at day 10 post-ITI (pain state). 

 

Cdh19 

Abca9 

Tef 

Crebl2 

Ephx1 

NR1D2 

Per3 

Dbp 

Nr1d1 

RGD1566380 

 

 

 

 

Appendix- 6. List of downregulated genes (abbreviations as per standard gene nomenclature) 

in ipsilateral lumbar DRGs of BCIBP rats at day 48 post-ITI (resolved pain state) compared 

to BCIBP rats at day 10 post-ITI (pain state). 

 

Tnc 

ARNTL 

Col16a1 

COL4A2 

Gpx7 

S1pr3 

Heyl 

Mmp14 

MT-ND4L 

Chsy1 

Cd93 

Cadm4 

Lepre1 

Adam17 

 


