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Abstract 

Metabolic equivalents, or METs, are routinely employed as a guide to exercise training and 

activity prescription and to categorize cardiorespiratory fitness (CRF). There are, however, 

inherent limitations to the concept, as well as common misapplications. CRF and the 

patient’s capacity for physical activity are often overestimated and underestimated, 

respectively. Moreover, frequently cited fitness thresholds associated with the highest and 

lowest mortality rates may be misleading, as these are influenced by several factors, 

including age and gender. The conventional assumption that 1 MET = 3.5 mL O2/kg/min 

has been challenged in numerous studies that indicate a significant overestimation of actual 

resting energy expenditure in some populations, including coronary patients, the morbidly 

obese, and individuals taking beta-blockers. These data have implications for classifying 

relative energy expenditure at submaximal and peak exercise. Heart rate may be used to 

approximate activity METs, resulting in a promising new fitness metric termed the 

“personal activity intelligence” or PAI score. Despite some limitations, the MET concept 

provides a useful method to quantitate CRF and define a repertoire of physical activities 

that are likely to be safe and therapeutic. In conclusion, for previously inactive adults, 

moderate-to-vigorous physical activity, which corresponds to ≥3 METs, may increase MET 

capacity and decrease the risk of future cardiac events. 

Key words: Metabolic equivalents; Cardiorespiratory fitness; Exercise prescription; Fitness and 

mortality 
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The term metabolic equivalents, or METs, indicates the oxygen requirements of varied activities. 

One MET equals the amount of oxygen the body uses at rest sitting, which approximates 3.5 mL 

O2/kg/min. This expression of resting energy expenditure, originating from the work of Balke,
1
 is 

traditionally considered to be independent of body weight and thus relatively constant for all 

persons. Thus, multiples of this value provide a simple, practical, and easily understood 

classification scheme to quantify relative levels of energy expenditure. For example, it is easier – 

and more meaningful – to explain to a patient that he has exercised at 3 times his resting 

metabolic rate than to indicate he has consumed 10.5 mL/kg/min. METs are also routinely used 

to describe an individual’s aerobic capacity or level of cardiorespiratory fitness (CRF) and to 

prescribe activities that a patient can safely perform. The concept is easy to understand, and is 

often employed as an exercise training and activity prescription guide, and to categorize CRF. 

However, there are several inherent limitations, inaccurate assumptions, and common 

misapplications. 

Energy expenditure of physical activity 

The energy cost of many household, recreational, and occupational activities has been 

previously defined in terms of oxygen requirements, expressed as METs. In fact, to facilitate 

exercise and activity prescription, a compendium of physical activities has been developed to 

quantify energy expenditures based on the ratio of estimated or measured work metabolic rate to 

a standard resting metabolic rate.
2
 Consequently, this resource is often used to identify and 

prescribe appropriate physical activities for varied populations. This involves recommending 

activities that are sufficiently below the highest MET level achieved during exercise testing. 

Walking at a leisurely pace uses about 2 to 3 METs, whereas faster walking speeds (e.g., 3.5 to 
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4.5 miles per hour [mph]) may approximate 4 to 5 METs. Singles tennis requires about 6 to 7 

METs. In contrast, jogging and running typically require 8 to 10 or more METs, respectively. 

Using METs to quantitate fitness       

Peak or symptom-limited CRF can be directly measured or estimated during an exercise 

test, using either a treadmill or cycle ergometer. Direct assessment of CRF using ventilatory gas 

exchange responses may be particularly useful in risk-stratifying patients with heart failure who 

may be considered for heart transplantation, clarifying the functional impact and severity of 

valvular heart disease, differentiating cardiac versus pulmonary limitations as a cause of 

exertional dyspnea or impaired exercise tolerance, and in evaluating aerobic capacity more 

precisely due to the inaccuracies associated with estimating peak or maximal oxygen 

consumption.
3,4

 Average healthy, young- to middle-aged adults generally have fitness levels 

ranging from 8 to 12 METs, indicating that they can increase their oxygen consumption (or 

energy expenditure) by 8- to 12-fold above their resting level. Patients with heart failure and 

those who are elderly or morbidly obese may have exercise capacities as low as 2 to 4 METs. 

Conversely, some elite endurance athletes can achieve 20 to 25 METs during maximal treadmill 

testing. 

 Our experience indicates that when CRF is estimated from the widely used Bruce 

treadmill protocol,
5
 characterized by large aerobic increments per stage (≥2 METs), it is 

commonly overestimated, which may be minimized by ramping protocols that increase treadmill 

speed and incline continuously but in smaller increments. Aside from the fact that tight handrail 

holding is often permitted, reducing the aerobic requirement of treadmill walking while 

spuriously increasing the apparent MET expenditure, methodologic misapplications can also 

contribute to estimation error. A common mistake is to credit the patient for attaining a given 
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stage of the Bruce protocol, even though they may have only partially completed their last 

attempted stage. For example, an apparently healthy woman stops exercising due to volitional 

fatigue after she has performed 30 seconds of stage 3 of the Bruce protocol (3.4 mph, 14% 

grade). The estimated MET capacity for this example is frequently listed as 9 to 10 METs, 

although the interpolated level of CRF is 7.5 METs.To provide more accurate estimates of the 

patient’s functional capacity, we recommend minute-by-minute estimates of the MET capacity 

using the conventional Bruce treadmill protocol. Maximal oxygen consumption (VO2 max) 

values were obtained in healthy men, women, and cardiac men using ventilatory expired gas 

analysis, expressed as mL/kg/min, and subsequently converted to METs (Table 1).
5,6

 Stepwise 

multiple regression analysis, using the directly measured VO2 max as the dependent variable, 

demonstrated that the duration of time (minutes) from the start of Stage I of this standardized 

test, which involves simultaneous speed/grade increments every 3 minutes, was the single most 

important determinant of the VO2 max (r
2
 = 0.822).

5
  

Fitness thresholds and mortality 

 As a guideline, persons with fitness levels <5 to 6 METs generally have a poorer 

prognosis.
7,8

 In contrast, fitness levels of 9 to 12 METs or higher are associated with a marked 

survival advantage,
9-13

 even among men and women with and without abnormal risk factor 

profiles
14

 or patients with  known heart disease.
15

 A moderate-to-high level of fitness, expressed 

as METs, confers a reduced risk of initial and recurrent cardiac events. For both primary and 

secondary prevention, each 1-MET increase in CRF is associated with a 15% decrease in 

mortality.
12,16

 This reduction compares favorably with the survival benefit provided by 

commonly prescribed cardioprotective medications post myocardial infarction (e.g., aspirin, 

beta-blockers, angiotensin-converting enzyme inhibitors, and statins). Thus, a previously 
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inactive, deconditioned patient who increases his/her MET capacity from 5 to 7 could reduce 

their mortality risk by ~30%. 

In a seminal meta-analysis, Williams
17

 reported a 64% decline in the risk of heart disease 

when moving from “poor” (bottom 20%) to “good” to “excellent” levels of CRF or aerobic 

capacity. In addition, a precipitous drop in risk is found when comparing the lowest quintile (#1) 

to the next lowest quintile (#2) (Figure 1). These data strongly support that poor fitness warrants 

consideration as an independent risk factor, and that the primary beneficiaries of an exercise 

regimen are those in the least fit, least active quintile. However, the above-referenced fitness 

thresholds may be misleading, as they are influenced by several factors, including age and 

gender. Accordingly, CRF levels decrease with age, commonly due to reductions in physical 

activity, peak heart rate, myocardial contractility, and the consequences of associated weight 

gain and chronic diseases. Healthy CRF cut points are also lower for women than men, due to 

their lesser muscle mass, hemoglobin levels, and stroke volume. 

To further clarify age and gender-specific exercise capacity thresholds to guide 

assessment of mortality risk in individuals undergoing exercise testing for diagnostic and/or 

functional capacity assessment, Table 2 was developed using previously published data from the 

Aerobics Center Longitudinal Study,
18

 the principal research asset of the Cooper Institute, 

Dallas, Texas, with specific reference to “good” (top 40%), fair and poor (bottom 20%) fitness 

levels. For both age and gender, the difference in achieving the cut point for “good” versus 

“poor” fitness approximates only 2 METs. Collectively, these data suggest that moving either 

from “poor” to “below average” fitness, or from “poor” (bottom 20%) to “good” fitness (top 

40%), is likely to be achieved by moderate-intensity physical activity for a minimum of 30 

minutes on 5 days each week or vigorous-intensity physical activity for a minimum of 20 
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minutes on 3 days each week. Other epidemiologic studies now support a cause-and-effect 

relation between improved CRF and reduced mortality,
19,20

 rather than merely an association 

between these variables, especially when combined with relevant experimental and clinical data 

providing biologic plausibility.
21-22

 Thus, it appears that even modest increases in CRF can have 

a favorable impact on population health. 

Employing METs in exercise programming/prescription 

 Moderate-intensity physical activity is typically defined as 3‒5.9 METs, whereas 

vigorous-intensity physical activity involves aerobic requirements ≥6 METs. Accordingly, 

moderate-to-vigorous intensity physical activity (MVPA), which corresponds to any activity ≥3 

METs, has been consistently shown to reduce the health risks associated with numerous chronic 

diseases and the risk of developing them.
23

 Other recent reports suggest that interventions that 

replace sedentary time with even brief periods of light-intensity physical activity (~2 

minutes/hour) may confer a survival benefit.
24

 Although traditional recommendations suggest 

that accumulated MVPA bouts should last 10 or more minutes to achieve the 30-minute daily 

minimum, recent studies suggest that even shorter periods of MVPA, accrued over time, can 

produce cardiovascular and metabolic health benefits.
25,26

 

Regular endurance exercise or MVPA generally raises the level of CRF when performed 

for an appropriate duration/frequency. When initiating an exercise program, level walking at a 2 

to 3 mph pace is strongly recommended, then gradually increasing walking speed over time. This 

is referred to as the “progressive transitional phase.”
27

 Patients should be advised to stop exercise 

for symptoms of lightheadedness, persistent arrhythmias, angina, unusual shortness of breath, 

moderate-to-severe claudication or musculoskeletal discomfort. They should also be instructed to 

report new or worsening symptoms with exercise to their physician and should seek immediate 
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medical attention for symptoms that do not resolve with rest. As a general guideline, the exercise 

intensity should feel “fairly light” to “somewhat hard” – rather than “hard” or “very hard.” For 

young or middle-aged adults, about 4 to 5 METs corresponds to moderate-intensity activity, and 

6 to 8 METs for vigorous activity. Among healthy adults aged 65 and older, moderate-intensity 

activity approximates 3 to 4 METs, and vigorous exercise about 5 METs or higher. 

 There are, however, limitations that influence the use of METs when characterizing 

exercise intensity and estimating the energy expenditure of physical activities.
28-30

 One limitation 

is the assumption that 1 MET = 3.5 mL/kg/min. Contemporary studies in some populations 

demonstrate that this value significantly overestimates directly measured resting oxygen 

consumption (VO2) and caloric expenditure by, on average, 30% to 35%.
29,31

 In our experience
32

 

and in the experience of others,
33

 coronary patients and those on β-blocker therapy demonstrate a 

significantly lower resting metabolic rate as compared with the commonly accepted MET value. 

Similarly, our data,
34

 and previous reports,
29,30

 suggest a significantly lower resting VO2, 

expressed as mL/kg/min, among coronary patients and the morbidly obese. Our obese study 

population (n = 64; 78% female) averaged 2.4 ± 0.5 mL/kg/min at rest, and most subjects fell 

between 2.0 and 2.6 mL/kg/min, corresponding to 57% to 74% of the standard “normative” 

value. These data have implications for classifying energy expenditure at submaximal and peak 

exercise. For example, the morbidly obese patient with a resting VO2 of 2.4 mL/kg/min and a 

peak VO2 of 16.6 mL/kg/min who is consuming 14.0 mL/kg/min would be classified as working 

at 5.8 METs (14.0/2.4) rather than the conventional estimate, that is, 4 METs (14/3.5). Moreover, 

her CRF would actually be 6.9 METs (16.6/2.4) as opposed to 4.7 METs (16.6/3.5). Depending 

on the ordering indication, underestimating CRF during peak or symptom-limited exercise 

testing may have significant implications for a patient’s plan of care, including incorrectly risk 
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stratifying patients for pre-surgical clearance. Common variables that may potentially influence 

the resting metabolic rate are shown in (Table 3).
29,35

 

 The above-referenced findings also have relevance to exercise prescription and activity 

interventions in selected patient subsets (e.g., deconditioned, coronary, morbidly obese), 

including those with reduced levels of CRF, resting metabolic rate, or both. The threshold 

intensity for improving CRF in unfit individuals approximates only 30% of the VO2 reserve, as 

follows: training VO2 = 0.3 (peak VO2 ‒ VO2 at rest) + VO2 at rest.
36

 For a patient with 

congestive heart failure taking a β-blocker, whose peak and resting VO2 values are 15.4 and 2.5 

mL O2/kg/min, respectively, would suggest a minimum aerobic requirement of 6.4 mL/kg/min 

(i.e., 0.3 [15.4‒2.5] + 2.5), corresponding to walking speeds ~1.0‒2.0 mph. Thus, even “light” 

activity in this cohort, if maintained, may augment CRF and ultimately reduce mortality. 

 Another limitation is that MET values of selected physical activities represent average 

energy expenditure levels, and these levels may vary considerably among individuals, depending 

on age, body habitus, fitness, musculoskeletal integrity and whether the activity is performed in a 

competitive environment.
2
 Metabolic demands are also highly dependent on speed and 

mechanical efficiency (skill). Activities that are less affected by skill include walking, jogging, 

and cycling. On the other hand, swimming, cross-country skiing, and tennis are associated with a 

wide range of energy expenditures. Environmental conditions, clothing and equipment can also 

influence the metabolic cost of activities. 

 Finally, the oxygen costs or MET requirements listed in the compendium of physical 

activities were derived from continuous steady-state work (≥3 minute bouts), whereas activities 

of daily living are often performed intermittently, rather than continuously. Accordingly, a 

patient who only completed Stage I of the conventional Bruce treadmill protocol (1.7 mph, 10% 
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grade), corresponding to a 5-MET capacity, might be counseled to refrain from gardening (a 

requirement of 5‒6 METs), since presumably it represents maximal or supramaximal effort. 

However, if the activity is performed intermittently (i.e., 2 min work, 1 min rest), it can be 

accomplished at oxygen consumption levels well below those estimated for the task (Figure 2). 

Thus, by using the MET concept, one may considerably underestimate the patient’s capacity for 

physical work.
37

 This is particularly important when counseling patients about activities they 

enjoy and that will encourage them to be active such as gardening, swimming, dancing or 

walking the dog. 

Estimating METs during level and graded walking 

 Oftentimes, the MET values provided by contemporary exercise equipment may differ 

considerably from the actual energy expenditure. The treadmill, however, is a notable exception. 

Because the mechanical efficiency of treadmill walking is relatively constant, the oxygen cost of 

treadmill walking is weight-dependent and at a given workload (speed and grade) requires 

approximately the same relative oxygen cost, expressed as METs, for all persons, regardless of 

age, fitness, or body weight.   

 The ‘Rule of 2 and 3 mph’ has been suggested as an assist in estimating “steady state” 

energy expenditure (at ~3 min or longer) during treadmill walking.
38

 At a 2 mph walking speed 

at 0% grade, which approximates 2 METs, each 3.5% increase in treadmill grade adds 1 

additional MET to the gross energy cost (e.g., 2.0 mph, 3.5% grade approximates 3 METs). For 

persons who can negotiate a 3 mph walking speed on level ground, which approximates 3 METs, 

each 2.5% increase in treadmill grade adds an additional MET to the gross energy expenditure 

(e.g., 3.0 mph, 5% grade approximates 5 METs). 

  

Page 10 of 26



11 
 

Estimating activity METs from heart rate 

Heart rate may be used to estimate METs during structured exercise or physical activity. 

Naughton
39

 suggested that in sedentary subjects, each 10 beat per minute (bpm) increase in heart 

rate approximated a 1-MET increase in energy expenditure. Thus, a resting heart rate of 75 

which increases to ~95 with walking (∆ = 20 bpm ~2 additional METs), is the equivalent of 

exercising at ~3 METs (1 MET [resting] + 2 METs = 3 METs). The larger the increase between 

the resting heart rate and the heart rate during exercise, the greater the energy expenditure. Wicks 

et al
40

 reported a simple method for the prediction of oxygen uptake (METs) in patients with and 

without heart disease, including those taking beta-blockers, using the heart rate index equation 

(Table 4). 

 Evolution of Personalized Activity Intelligence. Using a series of reports over several 

years, researchers recently developed a new fitness metric, based on the changes in heart rate 

collected from the HUNT Fitness Study cohort involving >60,000 participants over a 20 year 

period, that monitors the intensity of physical activity.
41

 Termed the personalized activity 

intelligence or PAI score, it is derived from the most recent 7 days of activity using the 

cumulative fluctuations in heart rate which, as detailed above, provides an approximation of the 

relative exercise intensity and associated energy expenditure. PAI is calculated based on the 

individual user’s profile, incorporating age, gender, resting heart rate, and maximum heart rate. 

A unique feature is that it gives more credit for vigorous exercise than mild-to-moderate intensity 

activity. For example, an hour-long 3-mile walk that approximated nearly 6,000 steps earned 7 

PAI, whereas a 30-minute intense bike ride for the same individual earned 56 PAI.
42

 According 

to a recently published HUNT study analysis, after >1 million person-years of observations 

during an average follow-up of 26.2 years, men and women achieving a weekly PAI level ≥100 
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had a 17% and 23% reduced risk of cardiovascular disease mortality, respectively, compared 

with the inactive cohort,
41

 although much of the benefit was obtained by achieving the first 50 

PAI points. The results further suggest that this exercise dosage could increase the lifespan by at 

least 2 years, and up to 10 years for persons under 50. Collectively, these data, and other recent 

reports,
43,44

 suggest that large daily fluctuations in heart rate and energy expenditure, expressed 

as METs, are not only associated with but appear to confer increased survival benefit and 

decreased health care costs. 

In summary, physicians and allied health professionals should encourage patients to be 

physically active by engaging in recreational and leisure-time activities they enjoy and are 

comfortable performing.  Dosing in 5-15 minute bouts, accumulated throughout the day, 

encourages regular physical activity and decreases sitting time. At all patient encounters, asking 

about minutes of daily MVPA is a strong message to patients.
45

 How do we explain the practical 

significance of METs to our patients? By counseling them to increasingly incorporate 

“Moderate-to-vigorous Exercise, Tuesday through Sunday,” or METs, into their lives.  
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LEGENDS 

Figure 1. The risks of coronary heart disease and cardiovascular disease decrease in association 

with increasing quintiles of CRF or aerobic capacity. There is a precipitous drop in risk when 

comparing the lowest (poor) to the next-lowest quintile (below average) for aerobic capacity, 

with a 64% decline in the overall risk of heart disease from the least to the most fit. Interestingly, 

little or no additional benefit occurs when moving from quintile 4 to 5, that is, “good” to 

“excellent” aerobic capacity, suggesting a plateau in reduced relative risk. Adapted from 

reference #17. 

Figure 2. Oxygen uptake during intermittent activity that requires 17.5 mL/kg/min (5 METs) 

during continuous effort is shown by the solid line. Oxygen consumption for the same activity 

performed intermittently (2 minutes of work [W] followed by 1 minute of rest [R]) is shown by 

broken line. Oxygen consumption is lower during intermittent exercise than for continuous 

exercise because of partial repayment of oxygen debt during interspersed rest periods. 
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Table 1   

 

The conventional Bruce treadmill protocol with MET values* for each minute interval  

completed 

 

           MET Requirement*    

Stage     MPH Grade           Minutes  Men  Women Cardiac              

 

1    3.2     3.1    3.6 

  I              1.7               10%  2   4.0     3.9    4.3 

     3   4.9     4.7    4.9 

     4   5.7     5.4    5.6 

 II             2.5   12%  5   6.6     6.2    6.2 

     6   7.4     7.0    7.0 

     7   8.3     8.0    7.6 

III             3.4   14%  8   9.1     8.6    8.3 

     9            10.0     9.4    9.0 

              10            10.7              10.1    9.7 

IV             4.2   16%           11            11.6              10.9  10.4 

              12            12.5              11.7  11.0 

              13            13.3              12.5  11.7  

 V              5.0   18%           14            14.1              13.2  12.3 

              15            15.0              14.1  13.0 

 

*MET values are for each minute completed.  Note that women and cardiac patients achieve 

lower VO2 for equivalent workload.  Holding on to front rail will increase the apparent MET 

expenditure or capacity. 

 

Adapted from reference #6.  
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Table 2A 

 

Fitness and mortality in men, Aerobics Center Longitudinal Study, fitness categories* 

______________________________________________________________________________  

 

Fitness      Age Groups (years)      

Group   20‒29   30‒39   40‒49  50‒59  60‒69  70‒79 

              METs Achieved 

      _____________ 

 

Poor    ≤10.9    ≤10.5    ≤9.9    ≤8.9    ≤7.8    ≤6.8 

Average 11.0‒13.0 10.6‒12 10.0‒12.0 9.0‒10.8 7.9‒9.9 6.9‒8.7 

Good    ≥13.1     ≥12.7    ≥12.1    ≥10.9    ≥10.0    ≥8.8 

_____________________________________________________________________________  

Table values are maximal METs attained during the exercise test 

*Adapted from reference #18. 

 

Table 2B 

 

Fitness and mortality in women, Aerobics Center Longitudinal Study, fitness categories* 

______________________________________________________________________________  

 

Fitness      Age Groups (years)      

Group   20‒29   30‒39   40‒49  50‒59  60‒69  70‒79 

              METs Achieved 

      _____________ 

 

Poor    ≤9.0    ≤8.5    ≤8.0    ≤7.3    ≤6.8    ≤6.1 

Average  9.1‒11.2  8.6‒10.4  8.1‒9.9 7.4‒8.9 6.9‒8.2 6.2‒7.5 

Good    ≥11.3     ≥10.5    ≥10.0    ≥9.0    ≥8.3    ≥7.6 

_____________________________________________________________________________  
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Table values are maximal METs attained during the exercise test 

*Adapted from reference #18. 

 

 

Table 3 

 

Variables influencing resting metabolic rate
*
 

______________________________________________________________________________ 

 Age 

 Body composition 

‒ Fat mass 

‒ Fat-free mass 

 Cardiorespiratory fitness 

 Resistance training 

 Clinical status 

‒ Coronary artery disease 

‒ Congestive heart failure 

 Prescribed medications 

‒ Beta-blockers 

 Gender 

___________________________________________________________________________ 

*
Adapted from references 29, 35. 
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Table 4 

Changes in heart rate to estimate energy expenditure (METs) during daily activities* 

_____________________________________________________________________________ 

The energy cost of any activity, expressed as METs, can be estimated from the resting and 

exercise heart rates using the equation: 

METs = (6 x Heart Rate Index) – 5 

 

where the Heart Rate Index equals the activity heart rate divided by the resting heart rate. 

Example #1   A tennis player’s resting heart rate of 60 beats per minute (bpm) is increased to 

120 bpm during a tennis match. His MET level is estimated as follows: 120 bpm/60 bpm = 2.0 

Heart Rate Index which is multiplied by 6, yielding 12, from which we subtract 5, yielding an 

estimated 7 METs. 

(120/60 x 6) – 5 = (2 x 6) – 5 = 7 METs 

 

 

Example #2   A recreational walker with a resting heart rate of 70 bpm walks at 105 bpm. Her 

estimated MET level is…. 

 (105/70 x 6) – 5 = (1.5 x 6) – 5 = 4 METs 

____________________________________________________________________________ 

 

*Adapted from reference #40. 
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