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S U M M A R Y
We present a new inversion method for Electrical Resistivity Tomography which, in contrast
to established approaches, minimizes the cost function prior to finite element discretization
for the unknown electric conductivity and electric potential. Minimization is performed with
the Broyden–Fletcher–Goldfarb–Shanno method (BFGS) in an appropriate function space.
BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major
obstacle to solving large 3-D problems using parallel computers. In addition to the forward
problem predicting the measurement from the injected current, the so-called adjoint problem
also needs to be solved. For this problem a virtual current is injected through the measurement
electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual
current is equal to the misfit at the measurement electrodes. This new approach has the
advantage that the solution process of the optimization problem remains independent to the
meshes used for discretization and allows for mesh adaptation during inversion. Computation
time is reduced by using superposition of pole loads for the forward and adjoint problems. A
smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied
to construct the potentials for a given electric conductivity estimate and for constructing a first
level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid
solvers inversion time for large 3-D problems can be reduced further. We apply our new
inversion method to synthetic survey data created by the resistivity profile representing the
characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D
surface electrode survey on Heron Island, a small tropical island off the east coast of central
Queensland, Australia.

Key words: Electrical resistivity Tomography (ERT); Inverse theory; Numerical modelling;
Numerical solutions.

1 I N T RO D U C T I O N

Electrical resistivity surveys have long been used to estimate electric
conductivity (or resistivity) profiles of a subsurface region. In these
experiments, electrodes are placed on the ground surface or in bore-
holes and current load is applied to one (pole load) or two electrodes
(dipole load). Electric potentials are recorded at some or all of the
non-loading electrodes. Inversion methods convert measured poten-
tial data from many different applied loads into subsurface maps of
conductivity. Traditional resistivity methods use standard loading
and measuring arrays (e.g. Schlumberger, Wenner or dipole–dipole
(Telford 1990)) with only a limited number of load dipoles and data
measurements used to estimate apparent resistivity values based on
the geometry of loading and measuring electrodes. Modern resis-
tivity imaging devices have large numbers of electrodes and data
collection is automated with measurements recorded at all non-
loading electrodes. Data can be collected for every possible dipole
or pole loading configuration at all measuring electrodes.

For a known conductivity profile, electric potential in the subsur-
face is modelled using a partial differential equation (PDE; Daily
et al. 2012); in the following referred to as the forward model. Data
misfit is defined as a measure of the defects between potentials com-
puted from this forward model with an assumed conductivity and
measured potentials. The misfit can also be defined using apparent
resistivity values (or their logarithmic value), which can be seen
as potential value misfit data scaled with some geometric factors.
Inversion methods minimize a measure of the defects to compute
possible conductivity distributions. The information obtained may
be used further to guess at underground behaviour including water
table location or movement (LaBrecque et al. 2004), location of
anomalies (Rücker et al. 2006a) or influx of salt water (Pidlisecky
et al. 2016).

The computed conductivity distribution and the speed with which
it is computed are impacted by a number of design choices.
Initial decisions are made with the definition of the domain
(2.5-D (Zhou et al. 2009) or 3-D (Rücker et al. 2006a)), boundary
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condition (Dirichlet, Neumann or mixed (Dey & Morrison 1979b;
Li & Spitzer 2002)) and conductivity characteristics (isotropic or
anisotropic (Zhou et al. 2009)) used to model electric potential
in the subsurface. For the algorithm outlined here, we are using a
large 3-D domain, Dirichlet and Neumann boundary conditions and
isotropic conductivity.

A cost function is defined that has a sum of data misfit contri-
butions and an appropriately scaled regularization term to ensure a
unique solution. Since we are not restricted to the traditional loading
or measuring arrays, scaling the data misfit terms relative to each
other is important (Loke et al. 2010, 2015). Regularization can take
many different forms and depends on the additional assumption and
expectation of the conductivity profile (Zhdanov 2002). We simply
choose the H1 norm of the log of the conductivity. The smooth-
ness of the solution is then dependent on the scaling between the
regularization and misfit contributions to the cost function.

The next step is to decide the order of discretization and mini-
mization. The forward PDE can be discretized first so that misfit
becomes a function of discrete values representing the electric con-
ductivity at cells (Pidlisecky et al. 2007). Minimization, using an
inexact Gauss–Newton scheme, requires computation of the gra-
dient of the discrete cost function as well as an approximation
to its Hessian, both a function of the large dense sensitivity ma-
trix, the partial derivative of the defects with respect to changes in
value of electric conductivity at each cell. To compute each New-
ton step, either the Hessian needs to be inverted or an iterative
solver used.

In this paper we follow the approach used by Gross et al. (2015)
for inversion of potential field data. We choose to minimize the
cost function first, using a function space version of the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method (Nocedal & Wright
(2006)), prior to discretization. For our case, the unknown, con-
ductivity, is a part of the differential operator not the right hand
side of the PDE and the measurements taken are potential mea-
surements not derivatives of potential measurements. An adjoint
problem is defined for each forward problem with virtual currents
applied at each measuring electrode proportional to the forward
problem defects. We avoid computation of a sensitivity matrix by
using the product of the forward and adjoint potential gradients
in the calculation of the cost function gradient. After each mini-
mization step is taken, the resulting equation is discretized using
finite elements, see Zienkiewicz et al. (2013). There are two ma-
jor advantages of this approach: the optimization process is inde-
pendent to the discretization mesh, potentially allowing adaptive
mesh refinement during inversion, and adding more misfit mea-
surements to the arrays does not increase the number of PDEs to
be solved. Consequently, using a comprehensive measurement ar-
ray with a large number of measuring and loading dipoles does
not increase the computation time from simply using a Wenner or
Schlumberger array with minimal number of loading and measuring
dipoles.

Solving the discretized equations, whether derived prior to min-
imization or after, dominates computation time. Both the finite dif-
ference method (Dey & Morrison 1979a; Pidlisecky et al. 2007)
and finite element method (Li & Spitzer 2002; Zhou et al. 2009;
Rucker et al. 2011) have been used. Existing finite element method
parallel algorithms (or other discretization methods) that have al-
ready been optimized can be directly applied as solvers for the
inversion problem. Our method is implemented using esys–escript
(Schaa et al. 2016). To solve the matrix equations it uses the TRILI-
NOS C++ library (Heroux et al. 2005) with MueLu (Prokopenko
et al. 2014) algebraic multigrid (AMG) implementation. For each

iteration of the property function, the time intensive part of AMG
(defining coarse grids and their interpolation and restriction opera-
tors and setting up the coarsest grid direct solver) need only be done
once for each conductivity profile, consequently, there are signifi-
cant time savings over standard preconditioned conjugate gradient
(PCG) as demonstrated later in the paper. While versions of multi-
grid (MG) have been used to solve the forward problem, including
conductivity coarsening used by (Moucha & Bailey 2004) for a 2-D
problem and (Pan & Tang 2014) used a cascading MG algorithm
with no coarse grid correction), AMG is more versatile than both
these approaches.

Singularity removal, where the potential is split into two com-
ponents, a primary homogeneous conductivity part and a variable
secondary potential part, is a feature of many inversion algorithms
(Lowry et al. 1989; Dey & Morrison 1979a; Li & Spitzer 2002;
Pidlisecky et al. 2007). It is essential that the homogeneous con-
ductivity used in the primary potential computations, for a particular
electrode, is the value at that electrode. Otherwise, the singularity
is still a part of the secondary PDE. Conductivity at electrodes is
unknown, varies between electrodes and will not remain constant
throughout the inversion. Also, unless the earth is flat it will need
to be solved numerically. For these reasons we have not included
it in our approach but use mesh refinement near the electrodes
instead.

The forward problem is discussed in Section 2.1. Cost function
terms, data misfit and regularization, are discussed in Sections 2.2
and 2.3, respectively. Section 2.4 contains the Gateaux derivative of
the cost function and details of the adjoint equations. Implementa-
tion of the iterative method BFGS is explained in Section 3. A brief
description of AMG PCG is in Section 4. Results from a structured
mesh synthetic test case are in Section 5.1. A reduction in the total
number of forward and adjoint solves can be made by taking advan-
tage of the superposition principle. Each dipole is the superposition
of two poles (Rücker et al. 2006a). We only need to solve pole loads
for all electrodes with dipole potentials computed by adding scaled
pole potentials. This leads to significant time advantages especially
if electrodes always act as either source or recorder for each current
load. (Details of the simplifications can be found in Appendix A.)
We take advantage of this feature of the PDE in Section 5.2 where
we use our inversion method on data obtained from Heron Island
using an unstructured grid with refinement around the electrodes.
Section 6 contains some concluding remarks and future plans.

2 P RO B L E M F O R M U L AT I O N

Consider a bounded domain � ⊂ R
3, with boundary ∂� that in-

cludes air/ground interface, �s⊂∂�. Our objective is to reconstruct
the electric conductivity profile, σ , on domain �, given potential
measurements recorded at a number of locations for different ap-
plied electric current density loads. To find σ , we minimize a cost
function F, defined for all admissible conductivity profiles, that in-
cludes both a term for data misfit between measured and computed
potentials Fd, as well as a regularization term FR,

F = Fd + μFR, (1)

where μ is an appropriately chosen Tikhonov regularization factor.
The regularization term is included to ensure a unique solution
(Tikhonov & Arsenin 1977). Functions Fd and FR are discussed in
more detail later.

In order to maintain appropriate characteristics of the conduc-
tivity, like positivity, a property function m, a parametrization of
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σ = σ (m) is introduced. The minimum of cost function F in equa-
tion (1) is characterized by vanishing Gateaux derivative

〈
F ′(m), δm

〉 = ∂ F(m + ξ · δm)

∂ξ

∣∣∣∣
ξ=0

= 0, (2)

for ξ ∈ R and all admissible increments δm of the unknown mini-
mizing property function m.

In contrast to conventional Electrical Resistivity Tomography
(ERT) inversion approaches, for instance (Rücker et al. 2006b), we
do not choose to minimize for a discretized version of property
function m. Following the approach by Gross et al. (2015) we leave
the discretization to a later stage in the inversion approach. We min-
imize first, solving the resulting problem using the BFGS algorithm
formulated for a continuous function space, not the usual discrete
Euclidean space formulation as developed in Nocedal & Wright
(2006). After discretization using the finite element method (FEM),
we solve the resulting matrix equations with the AMG method
(Briggs et al. 2000; Vaněk et al. 1996). In the following we present
more details of this approach.

2.1 Forward problem

For a given conductivity, σ (or property function m), the forward
problem models for electric potentials due to various electric load-
ing experiments need to be solved in �. For each applied load
represented by the current density source term q(i), total electric
potential, φ(i), is the solution of PDE

− ∇ · (σ∇φ(i)) = q (i), in �. (3)

Symbols ∇ and ∇ · refer to the gradient and divergence operators
respectively and index i is used to differentiate between different
applied load cases. For a dipole with applied electric current I(i),
positive electrode at xa(i) and negative electrode at xb(i) , load is
applied with the 3-D form of Dirac’s delta function δ (Dey &
Morrison 1979a),

q (i) = I (i) (δ(x − xa(i) ) − δ(x − xb(i) )) . (4)

To complete the problem we set boundary conditions on ∂�. There
is no flux across the air/ground interface,

σn · ∇φ(i) = 0, on �s, (5)

with outer normal field n. There are several possibilities for the
boundary conditions on the remaining boundaries, see Rücker et al.
(2006a). In order to simplify the discussion we use Dirichlet bound-
ary conditions of the form

φ(i) = 0, on ∂�\�s . (6)

This condition is justifiable if the domain is sufficiently large so that
boundary conditions have no significant impact on the small region
where σ is to be recovered.

The weak form of (3) (Brenner & Scott 1994), with boundary
conditions (5) and (6) and dipole source given by (4) is∫

�

σ∇ψ · ∇φ(i)dx = I (i)

∫
�

(δ(x − xa(i) ) − δ(x − xb(i) )) ψ dx

= I (i) (ψ(xa(i) ) − ψ(xb(i) )) , (7)

for all admissible potential functions ψ . The solution space for φ(i)

consists of all sufficiently smooth functions, ψ , for which equation
(7) is well defined and boundary conditions (6) are satisfied. Note
that in (7) the first gradient operator on the left above only acts on
ψ as there are no brackets.

2.2 Data misfit

To quantify the defect of predicted potentials φ(i) at recorder loca-
tions {xr (i) } for a given electric conductivity σ , we introduce a misfit
function using the Euclidean norm

Fd = 1

2

∑
i

∑
r

w(i)
r

(
φ(i)(x(i)

r ) − V (i)
r

)2
, (8)

where V (i)
r is the measured potential at recorder x(i)

r from source
configuration q(i). Summation is taken over all measurement points
x(i)

r for each current density load q(i). Coefficients w(i)
r ≥ 0 are used

to weight measurements according to confidence or using some
geometric factor. The value of misfit Fd is a function of the elec-
tric conductivity σ (and therefore property function m) via (3) for
potentials φ(i).

In field experiments it is more likely that dipole potential mea-
surements are taken with data misfit defined

Fdc = 1

2

∑
i

∑
r,c

w(i)
rc

(
φ(i)

(
x(i)

r

) − φ(i)
(
x(i)

c

) − V (i)
r + V (i)

c

)2
, (9)

where weighting factor w(i)
rc is determined by both the load current

source term q(i) and position of nodes xr and xc. Summation is
taken over all load cases (i) and all receiver pairs (xr , xc). Classical
electrode configurations such as Wenner and Schlumberger can
be defined using appropriate values for the weighting factors. The
following derivations are presented for the pole configuration (8)
but are easily generalized for dipole recorder configuration (9).

With modern multichannel loggers, say one with 64 electrodes
that can act as either source or recorder, there are 64×63

2 = 2016
possible loading dipoles and for each loading dipole there are
62×61

2 = 1891 possible dipole recorder combinations (not all inde-
pendent (Noel & Xu 1991)). For field data using all possible dipole
loads and dipole recorders could possibly reduce the impact of data
noise. In our method we need to solve PDE (3) (and the corre-
sponding adjoint PDE as introduced later) for each loading dipole.
All 4032 PDEs need to be solved for each iteration of the property
function. However, forward problem (3) (and its corresponding ad-
joint problem) are second order linear PDEs and the superposition
principle can be used to reduce computation time. Instead of solving
4032 PDEs, with superposition only 64 need be solved.

2.3 Property function and regularization

Data misfit functions (8) and (9) do not have unique minimums. In
order to pick the ‘simplest’ answer a regularization term FR is added
to the cost function F (see Tikhonov & Arsenin 1977; Li & Old-
enburg 1996). For simplicity we use the H1 norm with a Tikhonov
factor μ, however the method presented can easily be extended to
other regularization approaches. Regularization could also reduce
the impact on computed property functions of measurement errors
in real data.

To ensure positive conductivity we introduce the property func-
tion m, with σ = σ (m) such that σ (m) > 0 in �. Here we choose

σ = σ0em

with an estimated σ 0, for instance as the outcome of previous inver-
sion in time-lapse ERT. We assume that throughout the inversion
σ remains constant on the boundary of the domain except surface
�s. This is enforced by keeping m = 0 on ∂�\�s. Again we as-
sume that domain � is chosen sufficiently large so that errors in
σ 0 on ∂�\�s have very little impact on the computed value of the
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potential near the electrodes where we need to recover the distribu-
tion of σ .

We use scaled H1 regularization of the property function in the
form

μFR = 1

2

(
μ0‖m‖2

L2(�) + μ1‖∇m‖2
L2(�)

)
, (10)

where μ0 and μ1 are non-negative trade-off factors which need to
be chosen appropriately, and ‖.‖L2(�) is the L2 norm over domain
�,

‖a‖L2(�) =
∫

�

|a|2dx .

Factor μ0 is usually chosen to be small or zero (we will choose
zero in our example) and factor μ1 needs to be chosen small enough
so that regularization does not dominate the cost function but also
large enough to provide sufficient smoothing to the property func-
tion. It is pointed out here that it is a common approach in geophysics
to apply smoothing to the already discrete version of m across a cho-
sen grid or mesh, for example, Rücker et al. (2006b), but in this
paper the continuous, integral form (10) is used to implement the
minimization method.

2.4 Cost function and Gateaux derivative

The cost function to be minimized is

F = 1

2

∑
i

∑
r

wir (φ(i)(xr ) − Vir )2

+ 1

2

(
μ0‖m‖2

L2(�) + μ1‖∇m‖2
L2(�)

)
. (11)

To minimize this cost function, we need to find function m for which
the Gateaux derivative with respect to any incremental change in
δm is zero as stated in equation (2). We express this in the form〈
F ′(m), δm

〉 = 0.

We will establish the representation for the derivative in the weak
form〈
F ′(m), δm

〉 =
∫

�

(X · ∇δm + Y δm) dx, (12)

with suitable functions X and Y which depend on m but are inde-
pendent of δm.

The scaled H1 inner product corresponding to norm (10) is de-
fined as

(p, v)1 = μ0

∫
�

p v dx + μ1

∫
�

∇ p · ∇v dx, (13)

for all admissible property functions p, v. By admissible property
functions we mean those functions for which norm (10) is well
defined and that satisfy boundary conditions m = 0 on ∂�\�s. For
the regularization term in cost function (11), the Gateaux derivative
is just the scaled H1 inner product〈
F ′

R(m), δm
〉 = (m, δm)1

which can easily be linked with representation (12).
Computation of the data misfit component of the derivative is

more complicated. To simplify notation, we define the weighted
defect for pole load i for electrode located at xr to be

D(i)
r = w(i)

r

(
φ(i)

(
x(i)

r

) − V (i)
r

)
. (14)

Using this definition, the data misfit contribution to the cost function
gradient is〈
F ′

d (m), δm
〉 =

∑
i

∑
r

D(i)
r δφ(i)

(
x(i)

r

)
, (15)

where δφ(i) is the change in potential φ(i) corresponding to the
change in property function δm. While Fd is easily computed (it is
just the Euclidean norm of the defects), it is more difficult to obtain
estimates for

〈
F ′

d (m), δm
〉
.

Our approach is to establish a relationship between a change in
property function δm and a corresponding change in potential δφ(i).
We first consider the incremented potential forward PDE. Misfit is
a function of electric conductivity σ (m) via PDE (3) for potentials
φ(i), so change in property function δm corresponds to change in
potential and PDE (3) becomes (with no change to the right hand
side)

∇ · (
σ (m + ξδm)∇(φ(i) + ξδφ(i))

) = q (i), (16)

with ξ from (2). Clearly, φ(i) + ξδφ(i) will be in the same solu-
tion space as φ(i), satisfying the same requirements and bound-
ary conditions. Using a first order approximation σ (m + ξδm) ≈
σ (m) + ξσ ′δm, where σ ′ denotes the derivative of the conductivity
σ with respect to property function m, (16) becomes

∇ · (
(σ + ξσ ′δm)∇(φ(i) + ξδφ(i))

) = q (i). (17)

Expanding (17)

∇ · (σ∇φ(i)) + ξ∇ · (σ∇δφ(i)) + ξ∇ · σ ′δm∇φ(i))

+ ξ 2∇ · (σ ′δm∇δφ(i)) = q (i),

then simplifying, by cancelling the zero order terms and ignoring
second-order terms in ξ as ξ → 0, reduces it to

∇ · (σ∇δφ(i)) = −∇ · (σ ′δm∇φ(i)).

In weak form this is given as∫
�

σ∇ψ · ∇δφ(i)dx = −
∫

�

σ ′δm∇ψ · ∇φ(i)dx, (18)

for any admissible potential ψ in the potential solution space.
For each forward PDE (3), we solve for an adjoint potential, φ

(i)
∗ ,

induced by a load applied at each measuring electrode equal to the
weighted defect D(i)

r at that electrode, with conductivity σ the same
as the forward PDE,

− ∇ · (σ∇φ∗(i)) =
∑

r

Dr
(i)δ(x − xr ), in �, (19)

where r is summed over all recorders. Just as superposition can be
used to reduce the number of forward problems, superposition can
also be used to reduce the number of adjoint PDE’s that need to
be solved. For pole or dipole measurements, the number of adjoint
equations to be solved would be the minimum of the number of
load cases and the number of recorder positions. (If the loading
electrodes and recorder electrodes are the same and the boundary
conditions for the forward and adjoint PDE’s are the same then no
new PDEs need be solved.) For a fixed number of electrodes, adding
more measurements only increases the complexity of the right hand
side of the adjoint PDE (19). As a consequence, minimizing the
use of recording locations, driving the use of Schlumberger and
Wenner configurations, is not a requirement, allowing the use of
comprehensive arrays.

In weak form, adjoint PDE (19) is given as∫
�

σ∇φ(i)
∗ · ∇ψ dx =

∑
r

D(i)
r ψ(xr (i) ), (20)
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for any admissible potential ψ in the potential solution space. By
setting ψ = δφ(i), we obtain∫

�

σ∇φ(i)
∗ · ∇δφ(i) dx =

∑
r

D(i)
r δφ(i)(xr (i) ). (21)

The summation of (21) over all load cases i is the value of the data
misfit derivative (15), so

〈
F ′

d (m), δm
〉 =

∑
i

∫
�

σ∇φ(i)
∗ · ∇δφ(i). (22)

Returning to (18) and choosing ψ = φ
(i)
∗ , we obtain∫

�

σ∇φ(i)
∗ · ∇δφ(i)dx = −

∫
�

σ ′δm∇φ(i)
∗ · ∇φ(i)dx . (23)

Combining (22) with the summation over the dipoles i in (23), we
obtain〈
F ′

d (m), δm
〉 = −

∫
�

σ ′ ∑
i

(∇φ(i)
∗ · ∇φ(i)

)
δm dx,

for all property function increments δm.
With this result and the gradient representation (12) for the reg-

ularization component, we can now establish coefficient functions
for gradient F ′ of the cost function as

X = μ1∇m

Y = μ0m −
(

σ ′ ∑
i

∇φ(i)
∗ · ∇φ(i)

)
. (24)

It is emphasized that calculation of the gradient requires the solution
of adjoint PDE (20) for each input source where the forward PDE
and the adjoint PDE are solved independently.

For dipole measurements using the dipole defect function (9) the
process is the same except with adjoint dipole applied loads,

− ∇ · (σ∇φ(i)
∗ ) =

∑
r,c

D(i)
rc (δ(x − xr (i) ) − δ(x − xc(i) )), (25)

where

D(i)
rc = w(i)

rc

(
φ(i)(xr (i) ) − φ(i)(xc(i) ) − (Vir − Vic)

)
,

and w(i)
rc is the weighting for measuring dipole for load case (i), with

electrodes at xr and xc.

3 S O LU T I O N M E T H O D

We need to find property function m, such that

〈
F ′(m), δm

〉 =
∫

�

(X · ∇δm + Y δm) dx = 0,

for all admissible property increments δm. We use the BFGS method
to iteratively find an acceptable approximation for m. This method
is generally formulated for solving nonlinear, unconstrained opti-
mization problems in the Euclidean space R

n, see Nocedal & Wright
(2006). For our implementation, we apply it directly to the property
function m and gradient F ′(m) where the usual dot product is re-
placed by an integral. In the k + 1 BFGS iteration step, property
function mk, is updated by first finding search direction pk, then step
size αk. The update is

mk+1 = mk + αk pk . (26)

This is a quasi-Newton method so −pk is an approximation to the
product of the inverse Hessian of F at mk and the gradient at mk. To

orthogonalize search directions the dual product (12) is used instead
of standard Euclidean dot product which will be discussed later in
more details.

Typically, the iteration is started from σ 0, that is, m0 = 0. Each
weak form of the forward PDE (7) is solved and weighted de-
fects (14) are computed for each measuring electrode. An update
to m is found in two parts—first search direction pk (section 3.1)
then step size αk (Section 3.2). The calculation of the search di-
rection requires the solutions of the adjoint PDEs (20) and an ap-
proximation to the Hessian which is modified within BFGS us-
ing the two step algorithm discussed below. Step size αk is found
via a line search method and satisfies the strong Wolfe conditions
(Nocedal & Wright 2006). The property function is updated us-
ing (26). This process is repeated until convergence is detected.
Convergence criteria for iteration termination is

‖mk − mk−1‖∞ ≤ m tol‖mk‖∞,

where mtol is the relative tolerance and ‖.‖∞ is the L-infinity norm
(the maximum absolute value over the domain).

Algorithm 1 Two loop recursion in the BFGS method

〈T, ◦〉 ← 〈
F ′

k, ◦
〉

�Orthogonalization:
for j = k − 1, k − 2, ...k − a do

γ j = ρ j

〈
T , s j

〉
〈T, ◦〉 ← 〈T, ◦〉 − γ j

〈
G j , ◦

〉
end for
�Approximate Inverse of Hessian:
solve for p: (p, δm)1 = 〈T, δm〉 for all δm
�Update Inverse of Hessian:
for j = k − a, k − a + 1, ...k − 1 do

p ← p + s j

(
γ j − ρ j

〈
G j , p

〉)
end for
return pk = p

3.1 Search direction

Each new search direction pk is constructed with a sequence of inner
products and additions using the current gradient, stored gradient
differences and stored property function differences as well as an
initial approximation for the Hessian operator. Note that the BFGS
algorithm does not require an approximation of the inverse Hessian
at mk and the gradient at mk separately. Instead, an approximation
to the product of the inverse Hessian and the gradient at mk is used.
The two loop algorithm from Nocedal & Wright (2006) returns step
direction pk. It is a outlined in Algorithm 1.

To simplify the notation, instead of F ′(mk) we use F ′
k with cor-

responding terms Xk = X(mk) and Yk = Y(mk). We define notation〈
F ′

k, ◦
〉 =

∫
�

(Xk · ∇ ◦ +Yk ◦) dx,

to indicate that this integral is not evaluated but its components Xk

and Yk are simply stored. Similarly, we store gradient differences as

〈Gk, ◦〉 = 〈
F ′

k+1 − F ′
k, ◦

〉
=

∫
�

(Xk+1 − Xk) · ∇ ◦ +(Yk+1 − Yk) ◦ dx .

The limited-memory BFGS (L-BFGS) version keeps gradient dif-
ferences and search directions for only a fixed number of previous
iterates, a. Property function differences are also stored,

s j = m j+1 − m j = α j p j ,
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for all j ∈ [k − a, k − 1]. The inner product of the gradient difference
and the step is defined

〈
G j , s j

〉 =
∫

�

(
X j − X j−1

) · ∇s j + (Y j − Y j−1) s j dx .

Temporary variable T is initialized with F ′
k and then orthogo-

nalized against previous stored gradient differences. We denote the
combinations of X j and Yj used in the computation of T as X̂ and
Ŷ ,

〈T, ◦〉 =
∫

�

(X̂ · ∇ ◦ +Ŷ ◦) dx .

Stored T is updated at every iterate in the first part of the two loop
recursion algorithm. We define and store

ρ j = 1〈
G j , s j

〉 ,
for all j ∈ [k − a, k − 1]. In the first part of the two loop recursion
we compute and temporarily store terms γ j. For these terms we
evaluate T at sj,〈
T, s j

〉 =
∫

�

X̂ · ∇s j + Ŷ s j dx .

The BFGS algorithm requires an initial approximation to the
Hessian which is updated in the second loop of Algorithm 1. In
our case, as in many practical cases, it is difficult or expensive to
construct the Hessian operator exactly but the BFGS method is able
to deal with an initial approximation to the Hessian operator which
then plays the role of a preconditioner. Here we use the Hessian
operator of the regularization term only, the scaled H1 inner product
(13). Search direction p is found by solving

(p, δm)1 = 〈T, δm〉 (27)

for every admissible property function increment δm with T from
the first loop of Algorithm 1. It is important to note that it is not
necessary to use the same high tolerance in the computation for the
initial Hessian guess as was used to solve the forward and adjoint
PDE’s making a significant saving in computation time.

3.2 Step size

Once the search direction is known, the step size is computed using
a line search method. Full details for this method can be found
in Nocedal & Wright (2006). Optimal step length is given by

αk = arg min
α

F(mk + α · pk).

Solving this minimization problem is computationally expensive
as every step size guess requires a new solution of forward PDEs
(7) and cost function evaluation (11). Instead, we find an αk that
satisfies the strong Wolfe conditions (Nocedal & Wright 2006).
The first Wolfe condition or Armijo condition for α ensures that the
next iterate has sufficient decrease

F(mk + αpk) ≤ Fk + c1α
〈
F ′

k, pk

〉
, (28)

with c1 ∈ (0, 1). (We use c1 = 10−4). The second condition for α is
a curvature condition and ensures that the step size is not too small

| 〈F ′(mk + αpk), pk

〉 | ≤ c2|
〈
F ′

k, pk

〉 |, (29)

with c2 ∈ (c1, 1). (We use c2 = 0.9.)
The search strategy has two parts. The first part searches for a

bracketing interval (αa, αb), that contains a step length that satisfies
the strong Wolfe conditions (28) and (29). Let α̂i denote the ith

guess for a bound in step length. For the first BFGS iterate we use
(α̂0, α̂1) = (0, 1) and for the kth BFGS iterate we use (α̂0, α̂1) =
(0, αk−1) The value of each successive α̂i is increased until one of
the following three conditions is met:

(i) α̂i violates the first Wolfe condition (28),
(ii) F(mk + α̂i pk) ≥ F(mk + α̂i−1 pk) or
(iii) 〈F ′(mk + α̂i pk), pk〉 ≥ 0.

If α̂i satisfies either of the first two conditions, then bracketing
interval (αa, αb) = (α̂i−1, α̂i ) is used for the second part of the step
size algorithm. If the third condition is satisfied then the roles of
α̂i−1, and α̂i are reversed and the interval (αa, αb) = (α̂i , α̂i−1) is
used instead.

Once an appropriate interval is found, the second part of the line
search algorithm is called. It uses a bisection method on interval (αa,
αb) to find a step length that satisfies the strong Wolfe conditions
(28) and (29). At each step, the interval is reduced such that it still
brackets an appropriate step length (using the same three conditions
above). Once a step length is found that satisfies both strong Wolfe
conditions then it is returned as the step length αk and the line search
terminates.

4 F I N I T E E L E M E N T S A N D A L G E B R A I C
M U LT I G R I D P R E C O N D I T I O N E D
C O N J U G AT E G R A D I E N T

We discretize the PDEs using conforming first-order tetrahedral fi-
nite elements on structured and unstructured grids, see Fig. 1. The
finite element method is well established so we do not present it
here (see for instance Zienkiewicz et al. (2013) for details). As
shown in Lamichhane & Gross (2017) well-posedness of the over-
all problem requires the same finite element mesh for the forward
PDEs (7) and adjoint PDEs (20) while the mesh for the property
function m can be chosen more or less independently. To simplify
the discussion in this paper we use the same finite element mesh
for all three PDEs involved. Potentials φ(i), adjoint potentials φ

(i)
∗

and the property function m, are represented through the values at
the vertices of the tetrahedrons. The cost function gradient and all
the functions derived from this during the BFGS iteration are stored
by their values at the quadrature points within each tetrahedron of
the mesh. In our implementation, we also use this mesh to repre-
sent the conductivity (through the property function) although the
resolution for the property function may then be much higher than
necessary (Lamichhane & Gross 2017). Lower resolution meshes
for the property function could be used and would improve effi-
ciency of the inversion but would require a careful design of the
inter-mesh interpolation, in particular when building the right-hand
side of the preconditioner step (27) in the middle of the two loop
recursion Algorithm 1.

After FEM discretization, each PDE reduces to a matrix equation
of type

Ahuh = fh, (30)

where Ah is the operator matrix, uh is the vector of unknowns at the
element vertices, fh represents the right hand side. The upper index
h indicates the mesh size. For the PDEs to be solved the operator
matrix is sparse, symmetric and positive definite and therefore the
system of equations (30) can be solved iteratively using the PCG
method (Golub & Van Loan 1996). To reduce computation time
we use smoothed aggregation AMG (Vaněk et al. 1996) as a pre-
conditioner for conjugate gradient. We give a brief outline of the
method.
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Iterative methods initially converge rapidly as the oscillatory er-
ror is reduced and stall when only smooth error is left. At this
stage further iterations are ineffective at removing error. Geometric
Multigrid (GMG) methods were developed to reduce computation

Figure 1. Example 5.2: Finite Element Mesh for Rectangular Surface 8 × 8
electrode survey on Heron Island with a close up of the mesh at the ground
surface and electrodes. It has 40 209 nodes and 248 521 elements.

Algorithm 2 Two grid AMG solver

Grid Action
h Iterate on Ahuh = fh to get vh

h Compute fine grid residual rh = fh − Ahvh

h → H Restrict fine grid residual rh to coarse grid,rH

rH = IH
h rh

H Iterate on AH eH = rH to get eH

(or use direct solver)
AH = IH

h AhIh
H

H → h Interpolate coarse error eH to fine grid eh

eh = Ih
H eH

h Correct fine grid solution with error vh = vh + eh

h Iterate on Ahuh = fh to get vh

time in iterative matrix solvers for structured grids, with the ob-
ject to bound the number of iteration steps even for an increasing
number of unknowns (Briggs et al. 2000). GMG uses a sequence of
structured grids with each successive coarse grid usually doubling
grid size in each direction. The following description is for two
level GMG, with fine grid h and coarse grid H. For multiple levels,
this algorithm is just applied recursively. We iterate on the fine grid
solving eq. (30) to get an approximate fine grid solution vh . Fine
grid residual rh is defined as

rh = fh − Ahvh . (31)

Iteration error on the fine grid, eh , can be written

eh = uh − vh . (32)

Combining (30), (31) and (32) leads to the residual equation on the
fine grid

Aheh = rh .

After iteration on the fine grid, the error is smooth on this grid
and it can be represented well on the coarse grid, where it will
appear more oscillatory. It is important to remember that even if the
residual is small, it does not mean that the error eh is small, only that
the error is smooth in the sense of Aheh ≈ 0. A restriction operator,
IH

h , is defined to restrict fine grid residual to the coarse grid,

rH = IH
h rh,

where rH is a representation of the fine grid residual on coarse grid
H. Restriction could be injection where the value at each coarse grid
point is simply the value at the corresponding fine grid point. More
generally the value at a coarse grid point is a combination of values
from the corresponding fine grid point and its immediately adjacent
neighbours. As well as restriction operators to transfer solutions
from level h to level H, there are also interpolation operators, Ih

H , that
transfers solution from level H to level h. The simplest interpolation
operator is linear interpolation, fine grid values at nodes that appear
in the coarse grid just take that value and all other fine grid values are
linearly interpolated from neighbouring points. The full weighting
restriction operator is the transpose of linear interpolation. Using
restriction and interpolation operators, the coarse grid matrix is
defined

AH = IH
h AhIh

H .

The next step of the GMG algorithm is to iterate on the coarse
grid residual equation

AH eH = rH . (33)
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with zero initial guess, where eH is the coarse grid error. If the coarse
grid is sufficiently small this equation is solved using a direct solver
(based on LU factorization). Alternatively, the coarsening process
can be applied again after the equation has been solved iteratively
to remove oscillatory components. Once eq. (33) has been solved
with sufficient accuracy, eH can be easily interpolated to the fine
grid,

eh = Ih
H eH ,

where it is used to correct the approximate solution

vh ← vh + eh .

Further iteration on the fine grid (30) smooths the error before
returning back to the coarse level. The method is outlined in Algo-
rithm 2 for two level case with more details in Briggs et al. (2000).
It is important to note that moving errors or residuals between grids
only occurs after the error has been smoothed on that grid to mini-
mize loss of information.

AMG was developed for use in unstructured grids but also to
overcome some of the limitations of GMG in the presence of spa-
tially variable conductivity and of anisotropy. Coarse ‘grids’ (they
are not grids as such, but this terminology aids understanding), in-
cluding the restriction and interpolation operators, are determined
from the entries in matrix Ah alone, without reference to any mesh
information. There are a number of different AMG algorithms,
see Stuben (2001). We use smoothed aggregation, see Vaněk et al.
(1996), Tuminaro (2000).

The first step of this algorithm is to form the coarse grid by using
strong connections in the matrix Ah to select disjoint aggregates.
Two unknowns i and j are called strongly connected if Ah has a large
nonzero entry in the ij position relative to the diagonal entry. A graph
of the strong connections is created with each vertex representing an
unknown and each strong connection represented by an edge. The
idea is to form a new coarse graph with a maximum independent
set of vertices, each coarse vertex representing an aggregate of fine
grid vertices that defines the set of unknowns for the coarse grid.
Any two coarse grid vertices do not share an edge in the fine grid,
but each coarse grid vertex shares an edge with a vertex outside
the maximum independent set. Such a set can easily be constructed
using a greedy search. Once the coarse level is known the next step
is to determine the interpolation, Ih

H , and restriction, IH
h = (Ih

H )t ,
operators. A piecewise constant initial guess for the interpolation
operator is chosen with 1 in position ij only if node i is strongly
connected to node j in the fine grid, otherwise the entry is 0. The
initial interpolation operator is then smoothed with a few steps of a
Jacobi method, see Vaněk et al. (1996)) for more details. Once the
interpolation and restriction operators are known and grids chosen,
algorithm 2 is followed.

The most time critical part of an AMG algorithm is determining
coarse grids and corresponding operators. Computation of the direct
solver used for the coarsest grid solve can also be computationally
intensive. As the operator matrix for the forward and adjoint PDEs
are identical, we are able to implement an AMG reuse strategy that
constructs the AMG operators for the current electric conductivity
once only at the beginning of each BFGS iteration step. All subse-
quent forward and adjoint PDEs for this property function reuse the
AMG data, significantly reducing computational costs. The Hessian
computation is considered separately and is also solved using AMG,
however it does not need to be solved to the same tolerance as the
forward or adjoint PDEs. We have implemented the BFGS inver-
sion method in python using FEM solver environment esys–escript

Figure 2. Example 5.1: Input conductivity for synthetic test case. The grey
area has conductivity 0.01�m and the dark blue region has conductivity 0.2
�m

(Schaa et al. 2016). To solve the matrix equations it uses the TRILI-
NOS C++ library (Heroux et al. 2005) with MueLu (Prokopenko
et al. 2014) AMG implementation. In the test on parallel computers
presented in the next section we use two levels of coarsening. A
better parallel repartitioning of the coarse grids would increase the
number of levels we could use and potentially reduce computation
time further.

5 T E S T C A S E S

We tested our algorithm using synthetic data created with a known
conductivity distribution to mimic CO2 injection. For this inver-
sion problem we looked at the contribution AMG made to reduc-
tion in computation time as well as optimal BFGS parameters and
Tikhonov regularization factor. There were two distinct sets of elec-
trodes, the loading electrodes and the measuring electrodes. For this
test case, loading electrodes never acted as measuring electrodes.

The second inversion test case used data obtained from Heron
Island off the east coast of Australia. For this test case, all recorded
data (576 dipoles) were used for the inversion and the 64 electrodes
acted as either a loading electrode or a receiver electrode for each
load case. Superposition was used to compute potentials for both
the forward and adjoint problems. Using superposition for this case
significantly reduced computation time.

Tests were carried out on an Intel (R) Core(TM)i7-4770
CPU@3.4 GHz desktop computer running Debian 8.5 Linux, using
Open MP with 8 threads, 1 MPI process and 32GiB of memory and
also on Savanna, an Intel Xeon CPU E5-2660 computer running
Linux, using 4 nodes, each with 126 GiB of memory and 2 MPI
processors and 10 open MP threads per process.

5.1 Synthetic case

Our first test case was a cube of edge length 25m similar to a test
case from Pidlisecky et al. (2007). The air/ground interface was the
top surface of the cube. Input conductivity, σ , is shown in Fig. 2.
Sources were set up as a 5 × 5 grid at a depth of 4 m with 2 m spacing.
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Figure 3. Example 5.1: Source and receiver placement for synthetic test
case.

Table 1. Example 5.1: Total computation time for 40 forward solves of
forward problem (7) with default esys–escript PCG solver, TRILINOS PCG
(both with Jacobi preconditioning) and TRILINOS AMG PCG on desktop.

Total esys–escript TRILINOS TRILINOS
nodes Grid PCG PCG AMG

(s) (s) (s)

140 608 513 40 41 7
1 000 000 993 696 616 46
3 511 808 1513 3719 3372 165
8 000 000 1993 366
10 648 000 2193 500

Recorders were located on the surface of a cylinder with radius 7m
and vertical central axis in the centre of the horizontal x–y plane.
There were 8 recorders at each horizontal level, (equally spaced
around the circle) and there were 21 vertical levels of recorders
from 2m depth to 20m depth, a total of 168 measuring electrodes,
shown in Fig. 3. Data were created using dipole loads and pole
measurements over structured meshes.

Inversion computation time is dominated by solving the forward
and adjoint PDEs. Using esys–escript default tolerances, we com-
pared computation times for solving forward problem (7) 40 times
to mimic one step of BFGS so that solver choices could be opti-
mized, see Table 1. Computation time differences between the PCG
esys–escript solvers and TRILINOS PCG were minimal. There was
significant reduction in computation time from Jacobi PCG to AMG
PCG for solving forward problem (7). For the 513 grid, TRILINOS
AMG was about 6 times faster than TRILINOS PCG and for the
1513 grid this had improved even more to about 20 times faster,
see Table 1. AMG setup time is only needed for the first forward
PDE, see Table 2. Subsequent forward PDE solutions reuse the in-
terpolation and restriction operators as well as the coarse grid direct
solver. For this example, compute time for AMG grows linearly with
grid size for both the initial solve and subsequent solves. Times are
shown only for the smaller grids for Jacobi PCG as computation
time for the 993 grid was larger than the time for the AMG PCG on
the 2193 grid.

Table 2. Example 5.1: Average time per forward PDE solve with default
esys–escript PCG solver, TRILINOS PCG and AMG PCG on desktop.
For AMG PCG time was recorded for the first solve which included the
generation of the AMG operators and coarse grid solver and then the average
of the subsequent 39 solves.

Total Grid esys–escript TRILINOS AMG AMG
nodes size PCG PCG first rest

(s) (s) (s) (s)

14 068 513 1.0 1.0 0.6 0.17
1 000 000 993 17.4 15.4 3.9 1.1
3 511 808 1513 93.0 84.3 13.9 3.9
8 000 000 1993 33.7 8.5
15 813 251 2193 47.5 12.5

Table 3. Example 5.1: Computation times for solving pole load forward
PDEs (7), for the first solve, which included the generation of the AMG
operators and coarse grid solver, the average of the subsequent 24 solves,
total time for all 25 pole loads and construction time for 300 dipole potentials
using superposition with TRILINOS AMG PCG on desktop.

Total Grid PDE PDE PDE Construct
nodes size first rest all 25 300 dipoles

(s) (s) (s) (s)

140 608 513 0.6 0.17 4.6 0.38
1 000 000 993 3.9 1.1 32.0 1.44
3 511 808 1513 13.9 3.9 108.4 4.50
8 000 000 1993 33.7 9.1 259.5 9.98
15 813 251 2513 115.6 18.1 550.1 21.06

Instead of solving dipole load forward problems (7), pole load
forward PDEs can be solved and dipole potentials computed using
superposition. To assess the potential reduction in computation time
using superposition, we solved 25 independent pole PDEs and used
superposition to compute all possible dipole potentials. Computing
all 300 possible dipole potentials by superposition takes less time
than solving the first pole equation or two subsequent pole equations
(see Table 3) for each grid size. This will be especially relevant for
examples where dipole measuring is used.

There are a number of factors that could impact the computed
solution and computation time for the inversion, including stop-
ping criteria for the BFGS iterations mtol, PDE solver tolerance
pdetol, Tikhonov regularization factors μ0, μ1, number of dipoles
and choice of which dipoles were used for applied loads and for
measurements if dipole measurements were being used. We chose
mtol = 10−4 for LBFGS stopping criteria. There is no increase in
AMG setup time for increasing PDE solver tolerance because com-
puting coarse grids and their operators as well as computing the
direct coarse grid solver are independent of solver tolerance. So
increasing PDE solver tolerance simply increases computation time
uniformly for all solves. We set pdetol = 10−8 for all the tests.
For the synthetic case, there were 25 loading electrodes with no
measurement errors. To ensure spatial symmetry of the solution,
loading dipoles used in the inversion were every adjacent pair in
both the x and y directions, 40 dipoles in total (from a possible 300).
We assumed pole data measurements on the array of 168 recorder
electrodes. Tikhonov factor μ0 was set to 0.0. The PDE tolerance
for the Hessian approximation used in the inversion was set at 10−2.
Increasing accuracy of the initial Hessian guess added to computa-
tion time without reducing the number of BFGS iterations. There
are 40 adjoint PDEs, so using superposition for computing solu-
tions to the adjoint PDEs would not reduce computation time. If
all 300 load dipoles were used in the inversion then there would
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Table 4. Example 5.1: Variation in number of stored BFGS iterates used
in search direction computations for the 513 grid with pdetol = 10−8 and
μ1 = 10−4 with TRILINOS AMG PCG on desktop.

Recursion BFGS PDE Gradient Inner Norm Time
length steps calls calls Products calls (s)

3 56 122 62 504 114 1480
6 51 112 57 741 104 1364
12 39 90 44 926 80 1108
18 38 87 43 1181 78 1115
24 38 84 42 1390 78 1079
27 37 80 41 1411 76 1067
30 31 71 35 1087 64 926

be an advantage to using superposition for both the forward and
adjoint PDEs.

Variation was made to the recursion length a used in search
direction computations in the BFGS algorithm, see Table 4. As one
expects, increasing the number of stored BFGS iterates, increased
the number of inner products used in search direction computations.
However, each computed search direction, while potentially taking
longer to compute due to the extra costs in the orthogonalization and
inverse Hessian update, was improved and there was a significant
reduction in the number of BFGS iterations needed. The number of
PDE calls was the same as the number of cost function calls and
these, along with gradient and norm calls, were reduced. In this
test we used a 513 grid with pdetol = 10−8 and μ1 = 10−4. In the
following tests recursion length a = 30 is used.

The biggest impact on computation time and computed inver-
sion result came from the choice of μ1 (we set μ0 = 0). In-
creasing μ1 makes the regularization term more dominant in the
cost function value. As expected, the solution is smoother with
much smaller variation in computed conductivity values and takes
fewer BFGS steps with increasing size of μ1, see Fig.4 and Ta-
ble 5 for the 513 grid. As μ1 decreases in value, the maximum
value of the conductivity in the centre of the plume increases.
A similar result was seen for the 993 grid, see Table 6. For this
test case, there appeared to be little variation in the number of
BFGS iterations with change in grid size compare Tables 5 and 6.
There was no notable change if the input potential data was from a
finer grid rather than the inversion grid as also reported by (Gross
et al. 2015).

The implementation was also tested on Savanna, an Intel Xeon
CPU E5-2660 running Linux, using 4 nodes each with 2 MPI pro-
cessors and 126 GiB of memory and 10 open MP threads per
process. As for the desktop computer, the forward PDE (7) was
solved 40 times to mimic one step of BFGS and to assess com-
putation time with grid size. As can be clearly seen in Table 7
and the corresponding graphs in Fig. 5 the total time for the PDE
solves is growing almost linearly with number of finite element
nodes. Inversion was tested for both the 513 and 993 grids see
tables 8 and 9. The results are slightly different to the desktop
results because different parallelization of the code occurs. As ex-
pected the computed conductivity σ was the same for both the
desktop and Savanna. The result for the 993 grid on Savanna was
smoother than the 513 grid as expected for similar values of μ1

see Fig. 6.

5.2 Heron Island data using unstructured grid

Heron Island is small tropical island located at the southern end
of the Great Barrier Reef, about 80km off the east coast of

Figure 4. Example 5.1: Varying Tikhonov regularization factor μ1 for the
513 grid with mtol = 10−4 and pdetol = 10−8 on desktop.

Table 5. Example 5.1: Varying Tikhonov regularization factor μ1 for the
513 grid with mtol = 10−4 and pdetol = 10−8.

μ1 BFGS PDE Gradient Inner Norm μ1FR Fd

steps calls calls Products calls value value

10−1 4 6 6 34 10 0.0088 0.0834
10−2 6 10 8 62 14 0.0128 0.0528
10−3 13 24 16 224 28 0.0149 0.0173
10−4 31 71 35 1087 64 0.0058 0.0017
10−5 91 196 98 3940 184 0.0010 0.0002
10−6 273 601 297 12633 548 0.0002 3 e-05
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Table 6. Example 5.1: Varying Tikhonov regularization factor μ1 for the
993 grid with mtol = 10−4 and pdetol = 10−8 on desktop.

μ1 BFGS PDE Gradient Inner Norm μ1FR Fd

steps calls calls Products calls values values

10−1 4 5 5 23 8 0.0029 0.0450
10−2 6 9 7 47 12 0.0052 0.0331
10−3 15 24 16 254 30 0.0081 0.0144
10−4 30 62 35 963 60 0.0046 0.0018
10−5 92 201 105 3947 184 0.0009 0.0002

Table 7. Example 5.1: Total computation time, first solve computation time
and average computation time for subsequent 39 solves for solving forward
PDE (7) using TRILINOS AMG on Savanna using 4 nodes, 2 MPI processors
per node, 10 open MP threads per process and 126 GiB of memory.

Total Grid Total First Average
nodes size time time time rest

(s) (s) (s)

14 068 513 1.7 0.1 0.04
100 000 993 6.3 0.6 0.1
3 511 808 1513 22.1 2.7 0.5
8 000 000 1993 65.8 8.8 1.5
16 003 008 2513 148.0 24.2 3.2
27 000 000 2993 290.7 65.9 5.8
43 614 208 3513 392.1 127.6 6.8
64 000 000 3993 720.5 255.3 11.9
92 345 408 4513 1269.5 589.5 17.4

Central Queensland, Australia (Jell & Webb 2012). It was formed
by coral sand on top of a platform reef and is about 300 m × 800
m with elevation less than 4m. A small 3-D ERT survey was run
in the centre of the island in a Pisonia forest with the objective
to identify the density and depth of the Pisonia tree roots as they
play a key role in the fresh water balance of the island. The area
was undermined by abundant nesting burrows of the wedge-tailed
shearwater.

Data was obtained using a FlashRES-UNIVERSAL System from
ZZ Resistivity Imaging Pty Ltd with 64 electrodes. These were

Figure 5. Example 5.1: First, average subsequent and total computation
times for AMG solves varying grid size with mtol = 10−4 and pdetol = 10−8

using TRILINOS AMG on Savanna using 4 nodes, 2 MPI processors per
node, 10 open MP threads per process and 126 GiB of memory.

Table 8. Example 5.1: Varying μ1, with mtol = 10−4 and pdetol = 10−8

on the 553 grid using TRILINOS AMG on Savanna using 4 nodes, 2 MPI
processors per node, 10 open MP threads per process and 126 GiB of
memory per node.

μ1 BFGS PDE Gradient Inner Norm FR Fd

steps calls calls products calls value value

10−2 6 10 8 62 14 0.0128 0.0528
10−3 15 24 18 288 32 0.0149 0.0173
10−4 36 80 40 1402 74 0.0058 0.0017
10−5 91 199 98 3940 184 0.0010 0.0002

Table 9. Example 5.1: Varying μ1, with mtol = 10−4 and pdetol = 10−8

on the 993 grid using TRILINOS AMG on Savanna using 4 nodes, 2 MPI
processors per node, 10 open MP threads per process and 126 GiB of
memory per node.

μ1 BFGS PDE Gradient Inner Norm FR Fd

steps calls calls Products calls value value

10−2 5 9 7 47 12 0.0052 0.0331
10−3 15 24 17 287 32 0.0081 0.0144
10−4 31 68 36 1088 64 0.0046 0.0018
10−5 91 203 103 3945 184 0.0009 0.0002
10−6 240 537 265 11425 482 0.0001 0.00003

placed on the ground surface in an 8 × 8 grid with 2m spacing.
Potentials were recorded for 576 applied dipoles (less than the 2016
available). These measured potentials must be used in dipole form
because one electrode must be used as a reference voltage. Instead
of solving for each of the 576 dipole the forward problems (7) and
the corresponding 576 adjoint problems (25) with multiple load
dipoles, we solved a unit load at each of the electrodes (64 forward
problems for each property function) and then used superposition

Figure 6. Example 5.1: Varying Tikhonov regularization factor μ1 for the
993 grid with mtol = 10−4 and pdetol = 10−8 on Savanna. The original input
and legend are the same as for the 513 grid in Figs 4(g) and (h), respectively.
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Table 10. Example 5.2: Varying μ1 with mtol = 10−3 and σ 0 = 0.006.
Initial data misfit is Fd = 0.372.

μ1 BFGS PDE grad inner norm FR Fd

calls calls prods calls value value

10−1 2 68 3 13 6 0.049 0.244
10−2 4 73 16 44 10 0.034 0.181
10−3 10 92 21 151 22 0.030 0.108
10−4 19 160 50 468 40 0.037 0.074

Table 11. Example 5.2: Varying μ1 with mtol = 10−3 and σ 0 = 0.005.
Initial data misfit is Fd = 0.245.

μ1 BFGS PDE Grad Enner Norm FR Fd

calls calls prods calls value value

10−1 1 40 2 6 4 0.008 0.230
10−2 3 47 4 22 8 0.034 0.169
10−3 10 113 38 168 22 0.034 0.104
10−4 20 162 53 513 42 0.026 0.044

to obtain both the forward and adjoint potentials for each loading
dipole, see Appendix A for details.

The mesh was created using gmsh (Geuzaine & Remacle 2009)
over the computational domain [ − 40m, 40m]2 × [ − 40m, 0] with
FEM nodes located at electrodes. It had 40 209 vertices and 248 521
elements. Attractor nodes in gmsh were used to refine the mesh near
the electrodes, see Fig. 1. Every possible dipole measurement was
used in the inversion.

For σ 0 = 0.006 the initial misfit error was 0.372. This reduced
to 0.245 for σ 0 = 0.005, see Tables 10 and 11. The smaller the
regularization factor μ1 the smaller the final data misfit. The con-
ductivity maps of the ground surface are shown in Fig. 7. It is clear
that increasing μ1 results in a smoother conductivity, but the general
shape of the result remains similar. The high resistivity regions are
attributed to the partially collapsed nesting burrows of the wedge-
tailed shearwater bird. The variation of conductivity with respect to
depth for μ1 = 10−4 is shown in the sequence of depth results in
Fig. 8.

6 C O N C LU S I O N

In the paper we have discussed the application of the quasi-Newton
scheme BFGS to solve the ERT inversion problem. The iteration
scheme is applied in a function space rather than in Euclidean space.
A key advantage of the approach is that it avoids the assemblage of
a dense Hessian matrix at the possible cost of additional PDE solves
for the adjoint problem. Convergence of the BFGS scheme is accel-
erated using an AMG-based preconditioner applied to the Hessian
of the smoothing term. Taking advantage of the superposition prin-
cipal we have reduced the number of forward and adjoint PDEs to
be solved to the number of loading electrodes when electrodes act
as both sources and receivers. As a consequence adding extra mea-
surements per loading array does not increase the number of PDEs
to be solved and we can easily treat comprehensive 3-D recording
arrays.

The precondition for BFGS could potentially be improved by
incorporating the Hessian of the misfit term or an approximation
thereof. This could be constructed using the all-at-once approach,
see (Haber & Ascher 2001). However, computational costs would
be significantly increased as additional solutions of the forward
and adjoint problems are required in its construction and it is not

Figure 7. Example 5.2: Heron Island result for conductivity, varying μ1,
with mtol = 10−4 and pdetol = 10−8. A different scale was used for
μ1 = 10−4.

clear if this really improves overall computing time. As already
highlighted the BFGS iteration is independent to the underlying
spatial discretization which allows for a change of the mesh during
the iteration process as long as values of integrals are preserved.
In particular, this allows a coarse mesh to be used initially, adapted
or globally refined as integration progresses without the need to
restart the iteration. We will investigate this approach in our future
work.
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Figure 8. Example 5.1: Conductivity for varying depth with Tikhonov reg-
ularization factor μ1 = 10−4, mtol = 10−3 and pdetol = 10−8.
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A P P E N D I X A : S U P E R P O S I T I O N

The superposition principle (Gilbarg & Trudinger 2001) can be ap-
plied to second order PDEs. A significant reduction in computation
time can be achieved for solving both the forward (3) and adjoint
(20) or (25) PDEs by computing potentials for pole loads and using
superposition to obtain dipole potentials. To compute the minimum
of cost function (11) we need to compute its gradient (12). It is the
computation of the product term in (24), one of the terms in (12),
that can be simplified using superposition.

Consider the case for n electrodes used both as loading and
measuring electrodes. Let xp denote the location of electrode p for
p ∈ [1, n]. For a given conductivity, σ , define unit pole PDEs for
each electrode

− ∇ · σ∇φp = δ(x − xp), ∀p ∈ [1, n]. (A1)

There are four different standard arrays: pole–pole, dipole–pole,
pole–dipole and dipole–dipole. To improve clarity in the follow-
ing discussion, we have changed the notation for subscripts. The
colon in the subscript is used to separate loading and measuring
electrodes. This means that subscripts p : r indicate pole load at xp

and measurement at xr, subscripts pq : r indicate dipole load with
positive node at xp and negative node at xq and measurement at xr,
subscripts p : rs indicate pole load at xp and measurement dipole with
positive node at xr and negative node at xs and finally, subscripts
pq : rs indicate dipole load with positive node at xp and negative
node at xr and dipole measurement with positive node at xr and neg-
ative node at xs. These subscripts are used for defects d, weighting
factors w and measurements V.

A1 Pole–pole

In this case the defect at electrode xr for load at xp is defined

dp:r = φp(xr ) − Vp:r

where φp(xr ) is the computed potential at xr for load at xp and
Vp : r is the corresponding measured potential. The pole–pole adjoint
equation is

−∇ · σ∇φ∗
p =

n∑
r=1
r �=p

wp:r dp:rδ(x − xr ),

where wp:r is the weighting for the defect measurement dp:r. Clearly,
weighting factors are symmetric, wp:r = wr, p. It follows from eq.
(A1) that the adjoint potential is

φ∗
p =

n∑
r=1
r �=p

wp:r dp:rφr .

Consequently, the product term in (24) for all possible pole mea-
surements is∑

p

∇φ∗
p · ∇φp =

n∑
p=1

n∑
r=1
r �=p

wp:r dp:r∇φr · ∇φp,

which simplifies to

∑
p

∇φ∗
p · ∇φp =

n−1∑
p=1

n∑
r=p+1

αpr∇φr · ∇φp, (A2)

where

αpr = wp:r (dp:r + dr :p) (A3)

Using (A2) simplifies the computation of the product term in (24)
for cost function gradient (12).

A2 Dipole–pole

For dipole loads, with positive pole at xp and negative pole at xq ,
the potential equation is

− ∇ · σ∇φpq = δ(x − xp) − δ(x − xq ) (A4)

and we immediately obtain

φpq = (φp − φq ), (A5)

with p ∈ [1, n − 1], q ∈ [p + 1, n]. There are n(n−1)
2 possible loading

dipoles and the dipole-pole defect for dipole (A4) at xr is defined

dpq:r = φpq (xr ) − Vpq:r .

The corresponding adjoint PDE for pole measurements taken at
all non-loading electrodes is

−∇ · σ∇φ∗
pq =

n∑
r=1

r �=p,q

wpq:r dpq:rδ(x − xr ),

where wpq:r is the weighting for defect measurement dpq:r. Hence,
the adjoint potential is

φ∗
pq =

n∑
r=1

r �=p,q

wpq:r dpq:r φr . (A6)

The product term in (25) for dipole loading and pole defects using
(A5) and (A6) can be written

n−1∑
p=1

n∑
q=p

∇φ∗
pq · ∇φpq

=
n−1∑
p=1

n∑
q=p+1

n∑
r=1

r �=p,q

(wpq:r dpq:r )∇φr · (∇φp − ∇φq ). (A7)

To simplify the expression for the product term, it is easy to see that
the dipole defect is antisymmetric in p and q

dqp:r = −dpq:r ,

and weighting factors are symmetric in p and q,

wqp:r = wpq:r .

So (A7) simplifies to

n−1∑
p=1

n∑
q=p

∇φ∗
pq · ∇φpq =

n−1∑
p=1

n∑
r=p+1

αpr∇φr · ∇φp (A8)

where

αpr =
n∑

q=1
q �=p,r

(wpq:r dpq:r + wrq:pdrq:p).
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Using (A8) simplifies the computation of the product term in (24)
for cost function gradient (12).

A3 Pole–dipole

In this case the dipole defect at electrodes xr and xs for load at xp

is defined

dp:rs = φp(xr ) − φp(xs) − (Vp:r − Vp:s) = dp:r − dp:s

where φp(xr ) is the computed potential at xr for load at xp , φp(xs)
is the computed potential at xs for load at xp and Vp:r and Vp:s

are the corresponding measured potentials. The pole-dipole adjoint
equation is

−∇ · σ∇φ∗
p =

n−1∑
r=1
r �=p

n∑
s=r+1
s �=p

wp:rsdp:rs(δ(x − xr ) − δ(x − xs)),

where wp:rs is the weighting factor for load at xp and dipole mea-
surements at xr and xs . Consequently, the adjoint potential is given
by

φ∗
p =

n−1∑
r=1
r �=p

n∑
s=r+1
s �=p

wp:rsdp:rs(φr − φs).

It follows that the product term in (24) for all possible pole
measurements is

∑
p

∇φ∗
p · ∇φp =

n∑
p=1

n−1∑
r=1
r �=p

n∑
s=r+1
s �=p

wp:rsdp:rs(∇φr − ∇φs) · ∇φp, (A9)

It follows that (A9) simplifies to

∑
p

∇φ∗
p · ∇φp =

n−1∑
p=1

n∑
r=p+1

αpr∇φr · ∇φp. (A10)

where

αpr =
n∑

s=1
s �=p,r

(
wp:rs(dp:r − dp:s) + wr :ps(dr :p − dr :s)

)

Using (A10) simplifies the computation of the product term in
(24) for cost function gradient (12).

A4 Dipole–dipole

The final standard loading and measuring case is dipole–dipole as
used for the Heron Island survey. The forward PDE is as for the

dipole-pole case (A4) and the adjoint potential equation is

−∇ · σ∇φ∗
pq =

n−1∑
r=1
r �=p

n∑
s=r+1
s �=p

wpq:rsdpq:rs(δ(x − xr ) − δ(x − xs)),

with weighting wpq:rs and defect dpq:rs is the dipole defect measured
at electrodes xr and xs for dipole load at xp and xq . Clearly,

wpq:rsdpq:rs = wpq:r dpq:r − wpq:sdpq:s

where wpq:rdpq:r and wpq:sdpq:s are the measured weighted defects at
xr and xs respectively. It follows that the adjoint potential is

φ∗
pq =

n−1∑
r=1
r �=p

n∑
s=r+1
s �=p

wpq:rsdpq:rs(φr − φs).

The gradient product term in (24) is

∇φ∗
pq · ∇φpq

=
n−1∑
r=1

r �=p,q

n∑
s=r+1
s �=p,q

wpq:rsdpq:rs(∇φr − ∇φs) · (∇φp − ∇φq ).

Clearly, dpq:r is antisymmetric in p and q,

dpq:r = −dqp:r ,

and weights have symmetry

wpq:rs = wqp:rs = wpq:sr = wqp:sr = wrs:pq .

The product term can be reduced to the form

n−1∑
p=1

n∑
q=p

∇φ∗
pq · ∇φpq =

n−1∑
p=1

n∑
r=p+1

αpr∇φr · ∇φp, (A11)

where

αpr =
n∑

q=1
q �=p,r

n∑
s=1

s �=p,r,q

(
wpq:rsdpq:rs + wqp:rsdqp:rs

)

or in terms of defect measured at the node, this is

αpr =
n∑

q=1
q �=p,r

n∑
s=1

s �=p,r,q

wpq:rs(dpq:r − dpq:s) + wrs:qp(drs:q − drs:p).

Using (A11) simplifies the computation of the product term in
(24) for cost function gradient (12).
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