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Fast macroscopic-superposition-state generation by coherent driving
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We propose a scheme to generate macroscopic superposition states (MSSs) in spin ensembles, where a coherent
driving field is applied to accelerate the generation of macroscopic superposition states. The numerical calculation
demonstrates that this approach allows us to generate a superposition of two classically distinct states of the spin
ensemble with a high fidelity above 0.97 for 300 spins. For a larger spin ensemble, though the fidelity slightly
declines, it maintains above 0.84 for an ensemble of 500 spins. The time to generate an MSS is also estimated,
which shows that the significantly shortened generation time allows us to achieve such MSSs within a typical
coherence time of the system.
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I. INTRODUCTION

For a long time quantum mechanics has been consid-
ered as the theory to describe physical behavior in the mi-
croscopic scale, and the quantum theory has provided the
framework for the development of the technologies, which
clearly characterize the 20th century. Semiconductor-based
computer technology and laser are typical examples which
require quantum-mechanical understanding in the underlying
physics. Our effort to manipulate quantum coherence did not
however stop there, and in recent years it has continued to
realize a longer coherence time and a higher fidelity. As one of
the consequences of this development, we began to manipulate
quantum coherence in macroscopic states of matter [1].

To further penetrate this new quantum regime, it is nec-
essary, however, to circumvent experimental obstacles for a
system to behave quantum mechanically in an even larger scale.
For instance, the nonclassical generation of states, such as
squeezed states [2] and the N00N states [3], has its limitation
in reality: squeezing becomes too noisy when squeezing gets
too large and the success probability or the fidelity of N00N

states is plummeted when N gets larger. Superposition states
of two or several coherent states progressively become difficult
to generate as the coherent states approach orthogonal. These
nonclassical states are not only interesting as a promising
candidate for quantum technology such as high precision
measurements, but the macroscopic nonclassical states are
also a route to novel quantum phenomena never achievable
before. To realize these states, as the attainable precision has
its own limitation even with the best technology, it is essential
to introduce a new mechanism for quantum properties to win
over its decoherence. In this paper, we focus on collective spin
systems and show how such macroscopic nonclassical states
can be generated.

Collective spin states have been investigated in cold-atom
systems such as Bose-Einstein condensates and solid-state
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systems, where spins are abundant and its inhomogeneous
broadening is well suppressed. When a state forms a su-
perposition of two or more macroscopically distinguishable
states, such as large coherent states, it is called macroscopic
superposition states (MSSs) [4]. They are also known as
N -particle Greenberger-Horne-Zeilinger (GHZ) states [5,6],
N00N states [3], or macroscopic quantum superposition states
[7–9], depending on what macroscopic nature we are interested
in. These states are not only interesting for their macroscopic
quantum behavior, but they are also potentially applicable to
Heisenberg-limited spectroscopy [6,10–17], quantum compu-
tation with coherent states [18–20], and quantum repeaters
[21], as we see them playing the central role in the implementa-
tion of quantum technology. Our primary interest in this paper
is a superposition state of two macroscopically distinguishable
spin coherent states [22], which we refer to as a spin cat state.

In an ensemble of N identical 1/2-spins, a spin cat state
can be generated from a separable coherent spin state (CSS)
[22] via a number of ways. A quadratic interaction between
spins [7–9,15,17,23–29], the QND interaction [30,31], and
the dispersive Tavis-Cummings interaction [32,33] generate
these spin cat states, whereas a series of controlled-NOT gates
[10,16,34] or a sequence of spin measurements [35–38] have
been proposed. The quadratic interaction, essentially equiva-
lent to the sequence of the controlled-NOT gates [39,40], shows
better scalability with respect to the number of spins. This
interaction is often called the one-axis twisting interaction and
is given by ĤOAT = h̄χĴ 2

z , where χ represents the interaction
energy and the collective spin operator is defined as Ĵμ ≡
1
2

∑N
j=1 σ̂

(j )
μ (μ = x,y,z) with the Pauli operator σ̂

(j )
μ of the

j th spin [41]. The Hamiltonian ĤOAT has been implemented
in ultracold 87Rb atomic gases and trapped 9Be+ ions with
N ∼ O(102−4) spins to create squeezed spin states [42–46].

Spin cat states have been experimentally created in two-
level systems of trapped ions [47], high-symmetry molecules
in NMR [16], and circularly polarized light [34]. These cat
stats are comprised of 4-14 spins and do not scale up to larger
spin ensembles. One of the main difficulties is that the cat-state
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preparation via the one-axis twisting interaction ĤOAT requires
an evolution time of t = π/2χ [7–9,15,23,24,28] which is
comparable to at best or longer than the coherence time of the
spin ensemble [42–46,48,49] for the number of spins larger
than N ∼ O(102). To create a macroscopic spin cat state, one
has to maintain its coherence beyond this interaction time,
which remains challenging.

One strategy to shorten the evolution time to create the
cat state is to utilize the transverse magnetic field [50–52],
that is, ĤLMG = h̄(χĴ 2

z + �Ĵx). This Hamiltonian has been
known as the Lipkin-Meshkov-Glick Hamiltonian [53] and
implemented in a cold-atomic system to generate squeezed
spin states [45,54,55]. Not only squeezed spin states but spin
cat states can be expected to be created via ĤLMG within
the evolution time of t ∼ O(log N/χN ); however, the fidelity
to the cat state degrades to 0.4–0.6 as the number of spins
increases to ∼O(102) [52].

We here propose a scheme to apply a coherent driving field
to the spin ensemble in order to speed up the cat-state creation
via ĤOAT. We numerically demonstrate that this scheme can
generate a macroscopic superposition state with the fidelity to
the ideal cat state above 0.84 for the number of spins up to 500.
The time scale to generate a cat state can be made shorter than
or comparable to the coherence time of atomic gases.

II. MODEL AND METHOD

We consider a collective spin system consisting of N

identical 1/2 spins with two degrees of freedom | ↑〉 and
| ↓〉. A single-spin state can be parametrized as |α,β〉 ≡
cos β

2 | ↑〉 + eiα sin β

2 | ↓〉 in terms of the polar and az-
imuth angles (α,β) (α ∈ (−π,π ] and β ∈ [0,π ]). A
CSS of the N -spin ensemble can also be expressed
in terms of α and β as |�CSS(J ; α,β)〉 = |α,β〉⊗2J =∑2J

n=0

√
2J Cn cos2J−n β

2 sinn β

2 einα|J,J − n〉, where J = N/2
represents the total spin, mCn represents the number of n

combinations out of m elements, and |J,M〉 denotes the
eigenstate of the collective spin operator Ĵz corresponding to
the eigenvalue M . Setting |�CSS(J ; 0, π

2 )〉 as the initial state,
we consider the time evolution by the Hamiltonian composed
of the one-axis twisting Hamiltonian and the coherent driving
field,

Ĥ (J ; t) = h̄[χĴ 2
z + �Ĵx cos (ωt + φ)], (1)

where �, ω, and φ denote the driving energy, the driving
frequency, and the phase of the driving field, respectively. Here,
we define λ ≡ 2χJ and rescale the elapsed time, the driving
energy, and the driving frequency as τ ≡ λt , r ≡ �/λ, and
ω̃ ≡ ω/λ. Throughout the paper, r is fixed at r = 1, while J ,
ω, and φ are left to be tunable. Under the Hamiltonian (1), the
initial state evolves as

|(J ; ω̃,φ; τ )〉 ≡ e−i
∫ τ

τ ′=0 dτ ′h̃(τ ′) |�CSS(J ; 0,π/2)〉, (2)

where h̃(τ ) ≡ 1
2J

Ĵ 2
z + Ĵx cos (ω̃τ + φ). When ω̃ is moderately

slow and φ � 0, we can expect the initial x-polarized CSS to
become a superposition of two CSSs, via the highest-energy
eigenstate transfer and the preservation of the relative phase
γ ′

M between |J,±M〉 by the time-dependent Hamiltonian in
Eq. (1). The initial state is close to the highest-energy eigenstate
of the Hamiltonian Eq. (1) for a small φ at τ = 0 and the

initial state evolves, following the highest-energy eigenstate of
Eq. (1), which ends up as a superposition of two coherent spin
states at a certain τ satisfying 0 < ωτ + φ � π/2. Although
the gap between the highest- and the second-highest-energy
eigenstates closes during the process, the relative phases γ ′

M ’s
are robust against the breakdown of the adiabatic condition
for the time-dependent Hamiltonian. This is because Eq. (1)
preserves γ ′

M ’s, and ∀γ ′
M = 0 for the highest-energy eigenstate

and the initial state, whereas ∀γ ′
M = π for the second-highest-

energy eigenstate, as detailed in Appendix A.
An MSS can be parametrized in terms of the superposition

phase γ in addition to α and β characterizing a CSS as in
Ref. [9]:

|�MSS(J ; α,β,γ )〉

≡ 1

A(J ; α,β,γ )
(|�CSS(J ; α,β)〉+ eiγ |�CSS(J ; −α,π − β)〉)

= 1

A(J ; α,β,γ )

2J∑
n=0

√
2J Cn cos2J−n β

2
sinn β

2

× einα(|J,J − n〉 + eiγ ′ |J,−J + n〉), (3)

where γ ∈ (−π,π ] and (α,β,γ ) = (0, π
2 ,γ ), (π,π

2 ,γ ). Here,
the normalization constant A(J ; α,β,γ ) is defined as

A(J ; α,β,γ ) ≡
√

2[1 + cos2J α sin2J β cos (γ − 2Jα)]

=
√

2[1 + cos2J α sin2J β cos γ ′]. (4)

In the second expression above, we introduce a new relative
phase γ ′ ≡ γ − 2Jα (γ ′ ∈ (−π,π ]) between two Ĵz eigen-
states |J,M〉 and |J,−M〉 to characterize the MSS, since this
relative phase is the parameter relevant to interferometry as
shown later and detailed in Appendix C. The displacement
angle δ between two superposed CSSs can be expressed in
terms of α and β as

δ(α,β) = π−arccos
{

1
2 [1−cos 2α + (1 + cos 2α) cos 2β]

}
.

(5)

The fidelity of the state |(J ; ω̃,φ; τ )〉 to the MSS in Eq. (3)
is obtained by

F (J ; ω̃,φ; τ )

≡ max
α,β,γ ′

[|〈�MSS(J ; α,β,γ ′)|(J ; ω̃,φ; τ )〉|2], (6)

(α0(J ; ω̃,φ; τ ),β0(J ; ω̃,φ; τ ),γ ′
0(J ; ω̃,φ; τ ))

≡ argmax
α,β,γ ′

[|〈�MSS(J ; α,β,γ ′)|(J ; ω̃,φ; τ )〉|2], (7)

where F (J ; ω̃,φ; τ ) is numerically maximized with respect
to α, β, and γ ′ by the basin-hopping method [56,57]. The
fidelity in F (J ; ω̃,φ; τ ) in Eq. (6) for fixed ω̃ and φ has a local
maximum at the rescaled elapsed time τ = τmax as shown in
Fig. 1(i). At τmax, the Q function becomes a superposition of
two CSSs as shown in Figs. 1(ii). We numerically obtain τmax

and the fidelity of the first local maximum F (J ; ω̃,φ; τmax) ≡
Fmax(J ; ω̃,φ). After τ = τmax(J ; ω̃,φ), the state maintains high
fidelity for quite a while as shown in Fig. 1(i), which implies
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FIG. 1. (i) Plots of time evolution of the fidelity F (J ; ω̃,φ; τ ), the relative phase γ ′
0, and the displacement angle δ0 and (ii) the Q functions

Q(α,β) ≡ 2J+1
4π

|〈�CSS(J ; α,β)|(J ; ω̃,φ; τ )〉|2 corresponding to the initial state and the first local maximum of the fidelity for J = 50, ω̃ =
0.0204π , and φ = 0.024π . (i) Time dependences of F (J ; ω̃,φ; τ ), γ ′

0, and δ0 are indicated by the black solid curve, the red dashed curve, and the
green dots, respectively. The yellow and red shaded regions represent the intervals F (J ; ω̃,φ; τ ) � 0.99 and δ0 � 0.95π , respectively. (ii) The
color at the point indicated by the polar and azimuthal angles of (α,β) represents 4π

2J+1 Q(α,β) according to the right gauge. The time evolution
of the fidelity and the Q functions for J = 74.5 and J = 200 are shown in Figs. 9 and 10, respectively.

that the fidelity is rather insensitive to timing in creating an
MSS via this method (see also Appendix B and Figs. 9). We
also note that γ ′

0 is time independent during the time evolution
given by Eq. (1) as shown in Fig. 1(i), which implies that the
phase γ ′

M between |J,M〉 and |J,−M〉 is preserved under the
Hamiltonian in Eq. (1).

Next, in order to investigate the driving frequency
and its phase optimizing the fidelity and the displace-
ment angle at τmax, we plot Fmax(J ; ω̃,φ) and displace-
ment angle δmax(J ; ω̃,φ) with respect to ω̃ and φ for
J = 50–250 in Appendix B. We estimate ω̃ = ω̃opt(J ) and
φ = φopt(J ) maximizing Fmax(J ; ω̃,φ) under the condition
δmax(J ; ω̃,φ) > 0.4π and plot Fopt(J ) ≡ Fmax(J ; ω̃max,φmax),

FIG. 2. Total spin dependences of (i) the set of the rescaled driving frequency and the driving phase, (ii) the fidelity, (iii) the displacement
angle, and (iv) the rescaled evolution time. In the plots (i)–(iv), there is discontinuity between J = 150 and 174.5.
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FIG. 3. Interference fringes of the quantum fluctuations in σ̂⊗N
x . The red solid curves and the blue dashed curves indicate the interference

fringes produced by the perfect MSS given in Eq. (8) and pure MSSs |opt(J )〉, respectively. The black dots with error bars represent the mean
values and the standard variances of the quantum fluctuations in σ̂⊗N

x and τopt of |(J ; τopt)〉 represents the optimized evolution time for J̄ .
(i),(ii) The fringes produced by the MSSs with 5% of the Gaussian fluctuations in the number of spins for N = 149 and 200. (iii),(iv) The
fringes produced by the MSSs with 5% of the uniform distribution in the magnitude of the driving field �.

δopt(J ) ≡ δmax(J ; ω̃opt,φopt), ω̃opt(J ), φopt(J ), and τopt(J ) ≡
τmax(J ; ω̃opt,φopt) against the total spin J in Figs. 2. The
maximum fidelity jumps in the regime 150 � J � 174.5,
which is caused by a finite probability distribution around
α = 0 and β = π/2 at τmax as shown in the Q functions in
Figs. 10 of Appendix B.

III. NONCLASSICALITY WITNESS AND PRECISION
MEASUREMENTS

To witness the nonclassicality of the generated MSS
|opt(J )〉 ≡ |(J ; ω̃opt,φopt; τopt)〉 in experiments, we mea-
sure the parity of the spins in the x direction, σ̂⊗N

x after rotating
|opt(J )〉 along the z axis by a small angle θ , which is the
same protocol as the Heisenberg-limited measurement using
maximally entangled states [6]. If the state |opt(J )〉 is a perfect
MSS, i.e., |�MSS(J ; αopt,βopt,γ

′
opt)〉, the quantum fluctuation in

the parity, 〈(�σ̂⊗N
x )2〉 ≡ 〈(σ̂⊗N

x )2〉 − 〈σ̂⊗N
x 〉2

, exhibits fringes
with respect to θ as

〈(
�σ̂⊗N

x

)2〉 = 1 − e−2Jθ2sin2βopt cos2(2Jθ cos βopt + γ ′
opt),

(8)

whose derivation is detailed in Appendix C. On the other
hand, when the state is a mixed state of two CSSs,
〈(�σ̂⊗N

x )2〉 = 1, i.e., no fringe can be observed as shown in
Appendix C.

We compare the fringes produced by perfect MSSs, MSSs
|opt(J )〉 without spin number fluctuations, |opt(J )〉 with
Gaussian number fluctuations of σ = 5% × N spins, and
|opt(J )〉 with uniform fluctuations in the driving field mag-
nitude (1 ± σ )�, where σ = 5% for N = 149 and N = 400
as shown in Fig. 3. In the cold-atom experiments, the number
fluctuations and the fluctuations in � due to magnetic-field
fluctuations may fluctuate respectively by �5% [45] and a
few percent at least, and they are the major noise sources
that degrade fringe visibility, while the preparation time τ , the
driving frequency ω̃, and the driving phase φ can be controlled
precisely enough. We also numerically show robustness of
fringes against the nonlinear interaction energy λ, which is
equivalent to robustness against τ , in Appendix C. Figures 3
imply that the major noise source is the number fluctuation
rather than the driving-field fluctuation; nonetheless we still
can expect to observe the nonclassicality of the state even with
10% fluctuations in the number of spins as shown in Figs. 13
of Appendix C.

013820-4



FAST MACROSCOPIC-SUPERPOSITION-STATE … PHYSICAL REVIEW A 97, 013820 (2018)

FIG. 4. Discrete Fourier transformation of σ̂⊗N
x − 1. The red solid curves and the blue dashed curves indicate the spectra produced by

the perfect MSS given in Eq. (8) and pure MSSs |opt(J )〉. The black dots represent the mean values of the spectra and τopt of |(J ; τopt)〉
represents the optimized evolution time for J̄ . The black solid lines indicate the frequencies of the interference fringes for the perfect MSS, i.e.,
ω = ±4J cos β in Eq. (8). (i),(ii) The spectra produced by the MSSs with 5% of the Gaussian fluctuations in the number of spins for N = 149
and 200 at each step of rotation.

The other major noise source would be the magnetic field Bz

in the z direction. The magnetic field Bz gives rise to a linear
Zeeman term pĴz in the Hamiltonian in Eq. (1), where the
linear Zeeman energy p ≡ g|μB |B with the Landé g factor and
the Bohr magneton μB . The term pĴz harms the preservation
of the relative phases γ ′

M ’s between the two Ĵz eigenstates
|J,±M〉 during the time evolution. The linear Zeeman energy
can be well controlled in experiments when the driving field
is switched off; however, once it is turned on, it may be
experimentally challenging to cancel the linear Zeeman energy.
The analysis of the effects of the linear Zeeman energy and its
fluctuation and how it can be circumvented are left as future
problems.

In addition to these noises, to detect the interferometric
characteristics, we typically measure the spin-parity in the
x direction in the single-spin resolution. In such a scenario,
trapped ion systems have a clear advantage over BECs.

The states created via our method can also be applied to
precision measurements of the rotation angle θ around the z

axis. Let us consider a frequency measurement of fringes given
by 〈(�σ̂⊗N

x )2〉 − 1 in Eq. (8). If a perfect MSS is created, the
spectrum of the fringes are given by

TF(J ; ωθ ) = 1√
2π

∫ ∞

−∞
dt

(〈(
�σ̂⊗N

x

)2〉 − 1
)
e−iωθ t

= −σ

4

[
2e

− ω2
θ

2σ2 + e− σ2

2 (ωθ−ω̄θ )2 + e− σ2

2 (ωθ+ω̄θ )2]
,

(9)

where ωθ is the frequency, the standard variation σ 2 ≡
1/4J sin2β, and the mean value ω̄θ ≡ 4J cos β. In reality,
however, a deterioration in the fidelity and spin-number
fluctuations cannot be ignored, and they might wipe out
the spectrum. We numerically calculate the spectra for the
optimized state |opt(J )〉 without spin-number fluctuations
and the state |(J ; τopt)〉 with Gaussian number fluctuations
of σ = 5% × N spins for 149 spins and 400 spins. Here, we

assume that the states are rotated by θn = n�θ , where �θ =
1/10ωθ and n = 1,2, . . . ,nmax such that nmax is the maximum
integer satisfying θnmax � 10/σ . For each n, we perform ten
rotation-and-measurement procedures and the number of spins
varies according to the normal distribution throughout the
procedures. The mean values of 〈(�σ̂⊗N

x )2〉 − 1 are discrete
Fourier transformed to obtain spectra, which are shown in
Figs. 4. The discrete Fourier transform is defined as

TF,discrete(J ; ωθ ) =
nmax∑
n=0

(〈(
�σ̂⊗N

x

)2〉 − 1
)
e−iωθ

θn
N , (10)

which relates to Eq. (9) as

TF(J ; ωθ ) �
√

2

π
�θ Re [Fdiscrete(J ; ωθ )]. (11)

In Figs. 4, we plot
√

2/π �θ Re[Fdiscrete(J ; ωθ )] of the
optimized states without spin-number fluctuations and the
states |(J ; τopt)〉 with Gaussian number fluctuations of σ =
5% × N spins and compare them with those of the ideal
MSSs given in Eq. (9). When the number of spins is relatively
small, i.e., N = 149, the state is almost a perfect MSS in the
case without a spin-number fluctuation, and we can expect
to observe clear dips at ωθ = ±ω̄θ . When the number of
spins increases to N = 400, the decrease in fidelity makes
the dips shallower; however, they are still clearly seen. The
Gaussian number fluctuations of σ = 5% × N spins halve
the depth of dips, while their positions remain almost un-
changed, which indicates that the states created via our method
can be applied to probes of precision measurements and
sensing.

IV. DISCUSSION AND CONCLUSION

Finally we evaluate the time to generate a MSS state and
compare the generation time with the coherence times reported
in Refs. [45,46]. First, we consider the case of the two-level
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system consisting of spin up and down states of 9Be+ ions
in a two-dimensional triangular lattice [46]. The interaction
energy and the coherence time are respectively estimated to
be 26 Hz and 11 ms for ∼130 ions. Here, the major source
of decoherence is spontaneous emission from an off-resonant
laser beam creating uniform z-z coupling between spins. For
149 spins, we can estimate the generation time for an MSS
to be ∼3.9 ms, which is two orders of magnitude shorter than
that for the OAT interaction given by ∼120 ms and sufficiently
smaller than the coherence time.

Next, we consider the two-level system consisting of |F =
1,mF = 1〉 and |F = 2,mF = −1〉 of cold 87Rb atoms [45].
The major source of decoherence is the atom-number decay
caused by the 1/e decay of the |2, − 1〉 state, inelastic scat-
tering, and three-body recombination. The interaction energy
and the coherence time are respectively assumed to be χ ∼
0.44 Hz and 110 ms for ∼400 atoms, whereas the coherence
time for 500 spins can be estimated as ∼81 ms. In this
case, the coherence time is comparable to the MSS evolution
time, which is again two orders of magnitude faster than the
evolution time t = π/χ ∼ 7.1 s to obtain an MSS via the OAT
interaction. A stronger interaction between atoms could make
a cold-atom system a better candidate which shortens the MSS
creation time.

The speedup on the MSS generation time tends to be more
prominent when the ensemble size gets larger, and it can
be a significant advantage of this scheme to experimentally
generate and test these states. These numbers are promising
for relatively large spin ensembles to form an MSS with the
current technology.
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APPENDIX A: MECHANISM OF
MACROSCOPIC-SUPERPOSITION-STATE CREATION

We discuss the time evolution of |(J ; ω̃opt,φopt; τ )〉 by the
rescaled Hamiltonian to obtain the optimum MSS |opt(J )〉
given by

h̃opt(J ; τ ) ≡ h̃(J ; ω̃opt,φopt; τ )

= 1

2J
Ĵ 2

z + Ĵx cos (ω̃optτ + φopt), (A1)

from τ = 0 to τ = τopt at which |opt(J )〉 is created. Here, we
define the highest-energy eigenstate and the second-highest-
energy eigenstate of h̃opt(J ; τ ) as |ε1(J ; τ )〉 and |ε2(J ; τ )〉
with the eigenenvalues ε1(J ; τ ) and ε2(J ; τ ), respectively. We
plot the gap �̃(J ; τ ) ≡ ε1(J ; τ ) − ε2(J ; τ ) between |ε1(J ; τ )〉
and |ε2(J ; τ )〉 in Figs. 5 and the Q functions of these two
eigenstates in Figs. 6. The gap �̃(J ; τ ) closes at a certain τ

and the two highest eigenstates ε1(J ; τ ) and ε2(J ; τ ) become
states similar to two coherent spin states (CSSs) and the phase
between them cannot be determined.

The initial state follows |ε1(J ; τ )〉 until the gap closes,
since the initial state, i.e., |�CSS(J ; 0, π

2 )〉, has relatively high
population on |ε1(J ; 0)〉, whereas it does not populate on
|ε2(J ; 0)〉 as shown in Fig. 7. In such time evolution under a
gap-closing Hamiltonian, in general, the state becomes a mixed
state of the highest- and the second-highest-energy eigenstates
after the gap closes, because the phase between these two states
cannot be determined. In the case of the time evolution by
h̃opt(J ; τ ), however, the generated state is robust against the
phase uncertainty. The reason can be explained as follows.
The relative phases γ ′

M between |J,±M〉 of both the initial
state and |ε1(J ; τ )〉 before the gap closes are zero, while γ ′

M ’s of
|ε2(J ; τ )〉 are π as shown in Fig. 8. The Hamiltonian h̃opt(J ; τ )
preserves γ ′

M for all τ , since after an infinitesimally small time

FIG. 5. Dependence of the gap �̃(J ; τ ) between |ε1(J ; τ )〉 and |ε2(J ; τ )〉 on the phase of the driving field ω̃optτ + φopt. (i) The gap �̃(J ; τ )
with respect to ω̃optτ + φopt for J = 50–250. The dots, the triangles, and the thin diamonds mark τ = 0, τ = 0.2τopt , τ = 0.4τopt , τ = 0.6τopt ,
τ = 0.8τopt , τ = τopt on the curves representing �̃(J ; τ ). (ii) The gap functions �̃(J ; τ ) for J = 50–250 coincide with each other by shifts in
the phase of the driving field and enlargements (or shrinks) of the magnitude of the gap energy.
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FIG. 6. Time evolution of the Q functions of |ε1(J ; τ )〉 and |ε2(J ; τ )〉 for J = 74.5 and J = 200. The color hue represents 4π

2J+1 Q(α,β)
whose gauge is the same as Figs. 1(ii). The dotted white curves indicate the contours of h̃opt(J ; τ ) in the mean-field limit, which is given
by Ẽopt(J ; α,β; τ ) = J [ 1

2 cos2β + r cos α sin β cos (ω̃optτ + φopt)], and the values on the contours represent 2
J
Ẽopt(J ; α,β; τ ). The solid white

curves represent the energy contours Ẽopt(J ; α,β; τ ) = rJ cos (ω̃optτ + φopt).

evolution by �τ under h̃opt(J ; τ ), the phases |J,±M〉 of a state∑J
M ′=−J aM ′ |J,M ′〉 become

〈J,M|h̃opt(J ; τ )
J∑

M ′=−J

aM ′ |J,M ′〉

= aM

{
1 − i�τ

{
M2

2J
+ r

2

[√
(J + M)(J − M + 1)

+
√

(J − M)(J + M + 1)
]

cos (ω̃optτ + φopt)

}}
,

(A2)

〈J,−M|h̃opt(J ; τ )
J∑

M ′=−J

aM ′ |J,M ′〉

= a−M

{
1 − i�τ

{
M2

2J
+ r

2

[√
(J + M)(J − M + 1)

+
√

(J − M)(J + M + 1)
]

cos (ω̃optτ + φopt)

}}
,

(A3)

so the phase between aM and a−M is preserved. Therefore,
after the gap closes, the state becomes the superposition state
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FIG. 7. J dependence of the probability distribution of the initial
state |�CSS(J ; 0, π

2 )〉 on the highest-energy eigenstate |ε1(J ; 0)〉 (black
solid curve with dots) and the second-highest-energy eigenstate
|ε2(J ; 0)〉 (red dashed curve with triangles) of the Hamiltonian h̃(J ; 0)
and the other eigenstates (blue dotted curve with thin diamonds).
The probability on |ε1(J ; 0)〉 monotonically and slowly decreases
with respect to J and converges toward ∼0.5, while the probability
on |ε2(J ; 0)〉 stays at zero. The probability distributing on the other
eigenstates monotonically and slowly increases and converges toward
∼0.5.

of |ε1(J ; τ )〉 and |ε2(J ; τ )〉 so that γ ′
M = 0 regardless of the

value of the number of spin and other parameters in the
Hamiltonian in Eq. (1), and we can expect creation of an MSS
via the Hamiltonian in Eq. (1) even though the gap between
the highest- and the second-highest-energy eigenstates closes
during the time evolution.

APPENDIX B: MSS GENERATION VIA THE
HAMILTONIAN IN EQ. (1) AND PARAMETER

OPTIMIZATION

1. Time dependence of fidelity, relative phase,
and displacement angle

Starting from the initial state |(J ; ω̃,φ; τ = 0)〉 =
|�CSS(J ; 0, π

2 )〉, the state |(J ; ω̃,φ; τ )〉 evolves under the
Hamiltonian in Eq. (1) and an MSS is formed. We plot the
fidelity F (J ; ω̃,φ; τ ), the relative phase γ ′

0, and the displace-
ment angle δ0(α0,β0), which are respectively defined in Eqs.
(5), (6), and (4), as functions of the rescaled evolution time
τ for J = 50, J = 74.5, and J = 200 in Figs. 9. Here, in
order to obtain F (J ; ω̃,φ; τ ), γ ′

0, and δ0(α0,β0), the probability
|〈�MSS(J ; α,β,γ )|(J ; ω̃,φ; τ )〉|2 is numerically maximized
with respect to α, β, and γ ′ by the basin-hopping method [56],
which finds the global minimum or maximum of a smooth
scalar function with one or more variables [57]. The first
local maximum of the fidelity Fmax(J ; ω̃,φ) ≡ F (J ; ω̃,φ; τmax)
and its corresponding evolution time τmax are obtained from
F (J ; ω̃,φ; τ ) in Figs. 9 by the brute-force search that starts from
τ = 0 in the temporal order. The obtained τmax’s are indicated
by the black and thin dashed lines in Figs. 9.

In order to visually display the MSS creation, we plot
the Q functions of |(J ; ω̃,φ; τ )〉 at τ ’s indicated by the
black and thin dotted lines (a)–(e) of Figs. 9 in Figs. 10. As
shown in Figs. 9, at the beginning of the time evolution, the
fidelity F (J ; ω̃,φ; τ ) decreases, while the displacement angle
δ0(α0,β0) increases. In this process, the state |(J ; ω̃,φ; τ )〉 is
squeezed, which are illustrated in the Q functions in Fig. 10(b).
After that, the Q function on the Bloch sphere is bent and tore
off at α = 0 and β = π

2 as we can see in Figs. 10(b)–10(c), and
the two peaks of the Q function move in the opposite directions
as shown in Figs. 10(c)–10(e). For J = 74.5 and J = 200,
finite portions of the probability distribution remain around
α = 0 and β = π

2 , which causes a decrease in the fidelity
Fmax(J ; ω̃,φ) of the first local maximum.

FIG. 8. Plots of the relative phases γ ′
M ’s of |ε1(J ; τ )〉 and |ε2(J ; τ )〉 as functions of τ and M

J
for (i) J = 74.5 and (ii) J = 200. The red

dots and the blue triangles represent γ ′
M ’s for |ε1(J ; τ )〉 and |ε2(J ; τ )〉, respectively. The right-hand sides of blue shaded planes parallel to the

M

J
− γ ′

M planes are the time regions where �̃(J ; τ ) < O(10−6), i.e., the region where the gaps can be regarded to be closed. We note that we
plot γ ′

M ’s for every five points for J = 74.5 and for every 20 points for J = 200 with respect to M/J for the sake of visibility of the points.
For both J = 74.5 and 200, γ ′

M = 0 for |ε1(J ; τ )〉 and γ ′
M = π for |ε2(J ; τ )〉 when the gaps are open. When J = 200 and the gap closes, γ ′

M

can be considered to be indefinite, since the Q functions of |ε1(J = 200; τ = τopt)〉 and |ε2(J = 200; τopt)〉 in Fig. 6 imply that they are close
to coherent spin states, which are separable, and the probabilities either on |J ; ±M〉 become ∼0.
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FIG. 9. Rescaled-time dependences of fidelity F (J ; ω̃,φ; τ ), relative phase γ ′
0, and displacement angle δ0(α0,β0) for (i) J = 74.5 and (ii)

J = 200. The vertical scales on the left-hand sides and the right-hand sides are for F (J ; ω̃,φ; τ ) and the two angles, γ ′
0 and δ0(α0,β0), respectively.

The black solid curves, the green dots, and the red dashed curves represent F (J ; ω̃,φ; τ ), γ ′
0, and δ0(α0,β0), respectively. The yellow shaded

regions and the red shaded region with a left-right arrow express the intervals satisfying F (J ; ω̃,φ; τ ) � 0.99 and the interval where an almost
perfect cat state 1√

2
(|J,J 〉 + |J, − J 〉) is generated, i.e., the region with F (J ; ω̃,φ; τ ) � 0.99 and δ0(α0,β0) � 0.95. The Q functions at which

the black and thin dotted lines, (a)–(e), are illustrated in Figs. 10 and τ = τmax, at which the first local maximum of the fidelity Fmax(J ; ω̃,φ) is
achieved, is indicated by the black and thin dashed line. The driving-field parameters are set to be ω̃ = 0.0204π and φ = 0.024π for J = 50,
ω̃ = 0.0174π , and φ = 0.012π for J = 74.5, and ω̃ = 0.0151π and φ = −0.0128π for J = 200.

2. Driving frequency and phase dependence of fidelity and
displacement angle

We optimize the frequency ω̃ and the phase φ of the driving
field with respect to the fidelity Fmax(J ; ω̃,φ) and the dis-

placement angle δmax(J ; ω̃,φ) and obtain the J dependences of
the optimized fidelity Fopt(J ), the displacement angle δopt(J ),
their corresponding driving-field parameters ω̃opt and φopt, and
the evolution time τopt. Here, the displacement angle δopt is
calculated from αopt(J ) and βopt(J ). We plot Fmax(J ; ω̃,φ)

FIG. 10. Time evolution of the Q functions Q(α,β) ≡ 2J+1
4π

|〈�CSS(J ; α,β)|(J ; ω̃,φ; τ )〉|2 for J = 50, J = 74.5, and J = 200. The
driving-field parameters are set to be the same as Figs. 9. The color at the point indicated by the polar and azimuthal angles of (α,β) represents

4π

2J+1 Q(α,β) according to the gauge shown in Fig. 1. For J = 50, the driving field parameters are set to be ω̃ = 0.0204π and φ = 0.024π and
the snapshots are taken at the rescaled elapsed times of (a) τ = 0, (b) 4, (c) 8, (d) 12, and (d) 16. For J = 74.5 and J = 200, the driving field
parameters are given by ω̃ = 0.0174π and φ = −0.012π and ω̃ = 0.0151π and φ = −0.0128π , respectively, and the snapshots are taken at
(a) τ = 0, (b) 5, (c) 10, (d) 15, and (d) 20.
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and δmax(J ; ω̃,φ) as functions of ω̃ and φ in Figs. 11 for
J = 50−250 and obtain ω̃opt and φopt by the brute-force search
such that Fopt(J ) is the maximum of Fmax(J ; ω̃,φ) with respect
to ω̃ and φ in the parameter region satisfying δopt(J ) > 0.4π .
Figures 11 are plotted against 51 × 51 pairs of ω̃ and φ and we
do finer calculation with the precision of �ω̃ = π × 10−4 and
�φ̃ = π × 10−4 around the peaks obtained from Figs. 11 in
order to estimate ω̃ and φ for J � 150. The J dependence
of αopt, βopt, and γ ′

opt are shown in Fig. 12. The plot of
γ ′

opt indicates that the MSS creation via the Hamiltonian in
Eq. (1) is robust against the fluctuations in the spin number,
the driving-field frequency, and the evolution time.

APPENDIX C: INTERFEROMETRY USING MSSs

1. Idealistic case

Suppose we can prepare a perfect MSS given by Eq. (2). The
nonclassicality of the MSS can be observed by the following
procedure [6]. First, let an MSS |�MSS(J ; α,β,γ )〉 rotate about
the z axis by a small angle θ , which results in the state
|�MSS(J ; α,β,γ )〉θ , i.e.,

|�MSS(J ; α,β,γ )〉θ = e−iĴzθ |�MSS(J ; α,β,γ )〉. (C1)

FIG. 11. Fidelity Fmax(J ; ω̃,φ) of the first local maximum and its corresponding displacement angle δmax(J ; ω̃,φ) as functions of the
driving-field frequency and phase, ω̃ and φ, for (i) J = 50, (ii) J = 74.5, (iii) J = 100, (iv) J = 124.5, (v) J = 150, (vi) J = 174.5, (vii)
J = 200, (viii) J = 224.5, and (ix) J = 250. The z axes represent Fmax(J ; ω̃,φ) and the color on the Fmax(J ; ω̃,φ) surface and the plane at
the bottom of the plot indicate the magnitude of the displacement angle whose gauge is shown on the right-hand side of (ix). There are two
parameter regions with high fidelity with δmax(J ; ω̃,φ) � 0.4π for J = 100−150, while δmax(J ; ω̃,φ) decreases to be δmax(J ; ω̃,φ) ∼ 0 in the
region with smaller ω̃ for J = 174.5−250.
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Then, measure the parity of σ̂x of the spin ensemble:

θ 〈�MSS(J ; α,β,γ )|σ̂⊗N
x |�MSS(J ; α,β,γ )〉θ

= 1

A2(J ; α,β,γ )

{
2 cos [2J (θ − α)] cos2J (θ + α)sin2J β +

2J∑
n=0

2J Cncos2(2J−n) β

2
sin2n β

2

[
ei(2Jθ+γ ′)e−2imθ +H.c.

]}

� 1

2

2J∑
n=0

2J Cncos2(2J−n) β

2
sin2n β

2

[
ei(2Jθ+γ ′)e−2imθ +H.c.

]
, (C2)

where A(J ; α,β,γ ) is given in Eq. (4) and we neglect the
terms proportional to sin2J β on the right-hand side of the last
equality, since it is as small as ∼O(10−23) in the parameter
region of N = 2J ∼ O(102) and β ∼ 0.2π that |opt(J )〉
satisfies for J = 50−250 as we plot in Fig. 12. The parameter
region also verifies another important approximation: the sum
on the right-hand side of Eq. (C2) can be well approximated by
the Gaussian integral, since the term 2J Cncos2(2J−n) β

2 sin2n β

2 in
Eq. (C2) can be considered as the binomial distribution of the
number of success in a sequence of N independent trials with
the success rate of sin2 β

2 and the absolute value of its skewness
is approximately given by

|1 − 2 sin2 β

2 |√
1
2 sin2β

∼ 0.3 <
1

3
, (C3)

which indicates this binomial distribution can be well approx-
imated by the normal distribution. Therefore, the expectation
value of the parity of σ̂x is approximately obtained as

θ 〈�MSS(J ; α,β,γ )|σ̂⊗N
x |�MSS(J ; α,β,γ )〉θ

� 1

2

∫ ∞

−∞

dx√
πJ sin2β

{
exp

[
−

(
x − 2J sin2 β

2

)2

J sin2β

− 2i

(
θx − Jθ − γ ′

2

)]
+ H.c.

}

= e−Jθ2sin2β cos (2Jθ cos β + γ ′), (C4)

FIG. 12. Plots of J dependence of the angles αopt, βopt, and γ ′
opt,

which are represented by the red dots, the blue triangles, and the green
thin diamonds, respectively. The relative phase γ ′

opt = 0 for all J .

and the variance of the parity of σ̂x is given by
〈(
�σ̂⊗N

x

)2〉 = 1 − e−2Jθ2sin2βcos2(2Jθ cos β + γ ′). (C5)

Equation (C5) implies that one can expect to observe the
fringe for the rotation angle θ satisfying |θ | � (2J sin2β)−1/2.
This range of the rotation angle allows us to observe
about

√
2J

cos2β

π sin β
∼ 0.35 × √

2J fringes for β ∼ 0.2π , which
implies that we can expect to observe four fringes for a
J = 74.5 spin ensemble and seven fringes for a J = 200 spin
ensemble if a perfect MSS can be prepared. We also note that
the width of the single fringe �θ is given by

�θ = π

2J cos2β
∼ 0.76π × J−1 rad (C6)

for β ∼ 0.2π , which implies that an MSS can be utilized as a
probe of Heisenberg-limited spectroscopy. On the other hand,
when the state is mixed, i.e.,

ρ̂mix(J ; α,β)

= 1

A2(J ; α,β,γ )
(|�CSS(J ; α,β)〉〈�CSS(J ; α,β)|

+ |�CSS(J ; −α,π − β)〉〈�CSS(J ; −α,π − β)|), (C7)

the variance of the parity of σ̂x after the rotation about the z

axis by an angle θ is given by

〈(�σ̂⊗N
x )2〉 = 1 − [cos2J (θ + α) + cos2J (θ − α)]sin2J β

2(1 + cos2J α sin2J β cos γ ′)

� 1, (C8)

and no fringes can be observed.

2. MSSs with spin number fluctuations

As shown in Eq. (C5) in the previous subsection, a perfect
MSS manifests fringes of 〈(�σ̂⊗N

x )2〉 whose width is given by
the Heisenberg-limit scaling law ∝J−1. The fringes generated
by |opt(J )〉, however, are expected to be degraded by the
imperfection of |opt(J )〉. Moreover, the number of spins in
an ensemble may well have finite fluctuation in experiments,
for instance, the number of atoms is fluctuating as 380 ± 15
in Ref. [45], and the fringes may fade away, depending
on the magnitude of the number fluctuations. In order to
investigate the robustness of the fringes generated by |opt(J )〉
against the imperfection of the fidelity to the perfect MSS
|�MSS(J ; αopt,βopt,γopt)〉 and the spin-number fluctuation, we
numerically calculate the fringes of 〈(�σ̂⊗N

x )2〉 generated by
|opt(J )〉 whose spin number is Gaussian fluctuating, i.e., the
probability to have N spins can be expressed as the normal
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FIG. 13. Fringes of
√〈(�σ̂⊗N

x )2〉 generated by |opt(J )〉 with the spin-number fluctuations of 2% and 10% for J̄ = 74.5 and J̄ = 200. The
red solid curves and the blue dashed curves express the fringes produced by the perfect MSS |�MSS(J ; αopt,βopt,γopt)〉 and |opt(J )〉 without
spin-number fluctuation. The black dots with the black-solid error bars respectively represent the mean values and the standard deviations of 250
trials of fringe experiments, where the spin-number fluctuation is given by Eq. (C9) and |(J ; τopt)〉 is prepared after the optimized evolution
time τopt for J̄ .

FIG. 14. Fringes of
√〈(�σ̂⊗N

x )2〉 generated by |opt(J )〉 with the fluctuation in the driving-field magnitude of 2% and 10% for J̄ = 74.5
and J̄ = 200. The red solid curves and the blue dashed curves express the fringes produced by the perfect MSS |�MSS(J ; αopt,βopt,γopt)〉 and
|opt(J )〉 without the fluctuation in �, i.e., � = �̄. The black dots with the black-solid error bars respectively represent the mean values and
the standard deviations of 250 trials of fringe experiments with the � distributed randomly between (1 ± σ )�̄.
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FIG. 15. Fringes of
√〈(�σ̂⊗N

x )2〉 generated by |opt(J )〉 with the fluctuation in the nonlinear interaction energy λ of 2%, 5%, and 10% for
J̄ = 74.5 and J̄ = 200. The red solid curves and the blue dashed curves express the fringes produced by the perfect MSS |�MSS(J ; αopt,βopt,γopt)〉
and |opt(J )〉 without the fluctuation in λ, i.e., λ = λ̄. The black dots with the black-solid error bars respectively represent the mean values and
the standard deviations of 250 trials of fringe experiments with the λ distributed randomly between (1 ± σ )λ̄.

distribution P (N̄,σ ; N ) with the mean value of N̄ and the
standard deviation σ given by

P (N̄,σ ; N ) = 1√
2πσ 2

e
− (N−N̄)2

2σ2 . (C9)

In the case of Ref. [45], the mean and the standard deviation
of the spin number are given by N̄ = 380 and σ/J < 3.9%,
respectively. In our calculation of 〈(�σ̂⊗N

x )2〉 with finite spin-
number fluctuation, 250 pseudorandom spin numbers with the
probability density given by Eq. (C9) are generated by the
Mersenne Twister method so that the difference between the
mean spin number of Ntrial = 250 trials and N̄ in Eq. (C9) and

their respective standard deviations σtrial and σ satisfy |Ntrial −
N̄ | � 0.01 × N̄ and |σtrial − σ | � 0.1 × σ .

We show the fringes for J̄ = 74.5 and J̄ = 200 without and
with the spin-number fluctuations of 2% and 10% in Figs. 13.
The fringes for the perfect MSS and |opt(J̄ )〉 without the
spin-number fluctuation almost coincide with each other in
the case of J̄ = 74.5, when the fidelity to the perfect MSS
exceeds 0.99. On the other hand, the magnitudes of the fringes
generated by |opt(J̄ )〉 decrease in comparison with the perfect
MSS even without the spin-number fluctuation in the case of
J̄ = 200, when the fidelity to the perfect MSS degraded to
be ∼0.86; however, the magnitude of the fringe created by
|opt(J̄ )〉 is diminished more slowly than the perfect MSS with
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respect to the rotation angle θ and the positions of the fringe
peaks does not change from those of the perfect MSS. Thus
we can expect to observe the fringes and make use of them to
estimate the rotation angle up to the spin number of N = 500
at least when the number of spins can be deterministically
prepared. Figure 13 also implies the robustness against the
spin-number fluctuation of �10%. The fringes with the spin
number fluctuation of 10% is not suitable for the rotation-angle
measurement; however, they still manifest the nonclassicality,
since we can clearly see the region

√
〈(�σ̂⊗N

x )2〉 < 1 on either
side of the first peak of

√
〈(�σ̂⊗N

x )2〉 at θ ∼ 0.38π × J−1

given in Eq. (C6) as shown in Figs. 13.

3. Other noise sources

The other major noise sources are the fluctuations in the
magnitude of the driving field � and the evolution time topt

of an MSS creation during a series of trials to obtain fringes.
Here, topt is well controllable to within the order of ∼μs as
well as driving-field parameters ω̃ and φ whose fluctuations
are negligible when the interaction strength is given by ∼Hz;

however, it can be a major source of fluctuations when the
achievable interaction strength gets larger to be ∼kHz.

The fluctuation in � can be caused by the fluctuation in
the energy splitting between two internal degrees of free-
dom comprising a pseudospin. We assume that � uniformly
distributes between [(1 − σ )�,(1 + σ )�] and simulates the
fringes produced by |opt(J̄ )〉 with the fluctuation in � of 2%
and 10% for J = 74.5 and J = 200 as shown in Figs. 14. Here,
we generate 250 pseudorandom values of �’s, each of which
are uncorrelated, and ensure that the average of � of the 250
trials, �trial, satisfies |�trial − �̄| < 0.01 × �̄. We can observe
the fringes even when � fluctuates 10% of its mean value.

The fluctuation in topt is equivalent to the fluctuation in
the nonlinear interaction energy λ. So, we assume that λ

has a uniform distribution between [(1 − σ )λ,(1 + σ )λ] and
obtain the fringes of

√
〈(�σ̂⊗N

x )2〉 produced by the MSSs with
random λ for J = 74.5 and J = 200 and for σ/λ = 2%, 5%,
and 10%. As in the case of fluctuating �, we can expect to
observe interference fringes when λ or topt fluctuates 10% of
its magnitude. (See Fig. 15.)
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