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Abstract 28 

Predators and scavengers are frequently persecuted for their negative effects on property, 29 

livestock, and human life. Research has shown that these species play important regulatory roles 30 

in intact ecosystems including regulating herbivore and mesopredator populations that in turn 31 

affect floral, soil, and hydrological systems. Yet predators and scavengers receive surprisingly 32 

little recognition for their benefits to humans in the landscapes they share. We review these 33 

benefits, highlighting the most recent studies that have documented their positive effects across a 34 

range of environments. Indeed, the benefits of predators and scavengers can be far reaching, 35 

affecting human health and well-being through disease mitigation, agricultural production, and 36 

waste-disposal services. As many predators and scavengers are in a state of rapid decline, we 37 

argue that researchers must work in concert with the media, managers, and policy makers to 38 

highlight benefits of these species and the need to ensure their long-term conservation. 39 

Furthermore, instead of only assessing the costs of predators and scavengers in economic terms, 40 

it is critical to recognize their beneficial contributions to human health and well-being. Given the 41 

ever-expanding human footprint, it is essential that we construct conservation solutions that 42 

allow a wide variety of species to persist in shared landscapes. Identifying, evaluating, and 43 

communicating the benefits provided by species that are often considered problem animals is an 44 

important step for establishing tolerance in these shared spaces. 45 

Introduction 46 

Coadaptation, the ability of humans and predators and scavengers to modify their behavior based 47 

on benefit trade-offs, is recognized as key for their coexistence in the 21st century1,2. However, 48 
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coadaptation relies on human tolerance and the recognition of the wide range of benefits that 49 

predators and scavengers provide humanity3,4. It is well established in the ecological literature 50 

that predators play regulatory roles in intact ecosystems as they exert top-down pressures on prey 51 

communities, thereby reducing herbivory of plant species important to humans5 and scavengers 52 

consume large amounts of carcasses and organic waste6,7. It is accepted that the disappearance of 53 

predators and scavengers from ecosystems can cause a suite of deleterious effects including the 54 

loss of plant species diversity, biomass, and productivity that in turn affect disease dynamics, 55 

carbon sequestration, and wildfire risk8. As a result, predators and scavengers are considered 56 

flagship and keystone species9 and are sometimes treated as surrogates for the health of entire 57 

ecosystems10.  58 

 59 

Despite their ecological value, predators and scavengers often have a poor public reputation 60 

because of their real and perceived negative impacts on humans11–13. These negative impacts 61 

include livestock depredations14, killing of pets15, attacks on humans13, and harboring of diseases 62 

and parasites16. The human culture of fear associated with predators hinders many local and 63 

regional species recovery efforts17. Populations of many predator and scavenger species are 64 

already declining8,18 and are projected to continue to dramatically decline over the next 25 years 65 

in response to increasing human populations, political uncertainty, and climate change8,19,20.  66 

 67 

An understanding of the benefits of predators and scavengers on human well-being is important 68 

in strengthening conservation efforts in shared landscapes2,21,22. For example, Egyptian vultures 69 

(Neophron percnopterus), which are declining globally, thrive in the towns and villages of 70 

Socotra, Yemen where they are valued for their service of removing livestock and human waste23 71 

that would otherwise cause water contamination and are expensive to remove7,24,25. Similarly, the 72 
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Tigray region of northern Ethiopia harbours high populations of spotted hyenas (Crocuta 73 

crocuta) that are tolerated by human societies, as they consume cattle and donkey carcasses as 74 

well as human corpses in urban settlements, reducing disease risk25. Yet, these examples of 75 

human communities cohabitating and actively conserving scavengers and predators are few and 76 

far between. 77 

 78 

Here, we highlight several key, yet often overlooked, benefits provided by native predators and 79 

scavengers in shared landscapes with humans (Figure 1). These potential benefits include disease 80 

regulation through host density reduction and competitive exclusion, increasing agricultural 81 

output through competition reduction and consumption of problem species that destroy crops, 82 

waste disposal services, and regulating populations of species that threaten humans. Although 83 

there are a growing number of examples of benefits provided by predators and scavengers, it is 84 

often unclear how widespread these benefits may be. While some benefits, such as carcass 85 

disposal, may be common and general, other benefits, such as protection from zoonotic disease, 86 

may be highly context-dependent effects that are localized in both space and time (Table 1). 87 

Management of predators and scavengers must also, therefore, be context-dependent and try to 88 

appropriately balance detrimental and beneficial effects. We focus primarily on economic and 89 

health aspects of human well-being, but we recognize that well-being can encompass other 90 

material, social, and subjective components of the human experience that are not covered in this 91 

paper26.   92 



  4 

Predators and scavengers regulate zoonotic diseases 93 

Zoonoses, diseases that are maintained in animal populations but can be transmitted to humans, 94 

pose direct threats to human health as exemplified by recent outbreaks of the Zika virus27, Ebola 95 

virus28, and H5N1 avian influenza29. Accounting for over 60% of known human diseases30, 96 

zoonotic disease outbreaks can decimate human societies and economies. For example, not only 97 

did the Ebola virus cause loss of life (>12,000 lives)31, but it virtually halted all tourism to West 98 

Africa leading to dramatic economic suffering due to both local perception of disease risk and 99 

continent-wide economic concerns32. Because of these human health and economic impacts, 100 

control of zoonoses and their vectors is important and while they may be hosts themselves in 101 

some cases (e.g. carnivores sustaining rabies cycles in some African ecosystems33), predators and 102 

scavengers may play a role in disease regulation34. Indeed, some case studies have shown that 103 

they can control diseases by reducing host and vector densities35, through local competitive 104 

exclusion24, or directly through feeding on infected hosts36 (see Figure 1).  105 

 106 

Reduction of host species densities by predators can reduce the risk of disease transmission to 107 

humans by limiting the prevalence of disease in host populations when within-host transmission 108 

is density-dependent37. Predators can also reduce absolute host numbers, thereby limiting the 109 

opportunity of spillover to humans when within-host transmission is either density- or frequency-110 

dependent37. For example, reduction in dog densities by leopards (Panthera pardus) greatly 111 

reduces the frequency of dog bites and hence human exposure to rabies near the Sanjay Gandhi 112 

National Park in Mumbai, India38. Similarly, generalist predators such as foxes may reduce Lyme 113 

disease risk in humans by controlling mice populations (Peromyscus sp.), the main reservoir for 114 

infected nymphal tick vectors (Ixodes scapularis)39–41, and frog tadpoles may play a global role 115 
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in reducing dengue fever by feeding on mosquito eggs42 (see Figure 1 for global distribution of 116 

these species). 117 

 118 

Predators and scavengers can also reduce disease risk in humans through competitive exclusion, 119 

the action of outcompeting disease hosts for resources or space. For example, vultures have been 120 

shown to outcompete stray dogs in finding and consuming carrion24. Markandya and colleagues 121 

(2008) linked the severe decline in vulture populations in India (92% loss from 1990-2000) to 122 

the widespread use of diclofenac and the striking increase in stray dog populations24. They 123 

suggest in the absence of vultures consuming carrion, stray dog populations will continue to rise, 124 

resulting in an increase in human dog bites and exposure to rabies. Furthermore, other facultative 125 

scavengers can replace vultures, including gulls, rats, and invasive foxes43, all of which can pose 126 

risks to humans and can themselves be disease hosts.  127 

Predators can indirectly increase agricultural output 128 

Species that consume crops account for 10-20% of agricultural financial losses globally and 129 

current control measures are estimated to be only 40% effective on average44. Conventional pest-130 

control methods, particularly chemical control, can be detrimental to human health45 and costly. 131 

Biological control provides an alternative to unhealthy chemical control methods46, and some 132 

case studies have shown that natural predators can reduce financial burden and crop loss by 133 

consuming problem species.  134 

 135 

Airborne predators can play an important role in agricultural management47, a reason why some 136 

bat and bird species are often considered the most economically important non-domesticated 137 
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group of animals48,49. For example, field experiments show that some bat communities in the 138 

USA suppress pest larval densities of the detrimental corn earworm moth (Helicoverpa zea) and 139 

cucumber beetle (Diabrotica undecimipunctata howardi) by nearly 60% and significantly reduce 140 

associated pest fungal growth in large-scale corn productions49. Based on these experiments, the 141 

authors estimate that bat control of crop pests may save farmers more than US$1 billion globally 142 

per year, thereby providing a substantial service to farmer livelihoods49. Similarly, birds and bats 143 

in the tropical cacao plantations of Indonesia’s central Sulawesi have been shown to save over 144 

30% of crop output (~US$730 ha-1) by hunting pest populations of Lepidoptera and Heteroptera 145 

species50.  146 

 147 

Large avian predators can also have marked impacts on problem species that cause agricultural 148 

damage (Figure 1). For example, the barn owl (Tyto alba) has a diet made up of ~99% 149 

agricultural pest species and reduces rodent density by over 33% in the alfalfa (Medicago sativa) 150 

fields of California, USA51,52. Similarly, barn owls reduce man-hours worked and baiting costs 151 

for rat (Rattus sp.) control in oil palm plantations of Malaysia53. Likewise, New Zealand falcons 152 

(Falco novaeseelandiae) have increased winery output in six New Zealand wineries by preying 153 

on four crop-raiding bird species54.  154 

 155 

Livestock depredation by carnivores can be costly for pastoralists14, resulting in retaliatory 156 

killings of predators3. However, in pasture environments where livestock and wild herbivores are 157 

present, predators may increase livestock productivity by reducing competition with other 158 

herbivores55. For instance, the dingo (Canis lupus dingo) (Figure 3) has been shown to increase 159 

agricultural output by controlling populations of red kangaroo (Macropus rufus), Australia’s 160 
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largest native herbivore and a major competitor with livestock on commercial grazing land56. 161 

Cattle farmers often kill dingoes due to their reputation for killing valuable livestock but dingoes 162 

are estimated to increase pasture biomass by 53 kg ha-1 and improve profit margins by US$0.83 163 

ha-1,56. 164 

 165 

The value of other predatory species as pest regulators requires further investigation. For 166 

example, pest insects form over 50% of the diet of a suite of frog species in the Nepalese rice 167 

plantations of Chitwan57 and in southeast China, frog species depredate rice leaf rollers 168 

(Cnaphalocrocis medinalis), a problematic species that causes blight. By consuming leaf rollers, 169 

frogs increase the number of seedlings and stem width of rice plants58 that may ultimately 170 

increase health and crop size for rice farmers. Similarly, skunks (Miphitis spp.) in North America 171 

have been shown to reduce pests in family gardens, potentially reducing the need for pest 172 

management59. 173 

Predators and scavengers provide benefits in urbanizing 174 

environments 175 

Negative human-wildlife interactions are a longstanding and growing problem17 that is often 176 

exacerbated in areas with high human density and an abrupt ‘wilderness’ interface21. Many 177 

species are attracted to the high calorie food items, shelter, and breeding resources common to 178 

urban areas, and they may form permanent populations in shared areas irrespective of wilderness 179 

proximity60. For instance, bobcat and puma densities in Colorado, USA, are the same across 180 

semi-urban areas and wildland habitats provided that prey densities are similar61. As a result, 181 
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predators and scavengers will utilize urban areas, and some case studies have shown that they 182 

may provide benefits to humans above and beyond the disease benefits discussed above, 183 

including waste regulation and reduction of species abundances that cause direct human injury 184 

and death7,38,62. 185 

 186 

Scavengers provide organic waste regulatory services by feeding on carcasses or decaying food 187 

matter (Figure 1). For example, golden jackals (Canis aureus) reduce >3,700 tons of domestic 188 

animal waste in Serbia per year, including road-killed animals and waste dumps7. One estimate 189 

indicates that jackals remove >13,000 tons of organic waste across urban landscapes in Europe 190 

amounting to >US$0.5 million in saved waste-control7 that would otherwise cause groundwater 191 

contamination and other health risks24. Vultures can also provide long-term carcass removal 192 

services for the livestock industry, leading to savings in man-hours and reduced disease risk in 193 

valuable herds6. This service has been observed in many developing regions, particularly in 194 

Africa and Asia where waste-disposal infrastructure is lacking23,24,63. 195 

 196 

Large terrestrial predators can provide services in urban landscapes by reducing abundances of 197 

species that cause human death and injury (Figure 1). For example, leopards reduce the density 198 

of stray dogs in Mumbai, India, thereby reducing bites and injury accrued on residents and save 199 

the municipality nearly 10% of their annual dog management budget38. Stray dogs are 200 

responsible for thousands of bites on Mumbai’s citizens annually that result in hundreds of work 201 

days lost and subsequent financial burden64. As stray dog populations currently exceed well over 202 

1 billion globally and are expected to continue to grow as the human population increases65, 203 

large wild predators in these urban landscapes should be considered a valuable asset in reducing 204 
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the ongoing and potential damage accrued from urban stray dogs on human health and well-205 

being. 206 

 207 

Predators can also reduce the abundance of species that are responsible for costly wildlife-208 

vehicle collisions (Figure 1). Where large carnivores have declined or been extirpated, herbivore 209 

populations have often increased66. This trophic response not only impacts ecological structure, 210 

but can directly influence human well-being. Gilbert et al. (2016) found that the potential 211 

recolonization of cougars over a 30-year period in the eastern United States would reduce deer 212 

populations and thereby curtail deer-vehicle collisions by 22%62. They estimated that this 213 

reduction in collisions would result in 155 less human deaths, 21,400 less human injuries, and 214 

US$2.13 billion saved in costs. This study illustrates how the ecological effects of large predators 215 

can potentially save human lives and decrease government spending. 216 

Predator and scavenger conservation in the 21st century  217 

Only 12.5 percent of the earth’s terrestrial surface is protected for conservation67, and as the 218 

human population grows, and our global footprint expands, ‘shared’ landscapes will prevail 219 

across Earth’s terrestrial surface20,68. Currently, predators and scavengers receive relatively high 220 

attention in protected landscapes69, but receive relatively little conservation attention in shared 221 

landscapes20,70 considering large portions of many species ranges occur in these areas20. For 222 

example, leopards have disappeared across 78% of their historic range18, African lions (Panthera 223 

leo) are predicted to continue to decline by half outside of protected areas71, and 17 out of the 22 224 

vulture species are declining due to human activities43. Shared landscapes must be managed to 225 
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achieve effective conservation for all species and improving our understanding of the services 226 

provided by predators and scavengers may facilitate their conservation72.  227 

 228 

One obstacle to effective conservation of predators and scavengers in shared landscapes is bias in 229 

media, government, and public perception. Skewed viewpoints can sensationalize the negative 230 

effects of predators and scavengers12,73 that can have long-lasting repercussions on human 231 

perception, behavior, and policy73,74. For example, much of the media framed leopards as the 232 

perpetrators when attacks occurred in the city of Mumbai, India12, and the main local newspaper 233 

in Bangladesh pointed to the tiger (Panthera tigris) as being the cause of conflict with a 2x 234 

higher frequency when compared to the international “The Guardian” newspaper75. In Florida, 235 

USA, instead of taking a neutral stance, local newspapers asserted risks that Florida panthers 236 

(Puma concolor coryi) might harm people and domestic animals76. Likewise, most media 237 

coverage in the USA and Australia emphasized the risks sharks pose to people despite the 238 

threatened status of many shark species77. An emphasis on wildlife-related risks from the media 239 

can lead to risk-averse policy such as when the Western Australia Government deployed drum 240 

lines to catch and kill sharks thought to be a threat to the public73. These “signals” the public 241 

receives from governments can influence human behavior directed toward wildlife. For example, 242 

Chapron and Treves (2016) suggest that the repeated policy signal to allow state culling of 243 

wolves in Wisconsin and Michigan, USA, may have sent a negative message about the value of 244 

wolves or acceptability of poaching to the public78. The authors contend that these policy signals 245 

contributed to poaching of wolves and slowed their population growth78.  246 

 247 



  11

Another issue is the asymmetry between stakeholders that incur the costs from wildlife, such as 248 

the local communities living near them79, and those that benefit from wildlife, such as specific 249 

industries (e.g. tourism) or society as a whole. For example, the international community values 250 

orangutans for their conservation and intrinsic value in Indonesia, yet local people incur the cost 251 

of crop raiding and personal injuries from orangutan attacks80. Consequently, local people kill 252 

orangutans to reduce those costs80,81. Likewise, although ecotourism companies benefit from 253 

predator-viewing activities in Bhutan’s Jigme Singye Wangchuk National Park, low income 254 

agropastoralists suffer from depredated livestock by tigers and leopards. These losses amount to 255 

more than two-thirds of average annual household income82. 256 

 257 

Initiatives that have directly provided local stakeholders with benefits from large predators and 258 

scavengers have achieved substantial and sustained reductions in conflict. Two seminal examples 259 

include profit-sharing and compensation schemes in Kenya’s Kuku group ranch and Mbirikani 260 

ranch, which provide local stakeholders with a proportion of tourist industry revenue.  This has 261 

led to reductions in the incidence of lion deaths resulting from poisoning71,83. Such schemes may 262 

help balance the economic benefits between private stakeholders and the local public who accrue 263 

most of the costs of predators and scavengers. Similar incentive schemes have been used 264 

successfully by conservation NGO’s and governments to promote changes in human behavior, 265 

such as reducing carnivore killings84. However, the success of these schemes can be jeopardised 266 

if they lack sufficient logistic and financial support, they do not award adequate compensation to 267 

offset losses, or if compensation is awarded inequitably85. Such schemes may also have limited 268 

effectiveness in reducing killings motivated by cultural, political or historical reasons86. Hence, 269 

profit-sharing and compensation schemes must be implemented in conjunction with broader 270 
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management programs that attempt to identify and address the wide range of factors that 271 

contribute to killing of wildlife, and that encourage the participation of all stakeholders in an 272 

inclusive decision-making process that recognizes multiple systems of knowledge and values87. 273 

 274 

In addition to improving equity in various forms associated with predators and scavengers, there 275 

is also an urgent need to promote human tolerance to these species through education about 276 

benefits88–91. Dedicating outreach teams to communicate the benefits of endemic predators and 277 

scavengers to local communities could be an effective conservation strategy. Demonstrations of 278 

the effectiveness of education programs include: an improvement in the belief in potential for co-279 

existence with alligators (Alligator mississippiensis) following education88, greater tolerance of 280 

black bears (Ursus americanus) following education of benefits provided by bears92, and greater 281 

tolerance of bats among Costa Rican men following education regarding ecosystem service 282 

provision91. Although more research is required to understand how long the benefits of education 283 

programs may last and how best to deliver them to people from a variety of cultural, educational 284 

and religious backgrounds, education can be an effective tool for conservation of predators and 285 

scavengers in shared landscapes. 286 

  287 

In addition to the benefits predators and scavengers provide to the public as a whole, they may 288 

also benefit a wide range of business, agricultural, and tourism interests. Much can be done to 289 

bolster the services of predators and scavengers in these sectors through local government and 290 

individual action. For example, Italian city councils are encouraging residents to purchase bat 291 

nesting boxes in response to increasing mosquitos that cause chikungunya fever93, although it is 292 

unclear the extent of impact that bats have on disease-carrying mosquitoes in this region. 293 
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Similarly, the city of Dubai in the United Arab Emirates invests in consultancies that work with 294 

peregrine falcons to reduce feral pigeon populations that cause severe damage to infrastructure94. 295 

Ecotourism revenue can be substantial, though it is often difficult to estimate how much 296 

particular species contribute to overall economic value95. The presence of jaguars (Panthera 297 

onca) in Brazil, for example, may contribute greatly to Pantanal ecolodges. One study estimates 298 

that the large felids bring nearly US$7 million in annual land-use revenue, which is 52 times 299 

higher than other industries in the region96.  300 

 301 

Predators may also benefit vehicle drivers by reducing insurance premiums in areas where 302 

predators have been effective in reducing the abundance of large prey like deer, which can be a 303 

leading source of vehicle collision damage62. Similarly, obligate scavengers have been shown to 304 

save ca. $50 million in insurance payments by farmers and national administrations in Spain by 305 

supplanting transportation of livestock carcasses to processing facilities97. Scavengers may also 306 

provide savings by reducing costs associated with meat contamination98. More work is needed to 307 

document the financial benefits of predators and scavengers to different sectors of society. 308 

 309 

Managing the trade-offs between the costs and benefits of accommodating predators and 310 

scavengers in shared landscapes is a difficult and unresolved problem due to the complexity of 311 

human and ecological systems (Table 1). Risk-averse management may tend to place undue 312 

importance on eliminating the detrimental impacts of predators and scavengers over maintaining 313 

the benefits, particularly if the impacts include direct hazard to human life. In some cases, 314 

however, this may be a short-sighted and poorly justified perspective that could lead to a net 315 

increase in risk to humans if these animals also provide benefits that reduce exposure of risk to 316 
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humans. Important unanswered questions include: how do the benefits from predators and 317 

scavengers change as the density of those species varies over time99? How does the composition 318 

of the predator guild alter human perception of the costs associated with those predators100? 319 

Integrating the natural and social sciences can help answer these questions by evaluating the full 320 

range of both costs and benefits. Doing so will enable conservationists to determine if and when 321 

there is a net-benefit in shared landscapes and develop strategies to encourage net benefits81. 322 

Moreover, as the extent of shared landscapes increases globally, it is imperative that we identify 323 

new approaches to management that allow wildlife and humans to coexist. Failing to do so is 324 

likely to result in the extinction of many species.  325 

 326 

Human societies depend greatly on the living components of the natural world101, and these 327 

natural services are being altered by human dominance of landscapes102 and climate change103. 328 

While, predators and scavengers currently face great threats in shared landscapes43,104, they can 329 

coexist in areas where local communities accept and tolerate these species3,23,88. Traditional 330 

conservation approaches such as safeguarding land may not lead to comprehensive protection of 331 

species in human-dominated areas20, leading to a requirement for alternative approaches for 332 

saving species in these shared landscapes. An important alternative is using services that 333 

predators and scavengers provide for human well-being to enhance protection72. By adopting an 334 

approach that communicates and educates these benefits to communities that live with predators 335 

and scavengers while accounting for cultural values and equitable conservation decision-making, 336 

we may be able to stem the decline of these persecuted guilds and make progress toward more 337 

expansive protection and increased instances of a net-gain in shared landscapes. 338 

 339 

 340 
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 357 

Figure 1. IUCN global distribution of some species that are known to provide important services 358 

to humans over some portion of their range. Panel a) shows the ranges of some species known to 359 

contribution to agricultural production; Panel b) shows the ranges of some species that may 360 

reduce disease risk; Panel c) shows the ranges of some animals known to reduce species that 361 

cause human injury and death; Lastly, panel d) shows the ranges of some species known to 362 

remove dangerous organic waste. 363 
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Benefit Predator/scavenger 
species & location 

of case study 

Key finding(s) Potential limitations of 
case study  

Additional research needed 
to further demonstrate 

human well-being benefits 
Regulating 
zoonoses 

Leopard (Panthera 
pardus)38 

 

Mumbai, India 
 

Leopards 
consume nearly 
1,500 feral dogs 
per year, 
reducing injury 
rates and   
potentially 
saving 
approximately 
90 human lives. 

Human benefit inferred 
from leopards 
consuming feral dogs 
that bite and infect 
humans, yet lacks direct 
measure of benefit, or 
controls for 
comparisons in similar 
dog-infested areas 
without leopards. Small 
spatial scale. 

Conduct similar analyses in 
locations without leopard 
presence. Estimate 
prevalence of dog rabies 
rates in Mumbai and 
analysis of trade-offs 
between dog and leopard 
attacks on humans. Are 
these results in line with 
similar systems globally? 

Regulating 
zoonoses 

Red fox (Vulpes 
vulpes)39 

 

USA 

 

The decline of 
red foxes is 
spatially 
correlated with 
Lyme disease 
outbreaks. 

Potential benefit 
inferred from 
correlation (cause and 
effect not established).  

Better mechanistic 
understanding of system 
required to evaluate effect 
of multiple predators on 
prey (host) populations, and 
explicitly link this to host-
pathogen dynamics. 

Regulating 
zoonoses 

Amphibian larvae 
(Polypedates 
cruicger, Bufo 
melanostictus, 
Ramanella 
obscura, 
Euphlyctyis 
cyanophlyctis)42 

 

Sri Lanka; Lab 
experiment 

 

Amphibian 
larvae feed 
aggressively on 
dengue 
mosquito (Aedes 
aegypti) eggs. 

Lab-based experiment 
that does not account 
for alternative food 
availability that can 
dilute predatory effects. 
No direct quantification 
of human well-being. 
For example, lack of 
analyses on cost 
savings associated with 
vector control or 
reduced infection rates 
in humans as a result of 
amphibian predation of 
mosquito eggs.  

Conduct field studies on 
amphibian larvae gut 
content across a variety of 
geographic areas subject to 
mosquito-borne diseases. 
Investigate whether 
predation of larvae by 
amphibians results in lower 
densities of adult mosquitos. 
Quantify how many human 
lives amphibian 
communities could affect.  

Regulating 
zoonoses 

Old world vultures 
(Gyps spp.)24 
 
India 

Vulture declines 
are linked to 
increased feral 
dogs that cause 

Potential benefit 
inferred from 
correlation (cause and 
effect not established). 

Must identify other potential 
factors implicated in vulture 
declines and rule them out. 
Compare with vulture 
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rabies. population trends in areas in 
which feral dogs have not 
increased. 

Increasing 
agricultural 
output 

Barn owl (Tyto 
alba)52,51 

 

California, USA 

 

Barn owls 
consume >99% 
crop pests and 
reduce rodent 
density by over 
33% in alfalfa 
fields.  

No demonstration of 
increased crop yield. 
No calculation of cost 
savings from pest 
species consumption.   

A controlled replicated 
experiment may be feasible 
to demonstrate a causal link 
between barn owls and 
increased crop yield. 
Calculate cost savings 
through work-hours, 
chemical control, and trap 
costs saved from pest 
predation by owls.  

Increasing 
agricultural 
output 

New Zealand 
falcon (Falco 
novaeseelandiae)54 

 

New Zealand 

 
 

New Zealand 
falcons reduce 
the presence of 
four crop-
raiding bird 
species, 
increasing profit 
margins in 
wineries from 
US$234-326/ha. 

Geographically- limited 
case study. 

Replication in other areas 
and other systems required 
to better establish 
generality. Include 
calculations on work-hours 
saved by having falcons 
present on wineries.  

Increasing 
agricultural 
output 

Dingo (Canis lupus 
dingo)56 

 

New South Wales, 
Australia 

 

Dingoes 
increase gross 
profit margins 
by reducing the 
density of 
kangaroos, 
which compete 
with cattle. 

Geographically-limited 
case study based on a 
metamodel.  

Fieldwork needed to show 
that forage availability is 
proportional to kangaroo 
density. Must account for 
both forage quantity and 
quality effects. 
Include calculations on 
work-hours saved. Conduct 
exclusion experiments. Are 
the results similar to the 
metamodel? 

Increasing 
agricultural 
output 

Thirteen frog 
species (Bufonidae, 
Microhylidaae, 
Ranidae, 

Frogs increase 
the number of 
rice seedlings 
and stem width 

No calculation of 
increased crop yield or 
cost savings from pest 
species consumption.   

Demonstrate crop yield 
increases when frogs are 
present, ideally using field 
experiments. Calculate cost 



  18

Rhacopphoridae)57 

 

Chitwan, Nepal 
 

 

of rice plants by 
consuming leaf 
rollers 
(Cnaphalocrocis 
medinalis) 

savings through work-hours, 
chemical control, and trap 
costs saved from pest 
predation by frogs.  

Waste 
removal 

Egyptian vulture 
(Neophron 
percnopterus)23 

 

Socotra, Yemen 

 

Vultures dispose 
of >22% of 
organic waste. 

Clearer link to human 
well-being needed, such 
as disease implications 
and cost savings of 
waste scavenging. 
Small spatial scale. 

Test water sources near 
waste dumps with and 
without vulture access. 
Additionally, assess costs of 
waste removal. Quantify 
how organic waste has 
negative impacts on 
humans. 

Waste 
removal 

Spotted hyena  
(Crocuta crocuta)25 

 

Tigray, Ethiopia 
 

 

Nearly 90% of 
studied hyenas 
were located at 
waste dumps.  

Human benefit inferred 
from hyena abundance 
at waste dumps. Clearer 
link to human well-
being needed, such as 
estimation of waste 
removal, disease 
implications, and cost 
savings. Small spatial 
scale. 

Conduct diet analysis 
similar to Gangoso and 
colleagues23, but take 
additional steps to address 
costs of waste removal 
and/or human disease 
implications.   

Reducing 
species 
abundance 
that cause 
human 
injury/death 

North American 
cougar (Puma 
concolor)62 
 
Eastern USA 

 

Potential 
recolonization 
of cougars over 
30 years would 
curtail deer-
vehicle 
collisions by 
22%, saving 155 
human lives, 
21,400 injuries, 
and US$2.13 
billion. 

Human benefit based 
on a projected 
recolonization scenario 
for the eastern USA.  

Account for the costs of 
cougar recolonization, such 
as increased incidences of 
livestock predation. Do the 
benefits on human well-
being outweigh the costs? 
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Table 1. Featured case studies of predators and scavengers contributing to human well-being, 364 

their potential limitations, and suggestions for furthering the case human benefit. 365 
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Benefit Predator/scavenger 
species & location 

of case study 

Key finding(s) Potential limitations of 
case study  

Additional research needed 
to further demonstrate 

human well-being benefits 
Regulating 
zoonoses 

Leopard (Panthera 
pardus)1 

 

Mumbai, India 
 

Leopards 
consume nearly 
1,500 feral dogs 
per year, 
reducing injury 
rates and   
potentially 
saving 
approximately 
90 human lives. 

Human benefit inferred 
from leopards 
consuming feral dogs 
that bite and infect 
humans, yet lacks direct 
measure of benefit, or 
controls for 
comparisons in similar 
dog-infested areas 
without leopards. Small 
spatial scale. 

Conduct similar analyses in 
locations without leopard 
presence. Estimate 
prevalence of dog rabies 
rates in Mumbai and 
analysis of trade-offs 
between dog and leopard 
attacks on humans. Are 
these results in line with 
similar systems globally? 

Regulating 
zoonoses 

Red fox (Vulpes 
vulpes)2 

 

USA 

 

The decline of 
red foxes is 
spatially 
correlated with 
Lyme disease 
outbreaks. 

Potential benefit 
inferred from 
correlation (cause and 
effect not established).  

Better mechanistic 
understanding of system 
required to evaluate effect 
of multiple predators on 
prey (host) populations, and 
explicitly link this to host-
pathogen dynamics. 

Regulating 
zoonoses 

Amphibian larvae 
(Polypedates 
cruicger, Bufo 
melanostictus, 
Ramanella 
obscura, 
Euphlyctyis 
cyanophlyctis)3 

 

Sri Lanka; Lab 
experiment 

 

Amphibian 
larvae feed 
aggressively on 
dengue 
mosquito (Aedes 
aegypti) eggs. 

Lab-based experiment 
that does not account 
for alternative food 
availability that can 
dilute predatory effects. 
No direct quantification 
of human well-being. 
For example, lack of 
analyses on cost 
savings associated with 
vector control or 
reduced infection rates 
in humans as a result of 
amphibian predation of 
mosquito eggs.  

Conduct field studies on 
amphibian larvae gut 
content across a variety of 
geographic areas subject to 
mosquito-borne diseases. 
Investigate whether 
predation of larvae by 
amphibians results in lower 
densities of adult mosquitos. 
Quantify how many human 
lives amphibian 
communities could affect.  

Regulating 
zoonoses 

Old world vultures 
(Gyps spp.)4 
 
India 
 

Vulture declines 
are linked to 
increased feral 
dogs that cause 
rabies. 

Potential benefit 
inferred from 
correlation (cause and 
effect not established). 

Must identify other potential 
factors implicated in vulture 
declines and rule them out. 
Compare with vulture 
population trends in areas in 
which feral dogs have not 
increased. 



 
Increasing 
agricultural 
output 

Barn owl (Tyto 
alba)5,6 

 

California, USA 

 

Barn owls 
consume >99% 
crop pests and 
reduce rodent 
density by over 
33% in alfalfa 
fields.  

No demonstration of 
increased crop yield. 
No calculation of cost 
savings from pest 
species consumption.   

A controlled replicated 
experiment may be feasible 
to demonstrate a causal link 
between barn owls and 
increased crop yield. 
Calculate cost savings 
through work-hours, 
chemical control, and trap 
costs saved from pest 
predation by owls.  

Increasing 
agricultural 
output 

New Zealand 
falcon (Falco 
novaeseelandiae)7 

 

New Zealand 

 
 

New Zealand 
falcons reduce 
the presence of 
four crop-
raiding bird 
species, 
increasing profit 
margins in 
wineries from 
US$234-326/ha. 

Geographically- limited 
case study. 

Replication in other areas 
and other systems required 
to better establish 
generality. Include 
calculations on work-hours 
saved by having falcons 
present on wineries.  

Increasing 
agricultural 
output 

Dingo (Canis lupus 
dingo)8 

 

New South Wales, 
Australia 

 

Dingoes 
increase gross 
profit margins 
by reducing the 
density of 
kangaroos, 
which compete 
with cattle. 

Geographically-limited 
case study based on a 
metamodel.  

Fieldwork needed to show 
that forage availability is 
proportional to kangaroo 
density. Must account for 
both forage quantity and 
quality effects. 
Include calculations on 
work-hours saved. Conduct 
exclusion experiments. Are 
the results similar to the 
metamodel? 

Increasing 
agricultural 
output 

Thirteen frog 
species (Bufonidae, 
Microhylidaae, 
Ranidae, 
Rhacopphoridae)9 

 

Chitwan, Nepal 
 

Frogs increase 
the number of 
rice seedlings 
and stem width 
of rice plants by 
consuming leaf 
rollers 
(Cnaphalocrocis 
medinalis) 

No calculation of 
increased crop yield or 
cost savings from pest 
species consumption.   

Demonstrate crop yield 
increases when frogs are 
present, ideally using field 
experiments. Calculate cost 
savings through work-hours, 
chemical control, and trap 
costs saved from pest 
predation by frogs.  
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Waste 
removal 

Egyptian vulture 
(Neophron 
percnopterus)10 

 

Socotra, Yemen 

 

Vultures dispose 
of >22% of 
organic waste. 

Clearer link to human 
well-being needed, such 
as disease implications 
and cost savings of 
waste scavenging. 
Small spatial scale. 

Test water sources near 
waste dumps with and 
without vulture access. 
Additionally, assess costs of 
waste removal. Quantify 
how organic waste has 
negative impacts on 
humans. 

Waste 
removal 

Spotted hyena  
(Crocuta crocuta)11 

 

Tigray, Ethiopia 
 

 

Nearly 90% of 
studied hyenas 
were located at 
waste dumps.  

Human benefit inferred 
from hyena abundance 
at waste dumps. Clearer 
link to human well-
being needed, such as 
estimation of waste 
removal, disease 
implications, and cost 
savings. Small spatial 
scale. 

Conduct diet analysis 
similar to Gangoso and 
colleagues10, but take 
additional steps to address 
costs of waste removal 
and/or human disease 
implications.   

Reducing 
species 
abundance 
that cause 
human 
injury/death 

North American 
cougar (Puma 
concolor)12 
 
Eastern USA 

 

Potential 
recolonization 
of cougars over 
30 years would 
curtail deer-
vehicle 
collisions by 
22%, saving 155 
human lives, 
21,400 injuries, 
and US$2.13 
billion. 

Human benefit based 
on a projected 
recolonization scenario 
for the eastern USA.  

Account for the costs of 
cougar recolonization, such 
as increased incidences of 
livestock predation. Do the 
benefits on human well-
being outweigh the costs? 
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