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Abstract 

Medical imaging is an important technique in diagnosis and monitoring of a variety of 

diseases by providing a visual representation of inner organs of the human body. Although 

existing imaging technologies like Magnetic Resonance Imaging (MRI) and Computational 

Tomography (CT) can provide high resolution and accurate images, they are still 

expensive, bulky and time-consuming; and hence, they are not accessible in rural, remote 

health centres and emergency units such as ambulances. This lack of sufficient imaging 

tools causes millions of death each year; and therefore, a low-cost, portable, non-invasive 

and fast imaging device that can be used as a diagnostic and monitoring tool is deemed 

beneficial.  

In this thesis, a study on the development and use of microwave imaging systems for 

medical applications has been carried out. The study focuses on the development of an 

imaging algorithm to create images of the human body interior for medical applications. In 

addition, different techniques to tackle the challenges in microwave medical imaging 

algorithms are proposed. 

A fast frequency-based imaging algorithm is proposed in this thesis to mitigate problems 

associated with time-domain approaches. This method applies Bessel functions in 

frequency domain for fast image processing that maps regions of high dielectric contrasts 

of the imaged domain in a two-dimensional plane. In this algorithm, the Nyquist concept is 

adopted to reduce the number of sampling frequency utilising limited number of antennas 

to lower the computational complexity effectively whilst attaining correct detections. 

Moreover, a hybrid clutter removal technique to eliminate the effect of strong reflections 

from the skin on the collected signals in microwave medical imaging systems is developed 

as a prepossessing technique to the imaging algorithm.  

As the efficacy of the imaging algorithm relies on a priori information on the permittivity and 

boundary of the imaging domain, an antenna-specific permittivity estimation method and a 

boundary estimation technique by using antenna resonant frequency shifts are proposed 

to improve the detection accuracy and image quality. In addition, the concept of virtual 

antenna array to increase the effective number of antenna elements is proposed in this 

thesis.  

The performance of the imaging algorithm and the other proposed techniques are tested 

via full-wave electromagnetic simulations and experiments on phantoms and healthy 

human trials, using the head and torso imaging systems developed in the Microwave 

Imaging Group of the University of Queensland. 
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1 INTRODUCTION 

This chapter presents the underlying motivation and theoretical background of microwave medical 

imaging systems. The aims and original contributions of the thesis along with the organisation of 

the thesis are also outlined at the final section of this chapter. 

1.1 Background and Motivation 

Medical Imaging is an effective technique in diagnosis and treatment of a variety of diseases by 

providing a visual representation of inner organs of the human body. Many surgical interventions 

can be avoided by utilising diagnostic imaging devices. Medical Imaging can also be used as an 

assessment tool to monitor treatment effectivity for a diagnosed disease. Therefore, medical 

imaging is crucial for initiatives to enhance public health for all population groups and at all levels 

of health care.  

Different medical imaging technologies such as ultrasound, computed tomography (CT), magnetic 

resonance imaging (MRI) and nuclear medicine imaging have developed since last century. 

However, despite their supreme performances in terms of image resolution and accuracy, these are 

expensive medical equipment, and hence not available at rural and remote health centres. According 

to the World Health Organisation (WHO), more than half of the world's population does not have 

access to diagnostic imaging [1]. Furthermore, there is a high demand on a low-cost and safe 

imaging system for the detection and continuously monitoring of a variety of diseases. For example, 

over one million deaths globally each year are caused primarily by lung cancer, which makes it by 

far the number one cancer killer in the world [2], and unfortunately, to date there is no reliable and 

affordable screening tool to early diagnose those diseases. In addition, due to the limited 

permissible exposed dose, most of the existing imaging systems cannot be used frequently by some 
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patient groups such as pregnant women and children. Consequently, they are not recommended for 

the follow-up of the diseases that require activity monitoring on a regular short-term basis like torso 

monitoring of patients with acute lung injuries such as pneumothorax, lung cancer, and pleural 

effusion that should be performed at least on a daily basis [3].   

Furthermore, the conventional imaging tools are not helpful when urgent diagnosis is required. For 

example, in case of brain injuries fast diagnosis is essential to save the patient. Severe brain injuries 

include traumatic and acquired brain injuries, which are respectively caused by external forces (like 

fall or accident) or internal incidences (like stroke and tumours) [4]. It is well known that a patient 

with brain injury requires immediate medical attention. From the onset of the brain injury, millions 

of brain cells die every second causing permanent damages, which can even lead to death [4]. Thus, 

a fast and portable diagnosis system is required on the spot for rapid diagnosis of such injuries.  

The underlying motivation of this thesis is to fill the recognised gap by utilising microwave-based 

imaging techniques as a low-cost, compact, safe, and fast approach in the diagnosis and monitoring 

of different diseases such as brain stroke, lung cancer, and pleural effusion.  

1.2  Microwave Medical Imaging 

Microwave imaging is an attractive technique for medical applications that has the potential to 

create a visual representation of the interior of the human body in a cost-effective and safe manner. 

The significant difference between the dielectric properties of injured and healthy tissues of the 

human body at microwave frequencies represents the basis of microwave medical imaging. Fig.  1.1 

shows an example of the dielectric properties of the constitutive tissues of a human head [10]. This 

figure shows the contrast between dielectric properties of different tissues of human head at 

microwave frequencies. Moreover, it is clear from Fig.  1.1 that a bleeding injured tissue has the 

highest values of permittivity and conductivity compared to other background tissues. Other 

investigations on the electromagnetic properties of human tissues also show that there is a high 

contrast between dielectric properties of cancerous and healthy tissues [11]. 

When an injured tissue with high permittivity value is exposed to an electromagnetic wave at 

microwave frequency, a high portion of the wave reflects back to the source. Therefore, the 

reflected signals can be used to estimate the location and/or dielectric properties of the abnormality. 

To that end, a microwave imaging system is utilised to send and receive electromagnetic waves to 

and from the imaged object. A microwave imaging system is usually made up of a control and 

processing unit, microwave transceiver, switching network, and an antenna array, which surrounds 

the imaged object (Fig.  1.2). The antenna array is used to send electromagnetic waves at 
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microwave frequencies generated in the transceiver to the imaging object and capture the scattered 

signals, which are then processed to create two or three-dimensional images.  

 

         (a)           (b) 

Fig.  1.1. Dielectric properties of different tissues at low microwave frequencies. 

 

 

Fig.  1.2. Microwave imaging system schematic. 

Study of the literature reveals that there have been extensive efforts to build portable and low-cost 

microwave imaging systems in recent years. However, there are still numerous challenges to be 

overcome in the development of a fast and accurate imaging algorithm. The imaging algorithm 
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plays the most important role in a microwave imaging system and this reported research is mainly 

focused on the development of a microwave imaging algorithm suitable for medical applications. In 

this work, the feasibility of using microwave imaging algorithm in medical applications is studied 

and based on formed conclusions, a novel frequency-based imaging algorithm is developed. Then, 

the challenges of using the imaging algorithm in realistic scenarios are addressed by enhancing the 

proposed algorithm using different techniques. 

1.3 Aim of the Thesis 

This project aims to develop a microwave imaging algorithm suitable for different medical 

applications that is fast and effectively detects the probable location of abnormalities inside the 

imaged object, such as human torso and head. There are several challenges that should be addressed 

to reach a comprehensive solution for a microwave imaging algorithm. The following steps are 

taken into account to successfully achieve the goals of this project: 

i. Behaviour of electromagnetic waves inside the human body: A comprehensive study on 

dielectric properties of human tissues and their effects on electromagnetic waves at 

microwave frequencies is required in order to establish a microwave imaging algorithm. 

ii. Data acquisition setup: Depending on the imaging object (torso or head) and imaging 

scenario, different platforms and data acquisition setups, including monostatic and 

multistatic, with circular, elliptical, or linear array configurations, are used. Array 

configuration, required number of antennas, operating frequency and bandwidth are the 

important factors in data acquisition step that should be considered before developing the 

image reconstruction algorithm. 

iii. Signal pre-processing: The received signals from the data acquisition system are usually 

distorted due to the multilayer structure of the human body and strong reflections from the 

skin. In addition, in order to accurately detect an abnormality, a set of priori information on 

the wave’s propagation speed and the boundary location of the imaged object are required. 

Therefore, different pre-processing techniques should be utilised to remove the signal clutter 

and estimate the permittivity and boundary of the imaged object. 

iv. Verification: The proposed methods and algorithms need to be tested through simulations 

and experiments by using realistic human models and phantoms. In addition, in order to 

validate the performance of the proposed method in realistic environments, they should be 

tested on human subjects. 
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1.4 Original Contributions of the Thesis 

The following original contributions are the results of the research undertaken toward addressing 

the aforementioned challenges: 

i. Developing a fast frequency-based algorithm to mitigate problems associated with time-

domain approaches. 

ii. Developing a hybrid clutter-removal technique to eliminate the effect of strong reflections 

from the skin on the collected signals in microwave medical imaging systems. 

iii. Introducing the Information Correlation Coefficient (ICC) to find the required number of 

antennas for medical imaging systems. 

iv. Proposing the antenna-specific permittivity estimation method to enhance the performance 

of the microwave imaging algorithms. 

v. Developing a boundary estimation technique by using antenna resonant frequency shifts to 

improve the detection accuracy and image quality.  

vi. Theoretical analysis and simulation of electromagnetic wave behaviour in human body. 

vii. Conducting full-wave electromagnetic simulations for different imaging configurations to 

analyse and test the proposed algorithms in different applications. 

viii. Performing experimental verification of the proposed methods on different applications with 

different imaging platforms. 

1.5 Thesis Organisation 

The rest of this thesis is organised as follows: 

Chapter 2 overviews the existing microwave imaging algorithms for medical applications. Current 

microwave-based imaging algorithms are discussed and a comparison on the advantages and 

disadvantages of different techniques is provided. The challenges faced by the imaging algorithms 

are described in this chapter. 

Chapter 3 discusses the development of the proposed fast frequency-based microwave-imaging 

algorithm. The Nyquist theorem as a solution to accelerate the algorithm is explained in this 

chapter. The results of testing the proposed method on head injury and lung cancer detection are 

provided at the end of this chapter. 
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Chapter 4 overviews existing clutter removal techniques used in microwave medical imaging. The 

existing clutter removal techniques are modified to be used in frequency-domain and then a 

thorough comparison between those techniques is performed in this chapter. The chapter ends with 

proposing and testing a new clutter removal technique for microwave medical imaging algorithms. 

Chapter 5 presents a new technique based on virtual antenna array to address the challenge of 

limited number of antennas in multistatic imaging modalities and to enhance the resultant images. 

The proposed technique is tested in head imaging system. 

In Chapter 6, the permittivity estimation problem, one of the most important challenges in 

microwave imaging, is addressed by introducing a technique to estimate the permittivity seen by 

each imaging antenna. The proposed method is tested in torso imaging system with the purpose of 

lung cancer detection. 

Chapter 7 introduces a surface estimation technique to enhance the imaging model and improve the 

detection accuracy and image quality of the imaging algorithm. Performance analysis of the 

proposed method is performed on healthy human trials at the end of this chapter. 

Chapter 8 concludes the thesis with the suggestions for future works. 
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2 OVERVIEW OF MICROWAVE 

MEDICAL IMAGING 

ALGORITHMS 

An overview of the state-of-the-art microwave-based imaging systems utilised in medical 

applications is provided in this chapter. Different techniques are detailed and the challenges to be 

tackled for a development of a successful microwave medical imaging algorithm are described in 

this chapter. 

2.1 Microwave Imaging Techniques 

Depending on the configuration of imaging system, different imaging algorithms have been 

developed to extract the information from measurements of the scattered fields. There are mainly 

two types of configurations (monostatic and multistatic) in which one or multiple spatially diverse 

antennas are used as transmitters and receivers. In monostatic approach, one antenna is used as both 

transmitter and receiver. The antenna can be moved to different positions to obtain more 

information about the imaging domain. In multistatic, two or more antennas are used. In this 

configuration, a microwave signal is transmitted by each antenna, and in turn, the scattered signals 

are captured by all the antennas. This process is repeated for every antenna to record all the required 

signals. While the multistatic configuration is more complex than the monostatic approach, it can 

provide more information about the imaged domain by transmitting/receiving signals into/from all 

parts of the imaged domain.  
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The imaging algorithm can be categorised based on the utilised frequency bandwidth e.g., single 

frequency, narrow-band multi-frequency, or ultra-wideband (UWB). In this case, the microwave-

based imaging techniques can be divided into two main types of tomography [6]-[33] and 

beamforming [34]-[48]. Due to time-consuming nature of tomography-based techniques, they are 

mostly applicable to single frequency or narrow-band multi-frequency signals, while beamforming 

methods require wideband signals to create accurate images. 

2.1.1 Microwave Tomography Technique 

In microwave tomography technique, which is also known as quantitative technique, the dielectric 

permittivity map of the imaged domain is estimated by solving an inverse scattering problem. In 

this method, the measured electric fields are used as input to an electromagnetic inverse problem 

derived from Maxwell’s equations. The inverse problem is nonlinear in terms of unknown 

parameters and hence, it is ill-posed i.e. more than one solution satisfies the equations. Therefore, 

additional information and/or estimations are required to mitigate the intrinsic ill-posed nature of 

the inverse problem. In most cases, iterative Newton-based methods [19] such as Gauss-Newton 

[20]-[21], inexact Newton [22], and conjugate-gradient [23], are used to solve the nonlinear inverse 

problem. Optimisation-based methods [24]-[14], Born/distorted Born iterative methods [27]-[28] 

and compressive sensing [28]-[29] are other solutions that can solve the ill-posed inverse problem 

in a more efficient way with minimal number of antennas. In those algorithms, the forward and 

inverse problems are iteratively solved to reach a threshold level in parameter estimation error. In 

each iteration, the calculated field from the current permittivity distribution is compared with the 

measured field. The success of these techniques is highly dependent on the quality of the used 

model for forward problem solving. Therefore, an alternative class of methods based on the contrast 

source inversion method [30] with capability of solving the ill-posed inverse problem without a 

forward solver are proposed [31]-[33]. In these techniques, two sets of linear equations are solved in 

each iteration instead of solving the forward problem.  

The abovementioned techniques are mostly applied to single- or multi-frequency measurement 

setups, which usually use matching medium to reduce skin reflections. In [6]-[8], different authors 

used single-frequency tomography at 2.45 GHz for head and heart imaging, respectively. The 

results were promising for a homogeneous head model, especially in the area of differential 

imaging. However, there were some limitations in the detection of large dielectric contrasts, which 

is the main purpose of microwave medical imaging. Authors in [9] proposed a microwave 

tomographic breast scanner operating in multiple frequencies over the band of 300-1000 MHz. 

Frequency-hopping approach [13] is another kind of multi-frequency technique, in which low 
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frequencies are used to image high-contrast tissues with large structures. The calculated values from 

lower frequencies are then used as priori information for the proceeding iterations at higher 

frequencies to improve the resolution and detect smaller objects. A time-domain inversion 

algorithm was also proposed in [14], where a narrowband pulse with centre frequency of 6 GHz and 

bandwidth of 300 MHz was synthesised from frequency domain data to detect breast cancer.  

As described earlier in this section, tomography-based techniques involve solving ill-posed 

equations of the inverse electromagnetic problem, which are computationally complex and time-

consuming. Therefore, they are not used for medical emergency applications like brain injury 

detection, where fast diagnosis is required. 

2.1.2 Microwave Beamforming Technique 

Microwave beamforming is a radar-based technique in which significant scatterers profile of the 

imaging domain is mapped on a two- or three-dimensional image by processing the scattered 

signals across a wide microwave frequency band. This method is more applicable when using ultra-

wide bands for fine resolution due to its relatively simpler and faster processing than tomography. 

However, the variation of dielectric properties of human tissues with frequency, known as 

frequency dispersion, should be considered to enable the detection of abnormalities in realistic 

scenarios by utilising this method. The obtained image from this method can shows the location of 

significant scatterers, which are the imaged domain pixels with high contrasts in the dielectric 

properties with respect to other tissues; such high contrast areas represent the abnormalities. The 

created images in addition to physical, cognitive, and behavioural symptoms can help paramedics to 

confirm the existence of an injury and give proper medical intervention. 

This method was firstly utilised in microwave medical imaging by using delay-and-sum (DAS) 

algorithm [35]-[39]. In this method, a UWB signal is transmitted to the imaging object and the 

received signals in time-domain are used to create the map of scattered fields in the imaged domain. 

Assuming the focal points inside the imaging domain as point scatterers, the received signals x[n] 

are delayed by a time delay n(r0), which is calculated based on the wave traveling distance from 

transmitter to the individual point scatterers and to the receiver, r0. The sum of the delayed signals 

z[n] at all the focal points are then used to calculate the scattered energy p(r0) and obtain the 

resultant image. Fig.  2.1 shows the flowchart of this method.  
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Fig.  2.1. Block diagram of delay-and-sum (DAS) algorithm 

The DAS method does not consider the interaction between scatterers and hence is highly 

susceptible to outer layer reflections and internal layer refractions that consequently result in false 

detection in heterogeneous environments such as human body. To that end, microwave imaging via 

space-time (MIST) beamforming technique [40]-[41], which uses time windowing and finite-

impulse response filters to discriminate between target and clutter/noise signals, was developed 

(Fig.  2.2). In this method, the delayed signals are firstly windowed to remove interference and 

clutter using the window function g[n]. Then, the signals are filtered by a finite-impulse response 

filter, FIR w(r0), to equalise path length and compensate for the dispersion and attenuation inside 

the imaged object. The output signal z[n] is windowed with h[r0, n] to ensure that the output energy 

is calculated by only samples of the sum of aligned signals z[n] and eliminate additional clutter. 

This method was designed for monostatic modalities. The quasi-multistatic MIST beamforming is 

also developed to enhance the performance of the MIST method for the early stage detection of 

breast cancer [42]. Those methods are tested on numerical breast models that show promising 

results in both cases. However, the applicability of those methods in realistic heterogeneous 

environments and multistatic approaches is questionable [43]. 
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Fig.  2.2. Block diagram of microwave imaging via space-time (MIST) beamforming 

algorithm [40] 

Multistatic adaptive microwave imaging (MAMI) [43] is another beamforming technique to address 

the shortcomings of aforementioned techniques. This technique utilizes data-adaptive Capon 

beamformer to mitigate the skin interferences and to achieve high resolution images. The obtained 

results from using this method for breast cancer detection via numerical models and subsequently, 

through measurements on homogenous breast phantoms [44] show successful detection of tumours 

in three-dimensional homogeneous breast models and phantoms.  

In order to improve the imaging capability of MAMI technique in heterogeneous environments, a 

time-domain wideband adaptive beamforming technique [46]  is proposed that use multiple filter 

banks and data adaptive processing (Fig.  2.3). This technique utilises multi-stage time-domain 

data-adaptive beamformer based on minimum variance distortion-less response (MVDR) method. 

In the first stage of this technique, the influence of skin on the obtained signals are mitigated by 

using a mechanical differential scanning calibration technique. The pre-processed signals are then 

equalised to compensate for attenuation and phase errors by using an L-tap finite impulse response 

(FIR) filter, which is adapted from the MIST beamforming technique. Finally, the filtered signals 

are processed using the MVDR method.  

Promising results have been reported for experimental and clinical measurements in [46] using the 

wideband adaptive beamforming technique. However, the multi-stage calibration and filtering 

techniques are complex and time consuming. 
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Fig.  2.3. Block diagram of wideband adaptive beamforming algorithm [46] 

In another approach, an algorithm based on machine learning and statistical classification was 

adopted [47]. However, that detection method requires significant computational power and time 

and is still a work in progress to improve accurate localisation of target.  

2.2 Challenges in the Development of a Microwave Medical Imaging 

Algorithm  

As mentioned in the previous section, the current time-domain methods were tested mostly in breast 

imaging, which has a simpler imaging domain compared with other human body parts, such as head 

imaging domain that contains skin, skull, fat, and muscle tissues around a complex distribution of 

different brain tissues. Applying time windowing and spatial filtering on multilayer domains like 

head imaging domain cannot properly reject clutter from backscattered signals because of the time-

domain overlap of received signals. In addition, variation of penetration ability of signals at 

different frequencies through the human body affects the effectiveness of those filters and 

consequently, accuracy of the imaging procedure. Therefore, a sophisticated clutter removal 

technique that mitigates the signal clutter from multilayer imaging domains is required. 

To establish a fast diagnostic imaging system, a fast imaging algorithm is required. The presented 

time-domain algorithms are usually time-consuming due to the use of multi-stage calibration and 

filtering techniques. Therefore, a new imaging algorithm that detects the location of injuries and 

abnormalities inside the imaging domain in a fast and consistent way is essential. In the 

development of such an imaging algorithm, the frequency dispersion of dielectric properties of 

human tissues should also be considered. The frequency dispersion results in the distortion of the 

wideband pulses used in the time-domain radar-based imaging methods. 
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The required number of antennas is another challenge that needs to be carefully addressed in 

microwave medical imaging area. The accuracy of microwave imaging is highly dependent on the 

number of antennas used for data acquisition. The number of antennas is usually determined based 

on the antenna size, available space for antennas, and acceptable hardware complexity to use as 

many antennas as practically possible. However, using a large number of antennas can complicate 

the process and hence make the data acquisition and processing greatly time-consuming. Therefore, 

it is crucial to specify the minimum and maximum number of antennas required for the imaging 

algorithms to detect targets and satisfy high quality image requirements. 

Another challenge in the development of a microwave medical imaging technique is to find the 

effective dielectric properties of the imaged domain as a priori information. All of the presented 

microwave imaging algorithms need a priori information on the wave’s propagation speed in the 

imaging domain. Thus, the average dielectric constant of the domain is typically assumed in the 

homogeneous propagation models employed by those algorithms. Those methods estimate the 

average permittivity of the imaging domain by averaging the dielectric properties of the constitutive 

tissues of the imaged model. However, this method is not practical in realistic scenarios where the 

size and hence dielectric properties of tissues differs from patient to patient. Therefore, a method to 

accurately predict the dielectric properties of the imaged domain is required for successful imaging 

algorithms. 

Furthermore, a microwave imaging algorithm requires boundaries of the imaged object as a priori 

information. While it might be possible to manually measure that boundary in a controlled lab 

environment, this cannot be achieved in the clinical environment due to the impracticality of such a 

measurement in addition to the effect of the natural subject’s movement. Therefore, a method for 

boundary identification of the imaged object at the same time of imaging is needed. 

2.3 Summary 

This chapter discussed different microwave imaging techniques for medical diagnosis. The existing 

state-of-the-art imaging technologies are categorized into two different types of tomography and 

beamforming techniques. Advantages and limitations of the two types of methods are described and 

it is noted that beamforming microwave imaging have the potential of overcoming those limitations. 

It is noted that in the literature the current beamforming techniques are usually complex and time 

consuming. In addition, those methods are tested with simplified models or phantoms. Challenges 

in the development of a microwave medical imaging algorithm are described in the last section of 

this chapter. 



Chapter 3: Fast Frequency-Based Microwave Imaging Technique 

Ali Zamani – October 2017    32 

3 FAST FREQUENCY-BASED 

MICROWAVE IMAGING 

TECHNIQUE 

As mentioned in the previous chapter, current radar imaging methods utilize processing techniques 

based on delay-and-sum (DAS), which might be susceptible to outer layer reflections and internal 

layer refractions that consequently result in false detection. In addition, the applicability of those 

methods in realistic heterogeneous environments and multistatic approaches is questionable. 

In order to address the aforementioned issues, a frequency domain algorithm is proposed in this 

work. It is demonstrated that the frequency-based calculations can properly mitigate multiple 

reflections by considering the frequency-dependent propagation effects without the need to rely on 

wave path estimations. This method applies Bessel functions [48]-[49] in frequency domain for fast 

image processing that maps regions of high dielectric contrasts of the imaged domain in a two 

dimensional plane. In this algorithm, the Nyquist concept is adopted to reduce the number of 

sampling frequency utilising minimal number of antennas to lower the computational complexity 

effectively whilst attaining correct detections.  

This chapter is organised into six sections. Section 3.1 contains the explanation of the proposed 

algorithm. In Section 3.2, the proposed method is tested through realistic simulations and 

experiments to verify its efficacy in locating targets in different scenarios. The procedure to 

accelerate the algorithm is outlined in Section 3.3. In Section 3.4, the proposed method is compared 

favourably with two important multistatic time-domain imaging methods (multistatic delay-and-
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summation multi-DAS [39] and multistatic adaptive microwave imaging MAMI [43]). Finally, a 

summary is presented in Section 3.5. 

3.1 Proposed Imaging Algorithm 

Low frequency microwave signals (around 1-2 GHz) have higher penetration depths inside lossy 

head tissues. Nevertheless, the difference between the dielectric properties of skin tissue layer and 

air interface causes strong reflections in the received signals. Furthermore, the signals are 

deteriorated by the multiple reflections from different outer layers (skin, skull, fat, and muscle) 

caused by the dielectric contrast between different tissues. One solution to the strong interface 

reflections is to use a suitable matching medium to fill the air gap between the antennas and the 

imaged object to improve signal penetration through that object. However, this solution is not 

preferable due to added practical complications and an added interface that may contribute to 

reflections and losses especially in patients with dense hair.   

There are different methods to remove the reflections in radar imaging approaches, like Average 

Trace Subtraction [50], Spatial Filtering [51], Subspace Projection [52] and Differential Approach 

[53]. Considering a constant distance between the position of the antennas and the skin layer and 

uniform thicknesses for the outer layers of the head (skin, skull, fat, and muscle), the contributions 

of clutter and reflections to all of the antennas are similar. To that end, the reflections can be 

separated by removing a constant value from the received signals. The average-trace subtraction 

technique, which subtracts the calculated average value from the received signals, is a simple 

method that can effectively mitigate this type of reflections. The technique is applied on the 

reflected (Sii) and transmitted signal (Sij) separately. The average of all the received signals in each 

type is deducted from corresponding signal of the antenna at each frequency step (fk): 

𝑆(𝑟𝑥𝑖, 𝑡𝑥𝑗; 𝑓𝑘) = {

𝑆𝑚𝑒𝑎𝑠(𝑟𝑥𝑖, 𝑡𝑥𝑖; 𝑓𝑘) −
1

𝑁𝑎
 ∑ 𝑆𝑚𝑒𝑎𝑠(𝑟𝑥𝑖, 𝑡𝑥𝑖; 𝑓𝑘)

𝑁𝑎
𝑖=1              

𝑆𝑚𝑒𝑎𝑠(𝑟𝑥𝑖, 𝑡𝑥𝑗; 𝑓𝑘) −
1

𝑁𝑎(𝑁𝑎−1)
∑ 𝑆𝑚𝑒𝑎𝑠(𝑟𝑥𝑖, 𝑡𝑥𝑗; 𝑓𝑘)

𝑁𝑎
𝑖,𝑗=1
𝑖≠𝑗

  (3.1) 

rx and tx in (3.1) represent the receiver and transmitter indexes, respectively. This method estimates 

the reflection by averaging the signal along antenna locations instead of through inverse scattering. 

In addition, applying trace subtraction in every frequency step enables this method to consider the 

variation of penetration capability of microwave waves at different frequencies.   

By eliminating the boundary reflections, the imaged domain can be considered as a homogeneous 

medium. Thus, the scattered power intensity in the imaged region is calculated by solving time-
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dependent Maxwell’s equations. Lastly, the final image is produced by stacking of the estimated 

power intensities over all frequency samples and antenna positions. 

The aim of the presented system is to image a cross section of the 3D head, located at the phase 

centre of the antenna. Due to the unidirectivity of the utilised antennas, the majority of the radiated 

power propagates through that cross section in front of the antenna. Thus, the scattering profile of 

that cross section can be estimated by considering 2D electromagnetic approaches. The considered 

imaging domain is shown in Fig. 3.1 where an incident electromagnetic wave Einc, propagates from 

the transmitter to the head cross section that has an effective dielectric constant ε. The scattered 

field from different point scatterers inside the imaged domain is then measured by an observer, 

Emeas, outside the boundary. 

 

Fig. 3.1. Incident and scattered electric fields in the imaged domain. 

The scattered electric field Escat is calculated by estimating the back-propagated signal from the 

measured field at distance r from the observer [54]. To that end, the target response at each 

receiving antenna is correlated with the incident field and synthetically propagated to the imaged 

domain. The scattered field is calculated by 

𝐸𝑠𝑐𝑎𝑡(𝑟, 𝜑; 𝑓𝑘) = 𝐸𝑚𝑒𝑎𝑠(𝑟𝑥𝑖, 𝑡𝑥𝑗; 𝑓𝑘)𝐺
∗(𝑟, 𝜑; 𝑓𝑘)  (3.2) 

where, G is the two-dimensional Green’s function of the point scatterer and G*(r, φ; fk) is the 

conjugated received fields at the rxi-th receiver due to an excitation at txj-th transmitter and 

propagation via the point scatterer (r, φ) at fk-th frequency location of the txj-th transmitter and rxi-th 

receiver defines the parameters r and φ (see Fig. 3). 

The scattered field at a far-field distance r (r>2D2/λ, where D is diameter of the point scatterer and λ 

is the effective wavelength inside the imaged domain [55]) behaves as a spherical wave. 
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Considering a cross section of the wave in the x-y plane, the conjugated field at one frequency 

sample can be specified by 

𝐺(𝑟, 𝜑) = 𝑓(𝑟, 𝜑)𝑒𝑖𝑘𝒓 (3.3) 

f(r, φ) represents the complex scattering parameter which contains the wave properties at the 

location of scatterer. The Maxwell’s equation corresponding to the scattering parameter is  

𝑑2𝑓( 𝑟,𝜑)

𝑑𝑟2 + 𝑘2𝑓( 𝑟, 𝜑) = 0  (3.4) 

where k is the wavenumber.  

Using variables separation technique, the scattering parameter can be separated as f(r, φ) = U(r)V(φ) 

where two single variables of U and V can be solved using: 

𝑉"(𝜑) + 𝑛2𝑉(𝜑) = 0 (3.5) 

𝑟2𝑈"(𝑟) + 𝑟𝑈′(𝑟) + (𝑘2𝑟2 − 𝑛2)𝑈(𝑟) = 0 (3.6) 

where n is a constant value. The solution for (3.3) is 

𝑉(𝜑) = 𝑎𝑛 𝑐𝑜𝑠 𝑛𝜑 + 𝑖 𝑏𝑛 𝑠𝑖𝑛 𝑛𝜑 (3.7) 

Since there should be only one value for the scattered field in one point and according to the shape 

of the cylindrical wave, V(φ) is single-valued for φ and periodic with 2π; hence, n=1 is the only 

value that satisfies the boundary condition, which makes (3.5) an equation of ellipse: 

𝑉(𝜑) = 𝑎 𝑐𝑜𝑠 𝜑 + 𝑖 𝑏 𝑠𝑖𝑛 𝜑 (3.8) 

From the physical point of view, V(φ) demonstrates how the scattered wave varies with φ, while the 

constants a and b represent the observed electromagnetic fields over φ. Assuming the imaged region 

to be homogeneous and the back-propagated field as a cylindrical wave, a and b are identical. This 

can be explained by the fact that a point scatterer scatters the wave uniformly to all directions [56]. 

In other words, the magnitudes of the fields from different point scatterers at the same observer’s 

distance are equal, but their phases change with the observation angle φ; thus, the solution for V can 

be calculated by assuming a = b = 1:  
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𝑉(𝜑) = 𝑐𝑜𝑠 𝜑 + 𝑖 𝑠𝑖𝑛 𝜑 = 𝑒𝑖𝜑 (3.9) 

On the other hand, by assigning the produced value for n from in (3.4), it can be written as: 

𝑟2 𝑑2𝑈

𝑑𝑟2
+ 𝑟

𝑑𝑈

𝑑𝑟
+ (𝑘2𝑟2 − 1)𝑈 = 0   (3.10) 

Following the approximation used in microwave medical imaging algorithms [34] in ignoring the 

effect of losses (imaginary part of k), (3.10) is the differential equation for 1st kind, 1st order Bessel 

function [U(r) = J1(kr)]. Consequently, f(r, φ) is: 

𝑓(𝑟, 𝜑) = 𝑈(𝑟)𝑉(𝜑) = 𝐽1(𝑘𝑟)𝑒
𝑖𝜑 (3.11) 

and the Green’s function can be written as: 

𝐺(𝑟, 𝜑) = 𝐽1(𝑘𝑟)𝑒
𝑖(𝑘𝑟+𝜑)  (3.12) 

Then, the point-scatterer field can be calculated by assigning the conjugated field from (3.12) in 

(3.2): 

𝐸𝑠𝑐𝑎𝑡(𝑟, 𝜑) = 𝐸𝑚𝑒𝑎𝑠(𝑟𝑥𝑖, 𝑡𝑥𝑗) 𝐽1(𝑘𝑟)𝑒
−𝑖(𝑘𝑟+𝜑) (3.13) 

where the Bessel function [J1(kr)] can be defined by its polynomial approximation [57]: 

𝐽1(𝑘𝑟) = ∑
(−1)𝑖+1(2𝑛)1−2𝑖(𝑖+𝑛−1)!

(𝑖−1)!(𝑛−𝑖)!𝑖!

𝑛
𝑖=1 (𝑘𝑟)2𝑖−1 =

1

𝜋
∑ 𝑐𝑜𝑠 [

𝜋

𝑛
𝑖 − 𝑘𝑟 𝑠𝑖𝑛 (

𝜋

𝑛
𝑖)]𝑛

𝑖=0 , 𝑛 ≥
𝑘𝑟

2
 (3.14) 

Scattered power density inside the imaging domain can be calculated using measured S-parameters, 

S(rxi, txj): 

𝑆𝑠𝑐𝑎𝑡(𝑟, 𝜑) =
1

2
[𝐸𝑠𝑐𝑎𝑡(𝑟, 𝜑) × 𝐻𝑠𝑐𝑎𝑡

∗ (𝑟, 𝜑)] =
𝑣

2
𝐸𝑠𝑐𝑎𝑡

2 (𝑟, 𝜑) =

𝑣

2
𝐸𝑚𝑒𝑎𝑠

2 (𝑟𝑥𝑖, 𝑡𝑥𝑗) 𝐽1
2(𝑘𝑟)𝑒−𝑖2(𝑘𝑟+𝜑) = 𝑆(𝑟𝑥𝑖 , 𝑡𝑥𝑗) 𝐽1

2(𝑘𝑟)𝑒−𝑖2(𝑘𝑟+𝜑) (3.15) 

and 

𝑆(𝑟𝑥𝑖, 𝑡𝑥𝑗) =
𝑣

2
𝐸𝑚𝑒𝑎𝑠

2 (𝑟𝑥𝑖, 𝑡𝑥𝑗)  (3.16) 
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where 𝑣 = 1/√휀𝜇 is the average wave speed in the medium.  

It worth noting that based on the working frequency and imaging domain dimensions, the imaging 

process is in both near and far field regions. Therefore, the scattered power can be estimated for 

both regions by using the calculations in one of them. Since the purpose of the technique is to detect 

the targets inside the human body, far-field calculations are performed in (3.15) and (3.16). 

The total power density at an arbitrary location (x, y) inside the cross section is estimated by the 

summation of the calculated powers from different angles, φ, and corresponding receiver positions, 

rxi (i=1 to Na) around the head [55]: 

𝑆𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦) = ∫ 𝑆𝑠𝑐𝑎𝑡(𝑟, 𝜑)𝑑𝜑
 

2𝜋
≈ ∑ 𝑆𝑠𝑐𝑎𝑡(𝑟, 𝜑, 𝑟𝑥𝑖)

𝑁𝑎
𝑖=1 = ∑ 𝑆(𝑟𝑥𝑖, 𝑡𝑥𝑗) 𝐽1

2(𝑘𝑟)𝑒−𝑖2(𝑘𝒓+𝜑)𝑁𝑎
𝑖=1  (3.17) 

To compensate for the lack of discrete observation points, different scattered profiles from different 

transmitters and frequencies are superposed and presented as the final image: 

𝐼(𝑥, 𝑦) =
1

𝑁𝑎
2 ‖∑ ∑ ∑ 𝑆(𝑟𝑥𝑖, 𝑡𝑥𝑗 , 𝑓𝑘)

𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1

𝑁𝑓
𝑘=1 𝐽1

2(𝑘𝑟)𝑒−𝑖2(𝑘𝒓+𝜑)‖ (3.18) 

where Na and Nf are respectively number of antennas and frequency samples. 

Fig.  3.2 shows the block diagram of the proposed microwave imaging algorithm for multistatic 

approach.  

 

Fig.  3.2. Block diagram of fast frequency-based microwave imaging algorithm 
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The proposed algorithm can be used in monostatic measurement setups by inserting φ = 0 and 

changing the triple summation operator to double one in (3.18): 

𝐼𝑚𝑜𝑛𝑜(𝑥, 𝑦) =
1

𝑁𝑎
 ‖∑ ∑ 𝑆(𝑡𝑥𝑗 , 𝑓𝑘)

𝑁𝑎
𝑗=1

𝑁𝑓
𝑘=1 𝐽1

2(𝑘𝑟)𝑒−𝑖2(𝑘𝒓)‖ (3.19) 

The reconstructed image illustrates the intensity of significant scatterers by the summation of all 

discrete powers that emphasises substantial powers and diminishes negligible powers. It should be 

mentioned that this procedure does not provide the detailed image of the internal powers and shows 

only regions of contrasts in the dielectric properties, which is enough for detection purposes. 

Obviously, the proposed procedure differs considerably from microwave tomography, which 

usually struggles to find the electrical properties of the tissues due to the need to solve ill-posed 

inverse problems. In comparison to the time-domain methods (confocal, space-time beamforming 

MIST, and adaptive beamforming imaging algorithms), the proposed method performs all the 

calculations in the frequency domain, and thus it is more immune against multiple reflections 

produced by multilayer structures and faster to process. 

3.2 Algorithm Validation  

In order to verify the imaging algorithm, an integrated imaging system is needed. Therefore, a 

multistatic antenna array and a 3D human head phantom are used in full-wave electromagnetic 

simulations. Moreover, an experimental setup is built and used to verify the method. The 

monostatic form of the developed method is also used for the feasibility study of lung cancer 

detection using a monostatic microwave-based torso imaging system. 

3.2.1 Simulation Results 

In multistatic imaging, the realisable angular space between antennas, final image resolution, 

mutual coupling limitations, hardware complexity, and image acquisition time are important factors 

that determine the number of antennas and frequency samples. Synthesising a multistatic array with 

all the aforementioned requirements is challenging. However, according to the size and coupling 

limitations of the utilised antenna, which is a modified version of the antenna presented in [58], two 

elliptical shape arrays consisting of twelve and eight compact ultra-wideband antennas are 

investigated. 

The used antenna is depicted in Fig.  3.3. It has the dimensions of 7 × 3 × 1.5 cm3 which is 

equivalent to 0.24 × 0.1 × 0.05 λ0
3, where λ0 is is the wavelength of lowest operating frequency. 

From the mechanism perspective, the antenna’s structure includes a dipole and folded parasitic 
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structure. The dipole is responsible for the upper band of operation. The folded parasitic structure 

along with the dipole forms a loop-like geometric structure, which assists the antenna to attain the 

lower operating frequencies. The top printed layer of the antenna contains two T-shaped slots along 

X-axis. These slots increase the effective current paths and serve in achieving relatively lower 

frequencies of operation with the same space.  

This antenna is revised to operate in an elliptical shape array surrounding the head with improved 

performance in terms of bandwidth and directionality compared to the previously reported antenna 

[58]. The performance of the antenna is simulated and measured. As illustrated in Fig.  3.4, the 

modified antenna operates from 1 to 3.2 GHz with the return loss of more than 10 dB in free space. 

An extended measurement of the radiation patterns shows that over the whole operating band, the 

antenna is unidirectional and steadily radiates along Z-axis (θ = 0°, φ = 0°) with an average gain of 

3.5 dBi. The mutual coupling between any two neighbouring array antennas is less than -20 dB, 

which shows the limited impact of array elements on each other. 

 

     
(a)                               (b) 

Fig.  3.3. The designed antenna (a) top and (b) side views. Dimensions in (mm). 

 

Fig.  3.4. Reflection coefficient of the antenna. 
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To build a realistic simulation environment, a 3D numerical human head phantom containing 

realistic tissue distributions based on MRI scans with frequency dispersive dielectric properties [59] 

is used. The ranges of permittivity values for various head tissues over the operating frequency 

range are illustrated in Fig.  3.5. The brain injury (bleeding) is emulated by inserting a block 

(2 × 2 × 2 cm3) of blood inside the head phantom. To verify the possibility of using small number of 

antenna elements in the proposed method, two configurations are used in the simulations as 

depicted in Fig.  3.5. The first one uses twelve antenna elements to surround the head, whereas the 

other uses eight antenna elements. In both cases, a signal covering the frequency band 1.1-3.2 GHz 

is transmitted by one antenna, while the backscattered signal is received by all the antennas. This 

process is repeated for all of the antennas and the received signals from 365 frequency samples are 

recorded and processed using the proposed algorithm. The total image reconstruction time of the 

proposed algorithm using general-purpose PC having 3.4 GHz CPU and 16 GB RAM is about 13 

and 25 seconds for eight- and twelve-element antenna arrays, respectively. Fig.  3.6 shows the 

imaging results from the two configurations before and after clutter removal. It is to be noted that 

the reconstructed images are normalised to the maximum intensity within the imaged area.  

 

Tissue 

 

ε’ ε” 

  

Fat 6-5 1-0.5 

Skull 12-11 4-3 

White 38-35 10-9 

Skin 40-37 15-10 

Dura 45-41 17-12 

Grey 52-48 17-13 

Blood 61-57 28-18 

   

Fig.  3.5. Simulation setup using (a) 12-antenna and (b) 8-antenna arrays. 
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Fig.  3.6. Reconstructed images from the simulation environment for unhealthy scenario with 

12-antenna array, (a) before and (b) after clutter removal; 8-antenna array, (c) before and (d) 

after clutter removal; healthy scenario with 8-antenna array, (e) before and (f) after clutter 

removal. Squares in (a) to (d) show the exact location of the brain injury. 
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Fig.  3.6 (a) and (c) demonstrate that the target can be masked by strong background reflections. 

From Fig.  3.6 (b) and (d), it can be seen that the average subtraction method can properly mitigate 

the effect of the strong clutter. In these figures, the exact location of bleeding is indicated by a 

square. The effectiveness of the proposed method in detection and localisation of the injury can be 

realised from these reconstructed images, though with a slight shift in position, the target in the two 

configurations. However, some insignificant ghost targets appear in the reconstructed image (Fig.  

3.6 (d)), which are attributed to the residual skin reflections due to the assumption of uniform 

thicknesses of the outer head layer. 

To demonstrate the capability of the method in distinguishing between healthy and unhealthy cases, 

images of a healthy scenario before and after the clutter removal using the eight-antenna array are 

depicted in Fig.  3.6 (e) and (f). It is clear that the image before a clutter removal includes suspected 

false targets, whereas the image after the clutter removal indicates a healthy case with very low 

intensity areas. 

In order to investigate the quality and accuracy of the reconstructed images, three quantitative 

functions which are presented in [58] are computed. The first parameter is the average target to 

clutter ratio: 

𝑄 =
𝐼(𝑝)̅̅ ̅̅ ̅̅

𝐼(𝑞)̅̅ ̅̅ ̅̅         
∀𝑝 ∈ 𝑆

∀𝑞 ∈ 𝛨 & 𝑞 ∉ 𝑆
  , (3.20) 

which calculates the contrast of the target with respect to the whole imaging domain by dividing the 

average intensity of the target region, S, over the average intensity of the rest of the head. Q>1 is an 

acceptance value for a high contrast detection. The second parameter is the maximum target to 

clutter ratio: 

𝛾 =
max [𝐼(𝑝)]

max [𝐼(𝑞)]
        

∀𝑝 ∈ 𝑆
∀𝑞 ∈ 𝛨 & 𝑞 ∉ 𝑆

  , (3.21) 

which compares the maximum intensity of the known target region, S, with the maximum intensity 

at any other place within the whole imaging region, H. γ > 1 means that the target is accurately 

detected, γ < 1 means a wrong detection and γ = 1 means there is a clutter as strong as the target. 

The last parameter, Δ is the difference between the actual center of the target, α, and the calculated 

one p*: 

∆= ‖𝑝∗ − 𝛼‖. (3.22) 
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Low values of Δ represent better-reconstructed images and Δ=0 means an ideal case. 

Knowing the assumed bleeding size and location, the aforementioned metrics are analysed for the 

reconstructed images in Fig.  3.6, and listed in Table 3.1. Since γ > 1, the resultant images for both 

of the two configurations enable the correct detection. The γ, Q and Δ values in this table show that 

the 12-antenna configuration has obviously higher contrast and is more accurate than the eight-

antenna structure. However, the eight-antenna configuration has acceptable metrics values and even 

Q = 4.8 presents a higher contrast than the reported values in [58], which uses the same simulation 

environment with even larger number of antennas (72 monostatic antennas) and confocal imaging 

method. Based on the resultant values and due to the simplicity and fast data acquisition and image 

reconstruction processes, the challenging eight-antenna array is selected for the experiments. 

Table 3.1. Image quality in the two simulated configurations. 

Number of Antennas Q γ Δ (mm) Figure 

12 6.3 1.60 5.7 Fig.  3.6 (b) 

8 4.8 1.13 9.8 Fig.  3.6 (d) 

3.2.2 Experimental Results 

In this section, the measurement setup and experimental results of brain injury detection using 

eight-antenna array and the proposed imaging method is described. To collect multistatic data, the 

antenna array is integrated with an imaging system including Agilent N7081A microwave 

transceiver, which has a maximum dynamic range of 80 dB, a USB-8SPDT-A18 Mini-Circuits 

microwave switch matrix and an adjustable measuring platform. Fig.  3.7 shows the construction of 

the system hardware.  

A realistic human head phantom (Fig.  3.8) is utilised in the experimental system in order to 

emulate the actual scenario of a patient with bleeding. The head phantom is anatomically realistic 

along with the realistic electrical properties of the actual human head. The realistic anatomical 

structure of the phantom is confirmed as the exterior and the internal casts of the phantom is based 

on MRI-scanned data of a real human head. The details of the composition of the fabricated tissues 

are described in [59]. The dielectric properties of the developed tissue-mimicking materials along 

with the actual ones are provided in Fig. 3.9. The exterior part of the phantom represents the 

combined effect of fat, skin, muscular parts and skull. The eye cavity is filled with the eye 

representing materials. The interior portion has tissue-imitating properties of the main brain tissues. 

Blood emulating materials are placed inside the head as brain injury target.  
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Fig.  3.7.  Measurement platform indicating 1) realistic head phantom, 2) antenna array 3) 

measuring platform, 4) microwave transceiver, 5) switch matrix, 6) PC. 

 

Fig.  3.8. Photograph of the internal structure of the fabricated 3D realistic human head [60]. 

1) Exterior section, 2) spinal cord 3) cerebellum, 4) white matter, 5) Dura, 6) grey matter, 7) 

CSF. 
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Fig.  3.9. (a, b) Relative permittivity and (c, d) conductivity comparisons of actual and 

developed head tissues [59]. 

To investigate the performance of the imaging algorithm, two different sizes of bleeding are 

inserted in two different locations of the head phantom. In the first case, a 2 × 2 × 2 cm3 part of the 

grey matter in the frontal position of the head is replaced by a blood-emulating material. In the 

second scenario, the white matter is replaced with a smaller target (2 × 1 × 1 cm3) i that is located at 

the backside of the phantom. After initial procedure of microwave sensor calibration using the 

standard open-short-matched load steps, the phantom is located in front of the array. All the 

antennas of the array are located 1 cm away from the head. In each step, a microwave signal across 

the band from 1.1 to 3.2 GHz is transmitted by each antenna, whereas the scattered signals are 

recorded in all the antennas including the transmitting antenna. The received signals are recorded in 

every 6 MHz step and thus 365 frequency samples are recorded. With eight antennas, 36 

independent signals are captured in 2 seconds. These data sets are imported in the imaging program 

and the final images are generated for the two scenarios as illustrated in Fig.  3.10. 

According to Fig.  3.10, the proposed technique can successfully detect the targets in both of the 

two scenarios. Fig.  3.10 (b) shows that the reduction in the size of the target has affected the 

accuracy of the image. Although there is a slight error in the localisation of the smaller target, the 

calculated accuracy metric γ > 1 keeps it in the acceptance range. 
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Fig.  3.10. Experimental results of (a) 2 × 2 × 2 cm3 and (b) 2 × 1 × 1 cm3 bleeding in the head 

phantom. Black rectangles show exact location of target. 

The calculated quality metrics γ=1.3 and Q=6.5 for the experimental results with 365 samples show 

a better contrast than the simulation results (γ=1.13 and Q=4.8) using the same number of antennas, 

frequency samples and target size. It is also evident from the reconstructed images from simulations 

(Fig.  3.6 (d)) and measurements (Fig.  3.10) that less ghost targets appear in the experimental 

results than the simulations. The better performance of the algorithm in the measurements is due to 

the different residual reflections originated from different simulation and measurement 

environments. The head model in the simulations consists of all the individual realistic layers of 

skin, skull, fat and muscles, whilst due to the unavailability of equivalent 3D printing materials, 

these layers are modelled by one combined layer in the fabricated phantom [59]. However, the 

ghost targets do not significantly affect the image quality and the positions of brain injuries can be 

easily detected in both investigated scenarios.  

3.3 Algorithm Acceleration 

The total computational time for the general-purpose computer (3.4 GHz CPU, 16 GB RAM) to 

generate the image with 365 samples is 13 seconds for both of the simulations and experiments, 

which makes the system a quasi-real-time detection and monitoring tool.  

One of the possible ways to speed up the algorithm is to decrease the number of frequency samples. 

It can be done by increasing the samples intervals. Thus, it is critical to find the minimum number 

of frequency samples that produces an image without any deficiency in the quality. To that end, the 

Nyquist theorem is applied in the frequency domain to find the maximum frequency step (and thus 



Chapter 3: Fast Frequency-Based Microwave Imaging Technique 

Ali Zamani – October 2017    47 

minimum number of frequency samples) for a reconstructive sampling. It is worthwhile pointing 

out that this theory is applied in the frequency domain because of the time-limited feature of the 

received signals.  

According to the Nyquist theorem, to theoretically be able to recover the whole data, the sampling 

step δf should be less than 1/2τ, where τ is time-width of the time-limited signal. If the Nyquist 

criterion is not satisfied (under-sampling), a portion of the data will be missed causing overlapping 

of the reconstructed signals and resulting in an image with wrong and/or multiple targets. 

Oversampling (sampling with higher rate than the Nyquist rate) improves resolution and helps 

avoid overlapping, but requires additional time for measurements and processing. 

By considering the time-width of the received signals equal to the data acquisition time, which is 

roughly around (8 ns) in the considered imaging domain, the sampling step is: 

𝛿𝑓 <
1

2𝜏
= 62.5 MHz, (3.23) 

and according to the signal bandwidth B, the minimum number of samples is: 

𝑛𝑠 >
𝐵

𝛿𝑓
=

2.1 GHz

62.5 MHz
≈ 34 (3.24) 

To examine the effect of number of samples on the reconstruction time and image quality, the 

proposed method is applied on the case depicted in Fig.  3.10 (a) using different numbers of 

frequency samples. The obtained images are depicted in Fig.  3.11, whereas their quantitative 

metrics are presented in Table 3.2.  

Table 3.2. Effect of number of samples on the image quality 

Number of Samples Q γ Δ (mm) Computation Time (s) Figure 

365 6.50 1.30 1.50 13.0 Fig.  3.11 (a) 

100 6.30 1.26 1.50 4.0 Fig.  3.11 (b) 

50 6.17 1.24 2.12 2.2 Fig.  3.11 (c) 

34 5.96 1.18 2.69 1.6 Fig.  3.11 (d) 

25 5.36 0.91 45.9 1.3 Fig.  3.11 (e) 

15 3.98 0.75 44.7 0.9 Fig.  3.11 (f) 
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Fig.  3.11. The resultant images from experiments using (a) 360, (b) 100, (c) 60, (d) 34, (e) 25 

and (f) 15 frequency samples. Black squares are exact location.  
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It is clear from Fig.  3.11 and Table 3.2 that reducing the number of frequency samples surely 

reduces the quality of the obtained image. However, Fig.  3.11 (d) shows that using a minimum of 

34 frequency samples (Nyquist rate) can successfully enable the detection of the target in short time 

deeming the approach quasi-real-time. To further demonstrate the adequacy of the proposed number 

of frequency samples, the proposed algorithm is applied to the case of small target (Fig.  3.10 (b)) 

and the simulation data (Fig.  3.6 (d)) using 34 samples. The obtained images in Fig.  3.12 confirm 

the successful detection of brain injuries with limited number of samples in experiment with small 

sized injuries and in simulations with more complicated environment. 

The total computational time to generate the images with 34 samples is less than two seconds, 

which makes the algorithm seven times faster than using the full data set (365 samples).  

 

Fig.  3.12. Reconstructed image of the indicated brain injury for (a) measured data and (b) 

simulation, using 34 frequency samples. 

3.4 Comparison 

For comparison purposes, two multistatic time domain methods (multistatic delay-and-sum (multi-

DAS) [39] and multistatic adaptive microwave imaging (MAMI) [43]) are used to process the same 

simulated and measured datasets. The multi-DAS and MAMI methods use data-independent weight 

vectors to estimate the backscattered energy from the focal point inside the imaging region. In 

comparison to multi-DAS, MAMI uses two steps robust capon beamforming to compensate for the 

dispersive effects. Fig.  3.13 shows the obtained images using the aforementioned methods to 

process the simulated and measurement data. It is obvious from Fig.  3.13 that both multi-DAS and 
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MAMI methods can detect the target in the measured scenario, though with some error in 

localisation. However, those methods cannot detect the target in the simulated scenario, which has 

the realistic complex environment with all the head’s tissues. The presence of maximum values on 

the edge of the depicted images implies that those methods cannot completely cancel multiple 

tissues’ reflections and thus the target is buried in the clutter. In comparison, the proposed method 

can accurately detect the target in the same simulated environment (Fig.  3.6  d). 

 

Fig.  3.13. Comparison of reconstructed images using (a) multi-DAS, (b) MAMI. The images 

on the left side are for measured data and images on the right are for simulated. Black 

squares illustrate the actual location of the target. 

The images’ metrics (left images in Fig.  3.13), which show a detected target, obtained using multi-

DAS and MAMI with their processing time are calculated and compared with the proposed method 

counterparts as shown in Table 3.3. The MAMI and multi-DAS methods fail to detect the target as 

γ<1 with relatively large values for Δ. For the processing time, it is clear that the proposed method 

is much faster than multi-DAS and MAMI, which are quite slow due to the need to apply different 

stages of beamforming. In summary, the proposed method achieves images that are more accurate 

in a faster way than the existing multistatic time-domain algorithms. 
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Table 3.3. Performance comparison between proposed, multi-DAS and MAMI methods 

Method Q γ Δ (mm) Computation Time (s) Figure 

Proposed 5.96 1.18 2.69 1.6 Fig.  3.11 (d) 

Multi-DAS 1.20 0.3 22.7 19 Fig.  3.13 (a) 

MAMI 7.81 0.1 11.4 61 Fig.  3.13 (b) 

3.5 Lung cancer detection using monostatic torso rotation system 

After validating performance of the proposed algorithm in simulations and experiments for the 

multistatic head imaging application, it was also tested in monostatic microwave-based torso 

imaging systems. The system, which is depicted in Fig.  3.14, consists of a rotating platform and is 

designed for the lung cancer detection scenarios. In this design, a three-dimensional slot-rotated 

antenna with 0.11 λ × 0.23 λ × 0.05 λ dimensions (λ is the wavelength of the lowest operating 

frequency of the antenna), peak front to back ratio of 9 dB and peak gain of 2.6 dBi [61] is used to 

send microwave signals across one octave band (1.5 to 3 GHz) and collect the backscattered waves 

using N7081A Agilent portable microwave sensor. A laptop is used for control, processing, and 

image generation.   

The experiments are performed on an artificial phantom which comprises of ribs, muscles, skin, 

heart, lungs and abdomen block [62] (Fig.  3.15). The phantom is rotated in every 30˚ angle step, 

while the antenna is fixed to get the mono-static data in 12 positions. The experiments are 

performed on healthy and unhealthy cases. To mimic the unhealthy case, a sphere-shaped artificial 

cancer with 1 cm radius (Fig.  3.15 (b)) is inserted inside the torso phantom. The used cancer is 

made of a mixture of water, corn flour, Gelatin, Agar, Sodium Azaide, Propelene Glysol and NaCl 

salt. It has the dielectric properties of lung cancer with average dielectric constant of 34 and 

conductivity of 0.9 (S/m) across the used band. The dielectric permittivity and conductivity of other 

tissues are in the range of 3 to 7 and 0.04 to 0.3 (S/m), respectively. 

The measured S-parameters at 20 MHz frequency steps within the band 1.5-3 GHz at different 

antenna positions are then utilised by the monostatic imaging algorithm to generate an image of the 

significant scatterers within the torso. After manually measuring the boundary of the phantom in 

front of the antenna port, the calculations are performed on the assumed imaging domain depicted 

in Fig.  3.16. The obtained images of the cross section of the torso in front of the antenna are shown 

in Fig.  3.17.  
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Fig.  3.14. Monostatic torso rotation microwave-based imaging system 

 

             

          (a)              (b) 

Fig.  3.15. (a) The utilised torso phantom with its inner organs, and (b) the tumour. 
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Fig.  3.16. Assumed imaged domain for monostatic torso rotation system. 

  
(a) (b) 

Fig.  3.17. Imaging results of the torso for (a) infected lung with cancer and (b) healthy lung. 

Black square shows the exact location of the tumour. 

The images are normalised to the maximum value of both the healthy and malignant cases. It is 

obvious from Fig.  3.17 (a) that the proposed method can precisely detect and localise the cancer 

with a high resolution inside the complex torso medium. On the other hand, the obtained image for 

the healthy case, Fig.  3.17 (b), does not show any significant scatterer which confirms the 

capability of the proposed algorithm in lung cancer detection with the ability of differentiating 

between healthy and unhealthy cases.  
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3.6 Summary 

A frequency-based processing and image reconstruction algorithm aimed at brain and torso injuries 

detection has been presented. In the first step, the algorithm uses the average trace subtraction to 

remove the strong skin interface and background reflections. The second step of the algorithm 

involves using the first kind of first order Bessel function in the frequency domain to calculate 

power distributions inside the imaged domain using the measured data. Lastly, superposition of 

different intensity factors at different antenna locations and different frequency steps is adopted as 

the final image to illustrate the location of significant scatterers. Thus, the presented approach 

removes the need to solve time domain or nonlinear inverse problems. The fast computation, 

simplicity, and stability of the results are the main advantages of the proposed algorithm over the 

conventional ones. The proposed approach has been validated using realistic simulation and 

experimental environments. It has been shown that using data from only 34 frequency samples, 

which meets Nyquist limit, within the band 1.1-3.2 GHz, can successfully detect different sizes of 

brain injury at different locations. The proposed approach can be considered a quasi-real-time 

imaging technique as its computation time using a general-purpose computer is less than two 

seconds. It has also been shown that the proposed frequency domain method is faster, more accurate 

with better clutter rejection capability than existing multistatic time-domain methods. The proposed 

imaging algorithm has also been tested on a monostatic torso imaging system for the purpose of 

lung cancer detection. The obtained images validate the capability of the presented technique to 

detect an artificial lung cancer inserted into a torso phantom by using monostatic data. However, 

further modification is required to address some clutter in the obtained images. 

Although the proposed imaging algorithm can successfully detect and locate targets in different 

applications, there are still challenges to be overcome in the use of that technique in realistic 

scenarios. For example, the required number of antennas for different imaging systems is still 

unknown. In addition, physical limitation such as the antenna size and available space for antennas 

limit the usable number of antennas, which affect the accuracy of microwave imaging. Moreover, a 

set of priori information including the wave’s propagation speed, boundary thickness, and location 

of the imaged object is required, which are subject to vary from patient to patient. Different 

methods are introduced in the next four chapters to address the aforementioned challenges and 

enhance the proposed imaging algorithm. 
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4 CLUTTER REMOVAL 

TECHNIQUES  

In the previous chapter, a microwave imaging algorithm with the capability of detecting medical 

targets with high permittivity values is presented. In that algorithm, the simple average-trace 

subtraction technique, which subtracts the calculated average value from the received signals, is 

used to mitigate the effect of the skin reflections. In that technique, the antennas should be located 

at the same distance from the skin and the thickness of the outer layer (skin) is supposed to have a 

uniform thickness around the imaged object. However, as it is shown in the resultant images, this 

assumption affects the accuracy of the reconstructed images, even in simulations and controlled 

environments. 

In this chapter, different clutter removal techniques are modified for the multistatic frequency-based 

imaging and a comparison between those methods is provided. Based on the explored performance 

of different methods in the frequency domain, a hybrid technique, which combines the benefits of 

average subtraction and entropy-based filtering methods, is proposed. 

4.1 Conventional Clutter Removal Techniques 

As mentioned in Chapter 2, different imaging algorithms have been developed in recent years to 

remove the clutter effects during signal pre-processing. The time-widowing (time-gating) [63], 

which is utilised in breast microwave imaging via space-time [40] and adaptive beamforming [43] 

techniques is the simplest way to remove the clutter from a raw data in microwave medical 

imaging. According to the early-time artefact removal approach, the outer layer reflections of the 

imaged domain are assumed to arrive before the target signal; hence, the clutter can be removed by 
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filtering the first part of the received signal in the time domain. However, the signal overlap due to 

the time delay of the wave in multilayer structures of medical applications is a major hindrance to 

this method. Moreover, time-gating may remove the signals of shallow targets which are close to 

the outer layer.  

To address the aforementioned problem, an entropy-based metric to discriminate between clutter 

and target signals was introduced [64], [65]. In this case, the signals over a tolerance threshold are 

considered as a clutter and thus removed. Although the entropy-based windowing algorithm does 

not affect the target response as much as in the simple time-gating method, it still requires a 

compensation procedure to restore the erased target signals, especially when early-stage artefact and 

tumour responses overlap in time [66]. A method that combines entropy-based time windowing and 

Wiener filtering [67] was proposed to improve the performance of the time-windowing technique 

[66]. The presented results show better performance than the single entropy based algorithm for a 

homogeneous breast model. However, the performance of this method in realistic complex 

scenarios was not investigated. 

Analysing the received data in the spatial domain [68] suggests a spatial filtering method, which 

removes the spatial zero- and low-frequency components corresponding to skin reflections. 

Assuming equal thickness of the outer layer (skin), reflected signals from the outer layer are either 

constant or have low-frequency values, whereas the reflected signals from the target inside the 

imaged domain are variant from the antennas’ perspective. Therefore, low-pass finite-impulse-

response or spatial delay-line canceler filters can be used to suppress the outer-layer reflections. 

This method however, also affects the target signals and a careful consideration is needed to repair 

the data. 

The differential approach (DA) is another method which relies on subtracting the healthy and 

unhealthy scenarios of the same imaged object [45]. Since an image of the healthy case is most 

probably not available, several modifications to that approach were proposed. For example, the 

similarity between the left and right side of the head was utilised in the differential imaging 

presented in [53]. Due to the subtraction process and unknown position of the target, the approach 

in [53] might result in the presence of ghost targets in the final image and thus cause a wrong 

detection, especially in multi-target cases. 

In [37], the average subtraction method, in which the average measured value (over all antenna 

elements in an array or at all antenna positions) is subtracted from the received signals by each 

antenna, was utilised. Subtracting the average value of the signals removes the effects of similar 

artefacts in different antenna signals due to the symmetric structure of the skin of the imaged 
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domain. However, applying this method on non-uniform structures such as in head imaging can 

result in images with false targets. 

In the remaining sections of this chapter, a hybrid method that utilizes the benefits of some of the 

aforementioned techniques for multistatic head imaging application is presented. To that end, those 

methods are firstly modified to make them applicable in a frequency-domain multistatic imaging 

algorithm. Then, an investigation into the pros and cons of the available techniques in the head 

imaging is discussed based on a realistic simulation environment. Analysing the available clutter 

removal techniques in the frequency domain illustrates their features in that domain and helps 

develop a new effective approach. The proposed hybrid method combines the best attributes of 

entropy-based filtering and average subtraction methods. Finally, the ability of the proposed method 

in clutter removal is tested and validated through simulations and experiments. Addressing the time 

and frequency overlapping problems are the main merits of the proposed clutter removal method 

over the conventional ones, which are developed for the time domain. 

4.2 Multilayer Reflections 

Low frequency microwave signals (around 1-2 GHz) have higher penetration depths inside lossy 

tissues. Nevertheless, the difference between the dielectric properties of skin tissue layer and air 

interface causes strong reflections in the received signals. Furthermore, the signals are deteriorated 

by the multiple reflections from different outer layers (skin, skull, fat, and muscle) due to the 

dielectric difference between different tissues. One solution to the strong interface reflections is to 

use a suitable matching medium to fill the air gap between the antennas and the imaged object to 

improve signal penetration through that object. However, this solution is not preferable due to 

added practical complications and an added interface that may contribute to reflections and losses 

especially in patients with dense hair.   

To illustrate the effects of different body layers on the transmitted signals, the z-component of the 

transmitted electric fields into the multilayer head model is calculated using CST simulation 

environment. The distribution of the field in skin and skull layers in front of an antenna at different 

time steps are depicted in Fig.  4.1 (a), which illustrates how the field is reflected and trapped 

between layers. This type of reflection is usually stronger than the target response and thus masks 

the signals emanated from the target. Therefore, a proper pre-processing method should be adopted 

to remove the clutter effect of different layers. For this purpose, characteristics of a multilayer slab 

(Fig.  4.1 (b)) and its effect on the transmitted signal is investigated. 
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(a) 

 
(b) 

 
(c) 

Fig.  4.1. Electromagnetic reflections from different head tissue layers using (a) simulations 

and (b) a simplified diagram. (c) Model of the multilayer head outer layers. 
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Assuming a multilayer dielectric slab as a multi-level system (Fig.  4.1 (c)), with m independent 

series connected systems, the impulse response function of l-th slab with thickness dl (l=1 to m) can 

be derived from [69]: 

𝐻𝑙(𝑟, 𝜔) = −
𝑛𝑙𝑑𝑙

𝑐𝑅𝑙
𝑒

𝑖𝜔𝑟

𝑐 +
𝑛𝑙𝑑𝑙

𝑐

𝑅𝑙
2−1

𝑅𝑙
∑

1

𝑅𝑙
2𝑝 𝑒

𝑖𝜔

𝑐
(𝑟−2𝑝𝑛𝑙𝑑𝑙)∞

𝑝=1 , (4.1) 

where r is the distance of the antenna from the outer layer, ω is the angular frequency, c is the speed 

of wave propagation in free space, and 

𝑅 =
𝑛𝑙+1

𝑛𝑙−1
 , (4.2) 

where 

𝑛𝑙 = √휀𝑟,𝑙  (4.3) 

is dielectric index of refraction and εr,l is the relative permittivity of l-th slab. 

Consequently, the response function of the whole system HT(r, ω) can be calculated by 

multiplication of response functions of m layers: 

𝐻𝑇(𝑟, 𝜔) = ∏ 𝐻𝑙(𝑟, 𝜔)𝑚
𝑙=1 . (4.4) 

For instance, the response function of a two-layer slab can be written as: 

𝐻2(𝑟, 𝜔) =
𝑛1𝑛2𝑑1𝑑2
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The exponential parts in the response function represent a delay in the wave propagation in a 

multilayer slab. In other words, the duration of reflections from a multilayer slab is much longer 

than the duration of wave propagation in one layer slab with equal thickness. This delay causes 

layers’ and target’s reflections to overlap in time and thus creates a clutter in the air gap between the 

antenna and the outer layer of the imaged object, resulting in the possibility of masking the target. 

Therefore, applying simple time-windowing methods are not effective in clutter removal from such 
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a multilayer medium. Additionally, due to the change in the penetration capability of 

electromagnetic waves with frequency, the produced clutter varies with frequency. This type of 

clutter, which is caused by overlapping the frequency responses of target and layers, implies 

ineffectiveness of simple filtering methodologies. However, compensation methods can partly fix 

the shortfalls of filtering methods as explained later. 

4.3 Clutter removal methods in frequency-domain 

The performances of five common clutter removal techniques are verified in the investigated 

domain. Those techniques are modified in this work to make them applicable for multistatic, 

frequency-domain systems. 

4.3.1 Average Subtraction 

According to 4.1, the clutter impact is a function of distance of the antenna from the outer layer of 

the imaged domain, and thickness and properties of its layers. Hence, by assuming that the antennas 

are located at the same distance from the imaged object’s boundary and that the skin, skull, fat and 

muscles have a uniform thickness around the object, the clutter influences does not vary with the 

antenna position, whilst target reflections have different impacts on each antenna. In this case, the 

clutter removal can be achieved by separating a constant value from the signals. One of the simple 

but effective methods that support this type of clutter removal, is average subtraction in which the 

average value of signals (Savg) over all receivers (Na) and transmitters (Na) is subtracted from each 

antenna’s signal in each frequency sample (Smeas): 

𝑆(𝑓𝑘) = 𝑆𝑚𝑒𝑎𝑠(𝑓𝑘)−𝑆𝑎𝑣𝑔(𝑓𝑘) ,                      k = 1 to Nf (4.6) 

where 

𝑆𝑎𝑣𝑔(𝑓𝑘) =
1

𝑁𝑎
2 ∑ ∑ 𝑆𝑚𝑒𝑎𝑠(𝑅𝑖, 𝑇𝑗;  𝑓𝑘)

𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1 ,   k = 1 to Nf (4.7) 

Note that the averaging process is not applied over frequency samples, because of the variation of 

the clutter behaviour with frequency. 

Generation of ghost and/or false targets due to the assumption of uniform structure of different 

layers affects accuracy of the reconstructed images using this method. 
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4.3.2 Differential approach (DA) type A 

This method also assumes an identical distance between the antennas and the imaged domain. In 

this method, the clutter is removed by subtracting two adjacent traces: 

𝑆(𝑅𝑖, 𝑇𝑗) = 𝑆𝑚𝑒𝑎𝑠(𝑅𝑖, 𝑇𝑗) − 𝑆𝑚𝑒𝑎𝑠(𝑅𝑖−1, 𝑇𝑗−1)  (4.8) 

for  i, j = 1 to 
𝑁𝑎

2
         with     𝑅0 = 𝑅𝑁𝑎  ,  𝑇0 = 𝑇𝑁𝑎

 

𝑆(𝑅𝑖, 𝑇𝑗) = 𝑆𝑚𝑒𝑎𝑠(𝑅𝑖, 𝑇𝑗) − 𝑆𝑚𝑒𝑎𝑠(𝑅𝑖+1, 𝑇𝑗+1)    (4.9) 

for  i, j = 
𝑁𝑎

2
+1 to Na   with    𝑅𝑁𝑎+1 = 𝑅1 ,  𝑇𝑁𝑎+1 = 𝑇1 

The advantage of this method over average subtraction is the assumption of constant thicknesses of 

the layers in front of two adjacent antennas rather than the whole imaged domain, which is more 

realistic. However, this method creates ghost targets due to the subtraction process. 

4.3.3 Differential approach (DA) type B 

Due to the anatomically symmetrical structure of the human head over the left and right sides, the 

interface reflections are almost identical in symmetrical antenna locations on the left and right sides 

of the head. Therefore, another type of DA can be developed by performing subtraction over two 

symmetrical antennas: 

𝑆(𝑅𝑖, 𝑇𝑗) = 𝑆𝑚𝑒𝑎𝑠(𝑅𝑖, 𝑇𝑗) − 𝑆𝑚𝑒𝑎𝑠(𝑅𝑁𝑎+2−𝑖, 𝑇𝑁𝑎+2−𝑗) (4.10) 

for i, j = 1 to Na , with  𝑅𝑁𝑎+1 = 𝑅𝑁𝑎
2

+1  ,  𝑇𝑁𝑎+1 = 𝑇𝑁𝑎
2

+1
 and  𝑅𝑁𝑎

2
+1

= 𝑅1,  𝑇𝑁𝑎
2

+1
= 𝑇1 . 

The difference between the two differential methods is in the selection of antennas for subtraction. 

In DA–A, signals of each pair of neighbouring antennas are subtracted from each other, while in 

DA–B, the signals from any pair of antennas symmetrically facing each other are subtracted. 

However, the symmetrical subtraction also causes ghost targets. The ghost targets caused by DA-A 

are spread over the image near the antennas’ locations, whereas DA-B produces mirrored ghost 

targets in the left or right side of the image. 
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4.3.4 Spatial Filtering 

Due to the different distances between the target and antenna positions and by neglecting the effect 

of layers’ thicknesses, the target’s effect on each antenna’s signal significantly differs from the 

clutter behaviour from the spatial point of view. To that end, the received signals are analysed in the 

spatial domain, in which the time/frequency domain signals are transformed to their angular 

spectrum using 2-D Fourier transform: 

𝑆(𝑘𝑥, 𝑘𝑦; 𝑓) = ∬ 𝑆𝑚𝑒𝑎𝑠(𝑥, 𝑦; 𝑓)𝑒−𝑖2𝜋(𝑥𝑘𝑥+𝑦𝑘𝑦)𝑑𝑥𝑑𝑦
 

𝑠
 (4.11) 

where kx and ky are spatial frequencies.  

In this case, the clutter removal is equivalent to separating spatial zero and low frequency signals 

from the signals across all the antennas. This step can be performed using a spatial notch filter [69]: 

𝐻𝑁𝐹(𝑘) =
1−𝑒−𝑖2𝜋𝑘

1−𝛼𝑒−𝑖2𝜋𝑘 , (4.12) 

in which 0<α<1 determines the width of the filter notch. It is worth mentioning that the average 

subtraction method is a special kind of spatial filtering, in which the single spatial frequency 

component (zero-frequency) is removed without changing other components.  

Although this method might appear to have more advantages than the average subtraction, the time 

overlapping is not considered in the Fourier calculations. In addition, finding the optimum value for 

α needs initial knowledge about the properties and dimensions of the layers and thus makes this 

method difficult to use. 

4.3.5 Entropy-based Filtering 

According to the fact that the reflections from the outer layers are stronger than the target signals, 

the clutter can be removed by applying a proper filter. However, as mentioned in the previous 

section, the time and frequency overlapping features of the measured data make it difficult to 

discriminate between the clutter and target signals. In that regard, entropy metric is defined, in 

which the amount of uncertainty of the data is calculated by summing the probability density 

function (P) of the measured data over all antennas: 

𝐻𝛼(𝑓𝑘) =
1

1−𝛼
𝑙𝑜𝑔 (∑ ∑ [𝑃(𝑅𝑖, 𝑇𝑗; 𝑓𝑘)]

𝛼𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1 )  (4.13) 
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Hα is known as the αth-order Renyi entropy [70] and 

𝑃(𝑅𝑖 , 𝑇𝑗; 𝑓𝑘) =
|𝑆𝑚𝑒𝑎𝑠(𝑅𝑖,𝑇𝑗;𝑓𝑘)|2

∑ ∑ |𝑆𝑚𝑒𝑎𝑠(𝑅𝑖,𝑇𝑗;𝑓𝑘)|2𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1

  (4.14) 

which satisfies 𝑃(𝑅𝑖, 𝑇𝑗; 𝑓𝑘) ≥ 0 and ∑ ∑ 𝑃(𝑅𝑖 , 𝑇𝑗; 𝑓𝑘)
𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1 = 1 for k = 1 to Nf. 

The Renyi entropy (Hα) assigns large values (maximum log Na) to clutter signals (high value 

signals), while target signals (low value signals) are diminished. After discriminating between target 

and clutter signals, the clutter can be removed by filtering high values of eH(f) which is between 1 

and (Na)
2: 

𝑆(𝑅𝑖, 𝑇𝑗; 𝑓𝑘) = {
0

𝑆𝑚𝑒𝑎𝑠(𝑅𝑖, 𝑇𝑗; 𝑓𝑘)
   𝑒

𝐻(𝑓𝑘) ≥ 𝑁0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , (4.15) 

where 1<N0<(Na)
2 is the entropy threshold, which is suggested to be half of the number of received 

signals [64].  

Applying the entropy-based filtering in the frequency domain makes it resilient to time delay and 

overlapping. However, filtering some frequency components does not remove the clutter in other 

frequencies. In fact, this method only removes strong reflections without manipulating the low 

value clutter signals, which might be in the same range of the reflections emanating from the target. 

In addition, due to the frequency response overlapping, entirely eliminating a frequency component 

also erases a portion of the target data. Therefore, the removed target data should be restored. 

4.4 Methods comparison 

To evaluate the effectiveness of the aforementioned methods in removing the clutter in realistic 

imaging scenarios, they are applied to process signals collected using the aforementioned 

simulation environment for head imaging in the previous chapter. Those pre-processed signals are 

then compared with the target response in a clutter-free (homogeneous) environment. This 

environment is created in the simulations by changing the material properties of the imaged domain 

to be a constant value, which is equal to the average value of all the tissues.  

The effect of the clutter removal techniques on the target response can be visually inspected using 

the point spread function (PSF), which can be defined in functional terms as the spatial domain 

version of the transfer function of the imaging system [71]. The PSF is calculated by finding the 

response of the imaging system due to a point target as a function of its spatial variations. Thus, the 
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PSF can be presented by the 2D spatial domain transformation of the received signals at all possible 

target positions. In the head imaging case, the target (bleeding) is considered as a point target and 

the PSF of a target in a homogeneous medium is calculated. To that end, the 2D Fourier 

transformation of received signals are calculated according to the down-range and cross-range 

resolutions of each antenna and the total PSF is calculated by superposing all of the PSFs according 

to their corresponding positions: 

𝑃𝑆𝐹(𝑅𝑖, 𝑇𝑗; 𝑥, 𝑦) = ∫ ∫ 𝑆
 

𝑘𝑢
(𝑅𝑖 , 𝑇𝑗; 𝑓)𝑒𝑖(𝑘𝑢𝑢+𝑘𝑟𝑟)𝑑𝑘𝑢𝑑𝑘𝑟

 

𝑘𝑟
 (4.16) 

𝑃𝑆𝐹𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦) = ∑ ∑ 𝑃𝑆𝐹(𝑅𝑖 , 𝑇𝑗; 𝑥, 𝑦)𝑁𝑎
𝑗=1

𝑁𝑎
𝑖=1  , (4.17) 

where ku and kr are spatial cross-range and depth-range angular frequencies. The image of PSF from 

clutter-free data is used as a benchmark for a visual comparison with clutter removal techniques.  

To quantitatively compare the target response from the ideal clutter-free environment and other pre-

processed signals, the maximum cross-correlation between those signals and the ideal response is 

calculated as a measure of similarity with the clutter-free signal. To that end, the signals are 

transformed to spatial domain using the Fourier transformation: 

𝑠(𝑅𝑖 , 𝑇𝑗; 𝑟) = ℱ{𝑆} = ∫ 𝑆
 

𝑓
(𝑅𝑖, 𝑇𝑗; 𝑓)𝑒𝑖2𝜋

𝑓

𝑣
𝑟𝑑𝑓. (4.18) 

where v is the wave speed in the medium. The maximum cross-correlation (Cmax) for each signal is 

then calculated by 

𝐶𝑚𝑎𝑥(𝑠𝑡, 𝑠) = 𝑚𝑎𝑥[(𝑠𝑡 ∗ 𝑠)(𝜌)] = 𝑚𝑎𝑥[∫ 𝑠𝑡
∗(𝑟) 𝑠(𝑟 + 𝜌)

∞

−∞
𝑑𝑟] (4.19) 

where st and s are the target and pre-processed signals, and (*) denotes the convolution operation 

along the r direction. In (4.19), the receiver and transmitter indexes are removed for simplicity. The 

calculated cross-correlations are then normalised to (0-1) range, using their autocorrelations: 

𝐶𝑛𝑜𝑟𝑚(𝑠𝑡, 𝑠) =
𝐶𝑚𝑎𝑥(𝑠𝑡,𝑠)

√𝐶𝑚𝑎𝑥(𝑠𝑡,𝑠𝑡)𝐶𝑚𝑎𝑥(𝑠,𝑠)
 . (4.20) 

There would be Na
2 normalised cross-correlation values for the recorded multistatic data with Na 

antennas. In order to have a number to compare the different methods, the average normalised 

cross-correlation value over all signals is calculated for each method by: 
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𝜂 =
1

𝑁𝑎
2 ∑ ∑ 𝐶𝑛𝑜𝑟𝑚(𝑠𝑡(𝑅𝑖, 𝑇𝑗; 𝑟), 𝑠(𝑅𝑖, 𝑇𝑗; 𝑟))

𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1  (4.21) 

The average normalised cross-correlation, 𝜂, changes from 0, for fully distorted signals, to 1, for 

ideal scenarios.  

Fig.  4.2 shows the total PSF (left side images) and the corresponding calculated 𝜂 before and after 

applying the clutter removal techniques. The spatial domain signals for a sample signal received by 

an antenna facing a 4 cm target inside the used head models are also provided in Fig.  4.2. Fig.  

4.2 (a) shows the reference signal recorded in the homogeneous region. It is obvious from Fig.  4.2 

(b) that the clutter due to outer layer reflections is much stronger than, and thus masks, the target 

response in the raw data. The corresponding low average cross-correlation value (𝜂 = 0.37) also 

proves that the multilayer structure of the realistic head strongly distorts the received signal. It is 

obvious from Fig.  4.2 (b) that the target cannot be revealed by applying time-windowing methods, 

due to the signal overlapping in time. Using the average subtraction method in the frequency 

domain reveals the target response at its real location (Fig.  4.2 (c)). In fact, applying the average 

subtraction approach at each frequency component compensates for the time-overlapping due to the 

penetration of wideband signals in the heterogeneous medium by considering the penetration ability 

of microwave signals at each frequency. However, there are other strong responses, which cause a 

reduction in the corresponding value for 𝜂 and therefore the appearance of ghost targets in the final 

image. The two differential methods (Fig.  4.2 (d) and (e)) are not well successful in removing 

early-stage clutters. The spatial filtering (Fig.  4.2 (f)) on the other hand mitigates early-stage 

clutters, but the level of the target signal is decreased to the level of delayed clutters causing a low 

value for the 𝜂 and the appearance of ghost targets in the final image. As shown in Fig.  4.2 (g), the 

early stage and delayed clutters are mitigated using the entropy-based method, but the target signal 

is still dominated by clutters. The PSF images and calculated values of 𝜂 show that the average 

subtraction and entropy-based methods return signals that almost resemble the target signal. It can 

be concluded from those results that only a limited part of the target data is removed by the average 

subtraction and entropy-based methods, while the other methods corrupt the target response 

significantly. 

To better highlight the effects of the various types of clutter rejection algorithms, they are used to 

reconstruct 2D images. The accuracy of those images in detection and locating an emulated brain 

injury is then verified. The reconstructed images are shown in Fig.  4.3.  
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Fig.  4.2. PSF, spatial domain signals and corresponding normalised cross-correlation values 

for (a) reference signal, (b) raw signal, and after using (c) average subtraction, (d) differential 

approach-A, (e) differential approach-B, (f) spatial filtering, and (g) entropy-based filtering. 

The vertical red dashed line shows the exact location of the target. 
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          (a)         (b)        (c) 

 

          (d)         (e)        (f) 

Fig.  4.3. Reconstructed images (a) without applying clutter removal techniques, and after 

using (b) average subtraction, (c) differential approach-A, (d) differential approach-B, (e) 

spatial filtering, and (f) entropy-based filtering. Black rectangles show the exact location of 

the target. 

To ease the detection process and comparison between different methods, the images’ intensities are 

normalised to the highest obtained intensity in each image. Fig.  4.3 (a) shows the obtained image 

without applying any clutter removal technique. This image demonstrates how the target is 

completely masked by the strong clutter. As expected, average subtraction method (Fig.  4.3 (b)) 

can locate a target, but also produces false targets due to the slightly different effects of the clutter 

on different antennas. Fig.  4.3 (c) and (d) show the results of the two differential methods. Both of 

the methods have small errors in locating the target, which can be interpreted as the effect of the 
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subtraction step on the target signals. In addition, the reconstructed images are affected by ghost 

targets in the opposite side of the real target, especially in method B of this approach (Fig.  4.3 (d)). 

The resulted image for spatial filtering with α=0.9 is shown in Fig.  4.3 (e). This best value for α is 

selected based on trial-and-error approach on the resultant images. This method can reveal the 

target; however, the presence of a ghost targets and small error in localisation degrades its 

efficiency. Comparing this method with the average subtraction shows that filtering low spatial 

frequencies effectively mitigates the ghost targets, but shifts the target’s location, which means a 

significant effect on the target response. As shown in Fig.  4.3 (f), the entropy-based filtering 

significantly reduces, but does not completely remove the clutter. The resultant effect of non-

filtered frequencies is a reconstructed image that has a halo along the target location.  

In summary, the spatial domain signals and reconstructed images show the enhanced capability of 

several known time-domain techniques when modified to operate in the frequency domain. The 

serious problems associated with those techniques, when applied to remove clutters in the time-

domain analysis such as time overlapping, are alleviated when they are modified to frequency 

domain methods. 

4.5 Proposed hybrid method 

Although all the aforementioned methods are effective in clutter removal for simple one 

homogeneous layer structures, they often fail in removing the clutter from multi-layer 

heterogeneous structures. This mainly happens due to the incomplete removal of clutter or 

removing part of the target response during the filtering procedure. To tackle these problems and in 

order to take better advantage of the available methods, a hybrid method is proposed to avoid the 

weaknesses of current techniques. 

As explained earlier, the average subtraction method tries to remove the clutter by separating an 

average value from all the antennas in every frequency step after assuming a uniform thickness for 

different layers seen from different positions or angles. The real non-uniform thickness of the layers 

affect accuracy of the final image by producing ghost targets. On the other hand, the entropy-based 

method tries to filter out the clutter that dominates the recorded signals; however, the incomplete 

removal of the clutter causes a halo effect in the image resulting in an inaccurate or difficult 

detection of the target. Hence, the proposed hybrid method aims to combine the two aforementioned 

methods for the effective utilization of their benefits, while at the same time overcoming their 

shortfalls. In addition, any deletion of the target signal in the utilised entropy-based filters is 

compensated by replacing the over-threshold signals with the average value of the signals passing 

the filter. 
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In the hybrid method, the raw scattered signals are firstly filtered in the spatial domain by 

subtracting their average value. Then, the probability density function of the filtered signals is 

calculated for every frequency step: 

𝑃(𝑅𝑖 , 𝑇𝑗; 𝑓𝑘) =
[𝑆𝑚𝑒𝑎𝑠(𝑅𝑖,𝑇𝑗;𝑓𝑘)−𝑆𝑎𝑣𝑔(𝑓𝑘)]2

∑ ∑ [𝑆𝑚𝑒𝑎𝑠(𝑅𝑖,𝑇𝑗;𝑓𝑘)−𝑆𝑎𝑣𝑔(𝑓𝑘)]2𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1

 ,  (4.22) 

for k = 1 to Nf . Then, the entropy criterion (H) is calculated by using the third order of Renyi 

entropy (α=3) which is known to be the best entropy for a broad class of signals [70]: 

𝐻3(𝑓𝑘) = −
1

2
log (∑ ∑ [𝑃(𝑅𝑖 , 𝑇𝑗; 𝑓𝑘)]

3𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1 ) (4.23) 

The entropy-based filtering (4.19) is then applied to find the high value signals. Finally, the filtered 

over-threshold signals are replaced by the average value of the signals that passes from the filter 

(S*
avg): 

𝑆(𝑅𝑖, 𝑇𝑗; 𝑓𝑘) = {
𝑆𝑎𝑣𝑔

∗ (𝑓𝑘)

𝑆𝑚𝑒𝑎𝑠(𝑅𝑖, 𝑇𝑗; 𝑓𝑘)
   𝑒

𝐻(𝑓𝑘) ≥ 𝑁0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , (4.24) 

The resultant images using the hybrid method on the same raw data utilised to create Fig.  4.2 and 

Fig.  4.3 is demonstrated in Fig.  4.4. The resulted PSF and signal from the proposed hybrid method 

(Fig. 6 (a)) shows that it effectively cancels early- and late-stage clutters. In addition, this method 

has negligible effect on the target response compared to the other investigated methods, as it very 

well resembles the reference PSF. 

To investigate the performance of the proposed hybrid method in removing the clutter in head 

imaging and compare its effect on the obtained image using other techniques, the signal-to-noise 

ratio (SNR) [72] is used as a metric to quantify the obtained images: 

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝐼𝑡−𝐼𝑏

𝐶𝑏
)     dB, (4.25) 

where It and Ib are the mean values of the detected target and background regions, respectively, and 

Cb is the standard deviation of the background. SNR reflects the contrast between the target and 

background. Higher values of SNR for a reconstructed image using a certain algorithm means better 

clutter removal and thus more accurate detection.   
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(a) 

 
(b) 

Fig.  4.4. (a) PSF, typical spatial domain signal and average value of normalised cross-

correlation, and (b) reconstructed image, using the hybrid method. Black rectangles show the 

exact location of the target. 

 

Also, for performance evaluation of a clutter removal method in target’s data manipulation, Δ, the 

distance between the real center and the center of the detected target is calculated by (3.22). Lower 

Δ means that the clutter removal algorithm has lower effect on the target’s data and Δ=0 represents 

an ideal scenario, i.e. accurate localisation of the target. The above mentioned parameters are 

calculated for the images in Fig.  4.3 and Fig.  4.4 (b), and listed in Table 4.1.  
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Table 4.1. Comparison between performance of the proposed and other techniques   

Method SNR (dB) Δ (mm) Figure 

Proposed (Hybrid) 5.9 2.2  Fig.  4.4 (b) 

Average subtraction 2.5 5.7 Fig.  4.3 (b) 

Differential approach-A 5.5 21.5 Fig.  4.3 (c) 

Differential approach-B 4.8 34.5 Fig.  4.3 (d) 

Spatial filtering 2.6 11.6 Fig.  4.3 (e) 

Entropy-based filtering 0.8 9 Fig.  4.3 (f) 

 

The SNR values in this table show that the proposed hybrid method has obviously higher contrast 

and is the most successful method in the clutter removal. Moreover, according to the values of Δ, 

the hybrid method is the most accurate method in locating the target. The more accurate results of 

the hybrid method than the single entropy-based filtering method demonstrates the effectiveness of 

the adopted data compensation. It is also obvious from Fig.  4.4 that the proposed method not only 

removes the clutter, but also strongly reduces the ghost targets produced by the time and frequency 

overlaps. From the physical point of view, electromagnetic waves that pass through similar tissues 

with similar permittivity values have a high correlation and hence deliver lower variogram values, 

while the waves that pass through different tissues are uncorrelated and deliver higher variogram 

values. The adopted approach in replacing the high value signals with the average value helps in the 

partial compensation for any removal of part of the target data. 

4.6 Experimental validation 

To experimentally validate the proposed hybrid method for clutter removal, it is applied to the 

recorded data from the mentioned head imaging setup in Chapter 3 – Section 3.2.2. To compare the 

proposed method with the previously mentioned algorithms, the reconstructed images using those 

methods along with their resultant metrics are depicted in Fig.  4.5. As can be observed from Fig.  

4.5 (a), the proposed method can successfully remove the effect of the clutter and thus accurately 

detect the targets in both of the investigated cases. A comparison between the metrics values 

indicate that the resultant images from the proposed hybrid method deliver the highest value of 

SNR and lowest value of Δ for both of the investigated experimental scenarios. These metric values 

confirm superiority of the proposed method in clutter rejection compared with other methods in the 

investigated multistatic frequency-domain microwave imaging system. 
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Fig.  4.5. Experimental results using (a) the proposed hybrid method, (b) average subtraction, 

(c) differential approach-A, (d) differential approach-B, (e) spatial filtering, and (f) entropy-

based filtering. Black rectangles show the exact location of the target. Left side images are for 

2 × 2 × 2 cm3 bleeding in the head phantom and right side images are for 2 × 1 × 1 cm3. Black 

squares show the exact location of the bleeding. 



Chapter 4: Clutter Removal Techniques 

Ali Zamani – October 2017    73 

4.7 Summary 

A hybrid method to remove the clutter effects in microwave medical imaging has been presented. 

Due to the complex structure of the human body, time and frequency overlapping between target 

response and clutters causes false positive or negative detection when using traditional clutter 

removal techniques. The proposed hybrid method mitigates the effect of the clutter in all 

frequencies by applying the average subtraction in every frequency step and then using a modified 

entropy-based filter to remove the strong reflections from the skin, skull, fat and muscle layers. It 

has been shown that some deficiencies of the adopted methods in the time domain, such as time 

overlapping, can be alleviated when they are modified for use in the frequency domain. The 

performance of the proposed method has been tested on realistic head phantom. The presented 

results indicate superiority of the proposed hybrid method in removing the clutter and ghost targets 

therefore producing accurate images in microwave head imaging. 
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5 IMPROVED RADAR-BASED 

MICROWAVE MEDICAL IMAGING 

USING EXTENDED VIRTUAL 

ANTENNA ARRAY    

As it is shown in Chapter 3, the accuracy of microwave imaging is highly dependent on the number 

of antennas used for data acquisition. The number of antennas is usually determined based on the 

antenna size, available space for antennas, and acceptable hardware complexity (switching and 

processing) to use as many antennas as practically possible. For example, authors in [73], use 40 

antennas distributed on five elliptical rings of eight antennas for breast imaging. In [38], the system 

uses up to 200 antenna positions for a 3D monostatic breast imaging system. In some other systems, 

32 and 16 antennas are utilised for multistatic breast imaging, respectively [9]-[12]. However, the 

information available in microwave imaging is essentially limited and cannot be increased by just 

increasing the number of antennas. Hence, for a given accuracy, increasing the number of antennas 

beyond a specific value does not convey independent information [75], [76]. Moreover, the limited 

number of antennas in a multistatic array, which is determined by the feasible space between the 

antennas, mutual coupling, and hardware complexity, does not allow the designer to make the best 

use of multistatic techniques.  

To overcome these shortcomings with the aim to improve the accuracy and quality of reconstructed 

images, the concept of virtual antenna array to increase the effective number of antenna elements is 

proposed and explained in this chapter. In addition, the information correlation coefficient (ICC) 
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[74] is proposed to find the maximum and minimum number of antennas required for the proposed 

virtual array concept to work. The presented method is tested via simulations and experiments using 

the aforementioned multistatic-radar-based head imaging system. 

5.1 Virtual Array Concept 

The virtual antenna concept is well known in direction finding techniques that are used in 

communication and navigation systems [77]-[80]. Through-the-wall and MIMO imaging systems 

[81], [82] also use virtual phased array and switched-antenna-array techniques in planar and linear 

bistatic configurations to enable using fewer antennas. The virtual antenna array can increase the 

degree of freedom of a multistatic array by creating a larger array using only a small number of real 

antennas. To that end, the data transformation (mapping) from a real antenna array onto the virtual 

array was performed by using different algorithms, such as MUSIC and spatial smoothing [79], 

[83]-[85]. A virtual pseudo-monostatic subarray architecture was also proposed in [86] for planar 

radar imaging.  

In this work, a spatial statistical technique based on the Kriging method [87] is derived and utilised 

to build a virtual antenna array with larger number of antennas than the real array. Efficacy and 

accuracy of the Kriging method in estimating electromagnetic fields is demonstrated in [88]-[94]. 

While other interpolators, such as Lagrangian polynomials and least-square methods, have been 

successfully used in different applications [95], Kriging method considers the spatial structure of 

the variables, which is essential in physical applications. In addition, this method provides 

information about the local behaviour of variables making it an ideal candidate to predict 

electromagnetic wave behaviour in small domains. Unlike the previous virtual array techniques 

such as MUSIC-like methods, the proposed method can perfectly handle correlated (or highly 

correlated) signals, which usually arise in biomedical applications due to multipath propagation. In 

addition, unlike the spatial smoothing technique, which is only applicable in bistatic linear 

uniformly spaced arrays, the Kriging-based method can be applied on different array configurations. 

For the efficient use of the statistical interpolator, a model for the correlation function of the electric 

fields is derived. The designed statistical model provides the local spatial structure of the 

microwave signals at different locations around the imaged domain. Due to the statistical nature of 

this model, more information can be extracted from the data. The estimated values using this model 

are inferred at the desired locations. The virtual array’s outputs are then processed using the 

frequency-based imaging algorithm to get improved image quality and detection accuracy.  
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5.1.1 Statistical Model 

Fig. 1 shows the scenario of wave propagation between two antennas in a multistatic head imaging 

system. The foundation of the model is the estimation of the wave propagation behaviour in the 

imaged domain. By applying the derived model, the signals at any location around the imaged 

domain can be predicted to configure the desired virtual array.  

 

Fig.  5.1. Wave propagation in a round-shaped microwave imaging system. 

Consider a wideband multistatic antenna array consisting of Na elements that enclose the head. Each 

antenna works as both a transmitter and receiver of Nf frequency samples. Assuming the system a 

black-box with received signals s = {s11, s12, s13, …, sNaNa} as system responses, and transmitter and 

receiver locations (𝑟𝑡⃗⃗  and 𝑟𝑟⃗⃗  , respectively) as system variables, the relationship between responses 

and variables of the system is required. Generally, the structure of that relationship is unknown. 

Therefore, a suitable approximation to the true relationship should be considered. The most 

common form is low-order polynomials (first or second-order) which can be used for a wide variety 

of real physical applications [94], [95]: 

𝑠(𝑟𝑡⃗⃗ , 𝑟𝑟⃗⃗  ) = 𝑤0 + ∑ 𝑤𝑖𝑟𝑖⃗⃗ 𝑖=𝑡,𝑟 + ∑ ∑ 𝑤𝑖𝑗𝑟𝑖⃗⃗ 𝑗=𝑡,𝑟 𝑟�⃗⃗� 𝑖=𝑡,𝑟 + 𝑒 (5.1) 

where wi are unknown parameters to be solved, 𝑟𝑡⃗⃗  and 𝑟𝑟⃗⃗   are the inputs (transmitter and receiver 

locations) and e is the error function. In matrix notations, (5.1) can be written as 

𝑆 = 𝑅𝑤 + 𝑒 (5.2) 
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where S is an Na
2 × 1 vector of received signals from the multistatic array of Na antennas, 

T

Na

rrrR )](),...,(),([ 221 rrr  is a known Na
2 × 7 location’s quadratic function matrix with 𝑟(𝒓𝑖) =

[1, 𝑟𝑡𝑖⃗⃗⃗⃗ , 𝑟𝑟𝑖⃗⃗  ⃗, 𝑟𝑡𝑖⃗⃗⃗⃗ 
2
, 𝑟𝑡𝑖⃗⃗⃗⃗ 𝑟𝑟𝑖⃗⃗  ⃗, 𝑟𝑟𝑖⃗⃗  ⃗𝑟𝑡𝑖⃗⃗⃗⃗ , 𝑟𝑟𝑖⃗⃗  ⃗

2
]2, w is a 7 × 1 vector of regression coefficients, and e is Na

2 × 1 error 

vector. The vector of coefficients estimator ŵ  can be determined subject to the minimisation of the 

total sum of squares (TSS) of the error, e 

)()(

2

1

RwSRwSeTSS T
N

i

i

a




 (5.3) 

Based on the Kriging method [87], the best linear unbiased estimation of w is 

SCRRCRw TT 111 )(ˆ   (5.4) 

where C = [cij] is Na
2 × Na

2 correlation matrix with 

2,...,1,),,( ajiij Njic  rr  (5.5) 

ρ is the correlation function to be found, and 𝒓𝑖 = {𝑟𝑡⃗⃗ , 𝑟𝑟⃗⃗  }𝑖 indicates ith set of transmitter-receiver 

locations. The estimated value for an arbitrary set of transmitter-receiver location rv is then 

calculated by  

)ˆ()(ˆ)()(ˆ 1 wRSCcwrS T
vvv  

rrr  (5.6) 

where T

Navvvv CCCc )],(),...,,(),,([)( 221 rrrrrrr   . 

5.1.2 Correlation Function Design 

Since the proposed technique exploits the spatial correlation of data to build interpolations, the 

choice of the correlation function highly affects the quality of the estimation. Different correlation 

functions, such as exponential [88]-[90], linear [91], and Gaussian [92]-[93] functions, were 

proposed by researchers for different applications, such as designing electromagnetic and 

communication systems, microwave devices, and remote sensing. However, there is no particular 

correlation function designed for microwave imaging systems. The current models, such as the 

standard time-harmonic signal model used in back-projection and matched filter approaches [96]-

[97], are mainly developed for monostatic linear or planar arrays. In this work, a specific correlation 
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function is derived for the intended multistatic virtual array from the propagation characteristics of 

electromagnetic waves. 

The spatial correlation function between two complex electric fields �⃗�  at 𝑟𝑖⃗⃗  and 𝑟�⃗⃗�  is defined by [94] 

𝜌(𝑟𝑖⃗⃗ , 𝑟�⃗⃗� ) =
〈�⃗� (𝑟𝑖⃗⃗⃗  ).�⃗� 

∗(𝑟𝑗⃗⃗  ⃗)〉

〈|�⃗� |
2
〉  

(5.7)
 

where * denotes complex conjugate,  is the ensemble average over all realisations of �⃗� , and 

〈|�⃗� |
2
〉 = 𝐸0

2 is the electric field mean power.  

To find the spatial correlation function between two electric fields at two different locations, the 

relation between the electric field and distance is needed. According to the working frequency and 

size of the biomedical imaged domain, that domain is located within the near- to far-field with 

respect to the utilised electromagnetic wave source. In addition, the transient waves and strong 

reflections are removed in the pre-processing stage of the imaging algorithm, explained later in 

Section III. Therefore, the transmitted waves can be estimated for simplicity and reasonable 

accuracy by far-field equations. To that end, the angular spectrum of the electric field, which is a 

composition of different propagating plane waves 𝑓  with zero average value is utilised and can be 

written in its spatial dependences format as 

�⃗� (𝑟𝑖⃗⃗ ) = ∫ 𝑓 (∅)𝑒−𝑖�⃗� 𝑟 𝑑∅
 

∅
 (5.8) 

In (5.8) the integral operation is operated over all angles   around the receiving point, while 𝑟 =

𝑟𝑖⃗⃗ − 𝑟𝑟⃗⃗   is the distance between transmitter and receiver, and �⃗�  is the complex wavenumber. In this 

case, the angular spectrum 𝑓  is a random function whose statistical characteristics have to be 

determined. So, by applying (5.8) in (5.7), we get 

𝜌(𝑟𝑖⃗⃗ , 𝑟�⃗⃗� ) =
1

𝐸0
2 ∫ ∫ 〈𝑓 (∅𝑖

⃗⃗  ⃗). 𝑓 ∗(∅𝑗
⃗⃗⃗⃗ )〉𝑒−𝑖(𝑘𝑖⃗⃗  ⃗𝑟𝑖⃗⃗⃗  −𝑘𝑗⃗⃗⃗⃗ 𝑟𝑗⃗⃗  ⃗)𝑑∅𝑖𝑑∅𝑗

 

∅𝑖

 

∅𝑗  
(5.9)

 

Since the real and imaginary part of the plane wave spectrum are uncorrelated [83], then 

0)()( *  jimagireal ff 
 

(5.10)
 

and  
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Thus, the correlation function between two electromagnetic waves is 

𝜌(𝑟𝑖⃗⃗ , 𝑟�⃗⃗� ) =
1

4𝜋2 ∫ ∫ 𝑒−𝑖�⃗� |𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗|𝑑∅𝑖𝑑∅𝑗
 

∅𝑖

 

∅𝑗
= 𝑒−𝑖�⃗� |𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗|

 
(5.12)

 

After applying (5.12) in (5.4), the regression coefficient w is estimated and then the received signals 

in the virtual array at any arbitrary configuration can be predicted using (5.6) to set up the required 

virtual array. The output of the virtual array is the scattering parameter, Sij. Therefore, the imaging 

method is still in the frequency domain.  

Once the virtual array is designed, the imaging algorithm can be used to process the signals at the 

virtual array to construct the final image.  

The key feature of the proposed method is that the employed statistical method can model black-

box systems without a priori knowledge about the system’s interior. The only required information 

is the locations of the antennas. By providing the detailed structure of the system (permittivity 

values at different locations of the heterogeneous head model), the obtained model can perfectly 

estimate the responses in other locations. However, since it is assumed in this work that the internal 

structure of the head is unknown, the equivalent homogeneous model is utilised. The equivalent 

homogeneous model may deliver an estimation error, but this error is significantly reduced by using 

the average complex permittivity of the head in the correlation function. The results from imaging 

the head model in Chapter 3 with different values of average permittivity show that 10% variation 

in the average permittivity does not effectively change the resultant image accuracy and quality. 

Therefore, using an estimated average permittivity with up to 10% error from the real value is 

acceptable to still get accurate imaging. 

The proposed procedure differs considerably from the back-projection technique, which uses cross-

correlation function (convolution) between transmitter and receivers in the time domain to improve 

the cross-range resolution. In the proposed method, the correlation between any two pairs of 

transmitter-receiver is used as part of the statistical method to model and predict the signals’ 

behaviour if another antenna is added to the array. By this way, more information is extracted from 

the data to improve the image quality and accuracy of detection. In addition, unlike the back-

projection approach, the location of the reference antennas does not need to be located away from 

the imaging domain. 
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5.2 Model Validation 

The proposed method is verified using the recorded data from the simulations environment 

described in Section 3, with different array sizes and then is validated through the experiments on 

the realistic human head phantom.  

5.2.1 Simulations 

Using the presented method, the recorded data in the eight-element array (Fig.  3.5 (b)) are utilised 

to build a twelve-element virtual array uniformly distributed around the head. For this purpose, the 

frequency-domain received signals by the eight-element array and their corresponding locations are 

used to find the proper regression coefficients and build the statistical models for each frequency 

step. Then, the locations of the antennas in the twelve-element array are applied as inputs to the 

model to generate the required S-parameters. 

The obtained S-parameters of the virtual twelve-element and those from the real 12-element array at 

the exact locations of the virtual elements are illustrated in Fig.  5.2. To enable appraising the 

quality of the estimation, the estimation errors of different scattering parameters are also illustrated 

in Fig.  5.3. As it is clear from Fig.  5.3, the proposed model can accurately estimate the S-

parameters of a twelve-antenna array from an eight-element array for short and long distances and 

at different frequencies, though with a slight error compared to the real values. This error is more 

obvious in S61, S71 and S18 where the distance between the antenna elements is greater than, for 

example, the case of S21. The slight error in the estimation of S21 comes mainly from the mutual 

coupling between the neighbouring antennas in the dense array, a factor that is not considered in the 

calculations. 
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Fig.  5.2 . S-Parameters of real and virtual 12-antenna arrays. 
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Fig.  5.3. Estimation error for the extended 12-antenna array from 8-element array. 

 

To investigate the efficacy of the designed virtual array and in order to inspect the effect of the 

produced error on the final image, the proposed frequency-based multistatic microwave imaging 

algorithm in Section 3 is utilised to process the data and create an image. To that end, the obtained 

signals from the virtual and real arrays with twelve elements are processed by the imaging 

algorithm. The signals from the eight real elements are used to generate signals at the locations of 

the extended virtual elements. Those generated signals are then used for imaging. The resultant 

images of two unhealthy cases with shallow and deep targets along with the healthy scenario for the 

8-element real and its extended 12, 16 and 32 virtual elements are depicted in Fig.  5.4. Locations of 

the real elements are depicted in Fig.  5.4 (a) with black solid quadrilaterals around the image of the 

shallow target. The extended virtual elements are positioned uniformly around the head as indicated 

by the dashed quadrilaterals in Fig.  5.4 (b)-(d). The produced images in Fig.  5.4 are normalised to 

the maximum intensity of unhealthy scenarios and the exact location of bleeding is indicated by a 

square. 
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 Shallow target Deep Target Healthy 

(a) 

 
  

(b) 

 

 
  

(c) 

 
 

 

(d) 

 

 
 

 

Fig.  5.4. Reconstructed images for shallow target, deep target and healthy scenarios using 

frequency-based imaging method with (a) real 8-element array, and virtual (b) 12, (c) 16, and 

(d) 32 elements. Black squares show the exact location of bleeding. 
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A visual comparison between Fig.  5.4 (a) and (b)-(d) shows that the proposed method effectively 

improves the image quality and accuracy of the target detection and localisation by mitigating the 

ghost targets produced by the real 8-element array. It can also be realised from Fig.  5.4 (b)-(d) that 

increasing the number of virtual antennas using data from the same number of real elements can 

effectively reduce the estimation error and thus enhance the image quality and accuracy in target 

localisation. However, there is a limit on the possible improvement. For example, there is no 

significant improvement in the image quality when increasing the number of virtual elements from 

16 to 32. In other words, one of the main findings in our extensive simulations is that using twice 

the number of real antennas can give the best possible improvement to sufficiently enable the 

detection of the target with minimum computational efforts. Testing the proposed method in torso 

imaging system with 12 imaging antennas also shows that using 24 (twice the number of real 

antennas) can provide the best possible improvement. 

To investigate the possibility of differentiating between healthy and unhealthy cases using the 

proposed method, the variation in the image intensity of those cases (Fig.  5.4) are calculated and 

plotted in Fig.  5.5. As realised, the image intensity in all of the investigated unhealthy cases is well 

above the maximum image intensity from the healthy cases; hence, it is fairly reasonable to propose 

that the unhealthy cases can be detected. Nevertheless, a threshold similar to Fig.  5.5 needs to be 

established in future tests on human subjects.  

 

Fig.  5.5. Image intensity variation range for unhealthy and healthy cases. 

The reconstructed image with 12-element real array and 12-element virtual array generated from 

data of the 8-element array are depicted in Fig.  5.6. It can be seen that the virtual antenna array can 

successfully produce images that are almost similar to the images of a real array of the same 

number of elements, though with a slight shift in the position of the target. This shift is due to the 

produced error in the estimation process of the signals at the virtual elements, which can be reduced 

by increasing the number of virtual antennas as proven with the aforementioned 8-element array 

case. 
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        (a)            (b) 

Fig.  5.6. Reconstructed images using (a) real 12-element array and (b) virtual 12-element 

array using data from a real 8-element array. 

To investigate the quality and accuracy of the reconstructed images, the signal-to-noise ratio (SNR) 

and the detection error (Δ) are used as metrics to quantify the obtained images. Knowing the 

assumed bleed size and location, the metrics are calculated for the reconstructed images in Fig.  5.4 

and Fig.  5.6, and listed in Table 5.1. The higher value of SNR and lower value of Δ for the images 

generated by the virtual array configuration, compared to the values for the real eight-element array, 

demonstrate that the proposed method provides higher quality images with more accurate detection 

than the real eight-element array. Those values are very close to the calculated values for the real 

12-element array, which proves that the proposed technique can successfully estimate signals in 

other locations. Interestingly, applying 16- or 32-element virtual array provides more accurate 

images than the real 12-element array (Fig.  5.4 (b)).  

Table 5.1 . Image quality of the simulated results 

Array Configuration SNR (dB) Δ (mm) Figure 

Real 8-element  
2.6 9.8 Fig.  5.4 (a) 

Real 12-element  
5.5 5.7 Fig.  5.6 (a) 

Virtual 12-element  
5.2 6.6 Fig.  5.4 (b)/ Fig.  5.6 (b) 

Virtual 16-element  
5.6 2.9 Fig.  5.4 (c) 

Virtual 32-element  
5.7 2.7 Fig.  5.4 (d) 
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In order to investigate the ability of the proposed method when smaller number of real antenna 

elements are used, images with six and four-element arrays and their virtual extensions to 8, 12, 16 

and 32 elements are constructed and depicted in Fig.  5.7 and Fig.  5.8, respectively. It can be seen 

from Fig.  5.7 (a) and Fig.  5.8 (a) that the obtained data from the six and four-element arrays are 

not enough to enable the detection of the target. Applying the virtual array concept on the data from 

four and six elements improves the image quality (Fig.  5.7 (b)-(c) and Fig.  5.8 (b)-(c)). However, 

due to the lack of enough information when using such a small number of antennas, the extended 

virtual array cannot localise the target in its actual position even when generating data via a dense 

16-element virtual array. 

 

 

   (a)                          (b)                            (c)     (d) 

Fig.  5.7. Reconstructed images from (a) real six-element array with virtual (b) 8, (c) 12, and 

(d) 16-element arrays. 

 

 

   (a)                          (b)                            (c)     (d) 

Fig.  5.8. Reconstructed images from (a) real four-element array with virtual (b) 8, (c) 12, and 

(d) 16-element arrays. 



Chapter 5: Improved Radar-Based Microwave Medical Imaging Using Extended Virtual Antenna Array 

Ali Zamani – October 2017    87 

From the previous results, it is clear that the virtual array concept does not work well when the data 

comes from a very small number of real antennas. Therefore, the logical question here is on the 

minimum number of real antennas required for the proposed virtual array concept to work. To that 

end, the information correlation coefficient (ICC) [98], which is widely used in information theory 

to quantify the amount of information similarity between two set of data, is utilised. The ICC of 

every two neighbouring antennas in an array is calculated using 
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 (5.13) 

where Si = {si,1, si,2, …, si,Na} is the set of received signals at ith receiver from all the other antennas. 

ICC = 1 means that the two neighbouring antennas receive exactly the same signals. ICC 

approaches zero when the signals received at two neighbouring antennas have no information in 

common. Connecting those two limits to the proposed techniques, high values of ICC means there 

is no benefit from extending the real array using the virtual concept as the real array is dense 

enough to recover the whole data about the imaged domain. On the other hand, ICC = 0 means 

critical information is lost such as when using a very small number of antennas, and thus the virtual 

concept will not be able to recover that data. There is a range between those two extremes where the 

virtual concept is effective. To find that range for the problem under investigation, the minimum 

and maximum values of ICC for different real arrays are calculated and listed in Table II. Based on 

the generated images and ICC values in Table 5.2, it is possible to suggest that an ICC within the 

range 0.2 to 0.5 is a reasonable range for the virtual concept to be effective for the subjects within 

the size of the head model. 

Table 5.2 . Mutual information between neighbouring antenna elements 

Number of antennas Min (ICC) Max (ICC) 

4 0.014 0.081 

6 0.045 0.125 

8 0.226 0.278 

12 0.232 0.345 

16 0.273 0.468 
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The minimum and maximum number of antennas for the head imaging calculated by the degrees of 

freedom (DOF) theory [75]-[76] confirms the proposed values. According to DOF, the imaging 

domain’s perimeter should be sampled at a minimum rate equal to one-half of the wavelength in air 

to be able to detect the target: 

)2/(min a   (5.14) 

In this case, the number of DOF of the head imaging system and thus the maximum number of 

antennas required to collect the available information at the highest frequency and provide the best 

result is 16 as confirmed in Fig.  5.4. This is the reason why only marginal improvements are 

observed when using the 32 antennas virtual array (Fig.  5.4 (d)). However, the target in this 

problem can be roughly enclosed in a square sub-domain centered on the origin of side 10 cm 

(radius of the imaging domain), corresponding to a minimum number of DOF of 8. Therefore, at 

least 8 antennas are required for the proposed virtual array concept to work (Fig.  5.4 (a)), whereas 

four and six antennas (Fig.  5.7 and Fig.  5.8) are not sufficient to build a virtual array capable to 

successfully image the target. 

5.2.2 Experiments 

To validate the proposed method, it is applied to the experimental data collected from the integrated 

microwave head imaging system as explained in Section 3. By using the recorded data from the real 

eight-element array, a 16-element (twice the number of the real antennas) virtual array with eight 

elements in halfway between any two real elements is generated. Then, the imaging algorithm is 

applied to those virtual data to reconstruct the final image. The final images for real eight-element 

array and 16-element virtual array along with their calculated metrics are depicted in Fig. 12. 

According to the obtained images, the proposed method can effectively improve the detection 

accuracy and image quality by localising the target in its exact location and mitigating the ghost 

targets. A comparison between the metrics indicate that the resultant images from the proposed 

virtual array deliver higher values of SNR and lower values of Δ for both of the investigated 

experimental scenarios. These metrics confirm the efficacy of the proposed method in improving 

detection accuracy and image quality in the investigated multistatic microwave head imaging.  

 



Chapter 5: Improved Radar-Based Microwave Medical Imaging Using Extended Virtual Antenna Array 

Ali Zamani – October 2017    89 

                  

                SNR = 6.2 dB, Δ=3.6 mm           SNR = 7.2 dB, Δ = 13 mm 

 (a) 

                  

            SNR = 6.8 dB, Δ = 1.5 mm                 SNR = 7.7 dB, Δ = 2 mm 

 (b) 

Fig.  5.9. Reconstructed images from experimental data, using (a) real eight-element array, 

and (b) virtual 16-element array. Left images are related to the 2 × 2 × 2 cm3 and right images 

are related to the 2 × 1 × 1 cm3 bleeding target. Black rectangles show exact location of target. 

5.3 Comparison 

To compare the proposed method with existing correlation-based methods, the multistatic back-

projection technique [96]-[97] is used to process the same simulated datasets. The back-projection 

technique uses cross-correlation function (convolution) between transmitter and receivers in the 

time domain to improve the cross-range resolution. Fig.  5.10 shows the obtained images using the 

aforementioned methods to process the simulated data. It is obvious from Fig.  5.10 (b) that the 

back-projection method cannot clearly detect the target in both of the scenarios. This method 
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produces false targets due to small distances between the transmitters and receivers. In comparison, 

the proposed method can accurately detect the target in the same simulated environment for shallow 

and deep targets (Fig.  5.10 (a)). The images’ metrics for the back-projection method are calculated 

and compared with the proposed method counterparts as shown in Table III. The larger value of 

SNR and smaller value of localisation error Δ for the proposed method than the values in the back-

projection method demonstrate superiority of the proposed method.  

 

 Shallow target Deep Target Healthy 

(a) 

   

(b) 

 

   

Fig.  5.10. Reconstructed images for shallow target, deep target and healthy scenarios using 

(a) frequency-based imaging method with virtual 12-element array extracting from 8 real 

antenna array and (b) multistatic back-projection technique with real 8-element array. 

Table 5.3 . Comparison of image quality 

Array Configuration SNR (dB) Δ (mm) Figure 

Proposed virtual 12-element  
5.2 6.6 Fig.  5.10 (a) 

Back-projection 
2.7 10.4 Fig.  5.10 (b) 
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5.4 Summary 

A virtual array concept for microwave biomedical imaging has been introduced. It utilizes a spatial 

correlation function to virtually increase the number of antennas and consequently the number of 

available signals for processing and image formation. While increasing the number of antennas 

improves image quality, multistatic biomedical imaging allows the use of only limited number of 

real antenna elements due to the available space, antenna size, mutual coupling and system 

complexity. The developed technique is effective when the number of real antenna elements is 

neither too small nor too large. To scientifically define those two limits, the information correlation 

coefficient, which measures the similarity in the signals received by any two neighbouring 

antennas, is introduced. It is shown that the virtual array technique is efficient when the values of 

that coefficient are within the range 0.2 to 0.5. With this range, a virtual array that has twice the real 

antenna elements, which meet the minimum limit of degree of freedom of the problem, is needed to 

generate the best possible image without significantly increasing the computational resources 

required. The proposed method has been successfully verified via simulations and experiments in a 

head imaging system. It has also been shown that the proposed virtual method is more accurate with 

better clutter rejection capability than existing back-projection methods.   
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6 PERMITTIVITY ESTIMATION AS 

A PRIORI FOR MICROWAVE 

MEDICAL IMAGING 

As mentioned before, all of the microwave imaging techniques, such as delay-and-sum [35], space-

time beamforming [40], adaptive beamforming [43], and the proposed frequency domain algorithms 

need a priori information on the wave’s propagation speed in the imaging domain. Thus, the 

effective dielectric constant of the domain is typically assumed in the homogeneous propagation 

models employed by those algorithms. However, due to the multiple reflection and refraction of the 

electromagnetic wave in a dispersive and heterogeneous environment such as the human body, the 

wave passes through different tissues and follows different paths depending on the transmitter-

receiver location with respect to the imaged object. Therefore, each transmitting-receiving antenna 

pair “sees” different effective permittivity, which is the average permittivity of tissues and space 

through which the electromagnetic wave propagates for a specific transmitter-receiver scenario. 

That effective permittivity thus depends on the location of the antennas with respect to the imaging 

domain, in addition to properties of the imaged object and its location with respect to those 

antennas. Therefore, a method to accurately predict the location-specific dielectric properties of the 

imaged domain is required for successful radar-based imaging algorithms. In this chapter, a 

technique to determine the effective complex permittivity seen by each imaging antenna across the 

used frequency band of a multistatic imaging domain is presented.  
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6.1 Permittivity Estimation Techniques: Literature Review 

Different methods to estimate the permittivity of the imaging domain were proposed [99]-[101]. In 

those methods, the time delay between two sets of measurements (with and without the imaging 

subject or with its metallic equivalent) are compared to determine the average permittivity of the 

subject. In [102], Multiple Signal Classification (MUSIC) technique was used to calculate the 

Time-of-Flight (ToF) of the signals through the imaged domain to estimate the average dielectric 

permittivity of the imaged object. Those techniques gave promising results for low-loss, frequency-

independent and homogeneous objects. However, the heterogeneous objects with frequency 

dispersive properties like human tissues, can lead to inaccurate ToF estimation, which subsequently 

result in inaccurate images. With the heterogeneous structure of human organs, which creates 

multiple signal paths and possible surface waves, the exact value and meaning of ToF are quite 

ambiguous. 

In [103], the dielectric constant of the imaged subject is modelled as a function of antenna’s 

position and imaged location within the imaging domain of a monostatic imaging system. The used 

dielectric model is specific to the imaged object and is thus highly sensitive to variations in the size 

and shape of that object. In addition, the location of the imaged object with respect to the antennas 

should be known and agreed with a pre-defined value for an accurate estimation. In another 

approach, the most likely effective permittivity of the imaging domain is estimated by optimising 

the image quality [25], [104]. Those works showed interesting results for monostatic head and 

breast imaging; however, they are time consuming if used in multistatic configurations with large 

imaging domains. In addition, they may converge on local maxima (ghost targets) in highly 

heterogeneous environments, causing inaccurate detection as they rely on finding one effective 

permittivity for the whole domain. In [105]-[106], the relative permittivity of biological tissues is 

expressed as a weighted sum of scattering parameters to determine the electrical properties of deep 

internal organs for monitoring purposes. However, that method needs the average permittivity and 

imaged object borders as a priori information to reduce the training matrix size. In addition, the 

measurements are performed in a low frequency step for a two-layer structure, which is not 

applicable for ultra-wideband imaging techniques that deal with heterogeneous frequency dispersive 

tissues.  

A method to estimate the complex permittivity of the imaging domain using a statistical modelling 

technique is presented in the following sections. It has the capability to accurately predict the 

effective complex permittivity seen by any imaging antennas across the whole used band. The 

proposed method does not require any predefined distance between the antennas and the imaged 



Chapter 6: Permittivity Estimation as a Priori for Microwave Medical Imaging 

Ali Zamani – October 2017    94 

object, nor does it need the imaged object to be cantered within the imaging domain. In addition, the 

method does not need to know boundaries of the imaged object. Those three parameters are quite 

important in medical applications, where the distance between the antennas and the imaged object, 

which may have any shape or size, cannot be fully controlled or known. The performance of the 

proposed method is successfully verified by realistic simulations and validated by experiments on 

the human torso phantom with the aim to detect early lung cancer. 

6.2 Permittivity Estimation from the View Point of Each Antenna 

Assume that an imaging domain is surrounded by Na antennas operating in multistatic mode as 

shown in Fig.  6.1. The effective permittivity of the imaging domain seen by any antenna depends 

on properties, size, and shape of the imaged object located in the domain. For a heterogeneous 

object with frequency dispersive properties, the effective permittivity seen by an antenna depends 

also on the location of that antenna with respect to the object and the used frequency. Thus, the 

assumption of one effective permittivity, or even the prediction of one effective value when using 

radar beamforming processing techniques does not really enable accurate imaging. Hence, a method 

that can predict the effective permittivity seen by any antenna is necessary for accurate imaging. 

 

Fig.  6.1. The used imaging domain. 

The effective permittivity can be expressed as a function of the scattering parameters. So, if a set of 

S-parameters are calculated for a specific imaging domain (i.e. specific antennas and array 

structure) with known properties, these parameters can be used to train the system to predict the 

effective complex permittivity when imaging an unknown object. In the work [105], such a function 

was solved using the ordinary least squares linear regression methods in a bistatic configuration. 

However, due to the large number of variables (S-parameters) in the adopted multistatic 
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configuration, such a function leads to ill-posed problems, where more than one weighting factor 

satisfy the linear equation, leading to over or underdetermined equations. 

To address this issue, additional information must be introduced to the ill-posed problem to prevent 

over- or under-fitting. To that end, the problem is regularised by the spatial regionalisation of the 

scattering parameters; thus, the variogram [107], which describes the degree of spatial dependence 

of signals, is calculated for each receiver i: 

𝛾𝑖(ℎ) =
1

2|𝑁(ℎ)|
∑ |𝑆𝑖𝑗 − 𝑆𝑖𝑘|

2
(𝑗,𝑘)∈𝑁(ℎ)  (6.1) 

where h is the distance between the jth and kth transmitting antenna locations, Sij is the received 

signal at ith antenna transmitted from jth antenna using Nf frequency samples, and N(h) denotes the 

set of pairs of observations ij and ik such that |rij – rik| = h and |N(h)| is the number of pairs in the 

set. Low values of h represent neighbouring antennas, which receive highly correlated signals and 

thus their corresponding γ is low, whereas antennas that are distant from each other (high values of 

h) deliver high values of γ. From the physical point of view, electromagnetic waves that pass 

through similar tissues with similar permittivity values deliver lower variogram values (higher 

correlation), while the waves that pass through different tissues than other transmitting waves 

deliver higher variogram values (lower correlation). By using (6.1), each receiver in the multistatic 

configuration is presented by a function γ(h). Therefore, 0.5×Na×(Na+1) independent 

variables/signals are reduced to Na regularised functions that incorporate the spatial features of 

relevant signals.   

To link γ(h) with the dielectric properties of the imaging domain, the effective permittivity from the 

view point of ith receiver εi is modelled as 

휀𝑖 = 𝐟(𝑠)𝐰 + 𝑧(𝑠) (6.2) 

where s={γ, h} is the function’s input in which γ is calculated using (6.1),  f(s) = [1, γ, h, γ2, γh, hγ, 

h2] is a vector of quadratic regression function, and w is the 7×1 vector of regression coefficients to 

be calculated for a minimised error z(s). There are Nh functions of εi for h values extending from 0 

to the length of the maximum axis of the elliptical antenna array. Those quadratic functions relate 

discrete values of γ to h and to ε. To obtain the best-unbiased estimation of w, it is necessary to train 

the model using training samples, which are generated using the calculated S-parameters of the 

imaging domain when filled with uniform media that have certain assumed permittivity values 

(sample mediums). In that regard, the imaging domain (such as the ellipse in Fig.  6.1) is assumed 
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to have Nε different permittivity values εn (n = 1 to Nε) and the corresponding multistatic S-parameters 

are calculated at each assumption. The calculated S-parameters are then used in (6.1) to obtain γ(h) 

and thus the corresponding training functions sn={γn, hn}(n = 1 to Nε) and f(sn). Assuming Nε different 

training samples with assumed permittivity values εn (n = 1 to Nε), (6.2) can be written in a matrix form 

as 

𝛆𝑖 = 𝐅𝐰 + 𝐳 (6.3) 

where εi = [ε1,…,εM]T is the vector of permittivity with the dimension of M (=Nε×Nh) × 1, F = 

[f(s1),…,f(sM)]T is the M × 7 regression function matrix and z = [z(s1),…,z(sM)]T is the M × 1 error 

vector. The matrix of coefficients estimator �̂� (the notation ^ represents the estimated coefficient) 

can be determined subject to the minimisation of the total sum of squares (TSS) of the error, z 

𝑇𝑆𝑆 = ∑ |𝑧(𝑠𝑛)|
2𝑀

𝑛=1 = (𝛆 − 𝐅𝐰)𝑻(𝛆 − 𝐅𝐰) (6.4) 

The generalised least squares solution of w is then [108] 

�̂� = (𝐅𝑇𝐂−1𝐅)−1𝐅𝑇𝐂−1𝛆 (6.5) 

In this equation, C = [cij]  is an M × M stochastic-process correlation matrix with cij = ρ(si , sj) ,  

i,j=1,...,M, where ρ is the correlation function between the permittivity values at samples si={γi, hi}, 

sj={γj, hj}. After testing different correlation functions such as linear [91], Gaussian [92] and 

exponential functions [109], the latter is selected as it gives the best fit to the data.  

After finding �̂� for the designed imaging domain (antenna array and its structure), the training step 

finishes, and the system is ready to be used to image an unknown object of any shape and size as 

long as it fits within that domain. In this case the permittivity value 휀�̂�  for the measured S-

parameters in the presence of an unknown imaged object with s={γ, h} is approximated by [87] 

휀�̂�(𝑠) = 𝐟(𝑠)�̂� + 𝐜(𝑠)𝑇𝐂−1(𝛆 − 𝐅�̂�) (6.6) 

where c(s) is the correlation matrix between the input s from the unknown object and the training 

samples. Finally, the observed effective permittivity by the ith antenna is calculated by averaging 

the permittivity values over all values of h: 

휀�̂�
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =

1

|𝑁ℎ|
∑ 휀�̂�(𝑠𝑗)

𝑁ℎ
𝑗=1  (6.7) 
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In summary, the proposed method can be represented by the flowchart shown in Fig.  6.2 and 

explained by the following steps: 

 

      (a)                                                (b) 

Fig.  6.2. Flowchart of the proposed method, (a) training and (b) imaging. 

a) Training; 

1. Calculate the multistatic frequency domain S-parameters for certain range of training mediums, 

2.  Regularise the S-parameters using (6.1), 

3. Determine the vector of the coefficients estimator �̂�, using (6.5). 

b) Imaging; 

1. Insert the object to be imaged in the imaging domain and collect the multistatic frequency 

domain S-parameters with the existence of the unknown imaged object, 

2. Regularise the measured S-parameters using (6.1), 
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3. Estimate the effective complex permittivity vector using (6.6) and (6.7), 

4. Construct an image using the estimated permittivity values and proper imaging algorithm. 

6.3 Verification 

To verify the proposed method in medical applications, a realistic simulation environment for 

human torso imaging is established in ANSYS HFSS. An elliptical shaped antenna array is utilised 

to simulate a realistic scenario in which the distance between the antennas and the imaged object, 

such as the human torso, is not uniform (Fig.  6.3). The used antenna array consists of compact 

unidirectional ultra-wideband antennas [110]. A photo of the used antenna and its performance are 

depicted in Fig.  6.4. The utilised antenna has the dimensions of 100 × 120 × 0.8 mm3 and operates 

across the band 0.65-1.75 GHz with more than 10 dB return loss in free space and more than 20 dB 

mutual coupling between any two neighbouring antennas of the array. In the training and imaging 

steps, a signal covering the frequency band 0.65-1.75 GHz at 10 MHz intervals is sequentially 

transmitted by one antenna while all of the antennas receive the scattered signals, which are then 

recorded for further processing. 

 

Fig.  6.3. Training setup. 

    

      (a)            (b) 

Fig.  6.4. (a) The utilised antenna [25], and (b) its reflection coefficient. 
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To investigate the effect of the number of antennas on the estimation accuracy, the estimation error 

for different number of antennas is calculated and plotted in Fig.  6.5. The estimation error is the 

percentage of difference between the actual and estimated dielectric properties of a known test 

material that has different dielectric properties than the sample materials. It can be seen from Fig.  

6.5 that the estimation error decreases with the increase in the number of imaging antennas. 

However, there is no significant improvement in the estimation error when increasing the number of 

antennas to more than 12. This issue can be explained by the fact that increasing the number of 

antennas significantly means that neighbouring antennas get closer to each other and they start to 

“see” the same effective permittivity from the imaged domain. Assuming 5% as an acceptable 

estimation error for the permittivity and conductivity [101], [105], at least 12 antennas are required 

to estimate those values in the considered torso imaging domain.  

 

Fig.  6.5. Estimation error with number of antennas. 

In the training step, no object is inserted in the imaging domain. Instead, a uniform training medium 

with the height equal or more than the height of the antennas fills the whole imaging domain, while 

the dielectric properties of air is chosen for the medium around and behind the antennas. The 

number of training media or samples (M) needed to train the method affects the estimation 

accuracy. Essentially, larger number of training samples means more accurate estimation of the 

permittivity, but at the expense of longer time for data gathering and model training. To determine a 

suitable number of samples, a design space including all possible combinations of permittivity and 

conductivity values is considered. Since the aim of this work is torso imaging, the design space is 

sampled using the ranges of εr = [1, 63] and σ = [0, 1.9] to cover all the permittivity values of 

human torso tissues. The time needed for recording the required data in simulations and training 

using three different permittivity and conductivity sampling intervals (∆εr , ∆σ) is provided in Table 

6.1. The computations are performed by a 3.4 GHz and 16 GB RAM personal computer. The time 
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for data gathering is calculated by multiplying the number of simulations (M) in the required time 

for one simulation run (≈ 4 hours). It is clear from Table 6.1 that 5040 hours (7 months) is needed to 

achieve a perfectly accurate model. It is also clear that the required time to train the model 

dramatically increases with the increase in the number of samples. 

Table 6.1. Computation time for different number of samples 

[∆εr , ∆σ] [5 , 0.5] [2 , 0.2] [1 , 0.1] 

Number of samples (M) 65 315 1260 

Time for gathering data (h) 260 1260 5040 

Time for training (s) 164 3116 263520 

 

To find a suitable compromise between the high gathering and training time needed with large 

number of samples and estimation accuracy, the estimation errors for different sampling intervals 

are calculated based on Monte Carlo sensitivity analysis [111]. In that regard, one fixed value for 

each parameter (e.g. conductivity) is randomly selected within its range, while the other parameter 

(e.g. permittivity) is sampled at different intervals. The relevant S-parameters are then calculated 

when the imaging domain is filled with the sampled permittivity values. The obtained S-parameters 

are used in (6.1) to regularise the data, and the estimation error z(s) is calculated using (6.4), where 

w is replaced by �̂�. The estimation errors for different sampling intervals are plotted in Fig.  6.6 (a) 

and (b), respectively. It is clear from Fig.  6.6 that the error between the estimated and actual values 

of permittivity and conductivity increases by increasing the sampling intervals. According to Fig.  

6.6, the maximum sampling intervals for the permittivity and conductivity are ∆εr = 2 and ∆σ = 0.2, 

respectively, to achieve less than 5% estimation error. Therefore, 315 training samples are required 

to fill the design space with ∆εr = 2 and ∆σ = 0.2 sampling intervals. Fig.  6.7 (a) shows distribution 

of the complex permittivity values of the selected samples (blue dots) along with the range of values 

for the dielectric parameters of different human torso tissues (coloured boxes). Variations of those 

parameters for some of the torso tissues with frequency are also shown in Fig.  6.7 (b). 

The calculated S-parameters for all of the training media are used to model the dielectric properties 

of the imaging domain using (6.1) – (6.5). Once the model is created, it can be used to estimate the 

dielectric properties of any imaged object using (6.7). While this model is exclusive to the trained 

imaging domain i.e. the antenna array and size of the imaging domain, it is valid for imaging any 

object located within that domain.   
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(a) 

 
(b) 

Fig.  6.6. Estimation error against sampling size, for (a) relative permittivity and (b) 

conductivity. 
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(a) 

 
(b) 

Fig.  6.7. (a) Dielectric properties of the training samples along with the ranges of variations 

for dielectric parameters of human torso tissues (coloured boxes), and (b) variation of relative 

permittivity (solid lines) and conductivity (dash lines) with frequency. 

6.3.1 Simulations 

The system is used to image a three-dimensional human torso model (EMAG model) including all 

of the torso tissues with their realistic dispersive properties (Fig.  6.7). The torso model and a 

multistatic antenna array are integrated with a multistatic frequency-based radar imaging algorithm 

to form a microwave torso imaging system (Fig.  6.8). To emulate the scenario of lung cancer 

patient, a 1 cm radius sphere of tissue with tumour properties is inserted inside one of the lungs. 
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(a) 

 
(b) 

Fig.  6.8. Simulation setup to image an object (human torso), (a) side view and (b) cross-

section up view. 

The simulation is conducted in CST and the recorded S-parameters are regularised by (6.1). The 

regularised signals are then used for estimating the effective permittivity of the imaging domain by 

the obtained model in training using (6.6) and (6.7). The simulations are conducted for healthy 

(without tumour) and unhealthy (with tumour) cases to show effect of the change in the dielectric 

properties of the tissues in the estimation of the effective permittivity. The estimated relative 

permittivity and conductivity of the imaging domain at the centre frequency (1 GHz) from each 

antenna perspective are depicted in Fig.  6.9 for both healthy and unhealthy cases. Their values for 

antennas 1 and 4 over the used frequency band are also shown in Fig.  6.10. 
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(a) 

 
(b) 

Fig.  6.9. Estimated dielectric properties at 1 GHz for each antenna. (a) Relative permittivity, 

and (b) conductivity. 

As clearly shown in Fig.  6.9, the estimated permittivity and conductivity values of the unhealthy 

case are slightly larger than the values of the healthy one due to the presence of a small tumour with 

high dielectric constant in the unhealthy case. Of course, the slight difference in those values 

between healthy and unhealthy cases cannot be interpreted directly from Fig.  6.9 and Fig.  6.10 to 

determine whether a case is healthy or not. An efficient processing algorithm is still needed to 

create a clear image that enables accurate diagnosis. The aim of those figures is to demonstrate that 

the proposed method is quite sensitive even to a very small variation in the effective permittivity 

caused by a small abnormality, which may consequently aid better diagnosis in combination with 

proper processing techniques. That difference is more evident in the antennas that are close to the 

tumour location, especially antenna 4. Most importantly, the dielectric properties from the view-

point of those antennas are lower than the observed values from the other antennas’ perspective due 
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to the larger air gap between antennas 4 and 10, and the torso. On the other hand, the antennas that 

are close to the torso such as antennas 1, 2, 12, 6, 7 and 8, see the highest effective permittivity and 

conductivity. By using antenna-specific permittivity values in a radar-based imaging algorithm, the 

imaging results are expected to be more accurate and there is no need to adjust the distance between 

the antennas and the imaged object to be uniform.  

 
(a) 

 
(b) 

Fig.  6.10. Estimated dielectric properties for antenna 1 and 4 over the used frequency band. 

(a) Relative permittivity, and (b) conductivity. 

Fig.  6.10 demonstrates that the proposed method can estimate the complex permittivity of the 

dispersive imaging domain. Since the torso includes many types of tissues with frequency 

dispersive properties, the estimated permittivity fluctuates over the investigated frequency band. 

The overall trend of the estimated relative permittivity of the torso indicates a decrease in value 

with frequency. This trend of variation follows the average trend of variation for the permittivity 

and conductivity of individual tissues as shown in Fig.  6.7 (b). The average values of the estimated 
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relative permittivity and conductivity over all of the antennas and frequencies are [εr, σ] = [29.78, 

0.90] and [30.96, 0.91], respectively. It is worth noting that these values are the estimated 

permittivity of the whole imaging area, including the effect of the air gap between the antennas and 

the torso.  

To investigate the efficacy of the proposed method in the image reconstruction procedure, the 

proposed frequency-based multistatic microwave imaging algorithm in Section 3 is modified and 

utilised to process the recorded data and create two-dimensional images. In the pre-processing step 

of the algorithm, the probability of the calibrated signals (4.22) are adjusted according to the 

corresponding wavenumber of receivers ki: 

𝑃(𝑟𝑥𝑖 , 𝑡𝑥𝑗 , 𝑓𝑘) =
𝛽(𝑟𝑥𝑖,𝑡𝑥𝑗,𝑓𝑘)[𝑆𝑚𝑒𝑎𝑠(𝑟𝑥𝑖,𝑡𝑥𝑗,𝑓𝑘)−𝑆𝑎𝑣𝑔(𝑓𝑘)]2

∑ ∑ 𝑤(𝑛,𝑚;𝑓)[𝑆𝑚𝑒𝑎𝑠(𝑛,𝑚;𝑓)𝑒𝑖𝑘𝑖𝑟−𝑆𝑎𝑣𝑔(𝑓)]2𝑁𝑎
𝑛=1

𝑁𝑎
𝑚=1

  ,
 

(6.8) 

where, 

𝛽(𝑖, 𝑗; 𝑓) = 𝑒−𝑖𝑘𝑖/|𝑟𝑖−𝑟𝑗| 
 

(6.9) 

The adjusted probability functions are then used by (6.10) and (6.11) to remove the strong 

reflections from the outer layers (skin and muscle) based on the estimated wavenumbers from each 

antenna location.  

𝐻3(𝑓𝑘) = −
1

2
log (∑ ∑ [𝑃(𝑅𝑖 , 𝑇𝑗; 𝑓𝑘)]

3𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1 ) (6.10) 

𝑆(𝑅𝑖, 𝑇𝑗; 𝑓𝑘) = {
𝑆𝑎𝑣𝑔

∗ (𝑓𝑘)

𝑆𝑚𝑒𝑎𝑠(𝑅𝑖, 𝑇𝑗; 𝑓𝑘)
   𝑒

𝐻(𝑓𝑘) ≥ 𝑁0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , (6.11) 

After removing the strong reflections, the estimated permittivity values and the recorded signals are 

used by the imaging algorithm to show the distribution of power intensity inside the imaged region.  

𝐼(𝑥, 𝑦) =
1

𝑁𝑎
2 ‖∑ ∑ ∑ 𝑆(𝑟𝑥𝑖, 𝑡𝑥𝑗 , 𝑓𝑘)

𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1

𝑁𝑓
𝑘=1 𝐽1

2(𝑘𝑖𝑟)𝑒
−𝑖2(𝑘𝑖𝒓+𝜑)‖ (6.12) 

In the previous equation (3.18), a pre-known average permittivity value was used to calculate the 

wavenumber. While, in this equation, the estimated permittivity values from (6.7) which are 

specific to each antenna and each frequency step are used to calculate the wavenumber. The 
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reconstructed image can illustrate the location of tumour, which has higher dielectric properties than 

the healthy tissues of the torso.  

Fig.  6.11 shows the reconstructed images using the traditional (one average value) and proposed 

antenna-specific permittivity estimation methods for two different locations. The considered 

average permittivity values in the traditional method (Fig.  6.11 (a) and (b)) are selected based on 

the best image quality technique. In this approach, the imaging domain is assumed to have different 

average dielectric constant values. The signal-to-noise ratio (SNR) metric of the obtained images 

from different assumed dielectric properties are then calculated by (4.25). SNR reflects the contrast 

between the target and background. Higher value of SNR means higher image quality. Therefore, 

relevant dielectric properties of the image with the maximum SNR value are selected as the 

dielectric properties of the imaging domain. The obtained average permittivity values from the 

traditional method are [εr, σ] = [23, 0.8]. 

According to Fig.  6.11, the proposed method can successfully improve the image quality and 

detection accuracy.  It is clear from Fig.  6.11 (a) and (b) that even using one overall average 

permittivity value can cause wrong detections by producing false and ghost targets; this happens 

due to the multipath phenomena occurring in the inhomogeneous torso. On the other hand, Fig.  

6.11 (c) and (d) illustrate that applying the estimated permittivity values to the imaging algorithm 

provides more accurate detections than the conventional method (Fig.  6.11 (a) and (b)). In addition, 

since the estimation of the permittivity is done from the antenna’s point of view, the non-uniform 

distance between the antennas and the torso does not affect the detection accuracy. Moreover, the 

distribution of the lung tissues with high permittivity values are also roughly revealed in those 

images. This achievement can lead to more reliable diagnosis of lung cancer and/or other relevant 

diseases. Although the exact boundaries of lungs are not clearly displayed in the image, the image 

quality can be improved by increasing the number of training samples, however at the expense of 

computational time and memory. It should be noted that strong reflections of the outer layers, 

including the skin and muscle tissues, are mitigated in the first step of the imaging algorithm (6.11). 

Hence, those tissues are not shown in the reconstructed images. 

To investigate the quality and accuracy of the obtained images, SNR and the detection error (Δ) 

metrics are calculated to quantify the images. Knowing the assumed target size and locations, the 

metrics are calculated for the reconstructed images in Fig.  6.11, and listed in Table 6.2. The higher 

value of SNR and lower value of Δ for the images generated using the proposed method compared 

to the average permittivity method demonstrate superiority of the proposed method.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.  6.11. Reconstructed images (a), (b) before, and (c), (d) after permittivity estimation. 
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Table 6.2. Image quality using conventional and proposed methods 

Method SNR (dB) Δ (mm) Figure 

Average value  
7.01 13.12 Fig.  6.11 (a) 

Average value 
3.34 19.90 Fig.  6.11 (b) 

Proposed   
12.08 0.00 Fig.  6.11 (c) 

Proposed   
11.50 1.12 Fig.  6.11 (d) 

6.3.2 Experiments 

In order to validate the performance of the proposed method in realistic environments, experiments 

were performed using an integrated microwave torso imaging system. Fig.  6.12 shows the 

configuration of the system. The data acquisition system contains a wall-mounted tube that encloses 

the subject under test. Twelve antennas are assembled inside the outer layer of the system to form a 

circular shape multistatic antenna array. The inner cavity is designed in an elliptical shape to form 

similar structure to that of the human torso. The outer layer of the system is built using expanded 

Polyvinyl chloride (PVC) with properties that are radio frequency (RF) transparent, and therefore, it 

does not affect the radiation performances of the antennas. The antennas are connected to a 

Keysight L4491A microwave switching system to scan the circumference of the torso. The 

switching network is connected to the ports of a Keysight N9923A FieldFox vector network 

analyser (VNA). The VNA generates the required microwave signal and measures the frequency 

response of the connected antenna between 0.65 and 1.75 GHz. The VNA and the switches are 

controlled by a laptop connected via Ethernet and USB connections. The explained torso phantom 

in Section 3, comprised of lungs, heart and abdomen block in addition to complete thorax ribs and 

muscle tissues (Fig.  3.15), is utilised. A 1 cm radius sphere built from materials that mimic the 

dielectric properties of tumour is inserted inside the phantom lung to imitate a lung cancer scenario.  

To analyse the performance of the proposed method, the target is positioned inside the phantom’s 

lung. The phantom is then scanned and collected data are used to estimate the permittivity of the 

imaging domain and construct an image of the phantom. Due to the complexity of the experiments 

and the huge number of required materials, the simulation-based training algorithm is used to 

estimate the permittivity values in experiments. To that end, the measured signals are calibrated by 

shifting the signal frequency and then multiplying them by the calibration factor ac: 

𝑆𝑐𝑎𝑙(𝑓) = 𝑎𝑐𝑆𝑒𝑥𝑝(𝑓 − ∆𝑓) (6.13) 
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Fig.  6.12. Torso scanner opened to show its structure and then enclosing a torso phantom. 

where, Scal is the calibrated signal at frequency f, Sexp is the measured signal of experiment, and ∆f is 

the frequency shift which is needed to calibrate the data against the variations in the resonant 

frequency of the simulated and measured S-parameters. The calibration factor a is calculated for a 

free space scenario, i.e. by dividing the shifted signals of measurement at free space (without 

phantom) 𝑆𝑒𝑥𝑝
𝑓𝑟𝑒𝑒

(𝑓 − ∆𝑓) by the simulation signals at free space 𝑆𝑠𝑖𝑚
𝑓𝑟𝑒𝑒

(𝑓): 

𝑎 =
𝑆𝑒𝑥𝑝
𝑓𝑟𝑒𝑒

(𝑓−∆𝑓)

𝑆
𝑠𝑖𝑚
𝑓𝑟𝑒𝑒

(𝑓)
 (6.14) 
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The calibrated signals are then used to estimate the dielectric permittivity values and create the final 

image.  

The reconstructed image is shown in Fig.  6.13, where the small target is exactly detected in the 

imaging domain. The approximate distribution of the lungs tissues around the target can also be 

seen in this image.  

 

Fig.  6.13. Resultant image from experiment. 

6.4 Summary 

A technique for an accurate estimation of the frequency dispersive complex permittivity of an 

imaging domain has been presented in this chapter. The aim of the work is to improve the detection 

and imaging accuracy of multistatic microwave medical imaging systems. To that end, the complex 

permittivity from the viewpoint of each element is estimated to enhance the image quality. In the 

proposed technique, the recorded S-parameters are firstly spatially regionalized, and then a spatial 

statistical model of the dielectric permittivity is produced using a set of training media. The 

obtained model is used to estimate the frequency dispersive complex permittivity of the imaging 

domain from the viewpoint of each antenna. The estimated permittivity values are then used as a 

priori information in a multistatic frequency-based microwave imaging algorithm. The performance 

of the proposed method was tested using realistic-model simulations and experimentally verified in 

a torso imaging system where a lung tumour was successfully detected in a torso phantom. The 

comparison between the constructed images using the proposed and conventional methods shows 

superiority of the proposed method. In addition, by using the proposed method, there is no need to 

adjust the distance between the antennas and the imaged object to be uniform or even known as a 

priori information. This feature is quite important in clinical use of the imaging systems, where the 

imaged object can be located anywhere inside the imaging domain. 
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7 SURFACE ESTIMATION OF 

IMAGED OBJECT FOR IMPROVED 

MICROWAVE MEDICAL IMAGING 

One of the main requirements for accurate imaging especially when not using a perfect coupling 

medium is the need to know the exact location of the imaged object within the imaging domain, i.e. 

the need for the exact distances between the imaging antennas and imaged object. The proposed 

method in the previous section tried to avoid detecting the location of the imaged object by imaging 

the whole imaging domain. Nevertheless, introducing the information about the boundaries of the 

imaged object into the imaging algorithms leads to an enhanced performance by reducing the 

reconstruction volume and hence computational time in tomography methods, and improving the 

accuracy of the propagation models used in radar-based imaging techniques. While it might be 

possible to manually measure that boundary in a controlled lab environment, this cannot be 

achieved in the clinical environment due to the impracticality of such a measurement in addition to 

the effect of the subject’s natural movement.  

In the literature, a variety of strategies were used to detect the imaged domain boundaries. For 

example, laser sensors were used in [112] to accurately detect the surface of the imaged object. 

However, laser scanning requires additional devices, which complicate the imaging system. 

Moreover, laser and microwave scans should be performed simultaneously to prevent false imaging 

due to patient movement/breathing during the scan. Other methods, including 2D and 3D matched-

filter approaches [113]-[114], were developed based on the time delay in the wave propagation. 

However, the unpredicted delays due to the heterogeneous and multilayered structure of the human 
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body as explained in Chapter 4 and the presence of strong surface waves affect the accuracy of 

those methods. 

In this chapter, a method for boundary identification at the same time of imaging and using the 

same data captured for imaging is presented. The method is based on the relation between the 

imaging antennas’ resonant frequency and the location of the imaged object. The imaging antenna’s 

resonant frequency shifts when that antenna faces an imaging object, which is effectively a lossy 

dielectric in biomedical application, and that shift depends on the distance between the antenna and 

the object. Since the number of imaging antennas is usually limited by the size of the antennas, 

level of acceptable mutual coupling and available apace, the virtual antenna array method, which is 

explained in Chapter 5, is also utilised to enhance the accuracy of the boundary estimation. The 

proposed technique is quite fast in scanning, computation and image creation as it does not need 

additional devices for the accurate boundary estimation. The method is tested via simulations and 

human trials using the torso imaging system. 

7.1 Surface Estimation Using Antenna Resonant Frequency Shift 

When an antenna faces an imaging object, its input impedance and thus radiation characteristics 

change significantly due to the loading effect of the object on the antenna. One of the outcome of 

that effect is a shift in the resonant frequency of the antenna compared to its free-space resonant 

frequency. That loading and thus the shift in the resonant frequency depend on the distance between 

the antenna and the object. This phenomenon is more obvious at higher frequencies, where the 

object becomes effectively much larger than the wavelength and thus high portion of the transmitted 

signal is reflected from the boundary of the imaged object. The relation between the antenna-

imaged object distance and the resonant frequency shift can be utilised for the detection of the 

imaged object’s boundaries.  

The effect of the imaged object on the input impedance of the antenna is defined using the image 

theory [113] in the form of a mutual impedance. Assuming the skin (the outer boundary of the 

object) as a lossy ground plane located at the distance d from the antenna, a virtual antenna can be 

placed at the distance 2d from that antenna to account for reflections from the object. Based on the 

mutual coupling theory [115], it is possible to define the input impedance of the antenna Zin as the 

combination of self-impedance Zs and mutual impedance Zm: 

𝑍𝑖𝑛 = 𝑍𝑠 + 𝑍𝑚 = (𝑅𝑠 + 𝑅𝑚) + 𝑗(𝑋𝑠 + 𝑋𝑚) (7.1) 
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where Rs and Rm are self and mutual resistances, respectively, and Zs and Zm are self and mutual 

reactance, respectively. Using the induced EMF method [115], the self and mutual reactance values 

for an antenna operating at the dipole mode, like the antenna used in this work, can be roughly 

defined as: 

𝑅𝑠 =
𝜂

4𝜋 sin2(
𝑘𝑙

2
)
{0.577 + ln(𝑢0) − 𝐶𝑖(𝑢0) +

1

2
sin(𝑢0) [𝑆𝑖(2𝑢0) − 𝑆𝑖(𝑢0)] +

1

2
cos(𝑢0) [0.577 +

ln (
𝑢0

2
) + 𝐶𝑖(2𝑢0) − 2𝐶𝑖(𝑢0)]} , (7.2) 

𝑋𝑠 = −120
[ln(

𝑙

2𝑎
)−1]

tan(
𝑘𝑙

2
)

 , (7.3) 

𝑅𝑚 =
𝜂

4𝜋
[2𝐶𝑖(𝑢0) − 𝐶𝑖(𝑢1) − 𝐶𝑖(𝑢1)] , (7.4) 

𝑋𝑚 =
𝜂

4𝜋
[2𝑆𝑖(𝑢0) − 𝑆𝑖(𝑢1) − 𝑆𝑖(𝑢2)] , (7.5) 

where, η is the intrinsic impedance of the medium,  

𝑢0 = 2𝑑𝑘 (7.6) 

𝑢1 = 𝑘(√4𝑑2 + 𝑙2 + 𝑙)  (7.7) 

𝑢2 = 𝑘(√4𝑑2 + 𝑙2 − 𝑙)  (7.8) 

k is the wavenumber, and l and a are constants to be found depending on the exact structure of the 

antenna. For simple dipole antennas, the parameters l and a are the length and diameter of the 

dipole, respectively. Ci and Si are the cosine and sine integrals, respectively: 

𝐶𝑖(𝑢) = ∫
cos(𝑥)

𝑥
𝑑𝑥

𝑢

∞
 (7.9) 

𝑆𝑖(𝑢) = ∫
sin(𝑥)

𝑥
𝑑𝑥

𝑢

0
 (7.10) 

Attaching the antenna to a signal generator with an impedance of Zg = 50 Ω, the reflection 

coefficient S11 of the antenna is: 
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𝑆11 =
𝑍𝑖𝑛(𝑓)−𝑍𝑔

𝑍𝑖𝑛(𝑓)+𝑍𝑔
 (7.11) 

Hence, the resonant frequency of the antenna can be calculated as the frequency at which the 

reflection coefficient of the antenna is minimum: 

𝑓𝑟 = argmin
𝑓

|𝑆11| (7.12) 

As an example, Fig.  7.1 (a) shows the calculated resonant frequency of a dipole antenna with 

l = λ/2, a = 10-5λ (λ is the wavelength), designed to have a free space resonant frequency of 1 GHz 

for different distances from a perfect ground plane as a reflector. It is clear that the resonant 

frequency of the dipole fluctuates with distance around the free-space resonance and settles at that 

frequency (1 GHz) at large distances. For the practical distances used in microwave medical 

imaging, such as the torso imaging as the topic of this work, the relation between the resonant 

frequency and antenna-reflector distance is as depicted in Fig.  7.1 (b).  

(a) 

 

 

(b) 

 

 

Fig.  7.1. (a) Calculated resonant frequency of an antenna operating in the dipole mode with 

antenna-ground plane distance, and (b) zoomed-in plot of (a) to include the distances of 

interest in microwave torso imaging. 
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To verify the abovementioned notion, a printed dipole antenna with free space resonant frequency 

of 1 GHz is simulated in HFSS at different distances from a realistic human torso model. The 

resonant frequency variation is presented in Fig.  7.2. The general trend of variation for the practical 

antenna-object distances in torso imaging agrees well with the calculations (Fig.  7.1 (a)). However, 

the resonant frequency depicted in Fig.  7.2 at specific distances do not have the same calculated 

values shown in Fig.  7.1 (b) as for that figure, the object was assumed a perfect reflector. 

 

Fig.  7.2. Measured resonant frequency of antenna operating in the dipole mode with antenna-

torso distance for the practical distances used in torso imaging. 

In microwave medical imaging, the inverse calculation of (7.1)-(7.12), i.e. to find the distance from 

the resonant frequency, is needed. However, the inverse solution of (7.1)-(7.12) or another similar 

analysis for a specific antenna results in a transcendental (non-algebraic) equation, which is 

multivalued due to the sine and cosine integral functions. We can adopt a simpler approach for the 

inverse solution to (7.1)-(7.12). First, we use them to find the general relation between the antenna’s 

resonant frequency and the antenna-object distances for the practical range of distances used in the 

imaging scenario as shown in Fig.  7.1 (b) for torso imaging. The results indicate a quadratic 

relation between the resonant frequency and distance.  Hence, the minimisation problem (7.12) can 

be replaced with a quadratic polynomial function: 

𝑑 = 𝑎0𝑓𝑟
2 + 𝑎1𝑓𝑟 + 𝑎2 (7.13) 

where fr is the resonant frequency, and aj (j = 0 to 2) are constants to be found. To determine the 

quadratic constants aj, the function needs to be trained in a full-wave simulation environment that 

includes the antenna array and a realistic model of the imaged object such as the torso.        
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In microwave medical imaging, an array of antennas surrounds the imaged object to image a cross 

section of the object. Knowing the location of the imaging antennas, the imaged object’s boundary 

can be estimated using (7.13) for all of the array elements around the object. Calculating the 

quadratic parameters for all antennas may slightly enhance the estimation, but at the cost of 

conducting too many calculations/measurements to obtain the fitted functions for all of the 

antennas. On the other hand, the human torso is not flat of course; therefore, using a simple flat 

boundary for parameters estimation causes some avoidable deterioration in the accuracy. As a 

compromise solution, the calculated parameters of one antenna in front of the torso are used for all 

other antennas. In this case, a set of points with an equal number of antennas is generated. 

Connecting all of those points in the imaging domain creates the estimated boundary of the object. 

However, due to the limited number of imaging antennas, the estimated points may not cover the 

entire boundary of the object. Therefore, the extended virtual array technique, which is explained in 

Chapter 5, is utilised to increase the number of estimated points to achieve a uniform sampling 

across the entire boundary. The resonant frequency of the predicted signals at virtual locations of 

the virtual array with more elements than the real one are detected and applied to (7.13) to find the 

distance between the antennas (including real and virtual ones) and the boundary of the imaged 

object. Using the virtually augmented boundary points provides an approximately uniform 

boundary estimation across the entire object’s circumference without using additional real antennas.  

In the abovementioned technique, the captured signals from simulations are used in both the 

antenna’s parameters calculation and the object’s boundary detection procedures. However, due to 

the possible difference in the resonant frequency of the simulated and manufactured antennas, the 

obtained function from simulations cannot be directly used for the measured data. Therefore, the 

signal calibration process explained in Chapter 6 is used to align the measured data to the 

simulation signals. Finally, the resonant frequencies of the calibrated signals by (6.13) are applied 

to (7.13) to estimate the boundary of the imaged subject in experiments. 

To create two or three-dimensional images, the estimated boundary is applied to a microwave 

imaging algorithm. In that regard, the wave propagation model is upgraded to a two-layer model in 

which the first layer is the air gap between the antenna and the skin, and the second layer consists of 

other tissues inside the imaged object: 

𝐼(𝑥, 𝑦) =
1

𝑁𝑎
2 ‖∑ ∑ ∑ 𝑆(𝑟𝑥𝑖, 𝑡𝑥𝑗 , 𝑓𝑘)

𝑁𝑎
𝑖=1

𝑁𝑎
𝑗=1

𝑁𝑓
𝑘=1 𝐽1

2(𝑘0𝑟0𝑖 + 𝑘1𝑖𝑟1𝑖)𝑒
−𝑖2(𝑘0𝑟0𝑖+𝑘1𝑖𝑟1𝑖+𝜑)‖ (7.14) 

where, the single average wavenumber in (3.18) is replaced by k0i, the vacuum wavenumber and 

k1i = 2πf(ε1iμ)1/2, and the wavenumber in the imaged object from the view point of ith antenna. r0i 
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and r1i, the distance from receiver to the skin and from the skin to the scatterer are also added to the 

algorithm. 

7.2 Validation and Results 

7.2.1 Simulations 

The collected data from the simulation setup for the microwave torso imager system, which is 

explained in Chapter 6 and shown in Fig.  6.8 are used to test the proposed method. Using the 

proposed function (7.13), simulations are conducted for different distances between the antenna and 

the torso to determine the parameters aj. The highest resonant frequency of the imaging antenna (1.2 

GHz as depicted in Fig.  6.4 b) is used in the boundary detection process as the antenna operates in 

the dipole mode at that frequency. The obtained reflection coefficients for different distances are 

shown in Fig.  7.3. As shown, the reflection coefficient shifts with the change of distance between 

the antenna and the torso, so that the minimum value of the reflection coefficient moves from high 

frequencies to low frequencies when the distance increases. The resonant frequencies at which 

minimum values of the backscattered signals occur (red dots in Fig.  7.3) are recorded and utilised 

to fit the function to those data.  

 

Fig.  7.3. Scattering parameters of the imaging antenna when facing the imaged object located 

at different distances. 

To study the effect of different skin thicknesses, tissue types and boundary curvature on the 

performance of the antenna, the simulations are repeated for antenna #3 and #5 that face different 

curvatures and thicknesses of the skin. The fitted functions compared to the obtained simulated data 
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are shown in Fig.  7.4. It is clear from Fig.  7.4 that the aforementioned factors within the realistic 

range of values do not significantly affect the antenna’s resonant frequency. Hence, the calculated 

quadratic parameters of one of the antennas can be used for all of the antennas to speed up the 

boundary estimation procedure without adversely affecting the estimation accuracy. It should also 

be noted that with the utilized antenna, the quadratic function fits to the recorded data quite well of 

antenna-torso distances up to 100 mm. Hence, the proposed method can detect the boundaries 

within that designed range, 10-100 mm, which is a reasonable range for the torso imaging system. 

 

Fig.  7.4. The distance between the antenna and skin as a function of resonance frequency. 

To get more estimated points on the boundary of the torso, the explained virtual array method is 

used to expand the recorded data from the 12-element array to 24, and 36-element virtual array 

distributed around the torso uniformly. The frequency-domain received signals by the 12-element 

array are used in (5.6) to generate the required S-parameters. The generated virtual signals along 

with the collected ones are then applied to (7.13) to estimate the distance between each antenna and 

the skin, and hence create the torso boundary. Fig.  7.5 shows the constructed boundary of the torso 

using the proposed boundary identification method with 12 real elements, 24 and 36 virtual 

antennas. According to Fig.  7.5, the torso boundaries can be reasonably detected using the 

proposed method. There are some errors in the boundary estimation of the locations where the 

antennas are not perpendicular to the skin and hence the electromagnetic wave is not directly 

reflected back to the antenna. However, increasing the number of imaging antennas by the virtual 

technique improves its accuracy in estimating the entire boundary.  
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(a) 

 

emax=11.4mm 

 

eavg=6.5mm 

(b) 

 

emax=11.4mm 

 

eavg=6.5mm 

(c) 

 

emax=11.4mm 

 

eavg=6.5mm 

Fig.  7.5. Constructed surface with (a) 12 real antennas, (b) 24, and (c) 36, virtual antennas. 

Blue solid lines show the estimated boundary location; red dashed lines show the exact 

boundary of the torso and green squares show the location of the antennas. 
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To quantify the accuracy of the estimated boundaries, the estimation error as a difference between 

the estimated and actual torso boundaries are calculated and shown beside images in Fig.  7.5 

where, emax and eavg represent the maximum and the average errors of the estimated torso 

boundaries. The maximum estimation error for twelve, 24 and 36 antennas are 11.4, 7.9 and 

7.7 mm, respectively. It is clear from the calculated values of Fig.  7.5 that increasing the virtual 

antennas decreases the error. However, there is no significant improvement in the estimation 

accuracy when increasing the virtual elements from 24 to 36. Increasing the number of antennas 

significantly means that neighbouring antennas get closer to each other and they get the same 

information about the boundary of the imaged domain. In other words, using 24 virtual antennas 

from 12 real antennas give the best possible improvement in the boundary detection with minimum 

computational efforts.  

To examine the effect of the boundary estimation on the imaging results, the proposed method is 

applied to the modified radar-based multistatic imaging algorithm (7.14). In this analysis, an 

unhealthy case (lung cancer) is emulated by inserting a 1 cm-radius sphere of blood inside the torso 

phantom. Fig.  7.6 shows the reconstructed images using the conventional one-layer model 

(imaging the whole domain) and the two-layer model with the proposed boundary  estimation   

method (only imaging the object after detecting its boundary),  for  two  different target locations. 

According to Fig.  7.6, the proposed method can successfully improve the image quality and 

detection accuracy.  It is clear from Fig.  7.6 (a) and (b) that using one-layer model, i.e. without 

knowing boundaries of the torso, causes wrong detections with false and ghost targets. On the other 

hand, Fig.  7.6 (c) and (d) illustrate that applying the estimated torso boundary to the imaging 

algorithm provides highly accurate detections with no ghost targets.  Moreover, those results show 

that the radar imaging algorithm is not overly sensitive to the small amount of boundary estimation 

errors. As depicted in Table 7.1, knowing the assumed target size and locations, the quality of the 

images is improved significantly. 

Table 7.1. Image quality without and with boundary detection using the proposed method 

Method SNR (dB) Δ (mm) Figure 

Without (case 1) 7.01 13.12 Fig.  7.6 (a) 

Without (case 2) 3.34 19.90 Fig.  7.6 (b) 

With (case 1)   12.08 2.10 Fig.  7.6 (c) 

With (case 2)   11.50 6.91 Fig.  7.6 (d) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.  7.6. Reconstructed images (a), (b) without, and (c), (d) with boundary estimation. 
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7.2.2 Human Test Results 

Experiments using the torso imaging system explained in Chapter 6 were conducted to validate the 

method. To analyse the performance of the proposed method, it is tested on healthy subjects (Fig.  

7.7). All of the tests were conducted in accordance with the guidelines and protocols approved by 

the Ethics Committee of The University of Queensland, Australia with the approval number of 

2017000185 and under an unrestrained environment where the effects of subject’s movement and 

breathing, and external noise are included in the measurements. The collected data are calibrated 

using (6.13) and then used in (7.13) to find the boundary of the subjects under test. To de-identify 

the studied cases, the obtained results from two random human subjects are depicted in Fig.  7.8. As 

it is clear from Fig.  7.8, the proposed method can clearly estimate the boundary of human subjects. 

However, it is extremely difficult to measure the exact location of the entire boundary of the 

subjects while being scanned inside the imaging system. Hence, we asked one of the subjects to stay 

in a fixed position, while one antenna is moved in a normal direction to the torso to change its 

distance from the torso skin from 10 mm to 100 mm. The signals are measured for every 10 mm 

intervals and the proposed method is used to estimate the distances. The bar-chart of Fig.  7.9 shows 

that the proposed method can accurately determine the distance between the antenna and the subject 

with sub-errors. The average and the maximum distance estimation errors are 5 mm and 6 mm 

respectively, which is within the range of the calculated values of the simulation results (Fig.  7.5). 

 

 

Fig.  7.7. Torso scanner system. 
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Fig.  7.8. Constructed surfaces for human subjects. 

 

Fig.  7.9. Comparison between the estimated and exact distances in experiments. 
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7.3 Comparison 

To compare the proposed method with existing boundary estimation methods, the 2D time-domain 

approach [101] is used to process the same simulated datasets. The time-domain method uses 

matched-filter approach from space-time beamforming technique to estimate the propagation time 

from each antenna position to the skin surface. Then piecewise-surface-fit method is used to 

generate approximately uniform distributed points over the surface. Fig.  7.10 shows the obtained 

boundaries using the aforementioned method to process the simulated data collected from 12 

antennas. It is obvious from Fig.  7.10 that the matched-filter approach (blue solid line) cannot 

accurately generate the torso boundary, especially at highly curved sections of the torso, where 

there is a thicker layer of skin than the other parts of the processed torso model. A thicker layer of 

skin causes more delays in the electromagnetic wave propagation and hence wrong distance 

estimations by the time-domain based methods. The maximum and average estimation errors for the 

matched-filter method are compared with the proposed method when 24 virtual antennas from 12 

antennas (the best compromise between quality of image reconstruction and simplicity of 

implementation) are used. The results are listed in as shown in Table 7.2. It is quite clear that the 

proposed method can accurately detect the boundary of the torso in the same simulated environment 

with significantly less estimation errors than the matched-filter method.   

 

Fig.  7.10. Estimated torso boundary by matched-filter method (blue solid line), using 12 

antennas and proposed method (red dashed line), using 24 virtual antennas extracted from 12 

antennas. Grey dotted line shows the exact boundary of the torso. 
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Table 7.2. Boundary estimation errors using matched-filter and proposed methods 

Method Maximum error (mm) Average error (mm) 

Matched-filter  15.6 6.9 

Proposed 7.9 3.7 

 

To compare the effect of estimation errors generated from the proposed and the matched-filter 

methods, the estimated boundary using the matched-filter method is also applied to the same 

frequency-based imaging algorithm. The resultant image using 24 virtual antennas after applying 

the estimated boundary of matched-filter method is shown in Fig. 14. It is clear that introducing an 

inaccurate boundary to the imaging algorithm can lead to detection errors and ghost targets. 

Comparing the reconstructed images of the proposed method (Fig.  7.6 (c)) and the matched-filter 

method (Fig. 14) shows that using the proposed method can lead to more accurate detections with 

less ghost targets than using the matched-filter method on the same dataset. 

 

 

Fig.  7.11. Estimated torso boundary by matched-filter method (blue solid line), and proposed 

method (red dashed line). Grey dotted line shows the exact boundary of the torso. 
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7.4 Summary 

A boundary identification method of an imaged object in microwave medical imaging has been 

introduced. It utilizes the variations in the resonant frequency of the imaging antennas with the 

distance from the imaged object to estimate its location and boundaries. For more accurate 

estimation, the virtual antenna array concept is integrated with the distance estimation function to 

create a uniform boundary estimation across the entire object’s circumference. The proposed 

method has been successfully verified via simulations and experiments on healthy human subjects 

in a torso imaging system. It has also been shown that the proposed method is more accurate than 

existing time-domain based methods. The proposed method can estimate the boundary of the 

imaged object without using additional hardware in a fast manner using the same data acquired for 

imaging. The estimation of the three-dimensional surfaces of the imaged objects can be obtained by 

scanning the entire object using multiple rings of antennas.   
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8 CONCLUSION 

In the previous chapters of this thesis, the outlined research aims in Section 1.3 are fulfilled by 

developing new techniques to overcome the shortcomings of existing microwave medical imaging 

algorithms. To that end, a comprehensive study of the current microwave imaging algorithms has 

been provided in Chapter 2. Study of the literature shows that the current techniques are developed 

based on the time-of-travel of electromagnetic wave, which makes those algorithms inaccurate in 

imaging of multilayer and heterogeneous imaged domains such as human head and torso. Other 

multi-stage techniques are also complex and time consuming. Therefore, a fast frequency-based 

processing and image reconstruction algorithm aimed for medical imaging purposes has been 

presented in Chapter 3.  

The proposed algorithm consists of two steps. In the first step, the signal clutter originated from the 

skin reflections are mitigated and the second step of the algorithm involves using the first kind of 

first order Bessel function in the frequency domain to calculate power distributions inside the 

imaged domain in a fast and consistent way. The fast computation, simplicity, and stability of the 

results are the main advantages of the proposed algorithm over the conventional ones. The proposed 

approach has been validated using realistic simulation and experimental environments. It has been 

shown that using a limited number of frequency samples, which meets Nyquist limit, can 

successfully detect abnormalities in the human body. The proposed quasi-real-time imaging 

technique needs less than two seconds to generate an image by using a general-purpose computer. It 

has also been shown that the proposed frequency domain method is faster, more accurate with better 

clutter rejection capability than existing time-domain methods. 

To find the best solution for the clutter removal stage, a detailed study of existing clutter removal 

techniques has been performed in Chapter 4. The different clutter removal techniques have been 
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modified for multistatic frequency-based imaging to address the time-overlap problem of those 

methods. Based on the explored performance of different methods in the frequency domain, a 

hybrid technique, which combines the benefits of average subtraction and entropy-based filtering 

methods, has been proposed. In that method, the average value of the multistatic scattered signals 

was subtracted from them at each frequency sample to remove late-stage clutters, whereas an 

entropy-based method was applied to mitigate early-stage strong clutters. The performance of the 

proposed method has been tested on realistic head phantom. It has been shown that the proposed 

hybrid method can effectively remove the clutter and ghost targets by improving the performance of 

the adopted methods in the time domain. 

For a better performance of the imaging algorithm and in order to overcome the problem of limited 

number of antennas in multistatic measurement setups, the concept of virtual antenna array to 

increase the effective number of antenna elements has been proposed in Chapter 5. In this regard, a 

spatial interpolator has been designed to predict the received signals at the location of the virtual-

elements using the recorded signals by a limited number of real antennas. Consequently, the virtual-

array signals were processed by the proposed frequency-based-imaging algorithm to produce more 

accurate detections. Using quantitative metrics, it has been shown that the constructed images from 

the extended virtual-array are more accurate than the images created only from the real antennas. It 

has been also shown that a virtual-array that has twice the number of elements of the real array, 

which meet the minimum limit of degree-of-freedom of the problem, is enough to generate an 

accurate image with optimised computational resources. In comparison with existing correlation-

based methods, the presented approach provided more accurate images. 

Microwave-based imaging techniques, including the proposed frequency-domain algorithm in 

Chapter 3, require the dielectric properties of the imaged object as a priori information. To enhance 

the performance of the imaging algorithm and in order to make it useful for realistic scenarios, in 

which the dielectric properties of the imaging domain is unknown, a technique to determine the 

effective complex permittivity seen by each imaging antenna across the used frequency band of a 

multistatic imaging domain has been presented in Chapter 6. The method uses spatial statistical 

techniques to model the complex permittivity of the imaging domain as a function of scattering 

parameters. The proposed method does not require any predefined gap between the antennas and 

the imaged object, nor does it need the imaged object to be cantered within the imaging domain. 

Also, the method does not need to know boundaries of the imaged object.  The proposed method 

has been tested on an elliptical shaped imaging domain to simulate a realistic scenario in which the 

distance between the antennas and the imaged object, such as the human torso, is not uniform. The 
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results demonstrated significant improvements in image quality and detection accuracy compared to 

conventional average-permittivity methods. 

To further improve the performance of the frequency-based imaging algorithm, the boundaries of 

the imaged object has been introduced to the imaging algorithm in Chapter 7. Introducing the 

information about the boundaries of the imaged object into the imaging algorithms leads to an 

enhanced performance by reducing the reconstruction volume and hence computational time and 

improving the accuracy of the propagation models used in radar-based imaging techniques. 

However, such information about the antenna-imaged object distance in a clinical environment is an 

uncontrolled parameter, not exactly known and difficult, if not impossible, to measure. Review of 

previous literature on the boundary estimation methods revealed that existing methods use 

additional devices like laser sensors to accurately detect the surface of the imaged object, which 

complicates the imaging system. In addition, those methods suffer from patient 

movement/breathing during the two separate microwave and laser scans. Therefore, a method for 

boundary identification at the same time of imaging and using the same data captured for imaging 

has been presented in Section 7.1. The method uses the antennas’ resonant frequency shifts due to 

the distance between the antenna and the imaged object. It has been shown that the proposed 

technique is quite fast, as it does not need additional devices for the accurate boundary estimation. 

The method has been tested via simulations and human trials using the torso imaging system. The 

included results in imaging a lung cancer case indicated that the accurate detection of the torso 

boundary improves microwave images. 

For the future work, it is necessary to test the proposed methods on unhealthy cases. Therefore, 

clinical prototypes for the microwave head and torso imaging systems of the UQ microwave 

research group are under construction. In the meanwhile, a more efficient implementation of the 

proposed imaging algorithm is being investigated. It is also required to extend the proposed 

methods to be used for 3D imaging. To that end, multilayer imaging of the imaged object using 

multiple antenna array rings across the third dimension of the imaged object is proposed. In that 

case, additional research is needed to find the required distance between any two scans. Finally, it is 

required to obtain an efficient method to interpolate the multiple scans to create 3D images. 
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