
 

 

 

Remote sensing of land use changes and impacts on river turbidity in a small-

scale mining region 

Celso Isidro 

B.Sc., University of the Philippines 

 

 

 

 

 

 

 

 

 

A thesis submitted for the degree of Master of Philosophy at 

The University of Queensland in 2017 

Sustainable Minerals Institute 

 

 

 

 

 

 

 

 



i 
 

Abstract 

 

The effective management of artisanal and small-scale mining (ASM) on regional and national scales 

must be based on good understanding of land and water footprints from various land use and land 

covers. The diffuse, dynamic and often remote nature of ASM means that traditional ground-based 

surveys are likely to be impractical except for local scale studies. Remote sensing offers a low-cost 

option for surveying land use changes and water turbidity, and quantifying the impact of ASM on 

water quality. However, there are questions about the reliability of remote sensing products for these 

tasks, and there is a need for recommendations about suitable products, data resolutions and analysis 

techniques. A case study of the Addalam river basin in the Cagayan region, situated in Luzon forming 

a part of the Philippine archipelago, was used to address these research questions. The value of 

alternative satellite products was tested using independent sources of land use, suspended sediments 

and turbidity data from project partners OceanaGold (Philippines), International RiverFoundation, 

and local government agencies.  

 

The unpredictable climate in wet tropical regions, and the spatial limitations of current satellite 

imageries are the challenges for remote detection of ASM. Pleiades and SPOT imageries were 

identified as potentially suitable and were tested. Historical spatial data on location and type of ASM 

mines were collected from the field, and were utilised as training data for classification through the 

OB-SVM classifier. The analysis resulted in overall accuracy between 87% and 89% for three 

different images; Pleiades-1A HiRI sensor for the 2013 and 2014 images, and SPOT-6 NAOMI 

sensor for the 2016 image. The main land use features, particularly the Didipio large-scale mine, were 

well identified by the OB-SVM classifier; however, the presence of small-scale mines was slightly 

under identified. The lack of consistency in their shape, and their small scale compared to the pixel 

sizes, meant they could not be reliably distinguished from other land clearance types. The biased-

adjusted surface areas were acquired to determine the best possible estimates of the area variation in 

small-scale mines throughout the year. The image analysis indicated an increase in small-scale mining 

area from 91,000 m2 or 0.2% in March 2013 to 121,000 m2 or 0.3% in May 2014, and then a decrease 

to 39,000 m2 or 0.1% in January 2016.  

 

Various land use features in a mining region have different sediment yields, which have significant 

influence on the concentration of suspended solids in rivers. In-situ sampling can only describe the 

integrated impact of the upstream land uses. A model of total suspended solids (TSS) through the 

acquired surface reflectance from calibrated satellite images can be used to assess the fate and 

transport of sediments throughout the catchment of Didipio. The surface reflectance data from the 
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satellites were used to develop a regression model of the TSS concentration. A linear model was 

derived between the surface reflectance data from Pleiades-1A and the corresponding ground-based 

measurements of TSS concentration. The regression using the red channel reflectance gave R2 values 

of 99% and 58%, respectively, for the two separate images of Pleiades-1A in 2013 and 2014. 

However, the regression model of the integrated dataset of surface reflectance and TSS from both 

images resulted to R2 value of 20%, and an RMS error of 937 mgL-1. The generated model represents 

sediments from different sources. It was noted that the increase in small-scale mines from 2013 to 

2014 resulted to additional stripping of topsoil, which has lower surface reflectance when compared 

against fine particles with similar magnitude of TSS. The model was used to generate a map of 

continuous concentrations of TSS from the upstream to downstream of the catchment. However, the 

lack of images and simultaneous ground-based measurements of TSS concentrations that are higher 

than 3,580 mgL-1 means that the model cannot be confidently applied over the full relevant range of 

TSS. 

 

Overall, it is concluded that remote sensing shows promise in capturing the land and water quality 

footprints of ASM. However, the lack of cloud-free images in the case study and wet tropical regions 

in general is a significant problem in terms of capturing a sufficient number, and range of samples to 

develop the models. The integration of more images and simultaneous TSS samples, including higher 

concentrations, is recommended. On the other hand, further works on classification of land use 

features can be performed over the regions with less obstruction from cloud coverage (e.g. sites at 

lower ground elevation) and investigate the applicability of recently available moderate resolution 

satellite imageries (10 m or better) such as Sentinel-2 that can maintain the continuity of satellite 

images at no cost. 
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Chapter 1 Introduction and Literature Review 
 

1.1 Introduction 

 

1.1.1 Artisanal and small-scale mining in the Philippines 

 

The Philippines is an example of a nation where artisanal and small-scale mining (ASM) is a fast-

growing form of land use. The country officially regulates ASM activities through the Republic Act 

No. 7076, Presidential Decree No. 1899 and Executive Order No. 79. In general, these laws outline 

the responsibilities between the Department of Environment and Natural Resources (DENR) and the 

small-scale miners/ processors, in reference to sustainable operations. In addition, these laws only 

authorise the development of small-scale mines within a declared ‘Minahang Bayan’ or ‘People’s 

Small-scale Mining Area’ by the DENR at an allowable annual production of 50,000 metric tonnes 

for each mineral claim. However, in spite of these regulations, the poverty in local communities can 

result in substandard and illegal small-scale mining operations, particularly in remote locations with 

no established access. In a 2001 report (Bugnosen, 2001), 75% of Philippine ASMs were identified 

as operating at subsistence level, with 15% being in the form of small individual or family businesses. 

Often, a large population associated with an ASM do not have the capacity to sustain appropriate 

capital and operating costs. In fact, the homes in such communities are commonly found to be 

integrated with their mining claims, to help reduce the cost of ore transportation, and additional land 

acquisition (for housing development).  

 

The ASM Industry supports between 200,000 and 300,000 people in the Philippines (Human Rights 

Watch, 2015). Thirty-five out of the 81 provinces in the country are reported to contain small-scale 

mines. Although the impressions of the industry are predominantly negative, the component of the 

industry that operates legally has been a principal contributor to Philippines’ annual gold production. 

In 1992, the industry was able to legally account for 25% (29,138 kg) of the Philippine’s national 

gold production (United Nations, 1996). However, it is believed that this was an underestimate, due 

to the undeclared production. In 2009 and 2010, the industry sold 40,847 and 37,047 kg of gold, 

respectively, to the Philippine Central Bank (Fong-Sam, 2012). In the first six months of 2011, ASM’s 

contribution to national gold production was estimated to be 65% (Table 1-1). In general, the industry 

is regarded as providing between 30% to 40% of the country’s gold (Oxford Business Group, 2016). 
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Table 1-1: Philippine gold production from 2011 to 2012 

Category of Producer January-June 2011 

  Quantity (kg) Value (PhP) 

Large-scale Mines     

Primary producers 4,995        39,071,863,372  

Secondary producers 2,903         5,445,771,389  

Small-scale Mines 14,907        28,958,174,923  

TOTAL 22,805        73,475,809,684  
Adapted from www.mgb.gov.ph/Files/Statistics 

 

Worldwide, approximately 100 million people are involved in small-scale mining, of which 30 

million are directly employed in the industry in seventy countries (Hirons, 2014; Sousa et al., 2011). 

Notwithstanding the economic benefits to local communities, it is the mined-out areas that are usually 

left unrehabilitated. This can leave the barren soil loose, unusable and with the potential to generate 

unwanted river sediments and/or acid mine drainage (AMD). Activities at small-scale mines in 

Kalimantan, Indonesia were reported to be the source of dissolved organic carbons in the rivers 

(Telmer & Stapper, 2007). In Tapajos Garimpeira, Brazil, identified dredging zones have produced 

highly turbid water (Telmer & Stapper, 2007). ASM has been a principal contributor to deforestation 

in Upper Mazaruni of Guyana (Mengisteab et al., 2015). In the Philippines, 140 metric tonnes of 

mercury (Hg) were reported to have been partially discharged into the Agusan River by 53 small-

scale mines in Mindanao (Appleton et al., 1999). Globally, there is a lack of operational standards for 

the ASM Industry. The application of operational standards aims to deliver good land use planning 

in areas of ASM that lead towards the optimised development of land resources and a complete 

understanding of the industry’s potential water effluents. Good land use planning minimises the rapid 

expansion of mining areas, and it serves as a natural means of control of potentially increasing 

environmental impacts (Telmer & Stapper, 2007).  

 

Recently, a concentration of illegally operating small-scale miners commenced operating within the 

Copper-Gold Project of OceanaGold in Region 2, Cagayan Valley, in the Philippines. This 

unregulated mining activity is considered to contribute to the turbidity problem of the associated 

Didipio catchment and therefore needs to be investigated. There is a need to evaluate the ASM 

industry’s contribution towards sediment loading, relative to the contribution from other forms of 

land use and natural sources.  

 

Remote sensing offers a flexible approach to delineating various forms of land use, and for identifying 

their corresponding impacts to the environment. This flexibility provides an opportunity to consider, 

via research, the potential for using remote sensing methods as a means of assessing land use changes 
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and river turbidity resulting from ASM activities. Despite improvements in remote sensing data 

resolutions, this approach is not without challenges in wet tropical regions and remote areas. These 

challenges include, excessive levels of cloud cover and higher rate of light absorption by the 

atmosphere. Addressing the challenges requires assessing the acquisition frequency of various 

satellite images for case study areas and having access to software that can perform the most 

appropriate algorithms. 

 

In this research, the Didipio catchment was used for a case study to investigate the applicability of 

remote sensing and GIS to assessing the extent and location of ASM, and help to explain the changes 

in the sediment regimes of rivers. It is anticipated that this will provide a better understanding of the 

dynamics of ASM, in terms of temporal and spatial contexts. This should be able to assist in the 

systematic planning of land use in mining zones, particularly in wet tropical regions. 

 

1.2 Project Research’s Questions, Hypothesis, Objectives and Output 

 

For this study, different spatial data of the Didipio catchment provided by Philippine government 

agencies, project partners and from the database of moderate and very-high resolution imageries 

acquired within the available funding of the research were utilised. The general objective of the 

research is to assess these spatial data on their applicability to obtain information on ASM 

development as well as to generate a model of its impact to the Didipio catchment.  

 

1.2.1 Research Questions 

 

• Is remote sensing capable of providing a rapid, inexpensive, accurate and precise assessment 

of ASM’s land and water quality footprint in wet tropical regions? 

 

1.2.2 Research Hypothesis   

 

• The application of Geographic-object-based image analysis (GEOBIA) to very-high 

resolution images can detect small-scale mines, and quantify the impact of various land uses 

in the catchment to the decline in vegetated areas and water quality.  

 

• Remote sensing can provide a predictive model for suspended solids in inland waters.  
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1.2.3 Research Objectives 

 

• To derive an approach to the selection of appropriate remote sensing products that can provide 

a precise, qualitative and quantitative description of land use features and water turbidity 

 

• To determine and validate a statistical relationship between remote sensing images and field 

data related to land use and water turbidity 

 

• To perform a spatial analysis to determine whether the remotely sensed data, supplemented 

by available field data, can identify the spatial factors affecting turbidity 

 

• To determine whether remotely sensed data can provide a geographic information system 

(GIS) database on the recent history (1990s, 2000s) of ASM activities 

 

• To discuss the potential extensibility of the methods used for the case study region to other 

regions 

 

1.2.4 Research Output 

 

• Rigorous evaluation of remote sensing as source of information in identification of various 

land use and land covers as well as a technique to forecast TSS in Didipio catchment  

 

• Formulation of recommendations related to the use of remote sensing products for tracking 

the development and water quality impacts of ASM across the Philippines and other similar 

wet tropical regions 

 

1.3 Literature Review 

 

1.3.1 Overview of remote sensing and land use assessment 

 

Remotely sensed images have been applied extensively in many local and regional studies of the 

environment since the 1960s. During that period, remote sensing was initially acknowledged as a 

reference to denote a field of study (Barrett & Curtis, 1999). Remote sensing is a branch of science 

that takes advantage of Earth features’ differences in spectral signatures, in order to generate 
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geospatial data from a distance in the form of a digital image (Navalgund, 2001). Formerly, remote 

sensing was associated with analog black and white aerial photographs. Between the 1960s and 

1970s, the shift of the remote sensing platform from aircraft to satellites provided the opportunity to 

archive digitised images, which are embodied with numerical values in the form of pixels. These 

numerical values are the carriers of information that is useful for scientific analysis (Singh, 2016). 

Through the years, series of images have been captured and compiled in databases of time-series 

image data. Some of these databases are readily available for use to test several Earth observations. 

Moreover, these images are compatible for integration with numerical models (Barrett & Curtis, 

1999). Incorporating the remote sensed data within a geographic information system (GIS) allows 

efficient combination with supplementary spatial information (Cihlar, 2000), which can improve the 

identification of environmental problems and provide consistent modelling of land use/cover patterns 

(Rao, 2000; Rawat & Kumar, 2015). 

 

In environmental management, frequent changes in land use is an anthropogenic factor of concern. If 

the changes are excessive and uncontrolled, they can possibly reduce the area of land available for 

production of food and forest timber (Wu, 2008). Likewise, increased deforestation can result in 

further degradation of the soil, increased surface run-off that carries sediments and transport of 

pollutants (Lubowski et al., 2006; The USGS Water Science School, 2016). A comprehensive 

understanding of land use changes as a product of the interaction between human factors and natural 

phenomena is essential (Butt et al., 2015). Consequently, sound planning and decision-making needs 

to be done in reference to land use changes in order to ensure that the Earth’s natural resources are 

utilised for their intended purposes.  

 

1.3.1.1 Components of the electromagnetic spectrum 

 

The electromagnetic spectrum is a set of waves, which are differentiated by wavelength and/or 

frequency (Khorram et al., 2012). The wavelength coverage of each spectral region is summarised in 

Table 1-2. Wavelength is typically expressed in terms of micrometres (̴ 10-6 metres), millimetres (̴ 10-

3 metres) or metres (m) (Campbell & Wynne, 2011). 
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Table 1-2: List of spectral regions that are commonly used in remote sensing 

Spectral regions Wavelength (μm) 

  Minimum Maximum 

Gamma ray 0 0.00003 

X-ray 0.00003 0.003 

Ultraviolet 0.003 0.38 

Visible spectrum 0.38 0.72 

Infrared 0.72 1,000 

Microwave 1,000 300,000 

Radio wave > 300,000  
Adapted from Introduction to Remote Sensing (p. 34), by J.B. Campbell and R. H. Wynne, 2011, New York: Guilford Press. 

 

In remote sensing by optical satellite imagery, an image is comprised of several spectral channels or 

bands. These spectral channels are subsections of each spectral region as shown in Table 1-3. 

However, not all sensors are comprised of these spectral channels. Rather, every sensor contains 

selected spectral channels, which suit its sensing objective. These spectral channels are confined 

within narrow bandwidths (e.g. blue, green and red spectral channels), and are used to characterise 

Earth features based on the brightness intensity as received by the sensor for each spectral channel. 

Only three spectral bands can be used at a time to display an image either at its natural or false colour 

composites (Horning et al., 2010). There are various combinations of spectral bands, and the 

significance of each combination depends on the type of information sought about the object. The 

combination of blue, green and red spectral bands represents a true colour composite, which is visible 

to the naked eye. Other combinations, known as false colour composites, include the application of 

other channels of infrared light (Table 1-3), which is useful for activities such as health monitoring 

of vegetated areas (Khorram et al., 2012). In contrast, multiple spectral bands can be integrated into 

a multispectral image through the application of indices. Indices perform series of arithmetic 

equations over selected spectral channels with which, a ground object of interest has distinct spectral 

response to each of them. Indices are used to detect and isolate a ground object from the rest of land 

covers to perform both qualitative and quantitative analyses. 
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Table 1-3: Spectral channels of selected spectral regions 

Spectral channels Wavelength (μm) 

  Minimum Maximum 

Visible spectrum    

  Violet 0.4 0.446 

  Blue 0.446 0.5 

  Green 0.5 0.578 

  Yellow 0.578 0.592 

  Orange 0.592 0.620 

  Red 0.620 0.7 

Infrared light    

 Reflected infrared 

(Near and mid-infrared) 
0.7 3 

Thermal infrared 3 100 

Adapted from “Remote sensing basics and application,” by R.R. Navalgund, 2001, Resonance, 6(12), p. 51-60; 

    Fundamentals of Remote Sensing (p.10-11), by Canada Centre for Remote Sensing, no date. 

 

If a satellite is the choice of platform, only selected spectral regions can penetrate through the 

atmosphere and transmit signals to the satellite sensor. These spectral regions are known as the 

atmospheric window. Among these spectral regions, the visible spectrum, infrared and microwave 

are commonly being used in remote sensing of Earth features (Figure 1-1).  

 

 
Figure 1-1: Spectral regions of an electromagnetic radiation 
Adapted from Wikimedia Commons, NASA. (Created and simplified through Microsoft Excel 2013) 

 

The limitation of satellite imaging is of particular importance in humid climates where water vapour, 

an effective absorber of radiation, is dominant (Campbell & Wynne, 2011). In addition, spectral 

regions at wavelengths shorter than 0.3 micrometre experience strong scattering from the upper 

atmosphere’s molecular constituents, such as nitrogen and oxygen, during its travel from the earth’s 

surface and back into the sensor (Navalgund, 2001). In contrast, longer wavelengths are highly 

scattered in the lower atmosphere where large particles such as fumes and haze are present. These 

scattering effects are known as Rayleigh and Mie scattering (Richards, 2013). Furthermore, 

nonselective scattering occurs in the presence of larger particles, such as dust and water droplets. 

These particles cause all light forms to scatter in equal quantities (Campbell & Wynne, 2011). These 

effects are removed through the application of an atmospheric correction algorithm, which is 

performed right after normalising the spectral values of the image scene.  

Atmospheric window

Wavelength 10 3 10 -2 10 -5 -6 10 -8 10 -10 10 -12 meters

Frequency 10 4 10 8 10 12 10 15 10 16 10 18 10 20 hertz
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1.3.1.2 Spectral signature 

 

The degree of light absorbance, emission and reflectance of an object over a defined range of 

wavelengths forms its spectral signature (Khorram et al., 2012). Spectral signatures provide 

information on the intensity of Earth features, which are transformed into a digital image. There are 

established libraries of spectral signatures that represent general types of land cover (Figure 1-2) and 

are usually plotted using the percent reflectance unit. For advanced applications, combined with 

object delineation, spectral signatures can be used to determine an object’s size, shape, physical and 

chemical properties from a distance (Parker & Wolff, 1965; Campbell & Wynne, 2011). However, 

caution needs to be taken, as a spectral signature normally changes seasonally. The visible spectrum 

is sensitive to changes in the intensity of an object, particularly in a vegetated area where its colour 

is determined by the amount of leaf pigments. In contrast, the infrared region is more responsive to 

moisture availability. Furthermore, moisture availability is equally as important as the land surface 

temperature (LST) when using the thermal region. On the other hand, the spatial distribution of 

properties of the Earth’s surface also affects the spectral signature, as smaller objects that fit within a 

larger feature influence the intensity.  

 

 
Figure 1-2: Spectral signatures of land cover and other land features 

 

 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

480 545 605 660 725 833

R
e

fl
e

c
ta

n
c
e

WAVELENGTH (nm)

Clear water

Bare soil

Vegetation

Turbid water



23 
 

1.3.2 Resolution of sensors 

 

1.3.2.1 Spectral resolution 

 

Spectral resolution is the measure of a sensor’s capability to elucidate the spectral signature of an 

object by means of available spectral channels (Navalgund, 2002). A crude plot of spectral signature 

is usually generated from multispectral images (e.g. four-band image), due to limited spectral 

channels. Whereas hyperspectral images, which are composed of more than 10 spectral channels with 

narrow band widths, can provide a finer representation of the spectral signature. Most of the available 

multispectral images have spectral channels with blue, green and red portions in the visible spectrum 

and the near- infrared. Those satellite imageries with higher spectral resolution can further divide the 

visible spectrum into blue, green, yellow, red and red edge and several bands of near and shortwave 

infrared.    

 

1.3.2.2 Spatial resolution 

 

A satellite image is delivered in the form of digital data. The image is captured within the viewable 

surface area of the sensor at a given altitude of the satellite known as the field of view (FOV) of a 

sensor (Richards, 2013; Canada, Fundamentals of Remote Sensing, no date). The FOV is composed 

of an array of pixels. A pixel is the smallest resolvable unit of an image with which, their side length 

corresponds to the spatial resolution (Chin, 2001; Hussain et al., 2013). The size of the pixel is the 

spatial resolution of a raw image. More pixels display images with higher spatial resolution. Higher 

spatial resolution introduces a greater volume of data, but they reduce the unambiguity of the 

boundaries of less significant ground features.   

 

Each pixel contains the spatial attributes and texture of an Earth feature (Khorram et al., 2012). 

Several Earth features that rest within a pixel are averaged to represent the level of brightness. As 

such, an Earth feature smaller than a pixel is undetectable from adjacent objects, which is an issue 

related to the aggregation of signals. For satellite platforms, spatial resolution usually ranges from 

0.50 m to 1,000 m. Aircraft can provide a spatial resolution finer than 0.50 m but at higher cost. At 

present, the drawback of satellite imaging is spatial resolution. Satellite images usually come in sets 

of multispectral bands (MS) and a panchromatic band (PAN), which are captured by two different 

sensors. The PAN band sensor is sensitive to radiation over a broader range of wavelengths (Kpalma 

et al., 2014). It extends from the visible spectrum to the shorter wavelength of the infrared spectrum, 

thereby providing a higher amount of energy (higher signal to noise ratio), which makes it possible 
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to have higher spatial resolution but with the absence of spectral details (e.g. image object’s specific 

colours) (“Radiometric resolution”, 2016). As a result, a number of algorithms, known as pan-

sharpening, are being developed to fuse multispectral bands with a panchromatic band, with the 

enhancement of the image spatial feature at minimum distortion of spectral information (Amro et al., 

2011; Johnson, 2014; Zhang & Roy, 2016). This method is not applicable to image analysis that is 

reliant on absolute pixel values (Colditz et al., 2006).  

 

1.3.2.3 Radiometric resolution  

 

“Radiometric resolution” refers to the ability of a sensor to detect differences in brightness between 

pixels, and is expressed as a binary digit for each spectral band (Richards, 2013). It is the number of 

discrete brightness values that can be detected within a spectral band and is expressed as a unitless 

digital number (DN) (Al-Fares, 2013). As indicated in Eq. 1.3.1, the binary digit is used as an 

exponential factor to determine the size of DNs that can be assigned for each discrete brightness.  

 

Digital number (DN) = 2BD                                       
Where: 

BD Binary Digit 

                   

(1.3.1) 

 

Every sensor has a relative radiometric resolution, which determines its range of DNs.  For the 

practical comparison of different satellite products, the DNs need to be converted to a physical unit. 

DNs can initially be converted to spectral radiance (L𝛌). The spectral radiance as a function of 

wavelength (watt m-2 steradian μm-1) is the amount of energy transmitted to the sensor per square 

metre on the ground, for one steradian, per unit of wavelength (Newcastle University, no date). The 

gain represents the gradient of spectral radiance for every value of DN, while the offset is the radiance 

coefficient when the DN is zero (Crippen, 2007). For more accurate radiometric calibrations, radiance 

is further converted to top-of-the-atmosphere (ToA) reflectance, which provides a definite brightness 

measurement of pixels directly below the sensor. The ToA reflectance is the ratio of transmitted 

radiance within the sensor’s field of view and solar irradiance emitted by the normal sun to a reflecting 

ground surface (Price, 1987). It is a unitless absolute measurement, which ranges in value from 0 to 

1, or sometimes expressed as a percentage (Campbell & Wynne, 2011).  
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1.3.2.4 Temporal resolution 

 

Temporal resolution refers to the length of time before a satellite image data is available for another 

acquisition (Al-Fares, 2013). The acquisition frequency is described by the platform’s revisit time, 

and usually takes a day or more for most satellites. The revisit time is equivalent to the time of a 

single revolution for a satellite to return to the same point. However, the earth’s path length changes 

between revolutions. In this regard, the satellite’s sensor that has a rotating mirror captures an image 

on the ground at an angle, in order to maintain closeness of capture to its intended acquisition time. 

This allows the sensor onboard to capture multiple images at various angles. In the case of a non-

revolving satellite, the sensor uses an array of detectors that capture a row of images within its swath 

width as it moves forward. This mechanism of image acquisition is known as the push-broom 

technique (Richards, 2013). 

 

1.3.3 Types of sensors 

 

Sensor radiation comes from several sources. Those that depend on natural sources, such as sun or 

the Earth, are known as passive sensors. Satellite platforms include Landsat, GeoEye-1, IKONOS, 

Pleiades, Quickbird, RapidEye, SPOT and WorldView. In contrast, an active sensor emits its own 

radiation towards an Earth feature. Active sensors, specifically those that utilise the microwave 

region, have more penetration capability through thick clouds, dense forests and soil surface thus they 

can secure ground information at anytime during the day (Campbell & Wynne, 2011). Typical active 

sensors include light detection and ranging (Lidar), radio detection and ranging (Radar), altimeters 

and scatterometers (Navalgund, 2002).  

 

Furthermore, sensors are also distinguished by their use of specific spectral regions to generate an 

image. Optical sensors use the visible spectrum and infrared to provide information such as geometry, 

radiometry (e.g. intensity of brightness), spectral features (e.g. color and hue) and texture (e.g. 

roughness or smoothness) (Chin, 2001). On the other hand, microwave sensors offer the ability to 

gather different sets of information, such as geometry, surface roughness, temperature and soil 

moisture (Telmer & Stapper, 2007). Radar imagery that uses microwave provides a crisp portray of 

drainage, topography and other ground structures (Campbell & Wynne, 2011).  Figure 1-3  provides 

an illustration of a flowsheet of how these classifications of sensor overlap.   
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Figure 1-3: Types of sensors based on source of illumination and use of spectral region 
Adapted from “Remote sensing sensors and platforms,” by R.R. Navalgund, 2002, Resonance, 7(1), p. 38. Adapted with 

permission. 

 

In remote sensing, irradiance quantifies the strength of the emitter of energy, while radiance measures 

the energy that is transmitted back to the sensor (Richards, 2013). Both variables, as functions of 

wavelength, are expressed in terms of watts per steradian per square metre (W sr-1 m-2). Typical 

optical imageries operate from 0.4 to 2.29 µm, and irradiance detected by a sensor within this range 

completely originates from the sun. Its energy ranges from 0.1 µm and peaks at 0.5 µm with a 

temperature of 5,950 x 103 Kelvin (K). In contrast, the Earth’s irradiance peaks at 10 µm at about 300 

x 103 K (Richards, 2013). Thermal images are produced at this range of wavelength (8-14 µm), which 

are useful for determining the temperature of land cover.  Landsat-8 offers spectral bands within this 

range of wavelengths (Landsat Missions, no date).  

 

 
Figure 1-4: Sources of light for each spectral region 
Adapted from Fundamentals of Remote Sensing (p.10-11), by Canada Centre for Remote Sensing, no date. 
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1.3.4 Different approaches to image analysis, and their corresponding application in 

delineating small-scale mining regions 

 

1.3.4.1 Classification using the pixel-based approach 

 

Pixel-based image analysis is a traditional approach that is solely dependent on the pixel spectral 

properties (Hussain et al., 2013). Prior to classification, pixels are clustered into polygons to represent 

different land use features in the image. Selected polygons represent the training data, and are used 

by a supervised classifier as the data source to determine certain statistical measurements such as the 

minimum and maximum values, mean and standard deviation. Known pixel-based classifiers include, 

maximum likelihood, principal component analysis (PCA), decision tree, support vector machine 

(SVM) and artificial neural network (ANN) (Hussain et al., 2013). Based on a previous study (Warner 

& Nerry, 2009), SVM is known for its excellent performance with complex distributions of land use 

features (Warner & Nerry, 2009). The SVM is the most contemporary classifier, which is non-

parametric, and does not depend on statistical distribution of pixel values (Taati et al., 2014). Instead, 

it uses a learning algorithm that linearly fits high-dimension object features, and can be optimised to 

reduce regression error based on least square method (Han et al., 2007). The classifier is not 

excessively susceptible to Hughes phenomenon, which decreases the accuracy of classification if 

supplementary attributes are added (Hughes, 1968; Warner & Nerry, 2009). Moreover, it only 

requires training samples that completely represent each land use features that are composed of mixed 

pixels. As the classifier delivers an output with lower uncertainty (Oommen et al., 2008; Yousefi et 

al., 2015), the training data does not necessarily need to be large in size (Lin et al, 2015). It determines 

the optical boundaries among image classes with the inclusion of supplementary data in addition to 

spectral channels of the satellite image. To conclude, SVM can deliver higher classification accuracy 

compared with the other classifiers (Halder et al., 2011; Mountrakis et al., 2011; Yousefi et al., 2015). 

Previous researches as discussed below employed traditional approaches of classifying small-scale 

mines, which involved pattern recognition based on statistics of spectral values of pixels. On the other 

hand, the efficacy of SVM classifier in investigating small-scale mines was not yet tested. It was 

observed that there is an absence of structural homogeneity (e.g. complex and irregular landscape) in 

small-scale mines, which can be addressed by machine learning algorithms (e.g. SVM classifier).  

 

In 2007, the dynamics of small-scale mining in Central Kalimantan, Indonesia were mapped using 

satellite products (Telmer & Stapper, 2007). The region is known for its gold deposits and traces of 

zircon. To recover the minerals, particularly the gold, small-scale miners employ several techniques, 

which include dredging (e.g. Kahayan River), construction of open-pit mines and the use of ball mills. 
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Several scenes from Landsat-5 and Landsat-7 (30 m spatial resolution) had been collected, and a 

supervised classifier (maximum likelihood classifier) was employed to separate eight identified land 

use features. Among these land uses, three forms of small-scale mines were designated namely; ponds 

within a pit, established sediment pits and stripped soils associated with a mix of mining, timber 

cutting and burning activities. During post-classification, the determined coverage of small-scale 

mining was found to be underestimated. Alluvium mining techniques such as river dredging were not 

detected during the image analysis. The misclassification of alluvial mining was due to two factors; 

coarse resolution of Landsat imagery and difficulty in delineating the boundary between the 

riverbanks and alluvial mining, which seasonally changes based on river depth.  

 

A study on small-scale mining in the Brazilian Amazon was performed in 2015 (Lobo et al., 2016). 

In this research, Terraclass map, a publicly available map of Brazil, presents a delineation of its 

deforested areas in 2010. It was used as the basis for image analysis undertaken on a 2012 Linear 

Imaging Self Scanning Sensor-III (LISS-III) satellite image (composite image of red, near-infrared 

and green bands). During image analysis, all forms of potential mining areas within the Tapajos River 

Basin were combined within the same class. A manual classification was performed to include mines 

at smaller-scales as the estimation of this land use feature was underestimated in the Terraclass maps.  

 

1.3.4.2 Geographic-Object-based segmentation 

 

The Geographic-Object-based Image Analysis (GEOBIA) segmentation technique was formulated in 

the period between the late 1970s and 1980s (Haralick & Shapiro, 1985; Blaschke, 2010). However, 

its application in the period immediately after its formulation was deferred due to the limitations in 

spatial resolution of imageries and limitations of computing software (Platt & Rapoza, 2008). 

Conversely, more recently software has been designed for remote sensing, including programs such 

as eCognition, ENVI’s Feature-extraction module and IMAGINE Objective, which are capable of 

executing GEOBIA (Hussain et al., 2013). The main feature is the ability to form homogenous regions 

called segments. A homogenous region or object is a group of pixels with similar spatial, spectral and 

textural properties (Myint et al., 2011). Unlike the pixel-based image analysis, each property in image 

segmentation considers multiple attributes (which are summarised in Appendix F). It is particularly 

suitable for classification at a scale where a pixel is smaller than the object of interest. The GEOBIA 

technique has several advantages over the pixel-based approach (Kalkan et al., 2013). Firstly, 

segments establish the optimum boundary of potentially known classes based on the preferred scale 

of the user. In addition, the algorithm which merges adjacent objects with associated attributes 

provides flexibility for the selection of components that should be part of a segment. Secondly, 
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segmentation forces all pixels to be separated by attributes, thereby eliminating the effect of shadows, 

high spatial frequency noise and geometric errors induced by sensors.   

 

In a study on an area of the Republic of Congo, a ten-metre spatial resolution was assumed as the 

detection limit for illegal mining areas for gold, cassiterite (tin ore) and coltan (tantalum ore). The 

selected high resolution imagery (e.g. IKONOS) and very high resolution imageries (e.g. GeoEye-1, 

RapidEye) were integrated with the Geographic Object-based Image Analysis (GEOBIA), provided 

by eCognition8 software. Using textural properties such as entropy, which is defined as the 

randomness of neighboring pixel values within a segment, the area of interest (AOI) was delineated 

(Luethje et al., 2014).  

 

Furthermore, object-based classification based on a set of rules using eCognition was recently used 

in small-scale mines in the region of Upper Mazaruni, Guyana (Mengisteab et al., 2015). The 

classification of mining sites had user’s and producer’s accuracy of 100% and 67%, respectively. 

However, the identification of scattered sediment pits, which were described to have high level of 

mining activity, generated comparable producer’s accuracy with large-scale hard rock mines, but a 

lower user’s accuracy of 57% using a Landsat-5 image in 2010 and 57% using a RapidEye-1 image 

in 2011. 

 

1.3.5 The application of remote sensing to modelling water turbidity and total suspended 

solids 

 

The quality of water bodies is determined by the components of their physical, chemical and 

biological properties (Liu et al., 2003). They are explained in terms of certain attributes known as 

parameters or quality indicators, which are measured at the discharge outlet of natural water bodies 

(Benedini & Tsakiris, 2013). Among these parameters, stream sediments serve as visual indicators of 

water quality and are measured as total suspended solids (TSS) (mgL-1) and turbidity (Nephelometric 

turbidity Units: NTU) (Ritchie et al., 1987). These indicators are also used to determine the trophic 

condition of aquatic ecosystems (Zhang et al., 2003).  

 

The principal factors affecting TSS and turbidity include catchment lithology, anthropogenic 

activities and atmospheric and climatic condition (Shrestha & Kazama, 2007). In a hydrological 

catchment, their impacts are quantified based on the quality of the water discharged. Streamflow or 

discharge (m3/s) is the principal agent of stream sediment transport, the rate of which is influenced 
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by rainfall (mm/day) and vegetation cover (Robert et al., 2016) as well as by channel slope and 

sediment yield of the sub-catchment.  

 

1.3.5.1 Monitoring of catchments by remote sensing 

 

1.3.5.2 Empirical and analytic models 

 

For studies that determine the health of water bodies, indicators such as suspended solids and turbidity 

have been regularly utilised. For instance, water turbidity has been used as the surrogate to determine 

the amount of light available at a depth for benthic habitats, whereas total suspended solids is 

recommended for quality monitoring of coastal waters (Dorji et al., 2016). In-situ measurement is a 

preferable measurement approach, but does not provide a synoptic view of the spatial and temporal 

variation in suspended solids/turbidity and their potential associations with land use changes (Ritchie 

et al., 1987). To achieve this, remote sensing technology, particularly the application of high spatial 

resolution satellite imageries, is potentially suitable in obtaining spectral information both in coastal 

and inland waters. 

 

There are three approaches that are involved in the modelling of turbidity using remotely-sensed 

reflectance data, the approaches being empirical models, analytic models and semi-analytic models 

(Table 1-4). Based on Dorji et al. (2016), the empirical models use either linear or exponential 

equations to relate in-situ measurements of total suspended solids to surface reflectance. Secondly, 

the analytic type of model applies radiative transfer theory, which utilises the field data of inherent 

optical properties (IOP) and apparent optical properties (AOP) of water and atmospheric conditions. 

It is important to include coefficients of light absorption, attenuation and scattering, during the 

transfer of radiation. Finally, the semi-analytic model uses the analytic model to define the 

relationship between total suspended solids and reflectance as far as possible using available optical 

property measurements, and it uses the empirical approach to estimate the parameters of the 

relationship.  

 

The estimation of total suspended solids concentration is associated with a remotely-sensed image to 

calibrated surface reflectance. Through the application of regression models, the reflectance from 

each spectral band that corresponds to a point sampling station is determined. The correlation of 

determination (R2) and root mean-square error (RMSE) of the water attribute for each spectral band 

is computed to determine the accuracy of the dataset (Syahreza et al., 2012).  
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These modelling approaches are frequently applied to coastal waters and large lakes, where the total 

suspended solids concentration is less than 50 mgL-1 (Ritchie et al., 1987). On the other hand, several 

researchers have tested their applicability to small lakes, reservoir and rivers. Firstly, the research 

performed by Syahreza et al., 2012 used satellites images of Kelantan River in Malaysia. This images 

were secured through the Advanced Land Observing Satellite (ALOS) using the Advanced Visible 

and Near Infrared Radiometer type-2 (AVNIR-2) sensor. These images were calibrated into surface 

reflectance, and a linear relationship between surface reflectance and in-situ turbidity measurements 

was established. It was found out that spectral band 2 (green~520-600 nm) and band 3 (red~610-690 

nm) of this sensor can explain the behaviour of river turbidity with an R2 value of 95.4% and RMSE 

of 2.26 NTU. Secondly, siltation of Tapajos River in Brazil due to small-scale mining was 

investigated utilising the Landsat-5 Thematic Mapper (TM) sensor during high water level and the 

Linear Imaging Self-Scanning System III (LISS-III) sensor integrated with the Indian Remote 

Sensing Satellite (IRSS), during low water level season (Lobo et al., 2016). Thirty-nine water samples 

were collected at various measurement levels of TSS, and with correpsonding reflectance data. A 

power curve was derived between TSS and red band (~620-690 nm) of these sensors resulting to an 

R2 value of 94% and RMSE of 1.39 mgL-1. Lastly, through the application of Landsat-5 Multispectral 

Scanner (MSS) sensor, inland waters such as the Moon lake near Missisippi River in Coahoma 

County were observed to be highly responsive to spectral band 4 (near infrared 2~ 800-1,100 nm) 

whereas suspended solids measurement levels can be characterised using band 2 (red~600-700 nm) 

and band 3, respectively (near infrared 1~700-800 nm) (Ritchie et al., 1987).  

 

1.3.5.3 Derivative products of a Digital Elevation Model (DEM) 

 

A Digital Elevation Model (DEM), particularly those with higher vertical resolution is useful for 

derivative works on topography (e.g. contour mapping) and hydrological modelling (Oh & Lee, 

2011). An Interferometric Synthetic Aperture Radar (IFSAR) DEM, with an adequate vertical 

resolution of 5 m, can be used as supplementary data for the SVM classifier to provide information 

on ground surface depressions present in small-scale mines. Furthermore, the DEM can be used to 

generate a hypsometric curve of each sub-basin of Didipio catchment (Verstraeten & Poesen, 2001), 

and to develop maps of variables that affect sediment yields, such as slope, catchment area and 

hydrology. The hypsometric curve and/or hypsometric integral provides information on the age of a 

drainage basin. The hypsometric curve represents the surface area above or below a given ground 

elevation while hypsometric integral is the area below the hypsometric curve or can be computed by 

an equation (Pike and Wilson, 1971; Perez-Pena et al., 2009) (Table 1-4). Principally, they are being 

utilised in the study of landscape geometry, which is known as the field of geomorphometry (Mark, 
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1975). They assist on identifying the dominant lithological movements in the drainage basin that 

determine its present configuration (Strahler, 1952; Perez-Pena et al., 2009). Also, they can be used 

to evaluate the potential of a catchment to yield sediments, and identify the dominant topographic 

factor based on its age that causes such amount of sediments. For this study, hypsometric curve was 

used to appraise the configuration of each sub-basin that comprises of the rivers that were monitored. 

Their configuration was associated with topographic factors that contribute to increasing suspended 

solids over the assigned monitoring stations. 

 

1.3.5.4 Vegetation Indices 

 

Vegetation Indices (VI) in general are used in remote sensing to delineate areas with vibrant 

vegetation cover against barren land and water bodies. It also provides spatial information to assess 

degradation of lands (Yengoh et al., 2016). To evaluate the growth density of vegetation, two or more 

spectral bands are merged to take advantage of the vegetation’s varying responses to these bands 

(Table 1-4). Vegetation indices reduce the effect of image geometry, properties of the canopy, the 

influence of soil reflectance and atmospheric molecular composition (Huang et al., 2008; Dorigo et 

al., 2007;  Oldeland et al., 2010). Various VIs use different ranges of numerical values. Normalised 

Difference Vegetation Index (NDVI), the selected VI for this research, is expressed as dimensionless 

numerical values that range from -1 to 1.  The presence of green leaves leads to high positive values 

relative to bare soil.  In contrast, snow, water and the interference of clouds yield negative index 

values.  
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Table 1-4: List of model equations 

Model Equations and variables 

Analytic approach Total absorption: 

 

 a(λ) = aw(λ) +  Mph ∗ aph(λ) + MCDOM ∗ aCDOM(λ) 

 b(λ) = bbw(λ) + Mbp ∗ bbp(λ) 

 

ai(λ) = mass-specific absorption spectrum (w = water, ph = 

phytoplankton, CDOM = dissolved organic matter) 

bi(λ) = mass-specific absorption spectrum (bw = water, bp = particles) 

Mi = concentration 

 

Backscattering albedo: 

𝑢(λ) =
𝑏𝑏(λ)

𝑎(λ) + 𝑏𝑏(λ)
 

 

Sub-surface reflectance: 

 𝑟𝑟𝑠 = 0.0949𝑢(λ) +  0.0794𝑢(λ)2 

 

rrs = Subsurface reflectance 

Empirical approach 

(linear regression) 
 DTSS = A0 +  ∑ A1

∞
n=1 (R1) + A2(R2) + Ai(Ri) + ɛ 

 

A0 = y-intercept (constant) 

Ai = slope coefficient for the ith explanatory variable 

ɛ = remaining unexplained noise in the data (error) 

R1,2,i = reflectance of the object (e.g blue band, red band, green band)  

DTSS = Predicted value of total suspended solids 

Vegetation Index (VI) 

 
Normalised Difference Vegetation Index (NDVI): 

 
(NIR − Red)

(NIR + Red)
 

 

NIR = Near-infrared band 

Red = Red band  

Hypsometric Integral 

(HI) 

(Hmean − Hmin)

(Hmax −  Hmin)
 

 

Hmean = Mean elevation of the catchment 

Hmin = Minimum elevation of the catchment 

Hmax = Maximum elevation of the catchment 
Adapted from “Hyperspectral Sensing of Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship 

between Reflectance and Turbidity and Total Solids,” by Jiunn-Lin Wu et al., 2014, Sensors, 14, p. 22675. 

“Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate,” by G. 

Verstraeten and J. Poesen, 2001, Geomorphology, 40(1-2), p. 128. 

Retrieved May 5, 2017, from https://oceancolor.gsfc.nasa.gov/atbd/giop/ 

 

1.4 Knowledge gaps in previous studies 

 

In this research, the diffuse and usually remote nature of small-scale mines suggests that traditional 

ground-surveys are likely to be impractical. Ground-surveys may provide temporal information on 

ASM development at a limited scale. Moreover, such surveys do not facilitate a straightforward 
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interpretation on the spatial dimension of an object of interest (e.g. total suspended solids) with its 

relationship on the observable trend that is captured through time (George, 1997). The approach also 

consumes more time (Dekker et al., 2001; Wu et al., 2014); therefore, there is a need for an alternative 

monitoring method that is cost-efficient (Wu et al., 2014), provides an unbiased view (Giri, 2012), 

and can be done on a repetitive basis at a regional scale (Schmugge et al., 2002).   

 

Furthermore, remote sensing can provide an extensive examination of land use development, and its 

impact to the environment. It has a number of techniques and algorithms, which are readily available 

to be tested. However, due to circumstantial existence of artisanal and small-scale mining particularly 

in wet tropical regions, the remote sensing application for this task still requires recommendations on 

suitable image products and image specifications. In addition, there is limited research in mapping 

small-scale mines, and investigating their corresponding impacts to river quality through a selected 

hydrological model (Telmer & Stapper, 2007). Also, there is a need to examine various remote 

sensing techniques that can provide spatial explanation on ASM impact to river quality. 
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Chapter 2 Description of the Case Study Area 

 

The case study area is described in this chapter. It includes descriptions of its geography, geology, 

existing land use, topography, hydrological catchment and regional climate. These details were 

acquired from a technical report prepared for OceanaGold (Philippines) Incorporated in 2010 and an 

Ecological Assessment Report in 2013. Additional information was extracted from spatial data 

provided by the Mines and Geosciences Bureau (MGB), Region 2 and the Philippine National 

Mapping and Resource Information Authority (NAMRIA). 

 

2.1 Regional location of the case study area   

 

The Philippines is geographically located in Southeast Asia, near the equator. The country is 

completely surrounded by huge bodies of water such as the South China Sea in the west, Philippine 

Sea in the east and Celebes Sea in the south. It is an archipelago that is comprised of 7,107 islands, 

and it has an overall land area of 300,000 km2 (Philippines National Demographic and Health Survey 

2008, 2009). These islands can be grouped into three greater landforms, namely, Luzon, Visayas and 

Mindanao. Luzon is the largest among the three, with 47% of the total land area.  

 

The Cagayan River Basin (CRB) is situated in the northeast of Luzon Island. The CRB has a drainage 

area of 27,700 km2, and is known to be the largest river basin in the Philippines (Principe, 2012). Its 

surface area extends over the Cordillera Administration Region (CAR) and portion of Central Luzon 

(Principe, 2012). The CRB has an elliptical shape with a major north-south axis (Department of 

Environment and Natural Resources, 2011). In addition, the CRB is divided into 15 smaller basins. 

The case study area is in the Addalam River Basin (ARB). This basin has a surface area of 1,047 km2, 

which includes the provinces of Isabela, Nueva Vizcaya and Quirino, which are further divided into 

ten municipalities (Table 2-1). 
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Table 2-1: Districts that form the Addalam River Basin 

Provinces Municipalities Area 

    km2 

Isabela San Agustin 7 

  Jones 32 

Nueva Vizcaya Bambang 12 

  Dupax Del Norte 43 

  Kasibu 245 

Quirino Aglipay 175 

  Cabarroguis 135 

  Diffun 19 

  Maddela 53 

  Nagtipunan 324 

Adapted from Georeferenced Administrative Map of the Addalam Sub-River Basin, by Mines and Geosciences Bureau 

(MGB), Region 2 Cagayan Valley. 

 

 
Figure 2-1: The Addalam River Sub-Basin on Luzon Island 
Note. A derivative work from Georeferenced Administrative Map of the Addalam Sub-River Basin, by Mines and 

Geosciences Bureau (MGB), Region 2 Cagayan Valley. The Landsat-8 image was downloaded from USGS  

(http://earthexplorer.usgs.gov/) 

 

At the centre of the Addalam River Basin, the Didipio project of OceanaGold (Philippines) 

Incorporated mines gold and copper within an area (130 km2) of mineralised land. The mineralised 

land area is governed by a Financial and Technical Assistance Agreement with the Government of 

the Philippines, and was granted an Environmental Compliance Certificate (ECC) by the Department 
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of Environment and Natural Resources (DENR) as part of its Partial Declaration of Mine Feasibility 

(PDMF) (Figure 2-1). The FTAA, an agreement provided to a contractor duly operated by both 

foreign and Filipino-owned corporations, grants the mineral rights to explore, develop and utilise 

metallic resources within the applied area. 

 

2.2 Access and Transportation 

 

The case study area is accessible by two different roads. Through Quirino province, a 22-km paved 

road provides access from Cabarroguis (located in the northeast) to the site, and it is suitable for off-

road vehicles, buses and large trucks. The site is also accessible via the Wangal road, which intersects 

the Maharlika Highway at Nueva Vizcaya. The Wangal road is unsealed and rough, and mainly 

suitable for off-road vehicles and small trucks only.  

 

2.3 Geology 

 

2.3.1 Regional Geology  

 

Sediments and volcanics are the predominant rock formation in the Cagayan River Basin. Based on 

the geologic time scale, they were formed between the late Tertiary (Pilocene epoch) and early 

Quaternary (Pleistocene age) periods (McIntyre et al., 2010). The surrounding marine and terrestrial 

sediments are older, which were formed in the mid Tertiary period (Oligocene to Miocene epoch). 

The lower portion of the Didipio project area extends over the area of rock formation, while the upper 

northeastern area comprises mostly by marine sediments and volcanics formed during the late 

Mesozoic era (Appendix A).  

 

2.3.2 Local Geology  

 

The local geology of the Didipio project area is composed of both volcanic and sedimentary rocks 

that are intruded by porphyries from intermediate to felsic composition (McIntyre et al., 2010). The 

Didipio Gold-Copper deposit is entirely composed of alkali gold-copper porphyry body, which is 

made of igneous complex; therefore, there is less traces of sulfides that is a possible source of AMD 

during exposure of rocks to weathering. It has the Dinkidi Stock that embodies the Didipio Gold-

Copper deposit. It has a roughly elliptical shape with a major axis that extends up to 450 m and a 

minor axis of 150 m wide.  The deposit has a pipe-like geometry with a depth from 800 to 1000 m 

below the land surface. The porphyry intrusive body is associated with K-feldspar alteration that is 
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composed of small porphyritic monzonite rocks that intrude into dark diorite. The quartz-free portion 

is associated with gold and has a general grade between 2 and 8 grams per tonne (g/t). 

 

2.4 Land use and land cover 

 

The catchment of the Didipio mine area is mainly dominated by flora. Tropical lowland evergreen 

rainforest can be found at elevations up to 529 m above sea level (MASL) (AECOM Philippines 

Incorporated, 2013). This forest is known to be the dominant specie in the area (Whitmore, 1984 as 

cited in AECOM Philippines Incorporated, 2013). However, the natural vegetation is being replaced 

by anthropogenic forms of land use, including small-scale logging and ‘kaingin’ farming. At elevation 

from 700 to 1300 MASL, the prevailing vegetative cover is tropical lower montane rainforest. In 

Didipio catchment, this form of rainforest is mainly found in the area to the upper northwest of the 

open pit mine. In this area, the forest canopies are lower than the lowland rainforest. Grassland and 

fern thickets are normally present in areas cleared of forest cover. Most of the time, seasonal burning 

during the dry season is prevalent throughout this region. Traditional farming, including rice and 

kaingin are mainly practiced in areas immediately adjacent to the rivers. Brush land or open land, 

which comprises assorted plant species such as grasses and shrubs, is the product of revegetation after 

these areas were previously stripped of forest cover. Open lands are found scattered around the 

perennial crops. 

 

2.5 Topography 

 

In general, a mountainous landscape can be observed in Didipio. The steepest section of the catchment 

can be found at the northwest adjacent to Surong River and southeast of the open-pit mine (Figure 2-

2). The case study area lies over an altitude between 750 and 990 m above sea level. The open-pit 

mine can be found at 700 m, while the small-scale hydraulic and underground mines are concentrated 

above 780 m. On the other hand, majority of the local community is located at north over an elevation 

of 690 m. Perennial crops exist alongside with open lands between the elevation of 620 and 720 m.  
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Figure 2-2: Topographic map of Didipio case study area 
Note. A derivative work from the IFSAR DEM provided by the Philippine National Mapping and Resource Information 

Authority (NAMRIA).  

 

2.6 Water catchment  

 

In general, Didipio is a catchment composed of shallow rivers. Based on the records, the deepest river 

bottom is only 50 cm from the surface water level. The Dinauyan River is the main river that extends 

into the area of the open pit mine (Figure 2-3). It has a recorded maximum annual water flow of 27 

Mm3/year. Another river in the catchment area is the Surong River, which forms a confluence with 

the Camgat River. Its maximum annual water flow is 36 Mm3/year (McIntyre et al., 2010). These 

rivers converge downstream at the Didipio River. Didipio River, in turn, joins with Alimit River. This 

catchment network is categorised as a Class D River based on the DENR Administrative Order No. 

34 or the Philippine water quality guidelines. In addition to providing irrigation and drinking water 

for livestock, this catchment network is also primarily used as an industrial water supply. In general, 

these rivers have trace and heavy metals within the standard limit, except for elevated levels of 

suspended solids and mercury particularly in Didipio River (AECOM Philippines Incorporated, 

2013).  
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Figure 2-3: The section of Didipio catchment with available water quality data 
SPOT: © AIRBUS DS (2016)  

 

2.7 Climate 

 

2.7.1 National climate 

 

According to Philippine Institute for Development Studies (2005), the climate of the Philippines is 

characterised as being both maritime and tropical. Although the country has abundant rainfall, the 

temperature remains relatively high throughout the year.  Humidity ranges from 71 to 85% throughout 

the year, reflecting the predominantly low altitude of the land and surrounding bodies of water. The 

mean annual rainfall ranges from 965 to 4,064 mm. In general, the country experiences two major 

seasons. Warm moist air predominates between May and September, being largely the result of 

southwest monsoons (‘Habagat’), whereas cold and dry air is brought by the northwest monsoons 

(‘Amihan’) between October and March. The months from November to February are often affected 

by cold fronts, which bring additional rain. 
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Overall, within the Philippines, there are differences in climate among the regions based on rainfall 

distribution. According to Coronas classification, the climate of the Philippines is classified into four 

types (Table 2-2). 

 

Table 2-2: Philippine climate based on Coronas classification 

TYPE DESCRIPTION 

I 

Dry season between November and April 

Wet season between May and October, being dominated by rain from 

June to September 

II 

There is no recorded dry season in the regions that experience type II. 

Minimum rainfall is experienced between March and May, while the 

rest of the year is dominated by heavy rain and thunderstorms 

III 

Dry season for three months only, either between December and 

February or March to May. The rest of the year experiences moderate 

rainfall 

IV 
There is no dry season while rainfall is evenly distributed throughout 

the year  
Adapted from “Basics on Philippine Climatology,” by Philippine Institute for Development Studies, 2005, Economic 

Issue of the Day, V(2), p.2. 

 

2.7.2 Didipio local climate 

 

Didipio is located at the lower portion of the Cagayan Valley. It experiences the Type III tropical 

climate. Normally, southwest monsoons visit the region between June and September, while northeast 

monsoons are experienced from October to January. The months from February to May are a period 

of transition between the southwest and northeast monsoons. Didipio experiences the heaviest rainfall 

between September and November (McIntyre et al., 2010). March is the driest month. The average 

annual rainfall is 3,047 mm.  The mean annual temperature and humidity of the mine site are 22.80C 

and 82%, respectively. The site also experiences one or two typhoons annually.  

 

2.8 Summary 

 

The location of Didipio catchment was presented to be abundant in several natural resources and 

mineral deposits. In addition, alternative livelihoods are dominant at a scale that can independently 

support the local community within the region. The absence of potential source of sulfides is an 

advantage in the region; therefore, monitoring of river effluents can be focused on sediment 

generation of various land use features. 

 

Several rivers in the catchment namely Camgat, Dinauyan, Didipio and Surong were among the 

principal source of water. It was documented that these rivers have acceptable level of trace and heavy 
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metals, but have observable concentration of suspended solids attributed to small-scale mines based 

on the ecological assessment of the catchment in 2013.  

 

Moreover, there are no available data on the potential sediment yield of specific land use features in 

the catchment. However, the database of water quality parameters collected by OceanaGold within 

four years can show high level of river turbidity and total suspended solids, which are evidently 

cannot be observed in cultivated areas and open lands. That level of turbidity can be recognised as 

product of loose sediments that come from stripped topsoil. In addition, the sediment characteristics 

can be verified through its calibrated surface reflectance from satellite image products. The surface 

reflectance has direct relationship with increasing concentration of suspended solids at a given 

particle size. However, it responses inversely with decreasing particle size of suspended sediments 

(Bhargava & Mariam, 1991). It will be noticeable that turbid rivers that come from mining activities 

can generate surface reflectance slightly higher than those obtained at same measurement level, but 

from other land use (e.g. eroded topsoil particles from cultivated areas).  

 

The succeeding chapters characterise each of the rivers and sub-drainage basin that have available 

water quality data, which were used to generate a regression model of the catchment. Moreover, 

ground truth data on the possible locations of small-scale mines were used as patterns to recognise 

their equivalent attributes using satellite image products, which were used to develop a training data 

for satellite image analysis. 
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Chapter 3 Characterisation of the catchment and surface water quality 

 

This chapter examines the physical attributes of surface water in the Didipio catchment, and 

geomorphological characteristics and other spatial factors that can influence the sediment yield of 

each sub-drainage basin.  

 

In 2013, OceanaGold established the acquisition of water samples from eight monitoring stations 

distributed in the principal stream networks. These stream networks, aside from natural forests and 

grassland, are mainly surrounded by open lands, cultivated areas, residential houses, the open-pit 

mine and diffused concentrations of small-scale mines. Graphical methods, such as box and whiskers 

plots and line graphs can be utilised to illustrate the four-year (2013-2016) database of physical water 

quality parameters for each river. Furthermore, statistical methods such as multivariate analysis of 

variance (MANOVA) can be effective for analysis of environmental data (Vega et al., 1998; Eneji et 

al., 2012). This Chapter applies these methods to examine trends of total suspended solids (TSS) and 

turbidity in the catchment, and their relation with the available hydrological data. 

 

Before describing the approach, it is useful to introduce the two main water quality parameters that 

will be analysed. 

 

• Total suspended solids (TSS) 

 

Suspended solids are identified as water pollutants, and are measured in a mass per volume basis 

known as total suspended solids (mgL-1). The variation in TSS over time highly depends on water 

flowrate and soil texture. In summer, rivers have limited water flow thus allowing suspended solids 

as large as sand to settle throughout the water column (Fondriest, 2016). Settled solids further 

block water flow and limit solar radiation for microorganisms (Davis & McCuen, 2005). In 

contrast, TSS measurement increases in the presence of storm water runoff (Sosiak, 2001). 

Moreover, soil texture determines the retention time of suspended solids. Soil texture defines the 

sand, silt and clay compositions of various forms of soil (Yong et al., 2012). Minerals are deposited 

in the subsoil layer where silt and clay are extremely abundant. If the subsoil layer is exposed, silt 

and clay from river banks are easily eroded by running water due to their smaller particle sizes 

(silt: 0.002 to 0.06 mm; clay: <0.002 mm) compared with sand and gravel (sand: 0.06 to 2 mm; 

gravel: >2 mm) (Tindall & Kunkel, 2009; Yong et al., 2012). On the other hand, silt and clay have 

longer retention time during suspension on water. Once settled on river bottom, they are compacted 
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into aggregates, and are resuspended only during storm water runoff (Russian Global Lab Project, 

2008). 

 

• Turbidity 

 

Turbidity is a measure of how suspended particles influence the clarity of water, and it is often 

measured in Nephelometric Turbidity Units (NTU) (Stone et al., 2016). It is also used as indicator 

of TSS and degree of erosion (Davis & McCuen, 2005). Increase in turbidity can increase water 

temperature as it absorbs more radiance from the sun and a warmer water tends to hold lesser 

amount of dissolved oxygen (DO) (Davis & McCuen, 2005; Fondriest, 2016).  

 

3.1 Research approach 

 

3.1.1 Acquisition of surface water quality data 

 

In 2013, OceanaGold commenced collecting water samples from river tributaries that have been 

heavily impacted by turbidity. Originally, eight monitoring stations were assigned for five rivers. Out 

of the eight stations, six (station codes DP-DOWN, SWS-12, SWS-13, SWS-14, SWS-15, SWS-17) 

were located near small-scale mines, one (code DP-UP) was next to open-pit mine, and another (code 

SWS-16) was in the Surong River (Figure 3-1). 
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Figure 3-1: Location of river monitoring stations 
Note. Adapted from OceanaGold Didipio Project, Environment Department database 

Pleiades: © CNES (2013), Distribution Airbus DS / Spot Image 

 

The database of total suspended solids and turbidity from 2013 to 2016 was used as the reference for 

this research (Table 3-1). Some stations, such as SWS-15 and SWS-16, were less frequently sampled 

due to access security issues.   

 

Table 3-1: Database of surface water quality parameters from 2013 to 2016 

Monitoring 

station 
Northing Easting Location of station 

Frequency of sampling 

(days in a year) 

        2013 2014 2015 2016 

DP-UP 333,933 1,805,408 Dumulag Property Downstream 334 365 345 365 

DP-Down 334,270 1,805,607 Dumulag Property Upstream 305 365 343 365 

SWS-15 333,998 1,806,696 Camgat River Upstream 0 16 46 28 

SWS-16 333,999 1,806,767 Surong River Upstream 0 19 47 28 

SWS-12 335,038 1,806,039 Dinauyan Downstream 302 365 344 365 

SWS-13 335,041 1,806,099 
Camgat-Surong River 

Downstream 
302 350 344 365 

SWS-14 

(2013-2015) 
335,072 1,806,049 Didipio River Downstream 300 365 0 0 

SWS-14 

(2016-2017) 
335,811 1,806,173 Didipio River Downstream 0 0 344 365 

SWS-17 335,953 1,806,177 Didipio River Downstream 0 31 31 364 
Note. Adapted from OceanaGold Didipio Project, Environment Department database 
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3.1.2 Method of surface water quality sampling 

 

The river sampling was performed by OceanaGold’s Department of Environment. A standard 

procedure was formulated to protect samples against any form of contamination. An amber bottle 

with a volume capacity of at least 300 ml was used as the sample container. The amber bottle, aside 

from being inexpensive, protects the sample’s constituents against UV rays of the sun, and produces 

no chemicals that might react with the sample. Furthermore, the sampler used sterilised gloves during 

sample collection. The sampler submerged the amber bottle in the opposite direction to the river 

current, and collected the water discharge at 2.5 cm below the water surface. The sample collection 

was made daily for six monitoring stations located downstream and once a week for the two upstream 

monitoring stations in the Camgat and Surong Rivers. 

 

3.1.3 Laboratory and in-situ analyses of surface water quality data 

 

Two techniques were performed by OceanaGold to test turbidity and TSS, separately. Firstly, the test 

for TSS was carried out in a laboratory. Soil grains were filtered, dehydrated and weighed for each 

of the water sample. Prior to actual measurement, a filter paper was preheated in an oven for an hour 

at 103 oC to remove the moisture. The residual moisture was further removed by transferring the filter 

paper into a dessicator until its weight stabilised. A graduated cylinder and Bucher flask were 

prepared and cleansed with 100 ml distilled water. The test for TSS was performed by pouring 100 

ml of the water sample into the graduated cylinder and then filtered through the flask, which is 

connected to a vacuum pump. The vacuum pump assisted in isolating the water from the soil grains. 

The filter paper together with wet soil grains were heated until the moisture was completely removed. 

The TSS was measured by subtracting the filter’s dry weight from the weight of dry soil grains and 

then divided by the volume of the source water sample. 

 

On the other hand, a multi-parameter probe (Horiba U-5000 Model) was used to determine in-situ 

turbidity and other water quality parameters like dissolved oxygen, electrical conductivity and pH. 

For probe calibration, a 400 mgL-1 of formazin or kaolin standard solution was poured in a clean 

container followed by immersing the probe sensor to standardise turbidity reading at zero NTU 

(Horiba, ltd., 2009). The probe or tester was submerged into the river. The step was repeatedly done 

three times and for each trial, the sampling probe was cleansed with deionised water to remove any 

contaminants that might influence the reading. For each parameter, the three measurements were 

averaged for the final reporting of values. Out of these parameters, only the turbidity data will be 

presented in the thesis.  
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3.1.4 Measurement for flow rate  

 

In 2013 and 2014, the flow rate measurements at stations SWS-12, SWS-13 and SWS-14 were 

obtained with frequency similar to water sample acquisition (Table 3-1). During the test, the cross-

section of river being examined was imaginarily divided into series of segments of maximum size of 

1 m x 1 m. For each segment, the sampler measured the river depth by dipping a measuring pole into 

the river to determine if the water level is within or below 30 cm deep. The flow rate is measured by 

submerging an impeller-type flow meter (Current Meter Counter Model CMC20A) into the river for 

twenty seconds in the opposite direction of the river current. 

 

 

STATION NO.1 

 
STATION NO.2 

 
STATION NO.3 

 

Figure 3-2: Measurement of flow rates at each monitoring station located downstream of primary 

river tributaries 

(a) Station 1: Camgat-Surong River; (b) Station 2: Dinauyan River; (c) Station 3: Didipio River 
Pleiades: © CNES (2013), Distribution Airbus DS / Spot Image 

 

3.1.5 Rainfall and weather data  

 

Daily rainfall data were secured by OceanaGold using an automated weather station (Davis Vantage 

Pro2 model). The weather station is placed on top of a mine structure at the highest ground elevation 

of Didipio mine (Figure 3-2). In addition to rainfall data, environmental temperature, atmospheric 

pressure, percentage humidity, wind speed and direction, were also measured.  
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3.1.6 Application of a Digital Elevation Model (DEM) 

 

A five-metre spatial resolution Digital Elevation Model (DEM) provided by the National Mapping 

and Resource Information Authority (NAMRIA) in the Philippines, was used to determine the mean 

slope (geometric characteristics) of sub-drainage basins and their respective spatial distribution 

through the spatial analyst tool of ArcGIS®. The DEM is a derivative product of an Interferometric 

Synthetic Aperture Radar (IFSAR) image. Furthermore, the hypsometric curve of each sub-drainage 

basin was generated from the DEM. According to an article (Perez-Pena et al., 2009), the hypsometric 

curve is the plot of relative proportion of the area against its given altitude in a basin. The principle 

of hypsometric curve was used to determine the dominant lithological movement present in each sub-

drainage that induces sediment production contributing to high suspended sediments. It was used in 

the study to assist in selecting the topographic factors that are significant predictors of suspended 

solids. The hypsometric curve as shown in Figure 3-3 presents the probable age of a basin through a 

graph. Its age explains the dominant lithological process that determines its configuration. A young 

sub-drainage basin, which has an index higher than 0.50 (e.g. area below the curve), is governed by 

diffusive hillslope processes. On the other hand, an old sub-drainage basin is regulated by alluvial 

processes where most of the soil and rocks have already been transported downstream.  

 

 
Figure 3-3: Calculation of the hypsometric curve using a Digital Elevation Model (DEM) 
Adapted from “TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 2: Surface dynamics and basin 

analysis”, by F. Shahzad and R. Gloaguen, 2011, Computers & Geosciences, 37(2), p. 266. Adapted with permission. 

 

3.1.7 Application of an optical image product 

 

In this research, a WorldView-2 scene of Didipio catchment, which was captured in 18 September 

2010 was used to illustrate the initial environmental condition of Didipio catchment seven years ago. 

The multispectral image and panchromatic band of the said image was orthorectified. Thirty ground 

control points (GCP) based on a reference map, were used during the application of the Rational 
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Polynomial Coefficients (RPCs). Each image scene has unique RPCs, which provide a mathematical 

model that associates the GCPs with a two-dimensional map (Al-Fares, 2013). On the other hand, 

ground elevations for each GCP were acquired through a 30-metre Shuttle Radar Topography Mission 

(SRTM) DEM. In addition to this procedure, tie points in reference to an orthorectified satellite image 

were added as x and y control points in correcting the WorldView-2. The resulting root-mean-square 

errors (RMSEs) for the multispectral and panchromatic images were 33 m and 4.5 m, respectively. 

The orthorectification process was followed by geo-referencing, where the WorldView-2 image was 

projected to a Universal Transverse Mercator (UTM) at Zone 51 North.  

 

3.2 Results and discussion 

 

3.2.1 Physical attributes of the rivers 

 

3.2.1.1 Comparison of flow rates among the rivers 

 

Using the flow rate data collected between 2013 and 2014 for the Camgat, Dinauyan and Didipio 

rivers, the relationship between flow rate and TSS was analysed. Figure 3-4 shows how the mean 

flow rates fluctuated both in the dry and wet seasons. The catchment still receives an enormous 

amount of rainfall, as much as 300 mm, during dry season. The lowest recorded monthly rainfall was 

42 mm in March 2015 while the highest in the four-year period from 2013 to 2016 was 976 mm in 

October 2015. 
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Figure 3-4: Four-year rainfall data of the Didipio catchment area with recorded water flow rates in 

2013 and 2014 

(a) 2013; (b) 2014; (c) 2015; (d) 2016 

 

The Didipio catchment has an erratic weather pattern, which was confirmed by the four-year rainfall 

data, although it has a relatively high monthly rainfall in the period between October and December 

(Figure 3-4). Based on the results of this case study, neither flow rate nor rainfall were significant 

contributors to TSS, based on the low coefficient of determination (R2) and high p-value.  

 

3.2.1.2 Statistical characteristics of each river 

 

The statistics of the four-year data of total suspended solids (2013-2016) that had been provided by 

OceanaGold were used to illustrate each river (Table 3-2). In general, the entire catchment exhibits 

highly turbid water, and TSS can rise as high as 32,000 mgL-1. The Dinauyan, Dupit and Surong 

rivers are among the rivers that display consistent median readings of TSS (Figure 3-5). Likewise, 

these rivers have the lowest mean TSS values. However, the Dinauyan River is associated with a 

considerable number of extreme TSS readings. It also has the highest TSS reading, which was 

recorded in 2014. Furthermore, the Camgat River has been regularly generating elevated TSS 

measurements since 2014, the year when water quality data for this river first became available. Its 

mean TSS of 4,251 mgL-1 is far greater when compared with the other rivers. In addition, the Camgat 

River has a wide range of non-outlier TSS readings at the lower 75% percentile of its database (Figure 
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3-5). These variable TSS readings indicate erosion of the river banks or soil in areas that are 

hydrologically connected to the river, potentially due to intensive land use. The Camgat-Surong and 

Didipio rivers also displayed elevated mean TSS values, but more consistent median readings of TSS. 

 

Table 3-2: Statistics of TSS of the 6 principal rivers (2013-2016) 

River Stations Min Max Mean Std. Error 

    mgL-1 mgL-1 mgL-1 mgL-1 

Dinauyan DP-UP, DP-DOWN, SWS-12 0 32,060 239 15 

Camgat-Surong SWS-13 0 17,370 1,098 33 

Didipio SWS-14 7 11,357 736 23 

Surong SWS-16 0 4,555 97 49 

Camgat  SWS-15 20 23,366 4,251 578 

Dupit SWS-17 0 10,417 392 33 
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Figure 3-5: Box and whiskers plots of TSS 

 

3.2.1.3 Relationship between TSS and turbidity  

 

The Horiba U-5000 multi-parameter probe has a turbidity upper detection limit of 999 NTU. This 

constrained the derivation of a statistical relationship between TSS and turbidity. In addition, potential 

outliers were omitted from the dataset. For this dataset, TSS and turbidity values ranged from 0-1,339 

mgL-1 and 0-997 NTU.  

The plots of TSS versus turbidity present a linear relationship (Figure 3-6). With the exception of DP-

UP, SWS-12 and SWS-16, the least-squares linear regression (forced to pass through the origin) gives 

a near 1:1 gradient. In general, the linear relationships have a coefficient of determination (R2) of 

above 50% (Table 3-3). Clearer water that flows to the DP-UP, SWS-12 and SWS-16 stations leads 
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to a lower slope coefficient (m) (Table 3-3), in other words, TSS values at these stations increase 

relatively little for every unit increase in turbidity. This illustrates how turbidity reading at lower 

values of TSS can be affected by the particle size distribution. Sand-size particles, which settle on 

river bottom are more dominant over these rivers compared with the silt and clays that are produced 

from small-scale mines. On the other hand, the presence of soil particles in various sizes (sand, silt 

and clay) produces inconsistent scattering of light, which affects turbidity reading (Rugner et al., 

2013). This presents why the impact of rainfall to increasing flow rate is not completely captured in 

the database of TSS and turbidity. 
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Figure 3-6: Graphs of TSS versus turbidity in each monitoring station 
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Table 3-3: Relationship of TSS and turbidity for each river 

Stations Sample size Equation 
Coefficient of 

determination (R2) 

  n y = mx + b % 

DP-UP 662 y = 0.2896x + 7.4998 59 

DP-DOWN 638 y = 0.7041x 65 

SWS-12 757 y = 0.4556x 70 

SWS-13 485 y = 0.7673x 52 

SWS-14 610 y = 0.7691x 58 

SWS-15 17 y = 0.8611x 83 

SWS-16 64 y = 0.5636x 88 

SWS-17 348 y = 0.7314x 69 

 

Overall, 3,582 samples were compiled to establish a general equation for the catchment. The TSS 

versus turbidity plot is best defined by an equation with slope (m) coefficient of 0.71 mgL-1- NTU-1 

at an R2 of 68%.  

 

 
Figure 3-7: Linear relationship between TSS and turbidity in the Didipio catchment 

 

3.2.2 Geometric characteristics of the sub-drainage basins 

 

3.2.2.1 Topography of the rivers 

 

The sediment yield of a catchment is primarily regulated by a number of factors related to deposition 

and erosion (Verstraeten & Poesen, 2001). Soil erosion is induced by climate, level of vegetation 

cover and topography. Sediment deposition is influenced by catchment morphology, drainage 

network and type of land use (Tamene et al., 2006; Verstraeten & Poesen, 2001). Based on the average 

slope of each of the sub-drainage basins, the Camgat, with a mean altitude of 897 m has the steepest 

basin. It has a mean slope of 21.62 degrees (Table 3-4). The Surong basin, also with a high mean 
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altitude of 889 m, has a mean slope of 18.720. At the middle level of the catchment, the Camgat-

Surong and Dinauyan basins have a mean altitude of 763 m. In general, the Camgat-Surong basin has 

a gentle topography since it is surrounded by paved areas, including a local community to the north, 

and an open-pit mine to the south. On the other hand, the mean slopes of the Didipio and Dupit basins 

are moderate at 16.500 and 16.250, respectively. Rivers with high readings of TSS and turbidity (e.g. 

Camgat, Camgat-Surong, Didipio and Dupit) were mostly surrounded by gold panning activities 

along the riverbanks. Figure 3-13 presents how gold panning altered the configuration of Didipio 

River since 2010. Secondary forms of land use above an altitude of 789 m altitude in the north (e.g. 

cultivated areas) have a minimal impact.  Among the sub-drainage basins, the Camgat, Surong and 

Dupit basins have the least variation in slope, as reflected from the computed standard deviations.  

 

Table 3-4: Descriptive statistics of the catchment slopes 

Basin Slope (degrees) 

  Min Max Mean Standard deviation (σ) 

Camgat 7.95 52.07 21.62 7.95 

Surong 6.60 55.64 18.72 7.81 

Camgat-Surong 1.84 57.89 12.94 8.28 

Dinauyan 6.92 57.89 17.54 9.27 

Didipio 1.12 50.24 16.50 8.91 

Dupit 6.30 46.36 16.25 6.92 

 

From a spatial perspective, the slope map shows that the steepest regions of the river basins are mostly 

forested areas (Appendix B). In the remotely sensed image, they are found the highest elevations in 

the Camgat and Surong basins, to the north and south of the upstream part of the Dinauyan River and 

northeast of the Didipio basin. In contrast, gentlest sloping land can be observed along the open-pit 

mine and cultivated areas surrounding the downstream part of the Surong River. The identified 

locations of small-scale mines in the Camgat and Camgat-Surong basins have slopes ranging from 

300 to 400. Figure 3-8 presents the concentrations of the small-scale mines relative to the sub-drainage 

basins.   
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Figure 3-8: Delineation of sub-drainage basins in the catchment area 
SPOT: © AIRBUS DS (2016)  

 

In addition, the channel slopes were also measured (Appendix C). Within the catchment, Camgat is 

the steepest at 7.560. It is followed by the Surong and Dupit channels with mean slopes of 7.140 and 

6.900, respectively, while Camgat-Surong, Dinauyan and Didipio channels have moderate mean 

slopes. From the computed statistics, the Camgat, Surong and Dupit channels have relatively higher 

standard deviations. These values determine the variability of the slopes along the channels, and can 

indicate the presence of rocky formations of the river beds on the upstream of these channels. Based 

on the slope graph (Appendix B), the segments of the Camgat and Surong channels at 750 m and 

1,000 m, respectively, have more regular slopes. At these river segments, alluvial deposition is highly 

possible.  

Table 3-5: Descriptive statistics of the channel slopes 

Channel Slope (degrees) 

  Min Max Mean Standard deviation (σ) 

Camgat 0.87 22.11 7.56 4.14 

Surong 0.78 26.60 7.14 4.44 

Camgat-Surong 0.62 22.87 4.86 3.13 

Dinauyan 0.50 8.78 3.74 1.68 

Didipio 1.00 9.30 4.17 2.00 

Dupit 1.03 20.89 6.90 4.46 



56 
 

The gold mining near the Camgat River can also produce channel bars to downstream (e.g. Camgat-

Surong River). These channel bars can be composed of dense sand-size soil particles that are 

deposited by the flow of water over time. During the period when the flow rate is high, part of the 

channel bar is washed out, contributing to the increasing water turbidity readings thus affecting the 

volume consistency of river discharge (Smith, 1989; Yuill et al., 2015; Wang et al., 2016). In 2014, 

a channel bar was formed in between the Camgat-Surong River as shown in Figure 3-9. 

 
Figure 3-9. Formation of a channel bar in Camgat-Surong River 
2010 Satellite Image courtesy of the DigitalGlobe Foundation; Pleiades: © CNES (2013, 2014), Distribution Airbus DS 

/ Spot Image; SPOT: © AIRBUS DS (2016)  

 

3.2.2.2 Dominant lithological movement in each sub-drainage basin 

 

Hypsometric curves were derived for each sub-drainage basin. Based on Figure 3-10, Didipio and 

Dinauyan are the older basin, as indicated by their concave curves. At these rivers, it can be said that 

the alluvial processes are more dominant, while associated rocks appear to be more rounded and less 

significant in scale. In addition, the presence of a valley bottom is noticeable for these rivers. Valley 

bottoms can catch sediments and prevent high river turbidity. However, this may not be the case for 

the Didipio River, which serves as receiver of water from upstream channels. Its threshold capacity 

to carry sediments at a regular flow rate may not be enough to accept additional sediments.   

 

2010 2013 

2014 2016 

http://www.digitalglobefoundation.org/
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Figure 3-10: Graph of hypsometric curves for each river 

 

Furthermore, the Camgat-Surong basin is currently in a state of equilibrium, based on the pattern of 

its plot (s-curve) (Figure 3-11). In contrast, the Camgat, Surong and Dupit basins are not yet heavily 

impacted by alluvial processes (convex curves). Steeper topography can be observed at these basins 

where water hardly penetrate the ground; therefore, increasing the potential runoffs toward the rivers. 

Moreover, sediment movement in these basins can be initiated by their slope. 

 

3.2.2.3 Potential contribution of land use and topography to increasing suspended solids 

 

The Camgat, Dupit and Surong sub-drainage basins, although having comparable topography, 

illustrated the potential role of land use in delivering sediments to rivers. The Dupit and Surong rivers 

are principally used for irrigation system, whereas the Camgat River is associated with a major 

concentration of small-scale mines that use both rudimentary methods and mechanical equipment.  

The two rivers have been associated with differences in water quality, the Camgat River being highly 

turbid whilst Surong River has consistently provided clear water. It can be said that these three sub-

drainage basins can receive equivalent level of impact from a single type of land use. The Camgat 

River being turbid compared with Dupit and Surong illustrates how ASM greater contributes to 

increasing concentration of suspended sediments over steep topography. Moreover, Surong and 

Didipio are the biggest sub-drainage basins in the catchment (Table 3-6). Yet, their water qualities 

are better than that of the Camgat basin. It can be concluded that land use principally determines the 

turbidity variation in Didipio catchment. Whereas the geometry of sub-drainage basins augments the 

land use impact to increasing turbidity. 
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Table 3-6: Surface area of each sub-drainage basin 

Sub-drainage basin 
Area  

(km2) 

Camgat 2.52 

Surong 7.03 

Dinauyan 1.71 

Camgat-Surong 1.03 

Didipio 3.07 

Dupit 2.01 

 

3.2.2.4 Environmental baselining of the catchments 

 

The WorldVIew-2 image of Didipio catchment reveals that the location of current Didipio mine was 

a concentration of small-scale mines. Through manual delineation, an estimated 66,676 m2 was 

associated with small-scale mining in 2010 (Figure 3-11). 

 

 
Figure 3-11: Existence of small-scale mines in 2010, prior the construction of open-pit mine   

(a) Hydraulic mines south of the local community; (b) Potential hydraulic mines over the current 

location of Didipio mine; (c) Gold panning site at lower Didipio River; (d) Panning site near the 

lower Didipio River, which forms confluence with Alimit River  
2010 Satellite Image courtesy of the DigitalGlobe Foundation 

 

http://www.digitalglobefoundation.org/
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In 2010, the small-scale mines were already impacting on the small creeks of Buya and Magastino 

that are linked to Dinauyan River. Spectral signatures of creeks and rivers adjacent to these mines 

were acquired. The results present the spectral signature of highly turbid water (Figure 3-12). 

 

 
Figure 3-12: Plot of surface reflectance for the impacted river segments by activities of small-scale 

mines (A-D) 

(a) Plot A-D for highly turbid water; (b) Plot E corresponds to a clear water 

 

3.2.3 Temporal variations in TSS 

 

Figure 3-14 presents the temporal changes in TSS measurements of each monitoring station from 

2013 to 2016. The yearly coverage of each plot depends on the availability of TSS data, and their 

yearly mean TSS was used to characterise the dynamics of small-scale mining throughout the years. 

Between 2013 and 2014, DP-UP and SWS-14 were the stations associated with the greatest 

improvements. There is a noticeable decrease in measured mean TSS by an amount of 191 and 187 

mgL-1, respectively. The annual mean TSS decrease for the remaining stations, except for SWS-15 

due to absence of data, ranged from 100 to 156 mgL-1. This improvement in the TSS measurement is 

an indication of the diminishing scale of activities from small-scale mines. Between 2014 and 2015, 

DP-DOWN, SWS-13 and SWS-14 had the greatest positive development with annual mean TSS 

decreases of 290, 269 and 397 mgL-1, respectively. It is possible that as Didipio mine expands its 

scope, the miners who performed gold panning near the Dinauyan and upper Didipio rivers had been 

dispersed, and moved to alternative sites where their activities are less observable by authorities. Gold 

panning had been evident in the upper Didipio, and was replaced by a small-scale mine in 2014 

(Figure 3-13). Meanwhile, the Surong catchment experienced a similar case, with a decrease of 235 
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mgL-1 in measured annual TSS, suggesting small-scale mining within the residential areas. However, 

its confluence with the Camgat River was clearly active, with SWS-15 and SWS-17 almost 

maintaining their previous values, although the data at SWS-17 was only sampled during the month 

of January and cannot be used as an indication of the general trend.  

 

At the end of 2016, the Dinauyan River had a normalised annual mean TSS at 100 mgL-1. Almost the 

same amount was observed within the extent of DP-DOWN to SWS-12. The Surong River had 

improved at 35 mgL-1, SWS-13 and SWS-14 had a reduction of 250 and 300 mgL-1, respectively. On 

the other hand, SWS-15 was still producing more sediments, with an annual mean TSS increase of 

1870 mgL-1. From 2013 to 2016, the greatest reduction of TSS were observed in SWS-14 followed 

by SWS-13 and DP-UP. The decrease in overall mean TSS readings were 798, 707 and 519 mgL-1, 

respectively.  

 

 

Figure 3-13: Changes in the upper Didipio River over time  
2010 Satellite Image courtesy of the DigitalGlobe Foundation; Pleiades: © CNES (2013, 2014), Distribution Airbus DS 

/ Spot Image; SPOT: © AIRBUS DS (2016)  

2010 2013 
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Figure 3-14: Temporal variation of total suspended solids from 2013 to 2016 
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3.3 Summary  

 

In this chapter, the principal rivers in the Didipio catchment were illustrated in the context of their 

TSS and turbidity data collected from eight monitoring stations over four years, 2013-2016. Among 

the rivers, the Camgat River was contaminated with suspended solids which were generated from 

active small-scale mines. The degree of the industry’s impact was explained by two important 

parameters: (i) the wide range of median values for TSS at higher measurement levels; and (ii) 

numerous outliers and extreme readings. In contrast, the Dinauyan, Dupit and Surong rivers were 

observed as having relatively low TSS medians and ranges.  

 

Furthermore, the relationship between TSS and turbidity was explored. Based on results of regression 

analysis, a linear relationship exists between the two parameters although with a large error variance 

(Figure 3-6 and Figure 3-7). Also, it can be observed that the derived linear relationships are depended 

on the river: rivers with lower turbidity had lower slope coefficients in the equation. 

 

On the other hand, the potential role of land use in delivering sediments to rivers was validated 

through the application of hypsometric curve. The hypsometric curve of each sub-drainage basin 

presents that land use type impacts to turbidity variation is more significant over the influence of 

spatial factors such as steep basin slopes and undeveloped topography. On the other hand, the 

hillslope, channel slope and other spatial factors intensify the contribution of land use to increasing 

suspended sediments in the rivers through gravity and surface runoff that increase the transport rate 

of sediments. 

 

The temporal variation in TSS was also evaluated in the period between 2013 and 2016. In general, 

there was a decline in TSS in the Didipio catchment. Whereas a significant increase in the level of 

TSS in 2016 was observed in the Camgat River. 
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Chapter 4 Applicability of satellite imagery to identify small-scale mining 

footprints in a wet tropical region 

 

Small-scale mines1 can be major contributors to local economies and livelihoods (Labonne, 2002; 

Hilson, 2005), but in many cases, this comes with significant environmental impacts due to unsuitable 

locations, rudimentary mining methods and lack of effective regulations (Cordy et al., 2011; McIntyre 

et al., 2016). The diffuse and remote locations of the mine sites, and their relatively short and 

unpredictable life span, impede the systematic documentation of small-scale mine development and 

footprints (Telmer & Stapper, 2007). This is challenging for accurately surveying land use, accurate 

attribution of impacts and targeting of regulatory resources, hence regulating the development and 

operations of these mines is a considerable challenge.  

 

The difficulty of effectively monitoring small-scale mining using traditional surveys calls for 

supplementary approaches based on remote sensing. The application of remote sensing from 

satellites, in conjunction with supervised techniques for classifying land use and land cover, is 

attractive for several well-established reasons. Remote sensing provides the opportunity to observe 

changes in land use and land cover over inaccessible regions. By combining images from different 

passes of one or more satellites, the evolution of land use and land cover can be modelled. For 

example, Landsat now provides 45 years of historical records from 1972 (Goward et al., 2001). 

Continual improvements in spatial, spectral, radiometric and temporal resolutions are permitting 

greater levels of information about the type, timing and extent of changes to be obtained. While 

moderate-resolution (10-100 m pixel size) satellite imageries can be accessed at no cost (e.g. 

Landsat), the availability of commercially provided high resolution (0.5-10 m pixel size) images is 

increasing and costs are decreasing.  

 

Small-scale mining, however, introduces some challenges in applying remote sensing and associated 

land use classification techniques. The surface footprints for the smaller mines may only be tens of 

meters, and less for underground mines or mines in early stages of development, reducing the 

applicability of Landsat and other freely accessible products with moderate spatial resolutions. 

Another challenge is that the visible footprint of the mines - mainly vegetation and top-soil clearance 

–is similar to many other land cover and land use changes such as clearance for agriculture or forestry 

                                                           
1 A small-scale mine is defined as a mine that operates using rudimentary mining and milling methods (minimal 
mechanisation and minimal or absence of structure that controls mine and mill spillages) at the level of individuals, 
families or cooperatives, and temporarily makes a specific mining claim or in other cases may be illegal. (Hentschel, 
Hruschka, & Priester, 2002; Sousa et al., 2011) 
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and is thus likely to have similar spectral responses. Moreover, mining areas can be confused with 

recently burned forest (Luethje et al., 2014). Finally, small-scale mining is a dynamic land use, and 

mines can be established and abandoned within a period of months; therefore, they may be difficult 

to capture with, bi-annual or annual images for example. These challenges are especially problematic 

in wet tropical regions, where cloud cover is likely to prevent the use of a large proportion of available 

images, and regular rainfall-driven land-slides may confound the identification of mines.  

 

A key challenge for remote sensing of mining land cover is that several forms of land use have similar 

spectral signatures (Myint et al., 2011). Using pixel-based land cover classification approaches based 

on differences in spectral signatures can therefore result in misclassifications. This can be exacerbated 

if the distributions of reflectance for each class are not normally distributed (Huang et al., 2002). The 

limitations of pixel-based classification approaches have given rise to development of object-based 

segmentation techniques (Blaschke, 2010), which are collectively known as Geographic-object-based 

image analysis (GEOBIA) (Blaschke, 2010; Tzotsos & Argialas, 2008). Using GEOBIA, pixels with 

homogenous properties are merged to produce multiple segments (objects), where pixels are grouped 

based on, not only its spectral properties, but also the spatial and textural characteristics of the pixel 

segment to which it belongs (Tzotsos & Argialas, 2008). 

 

A recent advancement in GEOBIA classification methods has been the application of Support Vector 

Machines (SVM) to image objects instead of pixels using a technique known as object-based support 

vector machine (OB-SVM) (Duro et al., 2012). Recent examples in the literature show that SVMs 

used with both pixels (Tzotsos & Argialas, 2008) and image objects (Duro et al., 2012; Lin et al., 

2015) can outperform other classification algorithms (e.g., Decision Tree, Maximum Likelihood, 

Nearest Neighbor and Neural Networks). The SVM classifier is not based directly on differences 

between the statistical distribution of attributes of separate classes (Lin et al., 2015; Vapnik, 1998) 

but instead it uses non-parametric machine learning algorithms that determine the optimal boundaries 

among classes (Huang et al., 2002). The SVM classifier is noteworthy for its ability to separate 

complex classes with limited training data (Mountrakis et al., 2011). In addition, the overall accuracy 

of an OB-SVM can be improved by including other spatial data such as Digital Elevation Model 

(DEM) and Vegetation Indices (VI) (Duro et al., 2012). 

 

The Support Vector Machine (SVM), is a set of machine learning algorithms that can be used for 

classifying remotely sensed data. Recent examples in the literature show that pixel-based (Tzotsos & 

Argialas, 2008) and GEOBIA (Duro et al., 2012; Lin et al., 2015) SVM can outperform other 

classification algorithms (e.g. Decision Tree, Maximum Likelihood, Nearest Neighbor and Neural 
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Networks). A binary SVM classifier as discussed by Lin et al. (2015) is not based directly on 

differences between the statistical distribution of attributes of two separate classes. Instead, it uses a 

hyperplane in virtual space, which determines the optimal boundary between two classes. On the 

other hand, the allotted allowance for misclassification of each class is called the optimal margin. It 

determines the support vector or the aggregation of class features to be used for training the sample 

data. In the application of an object-based (OB) SVM, the use of a kernel determines the optimal 

shape of a hyperplane thus controls the degree of misclassification or classification error. Known 

kernels being used are polynomial and radial basis functions (RBF) kernels, which perform well for 

classes that are nonlinearly separable (Huang et al., 2002). The kernel transforms each class into 

forms that make them linearly associated. 

 

A binary SVM classifier can only provide a single hyperplane that separates two classes; therefore, 

an object-based SVM is an integration of binary SVM classifiers (Lin et al., 2015). For instance, if 

there are n identified classes in the image, there are n(n-1)/2 binary classifiers available for every pair 

of classes. The overall accuracy of an OB-SVM can be improved by increasing the input variables or 

raster data such as Digital Elevation Model (DEM) and Vegetation Indices (VI) maps in addition to 

spectral bands of the satellite image (Duro et al., 2012). 

 

This research explores the applicability of remote sensing for capturing land use change dynamics in 

wet tropical regions subject to transient small-scale mining. The aims are to: 1) assess the required 

specifications (resolutions and spectral bands) of remotely-sensed images; 2) evaluate the data 

processing techniques that maximise the value of the images in terms of information extraction; and 

3) for the case study area, to quantify and map land use change over recent years.  

 

4.1 Research approach  

 

4.1.1 Collection of ground truth data on the locations of small-scale mines 

 

The Didipio catchment in Cagayan region is situated in the northeast of the Philippines. The 

anthropogenic land use features in this area include open land (deforested area), cultivated areas, 

small-scale gold mining and large-scale gold mining. Prior to this study, there was no publicly 

available documentation of land use in this region. Mining has become a principal land use since 

2013, when operations started at the large-scale Didipio mine. This is composed of the open-pit mine 

and other mining structures such as haulage roads, stockpile areas and motor pool open wash bays 

with an estimated (January 2016) surface area of 2.23 km2 (Figure 4-1). The mine expanded from 
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phase 1 to phase 2 during the period from 2012 to 2013.The area has seven principal rivers of interest 

here. The anthropogenic use of the Alimit, lower Didipio, Dupit and Surong rivers is primarily to 

support agriculture, whereas the Camgat, Camgat-Surong, Dinauyan and upper Didipio rivers are 

available for general community purposes, but are also the focus of small-scale mining activity.  

 

On the other hand, availability of cloud-free satellite data is generally only possible in the dry season 

between January and April, although a high percentage of cloud cover persists for most of that period. 

Landsat-8 Operational Land Imager (OLI), a satellite with a 16-day acquisition frequency, was tested 

for cloud-free image availability of the catchment from 2013 to 2016. Over the four years, only five 

to eight of its images were suitable for image analysis, while only two full images of delineated 

Didipio catchment were unobstructed from atmospheric effects. The remainder of the images are 

contaminated either by clouds, haze or shadows. 

 

Since 2012, the large-scale mine operator has kept a database of small-scale mine locations, based on 

ground surveys. Each site is labelled as an active or inactive mine. An inactive mine includes 

operational mines where there happened to be no activity on the day of survey, as well as seemingly 

abandoned mines. Supplementary information, such as the mining technique and/or presence of 

processing equipment and earth-moving vehicles has also been recorded. The surveys have been 

conducted every quarter of the year. This database was supplemented by ground surveys by the 

authors in November 2015 and February 2016. Figure 4-3 shows the evolution of the location and 

type of small-scale mines; and photographs for sample sites and corresponding descriptions are 

presented in Appendix D. 
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Figure 4-1: Major features of the Didipio catchment area in the Philippines 
SPOT: © AIRBUS DS (2016)  

 

 

In March 2012, the majority of small-scale mining sites were near the rivers. During this period, 

excavating and panning the river sediments was the principal mining method (Figure 4-2). Out of the 

43 panning sites, 26 and 8 were located in upper and lower Didipio River, respectively, while 9 were 

situated in smaller tributary creeks of the Dinauyan River (Figure 4-1). In addition, small-scale 

underground mining began to develop, with tunnels operating perpendicular to these creeks, which 

became part of the Didipio mine phase 1 during the same year. 
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Figure 4-2: Active small-scale mining sites derived from field data from 2012 to 2015 

categorized by mining method. 

 

 

In 2013, hydraulic mining with assistance of hydraulic excavators were introduced in order to increase 

production yield. These mining practices became dominant in sites operating near the Dinauyan River 

and near the junction of the Camgat and Surong rivers. The development of small-scale underground 

mines remained common through 2013, with 4 newly constructed tunnels beside the lower Didipio 

River. All of the surveyed small-scale mines in terms of land clearance were between 50 and 100 m 

width; and between 400 m2 and 14,000 m2 surface area. Those mines located on exposed rocks (left 

of lower Didipio River) had properties similar to the open-pit mine, whereas the mines near the rivers 

had a diverse appearance of sediments and topsoil (Figure 4-3). 

 

   
Figure 4-3: Different forms of mining in Didipio catchment. (a) Sediment pit; (b) Panning area; (c) Small-

scale mines on hard rocks; (d) Large-scale open-pit mine. 
Pleiades: © CNES (2013), Distribution Airbus DS / Spot Image 

(a) (b) 

(c) (d) 
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By 2014, the majority of the small-scale mines had moved from their initial locations to higher 

elevations. Along the Camgat River, newly established mines of larger scale (but still within the 

definition of small-scale mines) were observed. Meanwhile, the development of new underground 

mines slowed. In 2015, most of the mine tunnels had been abandoned, but small-scale mines on the 

surface, particularly near the Camgat River, were still operating (Figure 4-4). 
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Figure 4-4: Locations and types of active small-scale mine sites based on ground surveys, superimposed on remote-sensed images 

From upper left to lower right: (a) 2010 WorldView-2 image (2010 data used due to lack of alternative cloud-free image in 2012); (b) 2013 Pleiades-

1A image; (c) 2014 Pleiades-1A image; (d) 2016 SPOT-6 
2010 Satellite Image courtesy of the DigitalGlobe Foundation; Pleiades: © CNES (2013, 2014), Distribution Airbus DS / Spot Image; SPOT: © AIRBUS DS (2016)
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4.1.2 Selection of satellite images 

  

The size of small-scale mines was the primary consideration in selecting the source satellites with 

visible footprints as low as 50 m in width. Landsat 8 was discounted due to its low spatial resolution 

(~30 x 30 m pixel size). The availability of satellite images was also a limitation due to cloud cover. 

Two satellite data sources were selected, which addressed both these limitations; SPOT-6 and 

Pleiades-1A, with pixel sizes of 2 m and 6 m, respectively (Table 4-1). 

 

Table 4-1: Technical specifications of the three scenes (2013, 2014, 2016) and sensor 

characteristics  

Scene  Sensor 

Satellite and 

sensor 
Acquisition 

Sensor 

angle 

Cloud 

cover 
Band Designation Wavelength  

Spatial 

resolution  

  Date degrees (%)     (μm) (m) 

Pleiades-1A 20 Mar. 2013 23.74 1.2 1 Blue 0.43 - 0.55 2 

High-

Resolution 

Imager (HiRI) 

5 May 2014 4.89 1 2 Green 0.50 - 0.62 2 
   3 Red 0.59 - 0.71 2 

    4 Near-Infrared 0.74 - 0.94 2 

    5 Panchromatic 0.47 - 0.83 0.5 

SPOT-6 6 Jan. 2016 11.93 2 1 Blue 0.46 - 0.53 6 

New AstroSat 

Optical 

Modular 

Instrument 

(NAOMI) 

      2 Green 0.53 - 0.59 6 

      3 Red 0.63 - 0.70 6 

      4 Near-Infrared 0.76 - 0.89 6 

      5 Panchromatic 0.46 - 0.75 1.5 

 

 

The Pleiades and SPOT images originate from pairs of identical satellites (SPOT-6 and 7; and 

Pleiades-1A and 1B), which revolve in the same orbital plane (Postelniak, 2014), making it possible 

to secure coherent images with identical spatial extents every one to two days, increasing the 

probability of obtaining cloud-free images. In addition, both sources provide three spectral channels 

in the visible spectrum, a single channel of near-infrared and a panchromatic band. For the Didipio 

catchment, two images with near-zero cloud cover were captured from Pleiades-1A on 20th March 

2013 and 5th May 2014, while one image with near-zero cloud cover was captured from SPOT-6 on 

6th January 2016 (Table 4-1). Out of all the SPOT and Pleiades images from January 2012 to January 

2016 with acceptable deviations from nadir, these images were the only ones identified with less than 

1.5% cloud cover.  
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4.1.3 Pre-processing stages of satellite image data 

 

4.1.3.1 Radiometric calibration of sensors 

 

Radiometric calibration of the images was performed to: 1) normalise brightness values; and 2) 

calibrate digital data into Top-of-the-Atmosphere (ToA) reflectance. The calibration was conducted 

in two steps. Initially, the original geometrically corrected images provided by the supplier were 

calibrated to spectral radiance (Lλ) using a linear equation (Eq.  4.1.1) (Astrium, 2012; Astrium, 2013; 

Chander et al., 2009) and gain and bias values obtained from the supplementary metadata for each 

acquisition (Appendix E). The output of Eq. 4.1.1 for each image was used in Eq. 4.1.2 to derive the 

ToA reflectance (Astrium, 2012; Astrium, 2013). The band-specific exoatmospheric irradiance at a 

given sun elevation angle (θSE) and earth-sun distance (ESUN) during the acquisition of each image 

were also provided from the metadata (Appendix E). The earth-sun distances were manually 

calculated using Eq. 4.1.3 (Gebreslasie et al., 2010). The Julian date in Eq. 4.1.3 corresponds to 

number of days between Universal time on 1 January 4713 BC and when the satellite image was 

captured (Astronomical Applications Department of the U.S. Naval Observatory, 2016).  

 

Lλ  =
Qcal

GAIN
+ BIAS                                           

(4.1.1) 

Pλ =
π∙Lλ∙d2

ESUN∙co s(θSZ)
                                            (4.1.2) 

d = 1 − 0.01672cos [0.9856(JD − 4)]         (4.1.3) 

θSZ = 90o - θSE                                                 (4.1.4) 

 

Where Lλ = spectral radiance; Qcal = Digital number; Pλ = ToA reflectance; ESUN = Solar irradiance; d = Earth-Sun 

distance; JD = Julian date; θSZ = Sun zenith angle; θSE = Sun elevation angle 

 

4.1.3.2 Atmospheric correction 

 

Afterwards, atmospheric correction was applied to the calibrated satellite images from the previous 

step to reduce the effects of atmospheric absorption and scattering (Gebreslasie et al., 2010). 

Atmospheric correction was applied using the Quick Atmospheric Correction (QUAC) algorithm 

provided in the ENVI software (Zinnert et al., 2016; Moses et al., 2012; Vibhute et al., 2016). QUAC 

is an approximate, in-scene atmospheric approach that normalises images based on the statistical 

properties of object spectra found within an image (Adler-Golden et al., 2007). The QUAC algorithm 

can be applied when there are at least 10 diverse objects in the image (Bernstein et al., 2012). The 

average reflectance of each object is used as baseline reference. Prior to correction, objects with high 

reflectance values such as clouds were manually masked, and highly structured regions in the image 
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(e.g. forest areas) were selectively masked by the algorithm. This was followed by linear 

transformation of spectral signatures by the QUAC algorithm through plotting their reflectance 

against a set of reference objects from the software’s spectral library. The resulting outputs from the 

application of the atmospheric correction were surface reflectance values as opposed to the ToA 

reflectance values produced in the previous step.   

 

4.1.3.3 Enhancement of spatial resolution through image fusion and supplementary pre-

processing techniques 

 

To increase the spatial resolution, image fusion with a pan-sharpening algorithm was applied to 

reduce the pixel size of the original multispectral images with the panchromatic band (0.50 m for 

Pleiades-1A and 1.5 m for SPOT-6). The nearest-neighbor diffuse (NND) algorithm was used for this 

task. Unlike other pan-sharpening algorithms, this method processes spectral bands separately. NND 

operates on a per pixel basis, thus providing more accurate spectral information, which can improve 

land cover classification (Sun et al., 2014). Furthermore, mosaicing technique was applied to sections 

of the 2014 Pleiades-1A image with clouds over fixed land covers (e.g. forest). This section of the 

reference image had been cut, and the reference image was merged with the cloud-free equivalent of 

this section from the 2103 Pleiades-1A image. For the concluding steps, a bilinear resampling 

technique was used for all the images. The spatial resolution of Pleiades-1A images was reduced to 

1 m to remove pixel noise and to quicken the classification process. In contrast, the pansharpened 

SPOT-6 image (1.5 m) was also resampled to 1 m. To smoothen the intensity contrast of image object 

boundaries, a 3 x 3 pixels median kernel was applied for all the satellite images. The final products 

were satellite images with 1 m spatial resolution.  

 

4.1.4 Classification method 

 

For the image classification, a two-step process was used. Firstly, training areas for classification 

were identified using the four spectral channels of the SPOT-6 and Pleiades-1A images as input file. 

The example-based feature extraction workflow by ENVI was used, and segmentation parameters 

were optimised for each image (Appendix F). The scale of segmentation was configured using the 

edge algorithm. This algorithm locates the outermost edge between image objects, which corresponds 

to adjacent pixels with the highest intensity contrast (Xiaoying, 2009). The minor image objects were 

combined through the application of the full lambda schedule algorithm, which merges objects based 

on similarity of their spatial and spectral properties (Robinson et al., 2002). Before the execution of 

GEOBIA, a kernel size of 19 by 19 pixels was configured to calculate the values of textural attributes 
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of the segments. Since the pixel size of the final image is 1 m, the kernel resembles a 19 x 19 m box 

or equivalent to 361 m2. This kernel size is sufficient to capture the textural difference (e.g. footprints) 

of small-scale mines from other land clearances. Subsequently, the GEOBIA was followed by manual 

selection of segments to represent alternative forms of each land use in the training data in Table 4-

3. The table also displays the number of training segments. In general, 8% and 10% of the catchment 

area were appointed as training data for Pleiades-1A and SPOT-6, respectively. Moreover, the 

resulting segments for the SPOT-6 image, although segmentation parameters were configured almost 

similar to all images, have greater sizes compared with the segments of Pleiades-1A. This is due to 

difference in spatial resolution between these two satellite sensors. For the SPOT-6 image, this 

resulted to lower number of segments, but covers a larger area of the catchment (10%). On the other 

hand, there are several forms of tree canopies present in the catchment, and small segments were 

generated for forest class thus a large training data was assigned for such class. In addition, a general 

expansion on various forms of land clearance (e.g. open land, large-scale mine) as well as the Tailings 

Storage Facility was observed in the 2014 image; therefore, more segments were selected to represent 

them in the training data. For the small-scale mine (SSM) class, the ground surveys that best coincided 

with the image acquisition dates were used to develop its training data. The ground surveys in 

February 2013 and April 2014 for the Pleiades-1A images; and the ground survey from December 

2015 for the SPOT-6 image were used as references. The training and assessment data included the 

active mines.  

 

Table 4-2. Ground survey dates that coincided with the selected satellite images 

Satellite platform Image acquisition Ground survey 

Pleiades-1A 20 March 2013 February 2013 

Pleiades-1A 05 May 2014 April 2014 

SPOT-6 06 January 2016 December 2015 
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Table 4-3: Descriptions of the land use classes and size of training data in each image 

Classes 

Training data  
(no. of segments) Description 

2013 2014 2016 

Forest 1131 1156 491 Includes all types of trees in the catchment 

Grassland 463 267 252 Vegetated areas that do not contain any trees or shrubs 

Cultivated area 228 224 212 Agricultural lands 

Open land 186 382 214 
Mixture of trees, shrubs, and newly burned/ cut forest 

timbers 

Large-scale mine 399 813 188 
Open-pit mine and other natural mine components such as 

haulage roads, stockpile areas and motor pool open wash 

bays 

Tailings Storage Facility 13 40 25 Mine tailings dam 

Small-scale mine (SSM) 108 405 47 
Includes all possible active mine sites in use for hydraulic 

mining, gold panning, and underground mining and 

improvised rough roads within the SSM 

Road system/ Vacant lot 412 822 293 
Includes the municipal road, access areas and vacant lots 

surrounding each house in the local community, access to 

mine facilities and camp site 

Built-up 171 229 214 House, buildings, and mineral processing facilities 

Stream network 226 157 69 Clear water, highly turbid water and riverbanks 

 

Afterwards, a 5-meter Interferometric Synthetic Aperture Radar (IFSAR) Digital Elevation Model 

(DEM) was resampled to 1 m. The IFSAR DEM of the catchment was acquired between March and 

July 2013. It was used to form a composite image with the four spectral channels of each image of 

Pleaides-1A and SPOT-6 and their respective NDVI maps through image stacking. These multiple 

spatial data were used as inputs for the calculation of the spatial, spectral and textural attributes of 

training data prior the application of the classifier (Appendix F). Next, the selected classifier, which 

is the object-based Support Vector Machine (OB-SVM), was configured. To assist the OB-SVM in 

searching the optimum boundaries among the classes, a kernel was used. For this research, a nonlinear 

radial basis function (RBF) kernel of gamma (γ) = 0.01 was used for Pleiades-1A image in 2013. 

Values of γ from 0.1 to 1 were tested previously, and γ = 0.1 gave the optimum boundaries among 

classes with less misclassification rate (Huang et al., 2002) whereas γ = 0.01 was used by Lin et al. 

(2015) in classifying 10 land use features. However, a gamma (γ) of 0.05 was selected for the 2014 

Pleiades-1A and 2016 SPOT-6 as it was verified to have the best result for these images. The 

workflow that was performed from pre-processing of the images to classification and post-

classification processes is illustrated in Figure 4-5. 
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Figure 4-5: Flowchart of image pre-processing and image analysis (classification and post-classification) 

INPUT VARIABLES PRE-PROCESSING OF IMAGES INPUT VARIABLES CLASSIFICATION AND POST-CLASSIFICATION

RADIOMETRIC CALIBRATION
Calibration of DNs to radiance 
and ToA reflectance

ATMOSPHERIC CORRECTION
Use of QUAC algorithm to 
acquire surface reflectance

IMAGE FUSION
NND pansharpening algorithm

IMAGE SMOOTHENING
Median filter with kernel size of 
3 x 3 pixels 

GEOBIA
Generate segments for training 
data

TRAINING DATA COLLECTION
Manual seleection of segments to 
represent 10 classes

ACCURACY ASSESSMENT
Calculation of User's and 
Producer's accuracy and Overall 
accuracy

SELECTION OF TEST PIXELS
Selection of 75 pixels by 
stratified sampling

IMAGE CLASSIFICATION
Application of object-based SVM 
(OB-SVM) classifier

MULTISPECTRAL IMAGES:
Pleiades-1A
Pixel size: 2 m
SPOT-6
Pixel size: 6 m

PANCHROMATIC IMAGES:
Pleiades-1A
Pixel size: 0.50 m
SPOT-6
Pixel size: 1.50 m

PROCESSED IMAGES:
Pleiades-1A
Pixel size: 1 m
SPOT-6
Pixel size: 1 m

MAIN DATA:
Pleiades-1A
Pixel size: 1 m
SPOT-6
Pixel size: 1 m

ANCILLARY DATA:
IFSAR DEM
Pixel size: 1 m
NDVI map
Pixel size: 1 m

AUXILIARY PROCESSES:
Mosaicing, resampling (1 m) and 

masking

CALCULATION OF BIAS-
ADJUSTED SURFACE AREAS
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4.1.5 Accuracy assessment 

 

The classification results were assessed relative to the ground-truthed data. Seventy-five test pixels 

for each land use class were sampled from the map of classification results. Stratified sampling was 

used, as implemented in the ENVI software. This sample size meets the guidelines provided from 

previous studies (Congalton, 1991; Jensen, 1996). The training data pixels were excluded during 

sampling of test pixels. The 75 pixels of each class from the classified map were visually evaluated 

if they essentially represent their classes based on the vegetation cover map from the ecological 

assessment of Didipio Project, supplementary GIS data of ground truths of small-scale mines and 

manual photo interpretation of the images (general knowledge of the catchment). Afterwards, the 

class label of each misclassified pixel was corrected. The corrected pixels were assigned as ground-

truthed points, which were used as basis in generating a confusion matrix for each image (Ting, 2010). 

The confusion matrix evaluates accuracy using a two-dimensional matrix. The values across a row 

labeled ‘X’ represent the number of test pixels classified as land cover ‘X’; while the values down a 

column labeled ‘Y’ represent the number of test pixels ground-truthed as ‘Y’ (Al-Fares, 2013). 

Therefore, the values on the matrix diagonal are the number of test pixels correctly classified for each 

land use class. These correctly classified test pixels were divided by the total number of test pixels 

(N) available from each land use class to acquire the overall accuracy of classification of each image 

(Eq. 4.1.5). To provide information on the nature of errors, the Producer’s Accuracy (error of 

omission; Eq. 4.1.6) and User’s Accuracy (error of commission; Eq. 4.1.7) were also determined for 

each class (Story & Congalton, 1986).  

 

OA =
∑ Ri

n
i=1

∑ Ni
n
i=1

                                                  
(4.1.5) 

PAi =
Ri

Mi
                                                  (4.1.6) 

UAi =
Ri

Ni
                                                            (4.1.7) 

 

Where OA = Overall accuracy; PA= producer’s accuracy; UA = User’s accuracy; n = Number of classes; Ri = Number 

of correctly classified test pixels in class i; Ni = Number of test pixels that are classified to be in class i (=75); Mi = 

Number of test pixels that are ground-truthed to lie in class i 

 

In conducting an accuracy assessment, misclassified test pixels of land cover ‘X’ impose several 

biases to estimation of area coverage of each class; therefore, the contribution of misclassified test 

pixels multiplied by the weight of the class in which they were classified are considered in deriving 

the actual estimates of surface areas (Eq. 4.1.8 and 4.1.9) (Olofsson et al., 2013). The separate 

standard errors of the bias-adjusted surface areas were determined (Eq. 4.1.10) to approximate the 

margin of error of each class at 95% confidence interval (Eq. 4.1.11). 
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Pij = Wi ∙
tij

ti

 
(4.1.8) 

Aj = ATotal ∑ Pij

i

 (4.1.9) 

S(Pj) = √∑ Wi
2

n

i=1

nij

ni
(1 −

nij

ni
)

ni − 1
 

 

(4.1.10) 

Aj + 2 ∙ S(Pj)∙ ATotal (4.1.11) 

Where Pij= Weight of misclassified test pixels in each row; Wi= ratio of the calculated class area and total area; Aj = Bias-

adjusted surface area; S(Pj) = Standard error 

 

4.2 Results and discussion   

 

4.2.1 Comparison of spectral signatures across land use classes 

 

Comparing the spectral signatures for the training data (Figure 4-6) gives some insight into the 

challenge of classification. Unlike the vegetated areas (e.g. forest, grassland, cultivated area), which 

have distinct reflectance values in the near infrared channel (825 nm), several classes (Figure 4-6 Plot 

1B, 2B, 3B) in which soil is exposed have similar reflectance across all spectral channels. This plot 

of spectral signatures illustrates how surface reflectance responses inversely with soil layer. The open 

land, which involves stripping and burning of vegetated covers only, has the lowest surface 

reflectance among the forms of bare soil. In contrast, small-scale mines expose a different soil layer 

that is found in deeper ground level, and has higher reflectance compared with open land. However, 

road system and vacant lots have slightly higher reflectance than SSM class despite of the absence of 

deep ground excavation activities in these class. In the Philippines, constructed roads in rural regions, 

particularly those situated in mountains, are composed of sand and gravel in small fraction. Instead, 

they are covered with compacted soil sitting over hard rocks. The smooth texture of a compacted soil 

on roads decreases the scattering of light (e.g. higher reflectance is transmitted back to satellite 

sensor). The scattering of light is potentially observed in small-scale mines. Furthermore, smooth 

texture of pit benches coupled with exposure of bedrocks make the large-scale mine to have the 

highest overall surface reflectance relative to abovementioned classes. In the visible spectrum, open 

land, small-scale mines, and road system display the highest surface reflectance in the red channel. 

In contrast, the large-scale mine has almost similar surface reflectance values in all visible bands as 

its surface exposes both soil (developing phase mine sections) and compacted bedrocks. On the other 

hand, the variation of reflectance in near infrared region provide information on the potential presence 

of patches of vegetation on these forms of bare soil in some areas of the catchment. For instance, the 
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open land in the 2013 image, despite of having the lowest overall reflectance in the visible spectrum, 

has the highest surface reflectance in the near infrared channel. This is explained by the open land’s 

textural property, which incorporates minor patches of shrubs. Moreover, stream network in this study 

comprises of clear water, highly turbid water and riverbanks, and resulted to a spectral signature 

similar with the forms of bare soil.  

 

Based on this discussion, it presents that spectral attribute is not sufficient to separate the small-scale 

mines from other land use classes that strip soil. This illustrates the importance of GEOBIA, which 

also considers the spatial and textural properties of image objects. The supplementary application of 

NDVI maps helped separate vegetated areas from bare soil, but was unhelpful for identifying small-

scale mines from other forms of bare soil such as the road system. The high mean NDVI of forest 

(greater than 0.81) makes it separable from grassland and cultivated areas, while the NDVI value of 

small-scale mines is similar with road system. The mean NDVI of SSM and road system classes 

across the three years were 0.35 and 0.33, respectively (see Appendix G).
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Figure 4-6: Plots of spectral signatures of land use subclasses using mean values of reflectance across all training data  
(a) 20 March 2013 Pleiades-1A; (b) 05 May 2014 Pleiades-1A; (c) 06 January 2016 SPOT-60 
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4.2.2 Accuracy assessment of classification for Pleiades-1A and SPOT-6 images 

 

The Producer’s Accuracy (PA) values for the SSM class were 90%, 93% and 96% for the 2013, 2014 

and 2016 images (Table 4-4). The high PA values illustrate that almost all of the small-scale mines 

were correctly classified. However, lower values of User’s Accuracy (UA) were obtained for the SSM 

class: 76%, 69% and 69% for the 2013, 2014 and 2016 images (Table 4-4). The lower UA values 

illustrate that a significant number of pixels were misclassified as SSM.  

 

The misclassification of other land uses as SSM may be attributed to several factors. Firstly, Table 4-

4 shows that there are 3 to 10 test pixels in the 2013, 2014 and 2016 images that were actually large-

scale mining but were misclassified as SSM. This is likely to be due to spectral and textural 

similarities of the SSM class with the construction of the in-pit ramps and benches between 2013 and 

2016. The application of the IFSAR DEM as ancillary data during image classification only 

contributed in discriminating the sections of large-scale mine that were already present during the 

acquisition of the IFSAR DEM. The IFSAR DEM provided the information on the ground depression 

difference between the large-scale mine and the small-scale mines as well as their distribution 

throughout the catchment. The large-scale open pit mine was also among the well-classified land 

uses, with UA values of 95%, 97% and 100%. Its size, unique shape and textural consistency 

generated distinguishable segments that were easily recognised by the OB-SVM classifier. Secondly, 

in the 2013, 2014 and 2016 images, 6, 11 and 7 test pixels that were actually part of the road system 

and/or vacant house lots were misclassified as SSM. This may be because the textural properties of 

the segments from these two classes could not be reliably distinguished.  

 

Moreover, in the 2013 and 2016 image, 6 separate pixels of cultivated area were misclassified as 

SSM. In small-scale mining, stripping of ground cover is selective, and difficult-to-access ore bodies 

are left partially stripped and less undisturbed (see Appendix D for the images). On several occasions, 

the extraction of only a single section of the ore was observed over an extended period. Therefore, 

although deeper soil layers are exposed, these areas are often small compared to the superficial 

disturbance that is easily misclassified as cultivated area or open land. In addition, both small-scale 

mines and open land have irregularly shape segments. This kind of misclassification was also 

encountered in 2014 image, but with lower frequency. This is likely to be because the higher spatial 

resolution of this image allowed the textural features of small-scale mines to be better distinguished.  
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Table 4-4: Generated Confusion Matrix for each image data a) 2013 Pleiades-1A b) 2014 Pleiades-

1A c) 2016 SPOT-6 
(F: Forest, GL: Grassland, CA: Cultivated area, OL: Open land, LSM: Large-scale mine, TSF: Tailings Storage Facility, SSM: 

Small-scale mine, RS: Road system/Vacant lot, BU: Built-up, SN: Stream network, PA: Producer’s accuracy, UA: User’s accuracy) 

(a) 
GROUND TRUTH CLASSIFICATION TOTAL 

UA 
(%) 

F GL CA OL LSM TSF SSM RS BU SN   

O
B

-S
V

M
 C

L
A

S
S

IF
IC

A
T

IO
N

 

F 75 0 0 0 0 0 0 0 0 0 75 100 

GL 4 68 3 0 0 0 0 0 0 0 75 91 

CA 4 14 55 2 0 0 0 0 0 0 75 73 

OL 1 0 2 72 0 0 0 0 0 0 75 96 

LSM 0 0 1 0 71 0 0 3 0 0 75 95 

TSF 0 0 0 0 0 75 0 0 0 0 75 100 

SSM 0 1 6 2 3 0 57 6 0 0 75 76 

RS 0 0 0 0 6 0 5 59 0 5 75 79 

BU 0 0 0 0 0 0 0 0 73 2 75 97 

SN 0 0 4 0 0 0 1 11 0 59 75 79 
 TOTAL 84 83 71 76 80 75 63 79 73 66 750   
 PA (%) 89 82 77 95 89 100 90 75 100 89     

 

(b) 
GROUND TRUTH CLASSIFICATION TOTAL 

UA 
(%) 

F GL CA OL LSM TSF SSM RS BU SN   

O
B

-S
V

M
 C

L
A

S
S

IF
IC

A
T

IO
N

 F 74 1 0 0 0 0 0 0 0 0 75 99 

GL 2 71 2 0 0 0 0 0 0 0 75 95 

CA 0 16 52 5 0 0 0 2 0 0 75 69 

OL 1 1 4 66 2 0 0 1 0 0 75 88 

LSM 0 0 0 0 73 0 1 1 0 0 75 97 

TSF 0 0 0 0 6 69 0 0 0 0 75 92 

SSM 0 0 2 5 5 0 52 11 0 0 75 69 

RS 0 0 2 1 9 0 3 60 0 0 75 80 

BU 0 0 0 0 1 0 0 0 74 0 75 99 

SN 2 0 4 7 0 0 0 4 0 58 75 77 
 TOTAL 79 89 66 84 96 69 56 79 74 58 750   
 PA (%) 94 80 79 79 76 100 93 76 100 100     

 

(c) 
GROUND TRUTH CLASSIFICATION TOTAL 

UA 
(%) 

F GL CA OL LSM TSF SSM RS BU SN   

O
B

-S
V

M
 C

L
A

S
S

IF
IC

A
T

IO
N

 F 75 0 0 0 0 0 0 0 0 0 75 100 

GL 5 70 0 0 0 0 0 0 0 0 75 93 

CA 2 2 57 9 0 0 1 4 0 0 75 76 

OL 0 1 2 66 2 0 0 4 0 0 75 88 

LSM 0 0 0 0 75 0 0 0 0 0 75 100 

TSF 0 0 0 0 2 73 0 0 0 0 75 97 

SSM 0 0 6 0 10 0 52 7 0 0 75 69 

RS 0 0 1 1 10 0 1 59 0 3 75 79 

BU 0 0 0 0 2 0 0 0 73 0 75 97 

SN 0 0 0 0 0 0 0 4 0 71 75 95 
 TOTAL 82 73 66 76 101 73 54 78 73 74 750   
 PA (%) 91 96 86 87 74 100 96 76 100 96     
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The application of Pleiades-1A and SPOT-6 images and OB-SVM classifier to locate small-scale 

mines had acceptable performance. Although the PA values for small-scale mining were high, the 

UA values show that as little as 69% of the pixels classified as SSM were irregular segments of vacant 

house lots, large-scale mining, cultivated areas and open land. Still, the overall accuracy of the OB-

SVM classifier applied to these images can be considered satisfactory, with OA values of 89%, 87% 

and 89% for the 2013, 2014 and 2016 images. The resulting UA for the SSM class may be improved 

if sufficient cloud-free images could be obtained to capture the growing season, when cultivated areas 

and open lands have minimal stripping activities and therefore are less likely to be misclassified as 

SSM. The efficacy of the OB-SVM classifier may be examined on other catchments less affected by 

cloud cover. In addition, the catchment of Didipio imposed several complexities due to presence of 

several techniques of small-scale mining at limited coverage. They affect the amount of segments 

available for each small-scale mining technique.  

 

4.2.3 Coverage and spatial distribution of areas classed as SSM relative to other land use 

classes 

 

The spatial distribution of the ten land use classes is presented in Figure 4-7 with areas listed in Table 

4-5. Due to the misclassifications among the classes (Table 4-3), there are biases in these surface 

areas. If it is assumed that biases identified for the test pixels represent the whole catchment, these 

classified areas can be normalised with given margin of errors (Table 4-5). The areas referred to 

below are the bias-adjusted values. Forest is the dominant natural landscape and, according to OB-

SVM classifier, it occupies 60% of the total catchment on average over the three years, mostly in the 

outer, higher altitude regions of the catchment. Meanwhile, grasslands are classified as being the next 

most dominant, representing an average of 23% of the area, concentrated at lower altitudes 

surrounding the large-scale mine. For stripped areas, the dominant land uses according to classifier 

were open land, large-scale mining and the road system/ vacant lots, with average areas of 1.94, 1.95 

and 0.68 km2. The area classified as SSM was on average 98,000 m2 representing only 0.25% of the 

total catchment area, the smallest land use footprint among the ten land use classes. However, the 

small-scale mining activity may involve, as well as the mines themselves, land uses included under 

open land, road system/ vacant lot.  

 

Over the three years, there were significant changes in the mining activity. The areas classified as 

large-scale mine and the Tailings Storage Facility (TSF) increased by 0.77 km2 and 0.36 km2, 

respectively. The area classified as SSM increased slightly from 91,000 to 121,000 m2 between the 

2013 and 2014 images. However, there was a decrease in 2016 by 39,000 m2. Based on result, the 
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possible area coverage of small-scale mines at maximum for each year are 91,000 m2, 121,000 m2 

and 82,000 m2 for 2013, 2014 and 2016 images. The decline in small-scale mining in the 2016 image 

is counter-intuitive if it is considered that all abandoned mines should be classed as SSM. However, 

abandoned mines that have revegetated were not included in the ground truth surveys, and if they 

were included in the training data, they will be recognised under other classes. Among these images, 

an increase from 0.09 to 0.12 km2 only can be observed at 100% UA and PA. However, uncertainty 

on temporal change in SSM coverage can still be observed based on the acquired margin of errors for 

SSM class (Table 4-5). This temporal change in SSM class coverage can be said to be significant at 

local scale only. 

 

Table 4-5: Classified areas and Bias-adjusted areas of each land use class 

Land use 

features 

2013 2014 2015 

Classified 

area 

(km2) 

Biased-

adjusted 

area  

(km2) 

Margin 

of Error  

(+km2) 

Classified 

area 

(km2) 

Biased-

adjusted 

area  

(km2) 

Margin 

of Error  

(+km2) 

Classified 

area 

(km2) 

Biased-

adjusted 

area  

(km2) 

Margin of 

Error  

(+km2) 

Forest 24.29 24.91 0.53 22.33 22.31 0.69 23.13 23.80 0.56 

Grassland 10.13 9.40 0.69 8.82 8.95 0.77 9.54 8.96 0.56 

Cultivated area 1.12 1.29 0.48 1.23 1.30 0.40 1.26 1.02 0.07 

Open land 1.13 1.12 0.07 3.31 3.03 0.26 1.70 1.65 0.13 

Large-scale mine 1.49 1.46 0.09 2.01 2.17 0.16 2.06 2.23 0.09 

Tailings Storage 

Facility 

0.07 0.07 0 0.26 0.24 0.02 0.45 0.43 0.02 

Small-scale mine 0.07 0.09 0.03 0.09 0.12 0.07 0.08 0.08 0.02 

Road system/ 

Vacant lot 
0.58 0.55 0.09 0.80 0.77 0.14 0.70 0.72 0.11 

Built-up 0.17 0.17 0.01 0.18 0.18 0.01 0.18 0.18 0.01 

Stream network 0.20 0.20 0.04 0.22 0.17 0.02 0.15 0.17 0.03 

TOTAL 39.25 39.25   39.25 39.25   39.25 39.25   

 

The generated thematic maps, apart from evaluating the SSM coverage, show how sediment pits and 

panning areas are more likely to develop once active whereas underground mines have more static 

footprints. In addition, these maps also permit judgment about the type of small-scale mining, and 

how it varies throughout the catchment. For instance, the proximity to a river of areas classed as SSM 

as well as the presence of small ponds within these areas indicate sediment pits (Figure 4-4). From 

this, it is inferred that the small-scale mines neighboring the Camgat River, and those situated north 

of Camgat-Surong River besides the mine facilities/ camp site are mostly sediment pits. This is 

supported by the ground surveys, where pumps and pipes were observed in these areas. Areas in the 

upper and lower Didipio River that were classified as SSM were identified in the ground surveys as 

well as in the images as scoured river banks associated with panning. In contrast, areas classed as 

SSM to the south of the upper Didipio River (Figure 4-5), which were ground-truthed as tunnels, are 
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almost 800 m away from the nearest river, and a decreasing surface area was observed within three 

years. It may be concluded that high resolution satellite images may be useful, not only for identifying 

areas that are likely to be small-scale mines, but also for distinguishing between the main types of 

small-scale mine. 
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Figure 4-7: Output thematic maps and the corresponding land use class coverage distributions  
(a) 20 March 2013 Pleiades-1A; (b) 05 May 2014 Pleiades-1A; (c) 06 January 2016 SPOT-6 
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4.3 Summary 

 

Small-scale mining often occurs in remote regions, and may occupy smaller areas and be more 

transient than other economic land uses. It is therefore often challenging to identify and regulate 

effectively. The increasing availability of high resolution satellite images is potentially applicable to 

automatic mapping of small-scale mining development. However, the availability of cloud-free 

images, and the presence of different types of land use that involve stripping vegetation and soil, may 

create challenges, especially in wet tropical regions. This paper has explored these challenges through 

applying high resolution images to mapping small-scale mining over three years in the Dipidio 

catchment in north-east Philippines. 

 

The application of the OB-SVM to selected Pleiades-1A and SPOT-6 images produced thematic land 

use maps with an overall accuracy between 87% and 89%. The small-scale mining class was one of 

the least reliably identified, with user accuracy values from 69% to 76% and producer accuracy values 

from 90% to 96%. The common misclassification of other land use classes as small-scale mining 

arose from the spatial, spectral and textural similarities of various forms of bare soil. In contrast, the 

more unique shape and topographical features of the large-scale mine meant that it was more reliably 

classified, with user and producer accuracy values ranging from 95% to 100% and 74% to 89%, 

respectively. Including the textural attributes was essential in determining the footprints of small-

scale mines, for which high-resolution images of at least 1.5 m are probably essential.  

 

Qualitative inspection of the thematic maps produced by the high-resolution images also indicated 

that it may be possible to automatically estimate the type of small-scale mine. The primary limitation 

of this research was the low availability of suitable satellite images due to the regular cloud-cover 

over the catchment. Increasing frequency of images may in future permit large training data sets and 

further improvements in reliably tracking development of small-scale mines.  
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Chapter 5 Quantifying suspended solids in small rivers using satellite data 

 

Remote sensing has often been employed to assess water quality in marine and coastal contexts (Wu 

et al., 2014). Its application to inland surface water is generally more difficult. Firstly, the 

concentrations of suspended and organic materials vary over short distances and time periods 

(Garbuzov et al., 1993). Secondly, high spatial resolution images are required for extraction of 

spectral information from narrow rivers (Wu et al., 2014). Lastly, shallow waters expose the river 

bottom, which may interfere with readings of surface reflectance. 

 

The assessment of water quality using remote sensing may be categorised into (Morel & Prieur, 

1977): Class I, which focuses on waterbodies that are dominated by phytoplankton; and Class II, 

which concentrates on inorganic matters and suspended sediments. Other authors add Case III, which 

deals with extreme volumes of suspended solids, but is not yet well investigated (Stumpf & Pennock, 

1991). In this paper, the Didipio catchment was classified as Case II scenario based on the dataset 

available for analysis.  

 

The application of satellites to water quality assessment relies on relating solar radiation reflected 

from the water body, as measured by a sensor on the satellite, to a water quality parameter. Several 

researchers have focused on remote sensing of total suspended solids (TSS), or water turbidity as 

surrogate of TSS. In general, turbidity and TSS have an almost linear relationship with TSS:turbidity 

ratios in the range from 1 to 2.5 mgL-1-NTU-1 (Rugner et al., 2013). A nonlinear relationship has been 

observed when TSS and turbidity values are greater than 800 mgL-1 and 600 NTU, respectively (Wu 

et al., 2014), although the former value may be as low as 600 mgL-1 (Han & Rundquist, 1996).  While 

various indices of radiation are used, surface reflectance is usually applied as it already incorporates 

corrections for the magnitude of solar radiation, and the sun zenith angle.  

 

Several researchers have demonstrated the strong correlation between certain channels of the 

reflectance spectrum and TSS or turbidity using satellite images. For measurements ranging from 4 

to 40 NTU, turbidity has been found to be significantly correlated with the green (520 nm) and red 

channels (652 nm) of ALOS AVNIR-2 (Syahreza et al., 2012) while TSS concentrations between 74 

and 600 mgL-1 were observed to have positive relationship with surface reflectance of MODIS Band 

2 (841-876 nm) (Wang & Lu, 2010). On the other hand, other studies have determined the correlation 

between TSS and in-situ measurements of surface reflectance using a spectroradiometer. With the 

use of such equipment, turbidity values ranging from 10 to 600 NTU were observed to consistently 

increase with surface reflectance in all visible and near-infrared channels particularly between 580 
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nm and 900 nm (Wu et al., 2014). TSS concentrations between 0 and 500 mgL-1 were found to be 

well correlated with surface reflectance in the near-infrared channel (Harrington Jr et al., 1992). 

Moreover, TSS was observed to have a high affinity to surface reflectance at a mean wavelength of 

656 nm or the red channel in the Tapajos River Basin of Brazilian Amazon (Lobo et al., 2016). In 

contrast, nonlinear relationship between surface reflectance and turbidity or TSS values can be 

encountered at their higher ranges, and the nature of the nonlinearity is influenced by the sediments 

particle size, shape and color (Baker et al., 1984). The nonlinear relationship between TSS and surface 

reflectance is often expressed as exponential model (Harrington Jr et al., 1992), power model (Wang 

J.-J et al., 2012) or a second-order polynomial model (Lodhi et al., 1997).  

 

In general, the spectral signature of water has a peak surface reflectance between the green and red 

channels at lower TSS concentrations while the peak shifts towards the near-infrared channel or 

longer wavelength at higher TSS concentration. (Syahreza et al., 2012). From the other study (Liew 

et al., 2003), the spectral signatures of TSS measurement levels between 16 mgL-1 and 1,338 mgL-1 

were observed to have two separate peaks in 700 nm and 800 nm, respectively. At higher TSS 

concentration, these peaks are merged and moves towards the near-infrared channel. This spectral 

signature is specifically observable for extreme TSS values on inland waters. In addition, saturation 

of surface reflectance can be detected at extreme TSS values typically higher than 7,450 mgL-1 (Wang 

J.-J et al., 2012; Liew et al., 2003). 

 

In the absence of suspended solids, the clear water highly absorbs radiation in near infrared channel 

(e.g. 740 to 900 nm). However, the strength of correlation between reflectance and TSS or turbidity 

may be affected by the reflectance of river bottom in shallow waters particularly in mountain rivers. 

Han and Rundquist (1996) discuss the separate impacts of bright and dark river bottoms on surface 

reflectance readings. Their experiment was performed in a tank with 80 cm depth of water. It was 

observed that the brightness of the bottom has minimal effect on the surface reflectance readings of 

the visible spectrum if the TSS concentration is more than 100 mgL-1; and surface reflectance readings 

are purely attributed to TSS in the near-infrared region, irrespective of the depth of the river bottom. 

In contrast, at lower TSS, surface reflectance can increase in the blue and green channels (between 

495 and 559 nm), due to influence of dark bottom. In conclusion, it was suggested that for shallow 

rivers, the near-infrared channel (between 740 and 900 nm) should be used to measure surface 

reflectance. This is supported by Han and Rundquist (1994) and Wu et al. (2014) who propose that 

surface reflectance is optimally related to TSS between 700 and 900 nm.  
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Based on the previous studies, the application of satellite images in remote acquisition of TSS and 

turbidity values were focused on rivers with widths that extend from 1 to 15 km. For instance, Tapajos 

River in Brazil has downstream width between 10 and 15 km (Lobo et al., 2016). It was recommended 

to use high spatial resolution imageries between 2 m and 10 m for narrow inland waters (Dekker & 

Hestir, 2012).  

 

There are three objectives in this chapter. Firstly, the chapter will test the hypothesis that TSS 

variations can be detected by remote sensing for the stream widths between 4 and 10 m. Secondly, 

the chapter will determine which type of satellite product allows detection under these conditions. 

Lastly, the chapter will look at the empirical relationship between surface reflectance at each spectral 

channel and ground-based measurements of TSS, and then develop and evaluate an empirical 

regression model to estimate the spatially continuous TSS concentrations from the satellite images.  

 

5.1 Research approach 

 

5.1.1 Selection of monitoring stations 

 

The Didipio catchment is heavily impacted by the activities from small-scale mines. Among its rivers, 

the Dinauyan, Camgat-Surong and Didipio are the major tributaries with noticeable suspended 

sediments. Based on a four-year water quality data (2014-2016), Camgat-Surong has higher 

concentration of suspended solids than Dinauyan and Didipio. In addition to existing panning 

activities in Camgat-Surong River, the small-scale mines from its upstream, the Camgat River, 

contribute to its high TSS measurement level. Whereas the Dinauyan River is being least utilised by 

small-scale mines among these rivers and mostly residential houses are found on its upstream. 

Moreover, the Didipio River receives the collective impacts of small-scale mining from both 

Dinauyan and Camgat-Surong rivers.  

 

Table 5-1: Physical attributes and locations of the monitoring stations 

River Station 
Coordinates  Width 

Average 

Depth  

Northing Easting (m) (cm) 

Dumulag property upstream DP-UP 333,933 1,805,408 4 25 

Dumulag property downstream DP-DOWN 334,270 1,805,607 4 25 

Dinauyan downstream SWS-12 335,038 1,806,039 5 25 

Camgat-Surong SWS-13 335,041 1,806,099 8 31 

Didipio River SWS-14 335,072 1,806,049 9 33 
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These rivers, being located on higher ground elevation, have noticeable narrow top-widths and 

shallow depths (Table 5-1). The Camgat-Surong and Didipio rivers are wider compared with the 

Dinauyan River. The acquisition of samples on these sites is scheduled between 9:00 am and 11:00 

am. For this study, the selected monitoring stations are the only ones that have TSS data during the 

time the nominated satellite images of the catchment were captured. For the selected stations as shown 

in Figure 5-1, DP-UP monitors the TSS level of Dinauyan River upstream while its downstream water 

passes through DP-DOWN and SWS-12 stations. On the other hand, the TSS level at the discharge 

outlet of Camgat-Surong River is monitored through SWS-13, and TSS level in Didipio River is being 

observed separately at SWS-14 station. 

 

 
Figure 5-1: Locations of selected monitoring stations 
Pleiades: © CNES (2013), Distribution Airbus DS / Spot Image 

 

5.1.2 Selection of satellite products 

 

The selection of satellite products was concentrated on the image spatial resolution and acquisition 

time. For the spatial resolution, securing at least one pixel that is completely within the river top-

width is preferred. An image with 2 m x 2 m wide pixels can satisfy this criterion while a 6 m x 6 m 

is likely to overlap the riverbank. Moreover, the image acquisition time should agree with the in-situ 
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sample acquisition period. Supplementary considerations include the sensor incident angle from nadir 

and the percentage of cloud coverage, with more accurate images being produced when they are at 

minimum values. A lower deviation of the incident angle from nadir can reduce geometric errors 

during image orthorectification (Canada, Geometric Distortion in Imagery, 2015).  

 

In addition, the absence of clouds (e.g. cirrus and cumulus) can increase the credibility of the spectral 

readings of the pixels. An image object or pixel, although not covered by clouds, increases in surface 

reflectance as it gets near the edge of the cloud. Whereas the cloud shadow can reduce the reflectance 

value of a pixel below it (Wen et al., 2006).  

  

Table 5-2: Technical specifications of selected satellite images 

Imagery Launch date Acquisition 
Spatial 

resolution 
(m) 

Sensor 
angle 

Cloud 
cover 

    Date Time MS PAN degrees (%) 

Pleiades-1A 16 Dec. 2011  20 Mar. 2013 10:45:53 AM 2 0.5 23.74 1.2 

    5-May-14 10:35:14 AM 2 0.5 4.89 1 

 

Two Pleiades-1A satellite images, one in 2013 and one in 2014 were used (Table 5-2). These images 

were selected as other available images either have lower spatial resolution or have high levels of 

cloud coverage, which selectively expose the monitoring stations within the scope of the study. The 

selected Pleiades-1A satellite images have all the stations apparently visible. This satellite passes 

directly over the case study area at 10:30:00 a.m. every day; however, the time of the image (see 

Table 5-2) is when the satellite can capture the best possible image including consideration of cloud 

cover.  

 

For this research, the image analysis was restricted to using the initial spatial resolution of the images. 

This is because pansharpening, which fuses the panchromatic band with the multispectral image in 

order to refine the initial resolution of the latter, may distort the reflectance values (Zhang & Roy, 

2016). 

 

5.1.3 Water quality data against the test pixels 

 

There were six adjacent test pixels assigned for each monitoring station (Figure 5-2). These pixels 

were used to examine the local scale variability of surface reflectance that may occur due to variations 

in properties such as river depth and river bottom brightness. Each set of test pixels was placed within 

the top-width of the river sections being monitored. 
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DP-UP DP-DOWN SWS-12 SWS-13 SWS-14 

Figure 5-2: Locations of six test pixels for each monitoring station  
(Note that pansharpened images were used in this figure for presentation) 

Pleiades: © CNES (2013,2014), Distribution Airbus DS / Spot Image 

 

5.1.4 Calibration of images 

 

The calibration of satellite images for this analysis adapted the sequential phases of image pre-

processing as discussed in Chapter 4, from Sections 4.1.3.1 to 4.1.3.2. 

 

5.1.5 Variation in turbidity through time 

 

Hourly turbidity measurements were made at three monitoring stations as shown in Figure 5-3, one 

each from the upstream, middle stream and downstream sectors of the case study. This was carried 

out during the fieldwork in July 2016, with July being the initial month of the wet season in Didipio, 

with the purpose of quantifying short-term variations in TSS. With the assistance of OceanaGold’s 

Environmental Technical Team, the time variation of turbidity was analysed, to determine if 

environmental and anthropogenic factors (e.g. rainfall rate, intensity of small-scale mining activity) 

are evident. This analysis can also provide information on the potential effect of the satellite image 

acquisition time deviating from the period of TSS/turbidity sample acquisition. 

 

 

 

 

2013 

2014 
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STATION NO.1 

 
STATION NO.2 

 
STATION NO.3 

 

Figure 5-3: Assigned stations for the analysis of river turbidity variation 
Pleiades: © CNES (2013), Distribution Airbus DS / Spot Image 

 

A multi-parameter meter (Horiba U-5000) was used to acquire in-situ turbidity measurements. The 

intensity of rainfall was recorded as being either light or heavy, to assist in interpreting any observed 

changes in turbidity. These data were incorporated into the hourly plot of turbidity readings to 

determine their potential contribution to turbidity variation. High rainfall may disturb fine sediments 

that have settled on the river bottom (Atherholt et al., 1998). These fine sediments contribute to water 

turbidity for a short period. Moreover, rainfall can induce the erosion of loose soil and movement of 

sediment bars. 

 

5.1.6 Univariate analysis of surface reflectance and total suspended solids 

 

TSS measurements were compared with the corresponding surface reflectance data. The spectral 

signature (surface reflectance profile across the four spectral bands) was plotted for each station and 

for each image date, including all six test pixels representing the station. This allows visual analysis 

of the effect of TSS on the spectral signature, as well as the local-scale variation. Linear regression 

was used to model the relationship between TSS and reflectance (Satapathy et al., 2010) (Eq. 5.3.1). 

This was done using the reflectance data for each spectral band. 
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TSS = A0 +  ∑ Ai
n
i=1 Si  

(5.3.1) 

Where:  

TSS  

A0  

Ai 

Si 

n 

= Modeled value of total suspended solids (mgL-1) 

= y-intercept (constant) (mgL-1) 

= slope coefficient for the ith explanatory variable 

= surface reflectance for ith band (e.g blue, red, green, near-infrared bands) 

= number of explanatory variables considered 
 

 

 

The model errors were examined by plotting the reflectance data against TSS measurements for each 

band. The relevance of each spectral band in the model was presented through the coefficient of 

determination (R2) (Eq. 5.3.2). The values of R2 were determined for the plot of TSS against each 

spectral band. Furthermore, the root mean square error (RMSE) was used to determine the deviation 

of the modeled value of TSS from the actual measurement.  

 

RMSE2 =  
1

n
 ∑ (n

i=1 yi - MTSSi)
2                                  

(5.3.2) 

Where:  

n 

yi 

MTSSi 

= number of data points included in the model 

= observed TSS (mgL-1) 

= modeled TSS (mgL-1) 

 
 

 

 

5.2 Results and discussion 

 

5.2.1 Collective effect of rainfall and ASM to increasing concentration of suspended 

sediments 

 

The influences of rainfall and ASM on river turbidity are presented separately, based on collective 

observations from three different monitoring stations that represent the upstream, middlestream and 

downstream of the case study (Figure 5-4). In Figure 5-4, each line on a graph represents a set of 

observations collected within a single day, and multiple lines on one graph are results from multiple 

days. Where a day has evident mining activity near upstream of the monitoring site (SWS-16B and 

SWS-17), this is isolated in individual plots (B, C and F). An observation was done during the 

afternoon over three to five consecutive hours.   

 

Based on the acquired data, the impact of light rain over one hour on the turbidity of the upstream 

river (SWS-16B) can reach 180 NTU (Figure 5-4A). In contrast, evident activity from a hydraulic 

mining site nearby upstream produced almost twice that increase in turbidity (Figure 5-4B red line; 
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between 1st and 2nd hour). The coupling effects of heavy rainfall with ASM can further reach 650 

NTU for just a single hour (Figure 5-4C purple line; between 1st and 2nd hour).  

 

Similarly, observations at the SWS-13 station along the junction of Camgat-Surong and Didipio 

Rivers, heavy rain added 300 NTU during one hour (Figure 5-4D). The impact of rain seems 

reasonably consistent between the three monitoring stations, taking into account both the light and 

heavy rain periods (Figure 5-4E). Figure 5-4F shows relatively little variation in turbidity at a site 

near downstream of gold panning. Overall, the analysis shows that there is some time-variations of 

turbidity associated with mining activity without rainfall, this variation was small compared to the 

effects of rainfall, and one observation implied the greatest time variation was due to rainfall 

coinciding with mining activity.   
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Figure 5-4: Plot of hourly monitoring of river turbidity during the early phase of the wet season in the Didipio case study 
 (Note that each line corresponds to a set of observations collected within a single day)  
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5.2.2 Relationship between TSS and surface reflectance  

 

Figure 5-5 shows that the magnitude of surface reflectance is similar over the six test pixels at each 

station (Table 5-3). The obtained spectral signatures for lower TSS concentration (e.g. from 12 mgL-

1 of 2013 DP-UP to 25 mgL-1 of 2014 SWS-12) have minor reflectance variation in the visible bands 

whereas high surface reflectance values in the near-infrared band is observable (Figure 5-5). The 

spectral signature of moderately clear water on these sections of the river were compared with the 

spectral signature of pure clear water from deep rivers in the catchment. Based on the observation, 

the surface reflectance of clear water has the lowest reflectance in the near-infrared band. Whereas 

the inclusion of river stones within a pixel, which are visible in the image, increases the detected 

surface reflectance in the near-infrared band. Therefore, the noticeable higher reflectance in near-

infrared band of DP-UP and SWS-12 in 2013 and 2014 images, correspondingly, are attributed to 

objects such as rocks that protrude from the river’s surface. In the images, minimum water flow is 

noticeable on these monitoring stations thus affect their water level. In contrast, the surface 

reflectance for TSS values from 192 mgL-1 to 3,580 mgL-1 have observable increase in magnitude 

from visible bands to near-infrared band. 
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Figure 5-5: Plot of surface reflectance from the 6 adjacent pixels of each monitoring station  

(a) 2013 image: black lines; (b) 2014 image: blue lines 
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Table 5-3: Surface reflectance values for each set of six test pixels 

Stations TSS Surface Reflectance TSS Surface Reflectance 

  mgL-1 
Blue 

band 

Green 

band 

Red 

band 

Near-

infrared 

band 

mgL-1 
Blue 

band 

Green 

band 

Red 

band 

Near-

infrared 

band 

DP-UP 12 0.1084 0.1165 0.1299 0.1795 330 0.1073 0.1275 0.1325 0.2174 

    0.1022 0.1109 0.1242 0.1852   0.1042 0.1231 0.1314 0.265 

    0.0976 0.1026 0.1151 0.161   0.1216 0.133 0.1429 0.2179 

    0.0932 0.096 0.1059 0.1437   0.1154 0.1275 0.1354 0.2083 

    0.0872 0.0897 0.0965 0.1606   0.1002 0.1152 0.1247 0.2608 

    0.0826 0.0897 0.0948 0.155   0.1005 0.1127 0.1105 0.2177 

DP-DOWN 192 0.1043 0.1223 0.1468 0.224 448 0.1605 0.1679 0.1917 0.25 

    0.0973 0.1135 0.1385 0.221   0.1814 0.1916 0.2123 0.2917 

    0.1025 0.1213 0.151 0.204   0.1447 0.151 0.1595 0.2097 

    0.1022 0.1191 0.1456 0.204   0.1652 0.1805 0.1868 0.252 

    0.1043 0.1178 0.1436 0.2104   0.1692 0.1941 0.2192 0.288 

    0.0978 0.1147 0.1339 0.1999   0.1428 0.1537 0.1839 0.2316 

SWS-12 336 0.1043 0.1241 0.1602 0.1859 25 0.0762 0.0936 0.106 0.2401 

    0.1007 0.1279 0.1665 0.1795   0.0809 0.1046 0.1017 0.2089 

    0.1001 0.1254 0.1613 0.1859   0.0744 0.0977 0.102 0.237 

    0.1032 0.1284 0.1570 0.1953   0.0669 0.0904 0.0889 0.2653 

    0.1038 0.131 0.1699 0.1686   0.0737 0.1005 0.1068 0.1881 

    0.1053 0.1297 0.1665 0.2044   0.0675 0.0909 0.0838 0.3102 

SWS-13 1175 0.2152 0.2786 0.3834 0.4963 3580 0.1618 0.199 0.2479 0.2753 

    0.2312 0.3055 0.4283 0.5517   0.1496 0.1876 0.2455 0.2781 

    0.2186 0.2921 0.412 0.5279   0.1584 0.1843 0.2181 0.2685 

    0.2227 0.2903 0.4131 0.514   0.1618 0.1873 0.2203 0.2534 

    0.2207 0.2931 0.4243 0.5129   0.1627 0.1884 0.2168 0.2568 

    0.2013 0.2756 0.3923 0.4929   0.1733 0.1895 0.2187 0.2679 

SWS-14 776 0.169 0.2209 0.2961 0.3518 1814 0.1549 0.1843 0.238 0.2443 

    0.174 0.2333 0.3228 0.3929   0.1565 0.1996 0.2669 0.2648 

    0.1657 0.2249 0.3229 0.4035   0.1537 0.1914 0.2495 0.2577 

    0.1564 0.2113 0.3052 0.3843   0.145 0.184 0.2305 0.2562 

    0.1623 0.2118 0.2875 0.3450   0.1549 0.1843 0.238 0.2443 

    0.1505 0.2031 0.2869 0.3435   0.1562 0.1933 0.2479 0.2511 

 

The standard deviations of each set of six pixels are presented in Table 5-4. In the 2013 image, the 

standard deviation in blue and green bands ranges from 0.002 to 0.01 and from 0.005 to 0.02 for the 

red band. In contrast, higher standard deviations were observed in the near-infrared band, which 

ranges from 0.01 to 0.03 with which, the highest variation occurred in the SWS-14 station. Similar 

trend was observed in SWS-12, DP-DOWN and DP-UP stations of the 2014 image (0.01 to 0.04). 

However, the inter-station and inter-year variability in standard deviation can be said to be minimal. 
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Table 5-4: Mean surface reflectance for each corresponding value of total suspended solids/ 

Turbidity: 30 March 2013 Pleiades-1A image, 5 May 2014 Pleiades-1A image 

Stations 

Blue band Green band Red band NIR band 
TSS 

495 nm 559 nm 656 nm 843 nm 

Ref σ Ref σ Ref σ Ref σ mgL-1 

Year: 2013                 

DP-UP 0.0952 0.01 0.1009 0.01 0.1111 0.01 0.1642 0.02 12 

DP-DOWN 0.1014 0.003 0.1181 0.004 0.1432 0.01 0.2106 0.01 192 

SWS-12 0.1029 0.002 0.1278 0.003 0.1636 0.005 0.1866 0.01 336 

SWS-13 0.2183 0.01 0.2892 0.01 0.4089 0.02 0.5160 0.02 1,175 

SWS-14 0.1630 0.01 0.2176 0.01 0.3036 0.02 0.3702 0.03 776 

Year: 2014                 

DP-UP 0.1082 0.01 0.1232 0.01 0.1296 0.01 0.2312 0.02 330 

DP-DOWN 0.1606 0.01 0.1731 0.02 0.1922 0.02 0.2538 0.03 448 

SWS-12 0.0733 0.01 0.0963 0.01 0.0982 0.01 0.2416 0.04 25 

SWS-13 0.1613 0.01 0.1894 0.01 0.2279 0.01 0.2667 0.01 3,580 

SWS-14 0.1535 0.004 0.1895 0.01 0.2451 0.01 0.2531 0.01 1,814 

 

The separate mean surface reflectance from each spectral band in 2013 and 2014 were plotted against 

the datasets of TSS. Although nonlinear relationships between surface reflectance and TSS at higher 

ranges of TSS are likely, the limited dataset available did not allow this to be explored. Based on the 

separate plots, mean surface reflectance values for each set satisfactory follow increasing trend as 

TSS increases (Figure 5-6). A satisfactory R2 for the case study validates the adequacy of the 

generated regression model to represent TSS measurement variation at all field conditions using either 

single or multiple satellite images. In addition, satisfactory R2 maintains the least possible 

disagreement between the observed and predicted values of TSS measurements (Ryan, 2007). The 

aim of the study is to capture all the possible range of TSS measurement levels in the catchment given 

the available data. The separate linear equations between TSS and surface reflectance in each band 

from the two separate images were determined and are listed in Table 5-5. Based on these equations, 

coefficient of determination (R2) in the 2013 image is highest in the red band and followed by the 

green band. However, it can be concluded that blue band and near-infrared band also have satisfactory 

R2. On the other hand, red and near-infrared bands have the highest R2 in the 2014 image at 58% and 

67%, respectively.  
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Figure 5-6: Spectral signatures of water with suspended solids (a) 2013; (b) 2014  
(Note that error bars correspond to standard deviations of mean surface reflectance in each spectral band) 
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Table 5-5: Linear equations generated for TSS and surface reflectance relationship in each band 

Year Band Equation 
Coefficient of 

Determination (R2) 
RMSE 

      m b % mgL-1 

2013 495 Blue 8,641 -678 96 85 

  559 Green 5,841 -499 98 53 

  656 Red 3,732 -345 99 41 

  843 NIR 3,072 -391 96 89 

2014 495 Blue 24,566 -1,988 43 1,002 

  559 Green 26,008 -2,773 55 883 

  656 Red 17,915 -1,960 58 852 

  843 NIR 89,870 -21,162 67 760 

 

The separate plots of mean surface reflectance values in Figure 5-6 were combined in Figure 5-7 to 

determine the overall trend between TSS and surface reflectance values. Based on the result, TSS at 

higher concentration level, which include SWS-13 (1,814 mgL-1) and SWS-14 (3,580 mgL-1) as 

measured from the 2014 image, has lower surface reflectance in all spectral bands when compared 

with their counterpart readings (1175 mgL-1 and 776 mgL-1) in the 2013 image (highlighted in red 

boxes). The difference in the TSS-reflectance relationship, and the difference in the spectral signature 

between the two years may be explained by changes in the sources of sediments. When the Pleiades-

1A images were visually evaluated, a brightness difference in high TSS rivers can be perceived. The 

turbid water in 2014 image is muddy (darker) in all stations compared with the turbid water in 2013 

image. Normally, sediments that are generated from soil types at deeper layers appear brighter than 

those generated from in or near the topsoil due to smaller particle size (e.g. clay, loose sands). It was 

concluded that sediments with larger particle size have lower surface reflectance when evaluated 

against fine particles with similar magnitude of TSS (Bhargava & Mariam, 1991). Based on the image 

classification in Chapter 4, Section 4.4.3, there was an increase of 30,000 m2 in the overall coverage 

of ASM in the catchment from 2013 to 2014. In addition, there were developments of small-scale 

mines and foot roads in the regions of Camgat River and south of upper Didipio River in the 2014 

image; therefore, topsoil of coarser particle size can be the main source of sediments. Moreover, other 

interference may due to surface reflectance values that represent the pixel scale properties, whereas 

the samples of TSS are from points in the river; therefore, the disparity in scale may create some 

noise.  
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Figure 5-7: Spectral signatures corresponding to different measured TSS concentrations 
(The red boxes show the irregularities in surface reflectance for TSS values from 776 mgL-1 to 3,580 mgL-1) 

 

Although the sediments are thought to largely come from the same land use feature (ASM), but with 

different soil sources, there combined behavior still must be captured by a single hydrological model. 

If the rivers of the catchment sit over dark river bottoms, it can be concluded that surface reflectance 

in the red band can be purely attributed to TSS as the river bottom can have higher reflectance than 

TSS in blue and green bands only. In addition, the use of the near-infrared band in the model is not 

quite applicable due to interference from river constituents such as protruding rocks when running 

water is minimal; therefore, it can be concluded that the use of the near-infrared band in shallow 

rivers with depth below 30 cm is only effective at higher TSS measurement levels (e.g. 100 mgL-1 

and above). Through the application of a linear model, the resulting coefficient of determination in 

the red band is 20% only (Figure 5-8). The computed RMSE is 937 mgL-1 for the combined results 

of 2013 and 2014 images. Steep trend lines were obtained for the blue and green bands; therefore, a 

minimal increase in surface reflectance can be observed for every unit increase in TSS in these bands. 

On the other hand, gentle trend lines were produced for the red and near-infrared bands.  
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Figure 5-8: Graphs of total suspended solids against band reflectance for 2013 Pleiades-1A images: 

(a) Blue band; (b) Green band; (c) Red band; and (d) Near-infrared band 

 

TSS2013,2014 = 5,105RBAND3 −  164        ; R2 = 0.20 (5.4.1) 

 

The univariate equation that include the red band does not have the highest R2 if data from the 2013 

and 2014 images are merged however, it has high R2 at 96% if the TSS-reflectance point values of 

SWS-13 and SWS-14 from the 2014 image are excluded in the equation. Provided the high TSS 

values of the rivers in Didipio catchment, the surface reflectance variation in the red band can be 

attributed only to addition of suspended sediments into the river. Equation 5.4.1 represents ASM both 

during development phase (e.g. stripping of vegetated areas and topsoil are the dominant activities) 

and normal operation. The option to improve Eq. 5.4.1 depends on securing additional observations, 

in particular to incorporate TSS measurements higher than 3,600 mgL-1 to determine the actual data 

relationship other than being linearly related at lower TSS values. For the available datasets, there are 

only three samples with TSS values of greater than 1,000 mgL-1. The model equation was utilised to 

calibrate the available Pleiades-1A images separately, and thematic maps that show the ranges of TSS 

measurements in each section of the catchment were produced (Figure 5-9). 
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Figure 5-9: Calibrated thematic maps of surface reflectance with corresponding measurement level of TSS 

(a) 2013 Pleiades-1A; (b) 2014 Pleiades-1A 
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The mapping of modeled TSS values is divided into intervals of 250 mgL-1 (Figure 5-9). In 2013 and 

2014 thematic maps, the upper Dinauyan is presented mostly in blue and green pixels, which 

correspond to the lower range of TSS measurement levels. This is most likely because Dinauyan 

upstream is only surrounded by sites for gold panning that seldom operate, and the other segments of 

the river are completely surrounded by grassland. In contrast, a hydraulic small-scale mine operates 

at Dinauyan downstream, and may deliver a higher level of TSS to DP-DOWN and SWS-12 

monitoring stations, which are shown in mix of yellow, orange and red pixels in 2013 thematic map; 

and a mix of mostly green to yellow pixels in the 2014 thematic map. Moreover, Surong has an 

observable high TSS in the 2013 thematic map as shown in yellow pixels. These yellow pixels reflect 

the impact of the sediment pit beside the river’s discharge. In the 2014 thematic map, a clear water is 

apparent coming from Surong water (blue pixels). In contrast, Camgat-Surong and Didipio rivers 

consistently exhibit moderate level (yellow pixels) to high level (red pixels) of TSS for two years, 

which may be triggered by gold panning from the upstream and downstream of the river and by an 

underground mine at the middle stream. Camgat portrays better water quality in 2013 (green pixels), 

but moderate TSS values (yellow and orange pixels) are noticeable in the 2014 thematic map. In 

general, Camgat, Didipio and Camgat-Surong seem to be the rivers most impacted by ASM in the 

catchment. It can be said that such thematic maps of TSS can be useful at regional scale of analysis. 

Likewise, they may be suitable for examining potential TSS concentrations away from the monitoring 

stations, and understand the fate and transport of sediments towards the downstream of the catchment.  

 

For this model of Didipio catchment, it can be said that it may be used to estimate TSS concentrations 

up to a certain limit only (12 mgL-1 to 3,580 mgL-1). However, small-scale mines in the catchment 

were documented to produce TSS as high as 32,060 mgL-1. The analysis was restricted by the 

information that was provided by the cloud-free images with corresponding TSS measurements.  

 

5.3 Summary 

 

With the application of a linear regression model, Pleiades-1A satellite images were calibrated into 

thematic maps that present measured TSS throughout the selected rivers of the Didipio catchment. 

For this study, TSS, turbidity and surface reflectance are all linearly related. TSS has high coefficient 

of determination at 626 nm (the red band) for the separate models of the 2013 and 2014 images, but 

for the model that was used, the R2 is 20% only. The generated R2 for each plot of TSS and surface 

reflectance in each spectral band (combined 2013 and 2014 datasets) is comparable for all spectral 

bands except for the lower R2 in the near-infrared band. The co-linearity of surface reflectance 

between the visible bands meant that it is enough to choose a single spectral band that gives the 



 

109 
 

highest R2 value, but which is free from the potential influence of the dark bottom of the river, as the 

model input.  

 

The model can assist in spatial analysis of the effect of land use features on river water quality, 

including those features that are distant from water quality monitoring stations. However, the model 

is restricted by the underlying measurement ranges and soil sources that produced the linear 

relationships of TSS with surface reflectance in the red band. Other dominant sources of sediments 

may lead to a different linear relationship, and other ranges of TSS may require a different 

mathematical equation (e.g. exponential, second-degree polynomial).  It may be more accurate to 

determine the relationship between TSS and surface reflectance for a greater range of dominant land 

use features as well as wider TSS ranges.   
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Chapter 6 Conclusions and recommendations 

 

6.1 Conclusions 

 

6.1.1 Environmental importance of Didipio catchment 

 

The Didipio catchment offers several ecosystem services to its communities. Firstly, an average of 

1.20 km2 of perennial crops utilise selected rivers for irrigation. Secondly, there is a potential growth 

of different species of plants and trees within the 24 km2 of forest. Lastly, the catchment rests over 

an extended mineralised land within which mining activities are found. The six main rivers of the 

catchment, which are included in this study, not to mention downstream rivers such as the Alimit, 

were classified as Class D rivers by the Department of Environment and Natural Resources (DENR). 

Class D rivers are principally used for industrial purposes. Although high concentrations of total 

suspended solids can be observed on these rivers, they still have other water qualities that are within 

the standard limit, which make these rivers appropriate to support existing land uses in Didipio.  

 

6.1.2 The applicability of remote sensing to identifying artisanal and small-scale mining land 

footprints in the context of wet tropical regions 

 

The application of remote sensing supports the analysis of both the spatial and temporal dimensions 

of ASM. Pleiades-1A and SPOT-6 have their respective identical satellites (e.g. Pleiades-1B and 

SPOT-7) that revolve in the same orbital plane. Each satellite pair can produce coherent image 

products with similar data resolutions; therefore, decreasing the image acquisition period between 1 

to 2 days. This structure is advantageous to wet tropical regions as it increases the probability to 

secure cloud-free images. With the application of an object-based approach in image classification, 

mining features at a certain spatial scale are detectable, and their classification attributes are 

potentially well represented by analysis of several segments, which are sets of homogeneous pixels 

of comparable spatial, spectral and textural attributes. For the case study of Didipio, the overall 

coverage (less than a square kilometre) of ASM can still be considered underdeveloped if it is 

compared with other ASM regions, which extend to square kilometres in size such as those found in 

Tapajos River Basin in Brazilian Amazon (Lobo et al., 2016), Democratic Republic of Congo and 

(Luethje et al., 2014), Upper Mazaruni, Guyana (Mengisteab et al., 2015). In this research, the 

efficacy of Pleiades-1A and SPOT-6 satellites on the classification of land use features in Didipio 

was demonstrated, and supported by the obtained overall accuracy (89% for SPOT-6 while 87-89% 
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for Pleiades-1A). It is anticipated that Pleiades-1A and SPOT-6 can better classify ASM regions at 

larger scale from the other catchments.   

 

6.1.3 The applicability of remote sensing to identifying variations in water quality in the 

context of wet tropical regions 

 

Remote sensing can provide a model of total suspended solids (TSS) concentrations in the Didipio 

catchment. The red channel reflectance alone can accurately estimate the TSS concentration of each 

river, within the range of concentrations used to develop the model. However, the obtained root mean 

square error for the combined dataset in 2013 and 2014 images was 937 mgL-1 due to constructions 

of additional small-scale mines in the catchment that produces different soil type as source of 

suspended sediments. Aside from the near infrared region, the red channel is a spectral channel where 

dark river bottom has no influence on surface reflectance. The reliability of the model can be 

improved through the addition of more pairs of reflectance-TSS measurements within the TSS range 

of the previously applied dataset. Moreover, the applicability of the model can be improved if 

reflectance-TSS measurements outside this TSS range are incorporated in the equation.  

 

6.2 Recommendations 

 

Future works should focus on other ASM regions with lower cloud cover, which would permit more 

exploration of seasonal changes, and suitability of satellite products. It is worthwhile to test if a 

database can be produced on the possible spatial and spectral attributes of small-scale mines from 

different regions. The value of this effort can determine whether if these attributes are highly 

dependent on the mineralisation and local geology of a mining area and the phase of mining. For this 

research, the generated spatial and spectral attributes are constrained within the context of small-scale 

mining in non-sulfuric gold ore deposit as discussed in Section 2.3.2. In contrast, small-scale mines 

in regions with sulfuric gold ore deposits can instigate acid mine drainage due to high weathering rate 

of sulfide-bearing minerals, which may produce different spectral features.  

 

At this moment, there are several initiatives to improve both data resolution of satellite products as 

well as developing the existing image analysis techniques. Recently, Sentinel-2 has become 

accessible for public use. Sentinel-2 is composed of 13 spectral bands within which the four principal 

spectral regions (e.g. blue, green, red, and near-infrared) have a spatial resolution of 10 m (Drusch, 

et al., 2012). It would be valuable to explore what reliability could be obtained from this product for 

different scales of mining. In addition, it may also be valuable to examine the contribution of the 
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thermal bands provided by other satellites in increasing the classification accuracy of land use features 

(Sun & Schulz, 2015). Landsat-8 offers spectral bands in the thermal region, but its spatial resolution 

(15 m) may preclude applicability to the scale of ASM found in the case study. 

 

For the current case study and imageries, supplementary analyses can be performed on the following 

aspects; 

 

•  Continued sampling to build up the database and improve reliability and applicability of the model.  

 

•  Evaluation of potential influence of particle size from the sediment yields of various land use 

features to surface reflectance at different levels of total suspended solids. 

 

•  A statistical database on the contribution of various land use features to water turbidity. 
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Appendix A - Regional geology of Northern Luzon 

 

 
Adapted from Technical Report for the Didipio Gold-copper Project (p. 30), by J. McIntyre, J. Moore and J. Wyche, 2010. 
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Appendix B - Slope map of selected sub-drainage basins of Didipio catchment 
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Appendix C - Channel slopes 
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Appendix D - Photographs of artisanal and small-scale mining practices in 

Didipio catchment 
 

SITE NO. 1 SITE NO. 2 

Lat: 16.3350470 Long: 121.4464260 Lat: 16.3333110 Long: 121.4400830 

 
Some small-scale miners along Camgat-

Surong River were spotted while using 

highly pressurised water to disintegrate 

ground sediments. These sediments had been 

transferred using wheelbarrow, and packed 

into sacks. 

 
A completely stripped side of a mountain is 

the largest small-scale mine that can be found 

in Didipio. 

 

SITE NO. 3 SITE NO. 4 

Lat: 16.3257800 Long: 121.4472760 Lat: 16.3338060 Long: 121.4447160 

 
Hydraulic pipes were also observed in a 

small-scale mine north of the Dinauyan 

River. 

 
A suspected stockpile of sacks that contain 

ore sediments was found beside site no.1. 
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SITE NO. 5 SITE NO. 6 

Lat: 16.3334390 Long: 121.4480810 Lat: 16.3311240 Long: 121.4552310 

 
The traditional panning with the assistance 

of excavator for higher production yield 

 
An inactive ASM tunnel at the north of Mine 

phase 2 

 

SITE NO. 7 

Lat: 16.3342470 Long: 121.4538690 

 
A small-scale mine that is situated along the 

boundary between the local community and 

the OceanaGold’s campsite. 
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Appendix E - Parameters for radiometric calibration 
 

Product ID Band Gain Bias ESUN Sun Elevation 
Earth-Sun 

Distance 

      W∙m-2∙sr-1∙μm W∙m-2∙sr-1∙μm W∙m-2∙sr-1∙μm degrees degrees 

20130320 

Pleiades-1A 
1 Blue 9.22 0 1915 65.01452400 0.9953689068 

  2 Green 9.40 0 1830    

  3 Red 10.36 0 1594    

  4 Near Infrared  15.63 0 1060    

  5 PAN 11.74 0 1548     

20140505 

Pleiades-1A 
1 Blue 9.15 0 1915 71.74992600 1.0081716820 

Swathe 1-

WEST 
2 Green 9.30 0 1830    

  3 Red 10.34 0 1594    

  4 Near Infrared  15.61 0 1060    

  5 PAN 11.65 0 1548    

20140505 

Pleiades-1A 
1 Blue 9.15 0 1915 71.80360379 1.008171682 

Swathe 2-

EAST 
2 Green 9.30 0 1830    

  3 Red 10.34 0 1594    

  4 Near Infrared  15.61 0 1060    

  5 PAN 11.65 0 1548     

20160106 

SPOT-6 
1 Blue 8.01 0 1983 42.7707610000 0.9832898942 

  2 Green 9.35 0 1826    

  3 Red 10.34 0 1540    

  4 Near Infrared  13.88 0 1095    

  5 PAN 10.32 0 1707     

Pleiades: © CNES (2013, 2014), Distribution Airbus DS / Spot Image; SPOT: © AIRBUS DS (2016) 
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Appendix F- Parameters and attributes for segmentation 

 

Settings Algorithm 
Years 

2013 2014 2016 

Segment size Edge 15 10 10 

Merge size Full Lambda Schedule 95 93 97 

Kernel size   19 19 19 

 

Feature  Attribute Description 

Spectral Spectral_Mean Mean value of pixels per spectral band 

  Spectral_Max Maximum value of pixels per spectral band 

  Spectral_Min Minimum value of pixels per spectral band 

  Spectral_STD Standard deviation value of pixels per spectral band 

Spatial Compactness It is defined by the equation: Sqrt (4 * Area/pi)/outer contour length 

  Roundness It is defined by the equation: 4 * (Area) / (pi * Major_Length2) 

  Form factor Circle = 1 

Square = pi/4 

  Rectangular fit This attribute measures the closeness of an object to rectangle. A rectangle 

has a value of 1 while a non-rectangular object is less than 1. 

  Main direction 90 degrees represents North and South while 0 and 180 degrees are west 

and east respectively 

Texture Texture-Range  Average range of pixels inside the kernel 

  Texture-Mean  Mean value of pixels inside the kernel 

  Texture-Variance  Average variance of pixels inside the kernel 
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Appendix G- NDVI maps  

 

   

Generated NDVI maps used as ancillary data in the classification of land use features 
(a) Pleiades-1A 20 March 2013; (b) Pleiades-1A 05 May 2014; (c) SPOT-6 06 January 2016 

 

 
Normalised difference vegetation index (NDVI) of training data from the images in 2014, 2015 and 2016 
(a) Pleiades-1A 20 March 2013; (b) Pleiades-1A 05 May 2014; (c) SPOT-6 06 January 2016 

Forest Grassland
Cultivated

area
Open land

Large-scale
minig site

Tailings
Storage
Facility

Small-scale
mining site

Road
system/

Vacant lot
Built-up

Stream
network

2013 0.7954 0.7809 0.7025 0.6113 0.2054 -0.2116 0.3136 0.3145 0.2823 0.2572

2014 0.8245 0.7753 0.6217 0.4537 0.0980 -0.4699 0.2638 0.2639 0.2341 0.1930

2016 0.8307 0.7959 0.5267 0.5720 0.1498 -0.2750 0.4697 0.4197 0.2845 0.3148

Mean 0.8169 0.7840 0.6170 0.5457 0.1511 -0.3188 0.3490 0.3327 0.2670 0.2550
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