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ABSTRACT 

This study describes the syntheses of di, tetra and hexa deuterated analogues of the NOD-like 

receptor pyrin domain-containing protein 3 (NLRP3) inflammasome inhibitor MCC950. In di 

and tetra deuterated analogues, deuteriums were incorporated into the 1,2,3,5,6,7-hexahydro-s-

indacene moiety, whereas in the hexa deuterated MCC950 deuteriums were incorporated into the 

2-(furan-3-yl)propan-2-ol moiety. The di deuterated MCC950 analogue was synthesised from 4-

amino-3,5,6,7-tetrahydro-s-indacen-1(2H)-one 5. Tetra deuterated analogues were synthesised in 

10 chemical steps starting with 5-bromo-2,3-dihydro-1H-inden-1-one 9, whereas the hexa 

deuterated analogue was synthesised in four chemical steps starting with ethyl-3-furoate 24. All 

of the compounds exhibited similar activity to MCC950 (IC50 = 8 nM). These deuterated 

analogues are useful as internal standards in LC-MS analyses of biological samples from in vivo 

studies. 
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     The NLRP3 inflammasome is a key mediator of inflammatory processes. Its abnormal 

activation is involved in the pathogenesis of inherited disorders such as cryopyrin-associated 

periodic syndrome (CAPS) and complex inflammatory diseases, including metabolic disorders 

such as type 2 diabetes, atherosclerosis, and gouty arthritis.
1
 Increasing evidence indicates that 

NLRP3 is also implicated in several central nervous system (CNS) diseases including multiple 

sclerosis, Alzheimer’s and Parkinson’s diseases.
2,3

 A small molecule inhibitor of NLRP3 

inflammasome, MCC950 (CRID3),
4,5

 has been reported with IC50 8 nM in human cell based 

assays, and impressive in vivo activity in multiple proof of concept models of inflammatory 

disease.
6-8

 This molecule is also widely used as a tool to understand the role of NLRP3 in 

biological processes.
9-11

 

 

Figure 1. Structure of MCC950 

Isotopically labelled compounds can be used as internal standards in quantification of drugs and 

associated metabolites in biological samples by using liquid chromatography‐mass spectrometry 

(LC‐MS).
12,13

 Indeed, we recently identified and reported the major metabolite of MCC950.
14

 

     In this study, deuterium-labelled analogues of MCC950 have been synthesised for use as 

isotopic standards in pharmacokinetic analysis. Deuterium has been included in multiple 

positions of MCC950 such that the synthetic precursors can be used towards additional standards 

in the future. 
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Figure 2. Structures of deuterium-labelled MCC950 analogues 

     The synthesis of compound 1 (Figure 2) required key intermediate 5 (Scheme 1), which was 

synthesised by procedures reported in our previous publication.
14

 Intermediate 5 was converted 

into deuterium labelled amine intermediate 6 by using LiAlD4/AlCl3 in anhydrous Et2O at room 

temperature.
15

 The structure of the amine 6 was confirmed by LC-MS and NMR analyses. 

Detection of the desired mass, m/z 176 [M+H]
+
 on (+)-ESI-LC-MS, disappearance of the 

carbonyl carbon signal, appearance of a new carbon signal with reduced intensity in  the aliphatic 

region (
13

C NMR), and no additional signals in 
1
H NMR spectra confirmed the structure of 

amine 6. Amine 6 was converted into the corresponding isocyanate intermediate 7 using Boc2O 

and DMAP in acetonitrile at room temperature.
16

 Subsequent reaction with 4-(2-hydroxypropan-

2-yl)furan-2-sulfonamide 8 in presence of NaH gave the desired product 1 in 98% isotopic purity 

(LC-MS).
17

 In the (–)-ESI-LC-MS analysis, the desired m/z 405 [M–H]
–
 (406 Da) was detected, 

which was 2 Dalton (Da) higher mass than MCC950 (404 Da, m/z 403 [M–H]
–
). The 

1
H NMR 

spectra showed two protons less than MCC950 in the hexahydroindacene moiety at the site of 

deuterium incorporation confirming the structure of compound 1. 
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Scheme 1. Reagents and conditions: (a) LiAlD4, AlCl3, Et2O, rt, 4 h, 32% (b) Boc2O, DMAP, 

CH3CN, 30 min (c) NaH, THF, rt, 16 h, 63% (2 steps). 

The synthesis of compounds 2 and 3 (Figure 2) required two key intermediates 16 and 17 

(Scheme 2); these intermediates were synthesised using commercially available 5-bromo-2,3-

dihydro-1H-inden-1-one (Scheme 2) as starting material. Reaction with LiAlD4/AlCl3 gave 

deuterated intermediate 10 in excellent yield. Heck coupling with t-butyl acrylate gave alkene 

intermediate 11,
18

 which was reduced to intermediate 12 by hydrogenation using Pd/C as catalyst 

over 1 h. The quantity of catalyst (10% wt/wt) was key to the success of this conversion. In 

initial efforts to convert intermediate 11 to 12, with excess loading of catalyst (20% wt/wt) and 

prolonged reaction duration (typically overnight), >50% of deuterium to hydrogen exchange was 

observed. The optimal reaction conditions were found to be 10% catalyst loading with 1 hour 

reaction time under a hydrogen atmosphere. Deprotection of the t-butyl group was achieved 

using trifluoroacetic acid to obtain 13 in quantitative yield. The acid intermediate 13 was first 

chlorinated using oxalyl chloride and catalytic DMF at room temperature for 1 h, then subjected 

to cyclization via Friedel–Crafts acylation using AlCl3 catalyst in 1,2 dichloroethane (DCE). 

During this cyclisation, we observed ca. 15% (by LC-MS) of regioisomer 15; this was separated 

by column chromatography. 
1
H NMR spectra of intermediate 14 showed two singlets as 

expected in the aromatic region, and two doublets for regioisomer 15, confirming the structure of 

the regioisomers. Nitration of the intermediate 14 using concentrated H2SO4/HNO3 (1:1) at 0 °C 

gave a mixture of regiosiomers 16 and 17. The regioisomers were separated by column 

chromatography and the minor isomer was identified as 16 and the major as 17.
14

 The structures 

of intermediates 16 and 17 were confirmed by comparing the NMR spectra with their hydrogen 
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equivalents already confirmed by X-ray crystallography.
14

 The 
1
H NMR of the deuterated 

compounds 16 and 17 (Scheme 2) showed a triplet instead of multiplet for protons on C-6 carbon 

and no signal was observed for deuteriums on C-7 carbon. 

 

Scheme 2. Reagents and conditions: (a) LiAlD4, AlCl3, Et2O, rt, 4 h, 94% (b) t-Butyl acrylate, 

Pd(OAc)2, Tri(p-tolyl)phosphine, Et3N, DMF, 100 °C, 47% (c) 10% Pd/C, H2 (1 atm), MeOH, rt, 

1 h, 97% (d) CF3COOH, CH2Cl2, rt, 98% (e) i) (CO)2Cl2, DMF (cat.) ii) AlCl3, DCE, rt, 1 h, 72% 

(f) con. HNO3/H2SO4, 0 °C, 1 h, 16%, 62% of 16 and 17 respectively. 

After confirming the structures (using unlabelled 16) for the synthesis of compound 2 (Scheme 

3), the nitro intermediate 16 was reduced to the corresponding amine 18 by hydrogenation using 

Pd/C as catalyst, followed by reaction with LiAlD4/AlCl3 to give the tetra deuterium-labelled 

amine 19. This key amine intermediate 19 was converted into the corresponding isocyanate 20 as 

before, followed by reaction with sulfonamide 8 in presence of NaH to give the desired product 2 

in 98% isotopic purity (LC-MS). 
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Scheme 3. Reagents and conditions: (a) 10% Pd/C, H2 (1 atm), MeOH, rt, 1 h, 94% (b) LiAlD4, 

AlCl3, Et2O, rt, 4 h, 31% (c) Boc2O, DMAP, CH3CN, 30 min (d) NaH, THF, rt, 16 h, 68% (2 

steps). 

     Compound 3 (Figure 2) was synthesised from 8-nitro-3,5,6,7-tetrahydro-s-indacen-1(2H)-

one-7,7-d2 17 (Scheme 4) via the same procedures used for compound 2 (Scheme 3) in 97.3% 

isotopic purity (LC-MS). In the (–)-ESI-LC-MS analysis for compounds 2 and 3 (408 Da), the 

desired m/z 407 [M–H]
–
 was detected, 4 Da higher than MCC950 (404 Da, m/z 403 [M–H]

–
). 

1
H 

NMR spectra showed four protons less than MCC950 in the hexahydroindacene moiety where 

deuteriums were incorporated, confirming the structures of compounds 2 and 3. 
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Scheme 4. Reagents and conditions: (a) 10% Pd/C, H2 (1 atm), MeOH, rt, 1 h, 89% (b) LiAlD4, 

AlCl3, Et2O, rt, 4 h, 40% (c) Boc2O, DMAP, CH3CN, 30 min (d) NaH, THF, rt, 16 h, 56% (2 

steps). 

     Compound 4 (Scheme 5) was synthesised from ethyl-3-furoate as starting material. This was 

reacted with chlorosulfonic acid in anhydrous CH2Cl2 for 72 hours at room temperature. Pyridine 

was then added at –10 °C followed by phosphorous pentachloride (PCl5) and the resulting 

solution stirred for 16 h at room temperature to give sulfonyl chloride 25. This sulfonylchloride 

was treated with liquid NH3 at –78 °C to obtain sulfonamide 26 in excellent yield without any 

purification. Intermediate 26 was reacted with in situ generated CD3MgI in Et2O at room 

temperature to give the desired deuterium-labelled sulfonamide intermediate 27 in high yield. 

The sulfonamide 27 was coupled with previously synthesised isocyanate 28 as before to give the 

desired sulfonylurea 4 in 100% isotopic purity (LC-MS). In the (–)-ESI-LC-MS analysis for 

compound 4 (410 Da), the desired m/z 409 [M–H]
–
 was detected, 6 Da higher than MCC950 

(404 Da, m/z 403 [M–H]
–
). In the 

1
H NMR spectrum, no signal was detected for deuterium-

labelled methyl groups, confirming the structure of compound 4. 

 

Scheme 5. Reagents and conditions: (a) i) ClSO3H, CH2Cl2, rt, 72 h ii) Pyridine, PCl5, rt, 12 h, 

79% (b) NH3, rt, 3 h, 94% (c) CD3MgI, Et2O, rt, 16 h, 89% (d) NaH, THF, rt, 16 h, 47%. 

     Compounds 1-4 were tested for their NLRP3 inflammasome inhibitory activity in a human 

cell based assay. Assays were conducted in two or three biological repeats performed in triplicate 

and the results are listed in Table 1. NLRP3-induced production and release of the pro-

inflammatory cytokine interleukine-1β (IL-1β) from lipopolysaccharide (LPS) primed human 



  

8 
 

monocyte-derived macrophages (HMDMs), stimulated with nigericin, was tested in the presence 

and absence of increasing concentrations of test compounds. The determined IC50 values were 

then compared to that for MCC950 used in this assay as positive control. As anticipated, all of 

the compounds exhibited similar activity to MCC950 (IC50 8 nM). 

Table 1. NLRP3 inhibitory activity results for compounds 1-4 

Compound 
IL1-β IC50

a
±SD

b
 

(nM) (HMDM) 

MCC950 5±4
c
 

1 6±2 

2 7±3 

3  6±1
d
 

4 5±1 

 

aIC50 data reported as the mean of three biological replicates performed in triplicate; bStandard deviation  

cPreviously reported 8 nM 4; dIC50 data reported as the mean of two biological replicates performed in triplicate. 

     In summary, we have successfully synthesised di, tetra and hexa deuterium labelled analogues 

of NLRP3 inflammasome inhibitor MCC950. These derivatives are useful as internal standards 

for LC-MS analyses of biological samples from in vivo studies. Furthermore, the synthetic routes 

and intermediates developed for these deuterated tricyclic systems (compounds 1-3, Figure 2) 

can be used more widely for other lead molecules now progressing towards the clinic. 
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