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Abstract 58 

Protecting biomass carbon stocks to mitigate climate change has direct implications for 59 

biodiversity conservation. Yet, evidence that a positive association exists between carbon 60 

density and species richness is contrasting. Here we test how this association varies i) across 61 

spatial extents, and ii) as a function of how strongly carbon and species richness depend on 62 

environmental variables. We found the correlation weakens when moving from larger 63 

extents, e.g. realms, to narrower extents, e.g. ecoregions. For ecoregions, a positive 64 

correlation emerges when both species richness and carbon density vary as functions of the 65 

same environmental variables (climate, soil, elevation). In 20% of tropical ecoregions there 66 

are opportunities to pursue carbon conservation with direct biodiversity co-benefits, while 67 

other ecoregions require careful planning for both species and carbon to avoid potentially 68 

perverse outcomes. The broad assumption of a linear relationship between carbon and 69 

biodiversity can lead to undesired outcomes.  70 
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Introduction 71 

The two greatest threats to life on Earth are anthropogenic climate change (Thomas et al. 72 

2004; Scheffers et al. 2016) and land use change (Newbold et al. 2016; Venter et al. 2016), 73 

with ecological impacts spanning all scales of biological organisation, from genes to 74 

ecosystems (Scheffers et al. 2016). The interaction between these two threats and the 75 

management actions taken to ameliorate them is of primary conservation relevance, with 76 

rapid climate change expected to amplify the effect of land use change (Mantyka-Pringle et 77 

al. 2015; Visconti et al. 2016). 78 

The establishment of protected areas in biologically diverse locations is the main 79 

strategy to minimize the impacts on biodiversity from land use change (Watson et al. 2014), 80 

while action to mitigate climate change focuses on the protection and restoration of high 81 

vegetative carbon stocks (Venter & Koh 2012). Protection of natural habitats that reduces 82 

land clearing can serve both the purpose of preserving carbon stocks and protecting 83 

ecosystems. This means that different environmental policy goals, such as climate change 84 

mitigation and biodiversity conservation, can be achieved simultaneously with the same 85 

investment (Di Marco et al. 2016). A much-debated example of carbon conservation schemes 86 

is the UN mechanism for Reducing Emissions from Deforestation and forest Degradation 87 

(REDD+), which is primarily aimed at reducing global greenhouse gas emissions but can 88 

have also direct implications for biodiversity conservation (Venter et al. 2009a; Thomas et al. 89 

2013). Understanding the relationship between carbon and biodiversity, and their potential 90 

conservation synergies, is fundamental for achieving both goals under this scheme.  91 

A dual benefit is expected when financial resources are mobilised towards the 92 

conservation of areas with high carbon and biodiversity content that are at high risk of 93 

deforestation (Venter et al. 2009a), but preventive carbon credits can also benefit highly 94 

forested countries with low current deforestation rates (Da Fonseca et al. 2007). However, 95 
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reducing deforestation in a carbon-rich area might also have negative implications for 96 

biodiversity, if the deforestation is reallocated to areas with lower carbon but higher 97 

biodiversity content (a phenomenon known as ‘leakage’; Gan & Mccarl 2007). At the same 98 

time, actions to prevent climate change have also raised concerns for biodiversity 99 

conservation as they can result in the modification of natural habitats, such as biofuel 100 

plantations replacing natural forests (Danielsen et al. 2009) or afforestation of areas rich in 101 

non-forest biodiversity (Brockerhoff et al. 2008; Lindenmayer et al. 2012). Such perverse 102 

outcomes at most likely when biodiversity and carbon density are weakly or even negatively 103 

correlated (Paoli et al. 2010).  104 

To date, the evidence of a positive correlation between biodiversity and carbon 105 

density is mixed, with different studies reporting contrasting findings. Some authors have 106 

found a positive correlation between the global variation of terrestrial carbon and the 107 

variation of vertebrate species richness (Strassburg et al. 2010; Buchanan et al. 2011; 108 

Siikamäki & Newbold 2012). Others have found a weak or moderate correlation in national 109 

and sub-national analyses, for example using threatened mammals in Borneo (Venter et al. 110 

2009b), terrestrial vertebrates in Colombia (Armenteras et al. 2015) and Costa-Rica 111 

(Locatelli et al. 2013), and tree species in central Africa (Day et al. 2013). In contrast, several 112 

analyses have revealed limited, or even negative, correspondence between species richness 113 

and carbon in UK (Anderson et al. 2009), Indonesia (Paoli et al. 2010; Murray et al. 2015), 114 

and Colombia at a sub-national extents (Armenteras et al. 2015). This was also observed 115 

when analysing fine grain (plot-level) carbon data in tropical forests around the globe, with 116 

no correlation found with vertebrate (Beaudrot et al. 2016) or plant (Sullivan et al. 2016) 117 

biodiversity. 118 

 Contrasting evidence on the correlation between biodiversity and carbon may reflect 119 

the diversity of studies in terms of geographic location (including the natural variation of the 120 
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study areas), taxonomic groups analysed, and carbon measured (e.g. above- and/or below- 121 

ground). At a global extent, wet tropical areas tend to be richer in biodiversity than temperate 122 

areas (Gaston 2000), and also contain high stored carbon (Ruesch & Gibbs 2008). However, 123 

at more local extents the potential for co-benefits can be much more limited, especially in 124 

silvicultural and agroforestry landscapes in the tropics, where altering the composition of 125 

natural ecosystems can result in relatively high carbon sequestration with a substantial 126 

reduction of species diversity (Putz & Redford 2009; Kessler et al. 2012; Lindenmayer et al. 127 

2012). 128 

Overall, a pattern emerges from the literature, with global-extent analyses being more 129 

likely to reveal a positive correlation (Strassburg et al. 2010) than regional- or local-extent 130 

analyses (Buchanan et al. 2011; Armenteras et al. 2015). This may be related to the fact that 131 

the spatial variation in the environmental drivers of biodiversity and carbon, such as climate, 132 

is higher at larger spatial extents (Field et al. 2009). In fact, at the global extent, spatial 133 

variation in species richness (Kreft & Jetz 2007; Belmaker & Jetz 2015), primary 134 

productivity (Rosenzweig 1968; Cramer et al. 1999), and soil carbon (Cao & Woodward 135 

1998), are all strongly correlated with climate. At regional or local extents the role of other 136 

variables in driving these ecosystem properties can become predominant, species richness for 137 

example may depend upon factors like topographic heterogeneity (Kerr & Packer 1997), soil 138 

properties (Stevens et al. 2004), or Quaternary glacial history (Normand et al. 2011). 139 

Regional carbon density may also deviate from that expected due to climate regimes, for 140 

example when wildland fire disturbance is prevalent (Midgley et al. 2010). At narrower 141 

extents, it is also expected that both carbon density and species richness show less variation 142 

than at larger extents, and this in turn influences their correlation. The choice of an 143 

appropriate spatial extent for analysing this relationship is thus of particular relevance to 144 
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making management and policy decisions (Blackburn & Gaston 2002; Rahbek 2005), with 145 

the potential for contrasting findings to emerge at different extents (Armenteras et al. 2015). 146 

Here we analyse how the correlation between species richness, one of the most 147 

investigated measures of biodiversity (Field et al. 2009), and carbon density varies from 148 

global to local extents, and what influences the correlation locally. We adopt the 149 

biogeographical subdivision of the world produced by Olson and colleagues (2001) to 150 

measure the correlation between carbon density and species richness among ecoregions, 151 

biomes, realms, and the globe. Since we were specifically interested in the role of spatial 152 

extent (i.e. the size of the study region; (Blackburn & Gaston 2002)), we employed a fixed 153 

grain size in our analysis, after performing a sensitivity test (see also (Belmaker & Jetz 2011) 154 

for a comprehensive analysis of grain size). We then use ecoregions, the smallest extent in 155 

our analysis, to test the predictability of the biodiversity-carbon correlation. We hypothesize 156 

that the correlation between biodiversity and carbon depends on (i) the spatial extent 157 

considered, decreasing in strength when moving from a global to an ecoregional extent, and 158 

(ii) the predictability of both species richness and carbon density from a suite of 159 

environmental variables. 160 

 161 

 162 

Methods 163 

Carbon and biodiversity data 164 

We represented carbon density (Fig. 1a) using a 1km map of the above-ground vegetation 165 

biomass in tropical and subtropical regions worldwide (Avitabile et al. 2016). This is an up-166 

to-date pantropical map that combines two comprehensive recent estimates of carbon density 167 

(Saatchi et al. 2011; Baccini et al. 2012). The two estimates of carbon density were built 168 
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using a similar methodology – based on a combination of Modis and LiDAR satellite images 169 

– but adopted different calibration data, resulting in some significant differences. The 170 

combined pantropical map resolves these inconsistencies using a fusion model calibrated on a 171 

reference carbon dataset. We tested the sensitivity of our results to the carbon measure 172 

adopted, by using a different 1km map (Fig. S1) representing the above- and below-ground 173 

vegetation biomass for tropical and temperate areas of the entire globe (Ruesch & Gibbs 174 

2008). This map, already used in previous studies (Strassburg et al. 2010), applied the 175 

International Panel on Climate Change Tier-1 method (IPCC 2006) for estimating carbon 176 

stocks of vegetation types in different ecoregions. Both carbon maps were resampled to a 177 

resolution of 10 km using average pixel values (see below for a description of our grain size 178 

choice). 179 

 We used species richness as our biodiversity metric for each grid cell. We defined 180 

species richness maps (Fig. 1b) from the geographic ranges of terrestrial amphibians (n = 181 

6,407), birds (n=10,424), and mammals (n=5,312) (Birdlife International & NatureServe 182 

2015; IUCN 2016). We rasterised species ranges at a resolution of 10 km, which represents a 183 

compromise between computational tractability and data accuracy (Di Marco et al. 2017). 184 

This resolution is in line with that adopted in previous national-extent analyses using similar 185 

data (Armenteras et al. 2015), but is finer than the resolution previously adopted for global-186 

extent analyses (Strassburg et al. 2010). Employing a 10 km resolution, when measuring 187 

species richness from IUCN range maps, can lead to overestimation of richness due to 188 

commission errors in the maps, i.e. areas included as part of the geographic range of a species 189 

even if the species is actually absent (Hurlbert & Jetz 2007; Jetz et al. 2008). Employing 190 

coarser analytical resolutions can reduce the effect of commission errors, but also reduces 191 

statistical power by reducing the number of available grid cells. Coarsening the resolution 192 

also leads to more area having to be selected in spatial prioritisation analyses, making the 193 



9 
 

selection less cost-efficient without significantly altering the overall results (Montesino 194 

Pouzols et al. 2014; Di Marco et al. 2017). To measure the sensitivity of our results to the 195 

spatial resolution adopted, we repeated our test of the first hypothesis after changing the 196 

resolution from 10 km to 100 km. In this case we used the global carbon map (Ruesch & 197 

Gibbs 2008), as opposed to the pantropical one, to include as many ecoregions and biomes as 198 

possible (using a cut-off rule of at least 10 grid cells each). 199 

 200 

Testing hypothesis 1: the correlation between species richness and carbon density 201 

deteriorates when spatial extent decreases 202 

We used the hierarchical subdivisions of the world produced by Olson and colleagues (2001) 203 

– globe, realms, biomes within realms, and ecoregions – to test the correlation between 204 

species richness and carbon density at different spatial extents. We estimated the correlation 205 

between carbon and species richness across all grid cells in each analytical region, using the 206 

Spearman’s rank correlation coefficient (rs; Strassburg et al. 2010; Armenteras et al. 2015). 207 

We first calculated the correlation value at a global extent, and then calculated the mean 208 

correlation value, and 95% credible interval, at each geographic extent (realms, biomes, and 209 

ecoregions). We tested whether the correlation values observed at a given biogeographical 210 

extent were significantly lower than the values observed at broader extents (one sided t-test). 211 

We calculated these correlations both for total species richness, aggregated across the three 212 

vertebrate classes, and for the species richness in individual classes.  213 

We verified whether our estimates of the species-carbon correlation were influenced 214 

by the presence of human-modified environments, where the natural distribution of both 215 

species and carbon is expected to be substantially altered. To do this, we repeated our 216 

analyses after excluding areas of high human pressure, as identified by values of Human 217 
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Footprint of ≥ 4 (in a 0-50 range; Venter et al. 2016; Watson et al. 2016). We also verified 218 

whether our results were influenced by the coarse distribution data used in our analyses, 219 

repeating the analyses for mammals using habitat suitability models available from Rondinini 220 

et al. (2011). These models derive from a systematic classification of the species’ habitat 221 

preferences reported in the IUCN Red List, and represent refined species distribution that 222 

exclude areas of unsuitable habitat from each species’ range. Using these models we were 223 

also able to identify ecoregions where the use of IUCN species ranges lead to an 224 

overestimation of species richness (Rondinini et al. 2011), thereby generating uncertainty in 225 

the estimation of species-carbon correlation. Finally, we repeated our analysis using only 226 

threatened species, as classified in the IUCN Red List, since these are the species of highest 227 

immediate conservation concern. 228 

 We excluded from the analyses ecoregions with an area smaller than 5,000 km2, 229 

which have low statistical power (Watson et al. 2016). We also excluded ecoregions in which 230 

carbon data were available for less than 50% of their area. 231 

 232 

Testing hypothesis 2: the correlation between species richness and carbon density 233 

depends on how strongly each is related to environmental variables 234 

 235 

Modelling carbon density and species richness 236 

We hypothesized that the strength of the species richness-carbon density correlation is a 237 

function of how strongly each is related to environmental variables. We used individual 238 

ecoregions as our analytical units, because these represented the finest biogeographical extent 239 

in our hierarchal analyses. We ran two separate models within each ecoregion, one relating 240 

carbon density to environmental variables, and one relating species richness to those 241 
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variables. We retained all areas in this analysis, but tested the role of disturbance factors in 242 

altering the species-carbon correlation in ecoregions (see next section). The main focus of our 243 

work is to identify general patterns and drivers of the species richness-carbon density 244 

correlation, rather than testing several alternative hypotheses behind the distribution of the 245 

two variables. We thus employed relatively simple, and consistent, model structures to 246 

predict both species richness and carbon density as functions of climate, soil characteristics, 247 

and altitude. 248 

Following previous approaches (Iwamura et al. 2013), we selected six bioclimatic 249 

variables from the WorldClim dataset (Hijmans et al. 2005) to represent ecoregions’ climatic 250 

profiles: annual mean temperature, mean diurnal temperature range, temperature annual 251 

range, annual precipitation, precipitation seasonality, precipitation of the driest quarter. We 252 

also included potential evapotranspiration (Trabucco & Zomer 2009). In order to prevent 253 

potential collinearity issues among the bioclimatic variables, we ran a principal component 254 

analysis on the variables and extracted the two principal axes (representing 79% of the 255 

variance). We also selected seven descriptors of soil characteristics (Global Soil Data Task 256 

Group 2000): bulk density, field capacity, profile available water capacity, thermal capacity, 257 

total nitrogen density, wilting point. Similar to climate data, we ran a principal component 258 

analysis on the soil variables (Sullivan et al. 2016) and used the two principal axes as 259 

predictors (representing 77% of the variance). In addition to climatic and soil variables, we 260 

also included elevation above sea level (USGS 2006) as an environmental predictor.  261 

 In order to account for spatial autocorrelation in model residuals, we used spatial 262 

simultaneous autoregressive error models (SAR; Kissling & Carl 2007). For each ecoregion 263 

we selected the neighbourhood distance resulting in the lowest AIC value for the SAR 264 

models, testing carbon models and species richness models separately. The tested distances 265 

(15, 50, 100 km) span the magnitude of values found to be significant in other similar studies 266 
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(Tognelli & Kelt 2004; Kissling & Carl 2008). We measured the variance explained by the 267 

environmental variables in each SAR model as the square of the correlation between 268 

observed response (either carbon or species richness) and predicted response. Since we were 269 

interested in the relative contribution of environmental characteristics, we only considered the 270 

proportion of variance explained by the models’ variables and excluded the portion of 271 

variance explained by the spatial autocorrelation (Faurby & Svenning 2015; Santini et al. 272 

2017). The explained variance measured that way is typically lower than the variance 273 

explained by the full model, and we report both values for comparison. 274 

 275 

Determining the drivers of the correlation between species richness and carbon density 276 

For each ecoregion, we coupled the outcome of environmental models (their R2 values 277 

excluding the contribution of spatial autocorrelation) with the following variables: biome and 278 

realm where the ecoregion is found, area of the ecoregion, fractal dimension of the ecoregion  279 

(e.g. to account for different shapes between coastal vs inland ecoregions), standard deviation 280 

of carbon density and species richness within the ecoregion. Accounting for standard 281 

deviation is necessary to control for the effect that natural variation in species richness and 282 

carbon have in determining high or low correlation between the two. We also accounted for 283 

three disturbance factors in our models. The first factor is the proportion of the ecoregion 284 

surface where Human Footprint  is ≥ 4 (on a 0-50 range), which is considered a value of 285 

significant human pressure (Venter et al. 2016; Watson et al. 2016). The second factor is the 286 

average year in which the first human alteration of land use in the ecoregion was registered, 287 

as derived from the KK10 model of historical land-use intensity, spanning 6,000 BC to 2,000 288 

AD (Ellis et al., 2013). The third factor is wildland fire, which plays a key role in shaping 289 

carbon density and biodiversity in some ecosystem (Midgley et al. 2010); we measured fire 290 



13 
 

extent as the average area burnt per year (over the period 1996-2016) using the GFED4 291 

dataset (Giglio et al. 2013).  292 

We ran a random forest regression model (Breiman 2001) to identify the most 293 

important predictors of the spatial variation in the species richness-carbon correlation among 294 

ecoregions, as a function of the above-listed variables (R2 of environmental models, biome 295 

and realm, size and fractal dimension of the ecoregion, SD of species richness and carbon, 296 

disturbance). We then used partial dependence plots to represent the marginal effect of each 297 

numerical variable on the correlation between species richness and carbon. We also repeated 298 

the analyses within individual realms to represent the relative contribution of fire regimes in 299 

different systems. 300 

 All analyses were run using freely available software. Spatial data preparation was 301 

done in GrassGIS (GRASS Development Team 2016). Statistical analyses were done in R (R 302 

Core Team 2015), using the packages ‘spdep’(Bivand & Piras 2015), ‘randomForest’ (Liaw 303 

& Wiener 2002), and ‘party’ (Strobl et al. 2009).  304 

 305 

 306 

Results 307 

Testing hypothesis 1: the correlation between species richness and carbon density 308 

deteriorates when spatial extent decreases 309 

When using the pan-tropical above-ground carbon map, we identified 437 ecoregions with a 310 

total area size of at least 5,000 km2 and >50% of their area covered by carbon data. We found 311 

a moderate positive correlation between vertebrate species richness and carbon density at the 312 

global extent (rs = 0.48), and a slightly higher mean correlation at the extent of realms (mean 313 

rs = 0.55, sd = 0.26). The correlation was much weaker within biomes (mean rs = 0.31, sd = 314 
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0.27) and even more so within ecoregions (mean rs = 0.22, sd = 0.30) (Fig. 2a). With the 315 

exception of `realms vs the globe`, the correlation values observed at a given biogeographical 316 

extent were always lower than those observed at larger extents with a significance level of 317 

0.05 or below (Table S1). This exception is removed when excluding areas with high human 318 

pressure from the analysis (Table S2), and when looking at the global distribution of  above- 319 

and below-ground carbon (Table S3). 320 

We plotted the values of the correlation in each tropical and sub-tropical ecoregion to 321 

show areas where investments in carbon conservation are most likely to deliver biodiversity 322 

co-benefits (Fig. 3). The map shows high variation in correlation values among ecoregions, 323 

from very negative (rs = -0.64) to very positive (rs = 0.84). We observed high correlation 324 

values in Madagascar, continental Southeast Asia, northern and eastern Australia, and part of 325 

South America. 326 

 Similar to the all-species analysis, the correlation between species richness and carbon 327 

become on average weaker from global to narrower extents when looking at individual 328 

vertebrate classes (Fig. 2b-d). This pattern was qualitatively confirmed, and was even 329 

stronger, when repeating the analyses only on areas not affected by high levels of human 330 

pressure (Fig. S2). Our sensitivity testing on resolution also showed consistent results when 331 

employing a 100 km grid instead of 10 km (Fig. S3), but in this case half of the ecoregions 332 

were removed from analyses due to having fewer than 10 grid cells. When using habitat 333 

suitability models to represent the distribution of terrestrial mammal species, we obtained 334 

almost identical correlations as when we used IUCN range maps (Fig. S4). We were also able 335 

to identify areas where the use of IUCN maps could lead to potential uncertainty in our 336 

spatial results (Fig S5). We found most ecoregions (>80%) had a very similar level of species 337 

richness when using habitat suitability models or IUCN ranges (average similarity of 90% or 338 

more) but there were exceptions, especially in central Asia, where the species richness 339 
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measured from habitat models represented only 60% of the richness measured from IUCN 340 

ranges. In those regions, the interpretation of our spatial results requires caution. Finally, 341 

when only considering threatened species the correlation with carbon density was generally 342 

lower than when all species were considered (Fig. S6). 343 

 These results overall provide support for our first hypothesis that the biodiversity-344 

carbon correlation is on average higher at broad spatial extent and lower at smaller extents, 345 

and demonstrate the finding is robust to data uncertainty and the analytical settings. 346 

 347 

Testing hypothesis 2: the correlation between species richness and carbon density 348 

depends on how strongly each is related to environmental variables 349 

 350 

Modelling carbon density and species richness 351 

 We tested the ability of environmental variables to account for the spatial variation of 352 

both carbon density and species richness within each ecoregion. The performance of the two 353 

sets of SAR models was quite variable among ecoregions, with a strong effect of spatial 354 

autocorrelation, especially for species richness (Fig. 4). The overall performance of species 355 

richness models (mean R2 = 0.92, sd R2 = 0.13) was higher than carbon models (mean R2 = 356 

0.72, sd R2 = 0.15). However, this was not the case when only considering the contribution of 357 

environmental variables to the models (excluding the spatial autocorrelation component), with 358 

both sets of models having similar performances (species richness models: mean R2 = 0.29, sd 359 

R2 = 0.25; carbon models: mean R2 = 0.27, sd R2 = 0.21 ). 360 

 361 
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Determining the drivers of the correlation between species richness and carbon density 362 

The most important predictors of the correlation between species richness and carbon density 363 

was the predictability of carbon from environmental variables (Fig. 5). Other important 364 

predictors were the standard deviation of species richness, the predictability of species richness 365 

from environmental variables, and the average year of first human land use in the ecoregion. 366 

We represented the marginal effect of each predictor on the species-carbon correlation using 367 

partial dependence plots (Fig. S7), and found that higher correlation values were observed with 368 

higher performance of the environmental prediction models, higher SD of carbon and species 369 

richness, and higher levels of disturbance (human impact, and fire extent). We represented the 370 

relative contribution of fire regimes in different realms, and found the species-carbon 371 

correlation in the Afrotropics and the Neotropics was negatively associated with high fire 372 

extents, while Australasia had a positive association and the Indomalay region had high 373 

correlation observed at both low and high levels of fire extents (Fig. S8). Finally, a bivariate 374 

plot showed that that the species-carbon correlation value was particularly high in those 375 

ecoregions where both carbon and species richness had strong relationships with environmental 376 

variables (Fig. 6).  377 

 These results are overall consistent with our second hypothesis that the correlation 378 

between species richness and carbon density is higher in those ecoregions where both variables 379 

can be successfully predicted from environmental conditions (climate, soil, altitude).  380 

 381 

 382 

Discussion 383 

 Years of debate on whether it is possible simultaneously to conserve biodiversity and stored 384 

carbon (Venter et al. 2009a; Gardner et al. 2012; Thomas et al. 2013; Armenteras et al. 2015) 385 
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have failed to give an unambiguous answer. Yet this question has significant practical 386 

implications for carbon policies and site-based conservation actions. Here we provide a 387 

comprehensive multi-extent analysis of where a positive correlation is most likely to occur, 388 

and discuss two general findings. First, we found the correlation is lower when moving from 389 

a larger to a narrower extent (e.g. global/realms to biomes/ecoregions). This result was robust 390 

to variations in the group of species analysed, the use of refined species distributions, the 391 

removal of human modified areas, and the analytical resolution employed, demonstrating the 392 

general validity of the finding. This is consistent with previous findings that the association 393 

between species richness and environmental variables is weaker in studies performed over 394 

smaller scales, i.e. small extents and small grain sizes (Field et al. 2009; Belmaker & Jetz 395 

2011). Second, we found a positive correlation is more likely in geographic domains in which 396 

both species richness and carbon density vary as predictable functions of environment 397 

characteristics. We showed that this is not simply related to the natural variability in species 398 

richness and carbon density. When controlling for standard deviation in carbon and species 399 

richness, and for disturbance factors operating in each ecoregion, we still found the species-400 

carbon correlation was positively associated with the predictability of the two variables from 401 

environmental characteristics. In fact, the ability of environmental models to predict carbon 402 

density was the most important driver of the species-carbon correlation. 403 

 We found high heterogeneity in the species richness-carbon correlation among 404 

ecoregions, but showed that there are still opportunities to pursue local carbon conservation 405 

with high biodiversity co-benefits. In tropical and subtropical areas, 20% of ecoregions have 406 

a high correlation value (rs ≥ 0.5), while 34% have very low or even negative values (rs ≤ 407 

0.1). This means that it is important to be strategic in planning carbon and biodiversity 408 

investments. Efforts to protect carbon will likely deliver direct and important biodiversity 409 

benefits in ecoregions with high positive correlation values. However this focus is not a 410 
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panacea, and a mixed strategy will be necessary elsewhere, where actions directly aimed at 411 

protecting biodiversity need to be complemented with carbon schemes to obtain a double 412 

benefit (Venter et al. 2009a; Thomas et al. 2013). This is especially relevant in areas that are 413 

rich in biodiversity, have a low or negative carbon-biodiversity correlation, and are at 414 

potential risk of habitat loss displacement (e.g. deforestation being stopped in one place but 415 

reallocated in another). In these areas it is fundamental to couple the protection of carbon-416 

dense sites with the protection of important sites for biodiversity, to avoid potential 417 

detrimental effects of carbon schemes on biodiversity. Biodiversity conservation, including 418 

the global reduction of extinction rates, relies largely on local actions (Boyd et al. 2008) and 419 

many sites are irreplaceable due to the unique biodiversity they host. On the contrary, there 420 

are typically several options to achieve climate change mitigation through carbon 421 

sequestration. Hence, there may be a case for giving priority to biodiversity conservation at 422 

local extents where trade-offs with carbon conservation emerge, particularly in ecoregions in 423 

which the absolute amount of carbon storage is low. 424 

Many ecoregions with negative correlation between species richness and carbon 425 

values hosts dry savannah and grassland environments with low variation in carbon content, 426 

such as the Somali Acacia-Commiphora bushlands and thickets, the Western Australia Mulga 427 

shrublands, and the Patagonian Steppe. These are fire- and browse-driven systems where 428 

diversity is related to lower carbon density, where species diversity might not be necessarily 429 

associated with the presence of trees, which explains the lack of a positive association with 430 

carbon storage. However, a recent study (Bastin et al. 2017), using visual interpretation of 431 

very-high resolution satellite imagery, suggests that tree density in dryland biomes might be 432 

underestimated when using medium-resolution satellite imagery, and this might also affect 433 

the measure of species-carbon correlation in these environments. Other regions where 434 

negative correlations were observed are characterised by low variation in species richness, 435 



19 
 

which was either consistently high throughout the ecoregion, such as the Purus-Madeira 436 

moist forest in the Amazon, or relatively low throughout, such as in some deserts. We also 437 

observed negative correlation in ecoregions which were almost entirely converted to 438 

anthropogenic uses, such as the Southern Korean Evergreen Forests and the Guizhou Plateau 439 

broadleaf and mixed forests in China. However ecoregions with a long history of human land 440 

use were characterised by relatively higher carbon-richness correlation. This is likely related 441 

to the alteration of natural habitat, which reduces the space available for the manifestation of 442 

key ecosystem properties (such as carbon storage and species diversity). This also implies 443 

that the protection of remaining natural habitats in ecoregions with a long history of human 444 

land use is likely to serve both biodiversity and carbon conservation purposes.  445 

Carbon density is known to be affected by fire regimes associated with seasonal 446 

climates in the subtropics (Midgley et al. 2010), while high biodiversity can exist in those 447 

areas due to specific fire adaptations (Bond & Parr 2010). When considering all ecoregions, 448 

we found relatively little influence of fire extent on the species-carbon correlation (Fig S7). 449 

However, when separating the effect for individual realms (Fig S8), we found that fire extent 450 

in the Neotropics and particularly in the Afrotropics were negatively associated with the 451 

species-carbon correlation. This highlights the importance of considering the trade-offs 452 

between carbon sequestration policies and conservation of biodiversity in fire-driven systems 453 

(Midgley & Bond 2015). 454 

The correlation between species richness and carbon was weaker if only considering 455 

species threatened with extinction, especially when looking at broader spatial extents 456 

(biomes, realms, or the globe). This was already discussed by Strassburg et al. (2010), and is 457 

not surprising: while the global variation in both carbon storage and species richness is 458 

primarily climate-dependent, the richness in threatened species is more influenced by 459 

anthropogenic pressures. However, there are still ecoregions (18% of all pantropical 460 
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ecoregions) in which the correlation of threatened species richness with carbon value is high 461 

(rs ≥ 0.5). These ecoregions represent important opportunities for using carbon conservation 462 

schemes to conserve areas with high concentration of threatened species, contributing to two 463 

of the most important challenges for global biodiversity conservation.  464 

Mitigating climate change and halting biodiversity loss represent key objectives for 465 

achieving sustainable development (United Nations General Assembly 2015). Evidence for 466 

the existence of a positive correlation between biodiversity and carbon is mixed, and many 467 

have argued that action to mitigating climate change might have a negative impact on 468 

biodiversity. Thereby, acting on the presumption of a linear positive relationship between 469 

carbon and biodiversity can lead to perverse outcomes in the many areas where this 470 

assumption does not hold. Carbon policies applied at large spatial extents (i.e. encompassing 471 

multiple biomes within a realm, or the globe) are likely to have positive effects on species 472 

conservation. Management interventions planned within individual ecoregions can lead to 473 

trade-offs, and requires considering the environmental factors that drive the correlation 474 

between carbon and species. Areas with high species-carbon correlation represent immediate 475 

opportunity for achieving both objectives. Areas with low, or even negative, correlation 476 

should be approached with caution in carbon conservation schemes. In these regions, it is 477 

essential that biodiversity monitoring and conservation measures are put in place to avoid 478 

potentially perverse outcomes, such as natural habitat alteration or displacement of habitat 479 

loss into high biodiversity areas.  480 
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 687 

Fig. 1 Carbon and biodiversity maps used in the analyses. Panel (a) reports the above-ground 688 
carbon density in tropical and subtropical areas. Panel (b) reports the number of amphibian, 689 
bird and mammal species occurring in each grid cell. 690 

 691 

Fig. 2 Correlation between species richness and carbon storage measured at different 692 
biogeographical extents. The plots represent the mean and 95% standard credible interval of 693 
the Spearman’s correlation coefficient among all biogeographical units in a given spatial 694 
extent. Panel (a) is based on total species richness, panels (b-d) are based on the richness 695 
measured for individual groups. 696 

 697 

Fig. 3 Correlation between vertebrate species richness carbon in tropical and subtropical 698 
ecoregions. The map reports the Spearman’s correlation coefficient between species richness 699 
and carbon density observed in 10 km grid cells within each ecoregion. Ecoregions with 700 
shaded colours are characterised by low standard deviation in species richness and carbon 701 
density (lowest quartile of observed SD among ecoregions). Areas in light grey were 702 
excluded from analyses as they lack carbon data (see Methods for a description of the input 703 
variables). 704 

 705 

Fig. 4 Frequency distribution of the percentage of the variance explained by SAR models 706 
relating species richness and carbon density to environmental variables in each ecoregion. 707 
Panels (a) and (b) reports the variance explained by species richness models, while panels (c) 708 
and (d) reports the variance explained by carbon density models. Panels (a) and (c) reports the 709 
total variance explained, while panels (b) and (d) only reports the variance explained by the 710 
model variables, after excluding the portion of variance explained by spatial autocorrelation. 711 

 712 

Fig. 5 Variable importance plot of the Random Forest regression model for the prediction of 713 
biodiversity-carbon correlation across ecoregions. The variables are ranked on the basis of their 714 
importance for the reduction of Mean Square Error and Node Impurity during the random forest 715 
classification routine. 716 

Variable description: ‘carb.R2nsp’ non-spatial R2 of the carbon prediction model; 717 
‘biodiv.R2nsp’ non-spatial R2 of the species richness prediction model; ‘biodiv.sd’ standard 718 
deviation of species richness; ‘impact_avgyear’ average year of first human land use in the 719 
ecoregion; ‘carb.sd’ standard deviation of carbon density; ‘REALM’ biogeographical realm; 720 
‘highHFP’ proportion of the ecoregional area overlapping with human footprint values >3; 721 
‘BIOME’ biogeographical biome; ‘avg_fire’, average fire extent; ‘tot_area’ total land area; 722 
‘fractal’ fractal dimension.  723 

 724 

Fig. 6 Bivariate partial plot relating the observed correlation between species and carbon 725 
density to the performance of species richness (biodiv.R2nsp) and carbon (carb.R2nsp) 726 
environmental prediction models. 727 
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