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Abstract The principle of the common cause claims that if an improbable coinci-
dence has occurred, there must exist a common cause. This is generally taken to mean
that positive correlations between non-causally related events should disappear when
conditioning on the action of some underlying common cause. The extended interpre-
tation of the principle, by contrast, urges that common causes should be called for in
order to explain positive deviations between the estimated correlation of two events
and the expected value of their correlation. The aim of this paper is to provide the
extended reading of the principle with a general probabilistic model, capturing the
simultaneous action of a system of multiple common causes. To this end, two distinct
models are elaborated, and the necessary and sufficient conditions for their existence
are determined.

Keywords Common cause · Probabilistic causality · Correlation · Common cause
system

1 Introduction

Chancy coincidences happen everyday, but sometimes coincidences are just too strik-
ing, or too improbable, not to reveal the presence of some coordinating process. To
wit, if all the electrical appliances in a building were to shut down at exactly the
same time, it would not be unreasonable to search for a breakdown in their common
power supply. Similarly, if the price of petrol were to simultaneously rise in all oil
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importing countries, it would be a fair bet that exporters had concertedly decided to
reduce extraction. The principle of the common cause is the inferential rule governing
instances of this kind: informally stated, it asserts that improbable coincidences are to
be put down to the action of a common cause.

Reichenbach (1956) was the first to provide the principle of the common cause
with a mathematical characterisation. His treatment relied on three major ingredients.
First, he represented improbable coincidences as positive probabilistic correlations
between random events. Second, he demanded that common causes should increase
the probability of their effects. Third, he further required that conditioning on the pres-
ence, or on the absence, of a common cause should make its effects probabilistically
independent from one another.

InMazzola (2013), however, I argued that Reichenbach’s treatment is overly restric-
tive, as it rests on a too narrow conception of improbable coincidences, and on a
correspondingly narrow understanding of the explanatory function of common causes.
I accordingly proposed an improved interpretation of the principle, along with a suit-
ably revised probabilisticmodel for common causes, which generalises Reichenbach’s
original model in two respects. On the one hand, it represents improbable coincidences
not as positive correlations, but rather as positive differences between the correlation
actually exhibited by a specified pair of events, and the correlation that they should
be expected to exhibit according to historical data, background beliefs, or established
theory. On the other hand, and correspondingly, it demands that conditioning on the
presence or on the absence of a common cause should restore the expected correlation
between its effects.

Reichenbach’s understanding of the principle is demonstrably a special case of this
interpretation, applying when the expected correlation between the events of interest
is null. Nevertheless, there is one respect in which the probabilistic model proposed
in Mazzola (2013) is still not general enough. Like Reichenbach’s original account, in
fact, it depicts the action of a single common cause, and it is accordingly inadequate
to capture instances whereby two coordinated effects are brought about by a system
of distinct common causes. The aim of this paper is precisely to further expand the
model in this direction. To this end, two avenues for the generalisation of the model
will be explored, each based on a different probabilistic characterisation for systems
of common causes.

The article will be structured in four main sections. Firstly, in Sect. 2 the extended
interpretation of the principle elaborated in Mazzola (2013) will be briefly outlined,
and given formal treatment. Next, in Sect. 3 said interpretation will be incorporated
into Hofer-Szabó and Rédei’s (2004) Reichenbachian common cause systems model.
Third, in Sect. 4 the extended version of the principle will be integrated with my
own revisitation of Reichenbachian common cause systems (Mazzola 2012). The
necessary and sufficient conditions for the existence of the resultingmodels in classical
probability spaces will also be investigated.1 Finally, Sect. 5 will address two major
objections.

1 The existence of common causes in general or quantum probability spaces has been investigated by
Gyenis and Rédei (2014, 2016), Kitajima (2008), and Kitajima and Rédei (2015). Whether, and under what
conditions, the generalised models here proposed exist in such spaces will be left as an open question.
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2 Generalised conjunctive common causes

Reichenbach originally applied the principle of the common cause to pairs of positively
correlated, albeit causally unrelated, events. Before introducing his probabilisticmodel
for common causes, a definition of probabilistic correlation is thus needed:

Definition 1 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B,C ∈ Ω such that p (C) �= 0, we
define:

Corr (A, B |C ) := p (A ∧ B |C ) − p (A |C ) p (B |C ) . (1)

Moreover,

Corr (A, B) := p (A ∧ B) − p (A) p (B) . (2)

The expression Corr (A, B |C ) denotes the correlation of events A and B con-
ditional on event C . The expression Corr (A, B), instead, denotes the absolute
correlation or unconditional correlation of events A and B. Two events are said to
be positively (negatively) correlated (conditional on another event) if their correlation
(conditional on said event) is greater (smaller) than zero; by the same token, they are
said to be uncorrelated or probabilistically independent (conditional on another event)
if their correlation (conditional on that event) is equal to zero.

The existence of a positive correlation between two events is often an indication
that one of them is a cause of the other. However, this is not invariably the case: as
is well known, correlation does not imply causation. Reichenbach’s interpretation of
the common cause principle could indeed be seen as an attempt to preserve a one-
one correspondence between probabilistic correlation and causal dependence (Hofer-
Szabó et al. 2013): in his account, acquiring full information about the occurrence of
common causes should dissolve, as it were, any positive correlation between causally
unrelated events. Reichenbach gave formal shape to this intuition by demanding that
conditioning on the presence of a common cause, or on its absence, should make its
effects probabilistically independent. The result was a probabilisticmodel for common
causes known as conjunctive fork. With only a slight terminological modification and
few minor notational variants, we can introduce his model as follows:

Definition 2 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any three distinct A, B,C ∈ Ω , the event C
is a conjunctive common cause for Corr (A, B) if and only if:

p (C) �= 0 (3)

p
(
C

) �= 0 (4)

Corr (A, B |C ) = 0 (5)

Corr
(
A, B

∣∣C
) = 0 (6)
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p (A |C ) − p
(
A

∣
∣C

)
> 0 (7)

p (B |C ) − p
(
B

∣∣C
)

> 0. (8)

Conjunctive common causes, as just defined, are intended to explain the occurrence
of non-causal positive correlations in twoways. On the one hand they increase the joint
probability of their effects, consequently favouring their correlation, as established by
the following proposition:

Proposition 1 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any three distinct A, B,C ∈ Ω , if C is a
conjunctive common cause for Corr (A, B), then:

Corr (A, B) > 0. (9)

On the other hand, conditions (5)–(6) demand that the correlation between the
effects of a conjunctive common cause should disappear when conditioning on the
occurrence, or on the absence, of said cause: in jargon, we say that the common cause
screens-off the two effects from one another. This is meant to indicate that the positive
correlation between the two effects is purely epiphenomenal, being a mere by-product
of the underlying action of the common cause.

Reichebach’s conjunctive common cause model has exerted considerable influence
in both probabilistic causal modelling and the philosophy of science. To mention but
few of its contributions to the latter field, it anticipated the probabilistic causality pro-
gram (Good 1961; Suppes 1970; Cartwright 1979; Skyrms 1980; Eells 1991), fostered
the development of probabilistic accounts of scientific explanation (Salmon 1971;
Suppes and Zaniotti 1981), and inspired causal interpretations of Bell’s no-go theo-
rem in quantum physics (van Fraassen 1991; Graßhoff et al. 2006). Simultaneously,
the Bayesian Networks movement in probabilistic causal modelling incorporated and
generalised the screening-off constraints (5)–(6) in the guise of the so-called Causal
Markov Condition, according to which any two variables that are not related as cause
and effect must be probabilistically independent conditional on the set of their direct
causes (Pearl 1988, 2000; Spirtes et al. 2001). Nonetheless, the conjunctive common
cause model relies on a demonstrably restrictive understanding of the principle of
the common cause, and on a correspondingly narrow conception of the explanatory
function performed by common causes.

To fully appreciate this, it will be instructive to start by taking a deeper look at the
very thing the principle of the common cause is intended to apply to: improbable coin-
cidences. Reichenbach, as we saw, understood improbable coincidences as positive
correlations between causally unrelated events. Positively correlated events tend to be
coinstantiated, so it is clear why positive correlations can be used to give coincidences
a probabilistic representation. The problem is: in what sense, then, can coincidences
between causally unrelated events be deemed improbable? The underlying presuppo-
sition is that in general causally unrelated events tend to be uncorrelated, so in general
positive correlations between such events are not to be expected. Reichenbach, in other
words, applied the principle of the common cause to pairs of events that happen to be
positively correlated, even though we would expect them to be not. To be even more
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explicit: he applied the principle to cases where the observed value of the correlation
between two events is strictly higher than its expected value, which is zero.

Once the principle is presented in this way, however, it becomes apparent that
there is no reason not to demand that it should equally apply to all cases in which two
events aremore strongly correlated than expected, whatever the value of their expected
correlation. The extended principle of the common cause is specifically tailored tomeet
this demand.Compressed in one sentence, it claims that the role of common causes is to
explain statistically significant deviations between the estimated value of a correlation
and its expected value, by conditionally restoring the latter. If two events are more
strongly correlated than they should, there must exist a common cause.

To illustrate, let us consider an economic example. Let us imagine that an econo-
metric analysis revealed a strong positive correlation between holding a postgraduate
degree and earning higher-than-average income. This positive correlation, in and of
itself, would not be surprising, as it would be consistent with both common sense and
microeconomic theory: people who study more are likely to earn higher wages, owing
to the comparatively scarce supply and higher productivity of skilled labour. But sup-
pose that, in the case at hand, the estimated correlation were remarkably strong: strong
enough to be significantly dissimilar from the average correlation reported by other
similar studies. Then, excluding any mistakes in the analysis, it would be natural for
one to wonder if there were anything about the selected sample, which could bring
about said discrepancy.

The extended principle of common cause urges that the explanation should be
sought in the presence of some unacknowledged common cause. Towit, wemay imag-
ine that the econometric analysis in our examplewere conducted in a relativelywealthy
subpopulation. People coming from wealthy families are more likely to undergo addi-
tional years of study, since they can more easily afford the opportunity costs this
involves. Moreover, they are more likely to earn their degrees from renowned but
expensive academic institutions, whose graduates have a higher chance to be hired
in high-earning appointments. By simultaneously increasing the probability of hold-
ing a postgraduate degree and the probability of earning higher-than-average income,
family wealth would consequently increase their joint probability, and explain their
stronger-than-usual correlation.

Remarkably, in this case it would be unreasonable to require that the correlation
between holding a postgraduate degree and of earning higher-than-average income
should disappear conditional on family wealth: after all, as we already noticed, some
positive correlation between wage and qualification is to be expected. Rather, condi-
tioning on the common cause should restore the expected correlation between the two
events, consequently eliminating the apparent disagreement between the econometric
analysis and the preceding studies.

To provide the extended principle of the common cause with some formal bite, let
us first define:

Definition 3 Let (Ω, p) be a classical probability space with σ -algebra of random
eventsΩ and probability measure p. For any A, B ∈ Ω , the deviation ofCorr (A, B)

is the quantity
δ (A, B) := Corr (A, B) − Corre (A, B) , (10)
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where Corre (A, B) denotes the expected correlation between A and B.

Notice that the notions of deviation and expectation, as they are understood here,
are not necessarily restricted to the corresponding statistical concepts: in particular,
the expected correlation between two values may be determined by non-statistical
means, e.g. on the basis of logical or mathematical rules, or simply on the grounds of
entrenched prior beliefs.

On this basis, we can now define:

Definition 4 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any three distinct A, B,C ∈ Ω , the event C
is a generalised common cause for δ (A, B) if and only if:

p (C) �= 0 (11)

p
(
C

) �= 0 (12)

Corr (A, B |C ) = Corre (A, B) (13)

Corr
(
A, B

∣∣C
) = Corre (A, B) (14)

p (A |C ) − p
(
A

∣∣C
)

> 0 (15)

p (B |C ) − p
(
B

∣
∣C

)
> 0. (16)

Just like conjunctive common causes do for positive correlations, generalised com-
mon causes explain positive deviations in two ways. On the one hand, (13)–(14)
demand that conditioning on the presence of a common cause, or on its absence,
should restore the expected correlation between its effects. On the other hand, gen-
eralised common causes increase the unconditional correlation between their effects,
consequently generating the observed discrepancy between the estimated value of said
correlation and its expected value:

Proposition 2 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any three distinct A, B,C ∈ Ω , if C is a
generalised common cause for δ (A, B) then

δ (A, B) > 0. (17)

Quite evidently, conjunctive common causes can be thought of as generalised com-
mon causeswhose effects are expected to be uncorrelated.Nonetheless, the generalised
common cause model is demonstrably immune from some of the most common objec-
tions to the standard interpretation of the common cause principle.

For one thing, it has been objected that the screening-off conditions (5)–(6) are too
restrictive, either because they are only satisfied by deterministic common causes (van
Fraassen 1980; Cartwright 1999), or because they exclusively apply when the effects
of a common cause are independently produced (Salmon 1984; Cartwright 1988). This
objection is easily met by the generalised common cause model, which drops (5)–(6)
in favour of the more general constraints (13)–(14). For another thing, it has been
contended that non-causal positive correlations that result from logical, mathematical,
semantic, or nomic relations do not generally admit of a conjunctive common cause
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(Arntzenius 1992; Williamson 2005). The existence of similar correlations is clearly
detrimental to the common understanding of the principle of the common cause, but
it is perfectly consistent with its extended version. The reason is that, according to
the extended principle, similar correlations simply do not call for a common cause
explanation. By hypothesis, they are determined by logical, mathematical, semantic,
or physical laws, so they must be expected. They accordingly fall outside the scope of
the extended common cause principle, and as such they can be no counterexample to it.

One may retort, at this point, that generalised common causes are exposed to an
objection that is oftenmade to othermodels, such as the interactive forkmodel (Salmon
1984), that are not strictly committed to the screening-off conditions (5)–(6). The
objection has it that the role of the common cause principle is to ensure that every
positive correlation between causally independent events should be given a fully causal
explanation, in adherence with the metaphysical thesis that there can be no correlation
without causation. The screening-off condition is instrumental in this respect, as it
guarantees that any correlation between causally unrelated events should be entirely
explained by the action of the common cause. By contrast, renouncing the screening-
off condition would leave some positive correlations at least partially unexplained.
The problem with this objection is that the thesis that every correlation must have a
causal basis is, quite simply, false. Correlations, as we have just noticed, may arise
from all sorts of non-causal relations. The extended principle of the common cause
explicitly takes this fact into account. Themodified conditions (13)–(14), in particular,
encapsulate the idea that common causes should explain a correlation only as long
as that correlation is not determined either by a direct causal influence between the
correlated pair, or by other non-causal means, i.e. as long as that correlation is not
to be expected. The generalised common cause model is clearly an improvement on
conjunctive common causes in this respect, as it is not similarly tied to a questionable
metaphysical assumption.

The following sections will be dedicated to further enrich the generalised common
cause model, so as to cover systems of multiple common causes.

3 Generalised HR-Reichenbachian common cause systems

The first attempt to extend the conjunctive common cause model to comprise sys-
tems of multiple common causes was made by Hofer-Szabó and Rédei (2004), who
proposed, to this end, the following definition:

Definition 5 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω , a HR-Reichenbachian Com-
mon Cause System (HR-RCCS) of size n ≥ 2 for Corr (A, B) is a partition {Ci }ni=1
of Ω such that:

p (Ci ) �= 0 (i = 1, . . . , n) (18)

Corr (A, B |Ci ) = 0 (i = 1, . . . , n) (19)
[
p (A |Ci ) −p

(
A

∣∣C j
)] [

p (B |Ci )−p
(
B

∣∣C j
)]

> 0 (1, . . . , n=i �= j=1, . . . , n).

(20)
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Hofer-Szabó and Rédei refer to Reichenbachian Common Cause Systems using the
acronym RCCS. The acronym HR-RCCS is here employed to distinguish their model
from the one utilized in the next section.

The notion of a HR-RCCS is meant to generalise the notion of a conjunctive com-
mon cause in two respects. On the one hand, Hofer-Szabó and Rédei demonstrate
that only positively correlated pairs admit of a HR-RCCS, thus replicating the result
of Proposition 1. On the other hand, conditions (18), (19) and (20) are intended to
generalise, respectively, conditions (3)–(12), (5)–(6), and (7)–(8) from Definition 2.
Specifically, (19) demands that each element of aHR-RCCS should screen-off its com-
mon effects from one another. This means that HR-RCCSs increase the correlation
between otherwise uncorrelated pairs, emulating as a consequence the explanatory
function of conjunctive common causes.

Modifying the above definition in accordance with the extended interpretation of
the common cause principle only requires replacing the screening-off condition (19)
with a suitably generalised variant of (13)–(14). Let us accordingly define:

Definition 6 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω , a Generalised HR-
Reichenbachian Common Cause System (GHR-RCCS) of size n ≥ 2 for δ (A, B)

is a partition {Ci }ni=1 of Ω such that:

p (Ci ) �= 0 (i = 1, . . . , n) (21)

Corr (A, B |Ci ) = Corre (A, B) (i = 1, . . . , n)

(22)
[
p (A |Ci ) −p

(
A

∣∣C j
)] [

p (B |Ci )−p
(
B

∣∣C j
)]

> 0 (1, . . . , n=i �= j=1, . . . , n).

(23)

This definition generalises at once Definitions 4 and 5: it extends the former by
admitting systems of any number of common causes;2 it extends the latter by requiring
that every common cause in a system should restore the expected correlation between
its two effects whatever its value.

Not surprisingly, every GHR-RCCS increases the correlation between its effects,
consequently emulating the explanatory function of generalised common causes.

Proposition 3 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω and any {Ci }ni=1 ⊆ Ω , if
{Ci }ni=1 is a GHR-RCCS of size n ≥ 2 for δ (A, B), then (17) obtains.

To show this, let us first prove the following lemma:

Lemma 1 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. Let A, B ∈ Ω and let {Ci }ni=1 be a partition of

2 Or, more exactly, any finite or countable number: in fact, no uncountable set of disjoint and non-zero
probability events can exist given a countably additive probability measure (Wroński and Marczyk 2010).
Thanks to an anonymous reviewer for pointing this out.
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Ω satisfying conditions (21)–(22). Then:

δ (A, B) = 1

2

n∑

i, j=1

p (Ci ) p
(
C j

) [p (A |Ci ) − p
(
A

∣
∣C j

)][p (B |Ci ) − p
(
B

∣
∣C j

)].
(24)

Proof Let (Ω, p) be a classical probability space with σ -algebra of random events Ω

and probability measure p. Let A, B ∈ Ω and let {Ci }ni=1 be a partition ofΩ satisfying
(21). From the theorem of total probability it follows that:

Corr (A, B) = 1

2

n∑

i, j=1

p (Ci ) p
(
C j

) [
p (A |Ci )−p

(
A

∣
∣C j

)] [
p (B |Ci )−p

(
B

∣
∣C j

)]

+1

2

⎡

⎣
n∑

i=1

p (Ci )Corr (A, B |Ci )+
n∑

j=1

p
(
C j

)
Corr

(
A, B

∣
∣C j

)
⎤

⎦. (25)

On the other hand, by hypothesis {Ci }i∈I is a partition of the given probability space,
which implies that:

n∑

i=1

p (Ci ) = 1. (26)

Further assuming (22) will therefore produce the following equality:

Corr (A, B) − Corre (A, B)

= 1

2

n∑

i, j=1

p (Ci ) p
(
C j

) [p (A |Ci ) − p
(
A

∣∣C j
)][p (B |Ci ) − p

(
B

∣∣C j
)], (27)

which in the light of (10) is but a different formulation of (24). ��
Demonstrating Proposition 5 on this basis would be straightforward, so we are

omitting the details of the proof. One interesting thing to notice about this demon-
stration, however, is that setting Corre (A, B) = 0 in (27) would reduce it to the
equation employed by Hofer-Szabó and Rédei to demonstrate that HR-RCCSs pro-
duce positive correlations. This fact, in itself, is further confirmation of the adequacy
of GHR-RCCSs as a generalisation of HR-RCCSs.

3.1 Existence of GHR-RCCSs

Hofer-Szabó and Rédei (2006) argue that a HR-RCCS of arbitrary finite size exists for
every positively correlated pair of events, in some suitable extension of the original
probability space.3 The discussion to follow will be dedicated to establish a similar

3 For the existence of HR-RCCS of countably infinite size, see Marczyk and Wroński (2015).
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result for GHR-RCCSs. Remarkably, it will turn out that not all positive deviations
admit of a GHR-RCCS.

Hofer-Szabó and Rédei’s proof proceeds by noticing that, in general, a set {Ci }ni=1
is a HR-RCCS of size n ≥ 2 for Corr (A, B) in probability space (Ω, p) if and
only if the values of p (A |C1 ), …, p (A |Cn ), p (B |C1 ), …, p (B |Cn ), and p (C1),
…, p (Cn) satisfy some specified constraints. They call any set {ai , bi , ci }ni=1 of 3n
numbers satisfying said constraints admissible for Corr (A, B) and demonstrate that,
for any two positively correlated events A and B and any n ≥ 2, a set of n admissible
numbers for Corr (A, B) can be found. On this basis, they finally show how an
extension of the given probability space can always be constructed, in which some
partition {Ci }ni=1 exists such that n ≥ 2 and the values of p (A |C1 ), …, p (A |Cn ),
p (B |C1 ), …, p (B |Cn ), and p (C1), …, p (Cn) are admissible for Corr (A, B),
thereby establishing the existence of a HR-RCCS of size n for Corr (A, B) in that
space.

The following proof will follow the broad logical structure of Hofer-Szabó and
Rédei’s argumentation. Our first step will consist in identifying the necessary and
sufficient conditions that must be satisfied by the values of p (A |C1 ), …, p (A |Cn ),
p (B |C1 ), …, p (B |Cn ), p (A ∧ B |C1 ), …, p (A ∧ B |Cn ), and p (C1), …, p (Cn)

to make {Ci }ni=1 a GHR-RCCS of size n ≥ 2 for δ (A, B). This, however, will be done
in two stages, as some of the conditions that we are going to single out will be shared
by the model to be developed in Sect. 4. Let us begin by isolating these.

Definition 7 Let (Ω, p) be a classical probability space with σ -algebra of random
eventsΩ and probability measure p. For any A, B ∈ Ω satisfying (17) and any n ≥ 2,
the set

{ai , bi , ci , di }ni=1

of real numbers is called quasi-admissible for δ (A, B) if and only if the following
conditions hold:

n∑

i=1

ai ci = p (A) (28)

n∑

i=1

bi ci = p (B) (29)

n∑

i=1

ci = 1 (30)

di − aibi = Corre (A, B) (i = 1, . . . , n) (31)

0 ≤ ai , bi , di ≤ 1 (i = 1, . . . , n) (32)

0 < ci < 1 (i = 1, . . . , n). (33)

The attentive reader will have noticed that, for each n ≥ 2, quasi-admissible sets
include 4n numbers, whereas admissible sets, as defined by Hofer-Szabó and Rédei,
include only 3n numbers. Moreover, while (28)–(30) and (32)–(33) are either identical
to or straightforward generalizations of some of Hofer-Szabó and Rédei’s original
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conditions for admissible numbers, constraint (31) is not. Similar changes are needed
to avoid a logical mistake in their original proof, along the lines illustrated in more
detail by Mazzola and Evans (2017).

To complete this part of the proof, we need to supplement quasi-admissible sets of
numbers with one more condition:

Definition 8 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω and any n ≥ 2, a set
{ai , bi , ci , di }ni=1 of real numbers is called HR-admissible for δ (A, B) if and only if
it is quasi-admissible for δ (A, B) and it further satisfies

[ai − a j ][bi − b j ] > 0 (1, . . . , n = i �= j = 1, . . . , n). (34)

The adequacy of the above definition is testified by the following lemma, whose
proof is straightforward and which can consequently be omitted:

Lemma 2 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω and any {Ci }ni=1 ⊆ Ω where
n ≥ 2, the set {Ci }ni=1 is a GHR-RCCS of size n for δ (A, B) if and only if there exists
a set {ai , bi , ci , di }ni=1 of HR-admissible numbers for δ (A, B) such that

p (Ci ) = ci (i = 1, . . . , n) (35)

p (A |Ci ) = ai (i = 1, . . . , n) (36)

p (B |Ci ) = bi (i = 1, . . . , n) (37)

p (A ∧ B |Ci ) = di (i = 1, . . . , n). (38)

The next step in our proof will be to establish the necessary and sufficient conditions
for the existence of HR-admissible numbers for δ (A, B). To this purpose, however,
we shall need the following lemma:

Lemma 3 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. Moreover, let A, B ∈ Ω and let {Ci }ni=1 ⊆ Ω

with n ≥ 2. Then, any set {ai , bi , ci , di }ni=1 of real numbers satisfying identities (35)–
(38) is quasi-admissible for δ (A, B) if and only if it further satisfies (32)–(33) as well
as

an = a − ∑n−1
k=1 ckak

1 − ∑n−1
k=1 ck

(39)

bn = b − ∑n−1
k=1 ckbk

1 − ∑n−1
k=1 ck

(40)

cn = 1 −
n−1∑

k=1

ck (41)
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dn = ε +
[
a − ∑n−1

k=1 akck
] [

b − ∑n−1
k=1 bkck

]

[
1 − ∑n−1

k=1 ck
]2 (42)

dk = ε + akbk (k = 1, . . . , n − 1), (43)

where

a = p (A) (44)

b = p (B) (45)

ε = Corre (A, B) . (46)

Proof Let (Ω, p) be a classical probability space with σ -algebra of random events
Ω and probability measure p. Moreover, let A, B ∈ Ω satisfy (17) and let the set
{ai , bi , ci , di }ni=1 of n ≥ 2 real numbers satisfy conditions (35)–(38) and (32)–(33).
Finally, let (44)–(46) be in place.

Given the aforesaid hypothesis, (28)–(30) can be directly obtained from (39)–(41)
thanks to the theorem of total probability, and vice-versa. Therefore, we only need to
show that (31) obtains if and only if (42)–(43) do. To this purpose, let us first observe
that, as a further consequence of the theorem of total probability, the following equality
holds:

dn = [dn − anbn] +
[
a − ∑n−1

k=i akck
] [

b − ∑n−1
k=1 bkck

]

[
1 − ∑n−1

k=1 ck
]2 . (47)

Thanks to (47) it is then immediate to verify that (42)–(43) are simultaneously satisfied
if (31) is. Conversely, let us suppose that (42)–(43) are the case. Then (42) and (47)
will jointly imply that

dn − anbn = ε, (48)

which, together with (43), straightforwardly implies (31), as required. ��
Endowed with the above result, we are now in a position to determine the necessary

conditions so that, in general, HR-admissible numbers {ai , bi , ci , di }ni=1 could exist
for δ (A, B) and n ≥ 2. Quite interestingly:

Lemma 4 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω , no HR-admissible numbers
exist for δ (A, B) if

Corre (A, B) + p (A) p (B) ≤ 0. (49)

Proof Let (Ω, p) be a classical probability space with σ -algebra of random events
Ω and probability measure p, and let A, B ∈ Ω be arbitrarily chosen. Lemma 4
will be established by contraposition, so let us assume that, for some n ≥ 2, a set
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{ai , bi , ci , di }ni=1 of HR-admissible numbers does exist for δ (A, B). Moreover, let us
assume identities (44)–(46).

To prove our lemma, two preliminary steps will be required. First, we shall prove
that some a j , bk ∈ {ai , bi , ci , di }ni=1 exist such that

a − a j > 0 (50)

b − bk > 0. (51)

Next, on that basis, we shall demonstrate that at least some such a j , ak ∈
{ai , bi , ci , di }ni=1 exist, for which j = k.

To establish the first claim, let us begin by noticing that, as a plain consequence of
(28)–(30):

0 = a − a =
n∑

i=1

aci −
n∑

i=1

ai ci =
n∑

i=1

ci (a − ai ) (52)

0 = b − b =
n∑

i=1

bci −
n∑

i=1

bi ci =
n∑

i=1

ci (b − bi ). (53)

On the other hand, (33) demands that ci > 0 for all i = 1, . . . , n, while (34) implies
that a j = a and bk = b can be satisfied by at most one term a j and one term bk
for j, k = 1, . . . , n ≥ 2. The above equalities therefore imply that a − ai should be
positive for some values of i and negative for others, while similarly b− bi should be
positive for some values of i and negative for others. This is enough to prove (50) and
(51), as desired.

To prove our second auxiliary result, let us first relabel all numbers in {ai , bi , ci ,
di }ni=1 so that

a1 < · · · < ak < a ≤ ak+1 < · · · < an . (54)

This in turn implies that

ai − a j < 0 i = 1, . . . , k; j = k + 1, . . . , n. (55)

Now, let us proceed by reductio, and let us assume that

bi − b > 0 i = 1, . . . , k. (56)

Then, according to the result previously established, some b j ∈ {bi }ni=k+1 ⊂
{ai , bi , ci , di }ni=1 should exist such that

b − b j > 0. (57)

However, in that case

bi − b j > 0 i = 1, . . . , k (58)
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would ensue. Together with (55), this would imply

[ai − a j ][bi − b j ] < 0 i = 1, . . . , k (59)

consequently contradicting (34). By reductio, this shows that (50)–(51) must be sat-
isfied for some a j , bk ∈ {ai , bi , ci , di }ni=1 where j = k.

Let us now come to the main part of our proof. Thanks to the results so established,
we can now safely claim that, for any set {ai , bi , ci , di }ni=1 of HR-admissible numbers,
some ai , bi ∈ {ai , bi , ci , di }ni=1 are always to be found such that

ab − aibi > 0. (60)

Together with (31) and (32), this implies that

ab + ε > aibi + ε = di ≥ 0, (61)

contradicting (49). By contraposition, this means that whenever (49) is satisfied, no
set {ai , bi , ci , di }ni=1 of real numbers can satisfy (31) given the other conditions for a
HR-admissible set for δ (A, B). Hence, no HR-admissible set can exist for δ (A, B).

��
Let us now move to the sufficient condition for the existence of HR-admissible

numbers {ai , bi , ci , di }ni=1 for δ (A, B) and n ≥ 2. Remarkably, this turns out to be
the same as the necessary condition:

Lemma 5 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω satisfying (17), a set
{ai , bi , ci , di }ni=1 of HR-admissible numbers for δ (A, B) exists for each n ≥ 2 if

Corre (A, B) + p (A) p (B) > 0. (62)

The lengthy demonstration of this lemma can be found in the “Appendix”. Before
getting to the end of our existential proof, we need one more definition:

Definition 9 Let (Ω, p) and (Ω ′, p′) be classical probability spaces with σ -algebras
of random events Ω and Ω ′ and with probability measures p and p′, respectively.
Then (Ω ′, p′) is called an extension of (Ω, p) if and only if there exists an injective
lattice homomorphism h : Ω → Ω ′, preserving complementation, such that

p′ (h(X)) = p (X) for all X ∈ Ω. (63)

The results of our demonstration can thus be crystallized into the following propo-
sition:

Proposition 4 Let (Ω, p) be a classical probability space with σ -algebra of random
eventsΩ and probability measure p. For any A, B ∈ Ω satisfying (17) and any n ≥ 2,
an extension (Ω ′, p′) of (Ω, p) including a GHR-RCCS of size n for δ (A, B) exists
if and only if A and B satisfy (62).
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Proof The only-if clause immediately follows from Lemmas 2 and 4. Proof of the
if-clause, instead, is structurally similar to Step 2 of Hofer-Szabó and Rédei’s proof
for the existence of HR-RCCSs of arbitrary finite size in (2006), althoughHofer-Szabó
and Rédei’s conditions (60)–(63) will have to be replaced by:

r1i = ci di
p (A ∧ B)

(64)

r2i = ciai − cidi
p

(
A ∧ B

) (65)

r3i = ci bi − ci di
p

(
A ∧ B

) (66)

r4i = ci − ciai − cibi + ci di
p

(
A ∧ B

) , (67)

which, owing to (31), actually reduce to the aforesaid conditions for ε = 0. ��

4 Generalised Reichenbachian common cause systems revisited

There are two aspects in which HR-RCCSs may not be considered fully satisfactory
generalisations of conjunctive common causes. The first aspect is that they can admit
of elements that are probabilistically independent of one or both events from the
corresponding correlated pair. This is at odds with the intuition that positive causes
should ceteris paribus increase the probability of their effects, and that negative causes
should ceteris paribus decrease their probability. The second aspect is that they rule
out the possibility that two distinct causes could equally alter the probability of one,
or both, of their effects. On the face of it, there is simply no reason why a systems of
common causes should be so constrained. To overcome these limitations, in Mazzola
(2012) I proposed a revisitation of HR-RCCSs, along the following lines:

Definition 10 Let (Ω, p) be a classical probability space with σ -algebra of random
eventsΩ andprobabilitymeasure p. For any A, B ∈ Ω , aM-ReichenbachianCommon
Cause System (M-RCCS) of size n ≥ 2 for Corr (A, B) is a partition {Ci }ni=1 of Ω

such that:

p (Ci ) �= 0 (i = 1, . . . , n) (68)

Corr (A, B |Ci ) = 0 (i = 1, . . . , n) (69)

[p (A |Ci ) − p (A)] [p (B |Ci ) − p (B)] > 0 (i = 1, . . . , n). (70)

Whether M-RCCSs are really to be preferred to HR-RCCSs is open to dispute
(Stergiou 2015). However, this is no place to settle that issue. Rather, in this section
we shall limit ourselves to offer an alternative extension of the generalised common
cause model, by taking M-RCCSs as a basis. Let us accordingly define:

Definition 11 Let (Ω, p) be a classical probability space with σ -algebra of ran-
dom events Ω and probability measure p. For any A, B ∈ Ω , a Generalised
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M-ReichenbachianCommonCause System (GM-RCCS) of size n ≥ 2 forCorr (A, B)

is a partition {Ci }ni=1 of Ω such that:

p (Ci ) �= 0 (i = 1, . . . , n) (71)

Corr (A, B |Ci ) = Corre (A, B) (i = 1, . . . , n) (72)

[p (A |Ci ) − p (A)] [p (B |Ci ) − p (B)] > 0 (i = 1, . . . , n). (73)

Just as with GHR-RCCSs, it can be shown that GM-RCCSs invariably produce a
positive deviation between the observed correlation of their effects and their expected
correlation. To this end, let us first introduce the following lemma:

Lemma 6 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. Let A, B ∈ Ω and let {Ci }ni=1 be a partition of
Ω satisfying conditions (71)–(72). Then:

δ (A, B) =
n∑

i=1

p (Ci ) [p (A |Ci ) − p (A)][p (B |Ci ) − p (B)]. (74)

Proof Let (Ω, p) be a classical probability space with σ -algebra of random events
Ω and probability measure p. Let A, B ∈ Ω and let {Ci }ni=1 be a partition of Ω for
which (71) holds. The theorem of total probability thereby implies that

Corr (A, B) =
n∑

i=1

p (Ci ) [p (A |Ci ) − p (A)][p (B |Ci ) − p (A)]

+
n∑

i=1

p (Ci )Corr (A, B |Ci ). (75)

Let us now suppose that (72) is satisfied, too. Then, owing to the fact that

n∑

i=1

p (Ci ) = 1, (76)

few elementary calculations would transform the above equality into:

Corr (A, B) − Corre (A, B)

=
n∑

i=1

p (Ci ) [p (A |Ci ) − p (A)][p (B |Ci ) − p (A)], (77)

which according to (10) is just a restatement of (74). ��
Based on the above lemma, it would then be easy to demonstrate the following propo-
sition:
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Proposition 5 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω and any {Ci }i∈I ⊆ Ω , if
{Ci }i∈I is a GM-RCCS of size n ≥ 2 for δ (A, B), then (17) obtains.

GM-RCCSs accordingly perform a similar explanatory function as GHR-RCCSs.
Quite interestingly, moreover, for every two events A and B in a classical probability
space such that δ (A, B) > 0 and every n ≥ 2, a GM-RCCSs of size n for δ (A, B)

exists in some extension of the given probability space if and only if a GHR-RCCS
does. Demonstrating this will be our next objective.

4.1 Existence of GM-RCCSs

The existential proof we shall elaborate in this section will follow the broad lines of
the one developed in Sect. 3.1. Just as with GHR-RCCSs, we shall first determine the
necessary and sufficient conditions the values of p (A |C1 ), …, p (A |Cn ), p (B |C1 ),
…, p (B |Cn ), p (A ∧ B |C1 ), …, p (A ∧ B |Cn ), and p (C1), …, p (Cn) ought to
satisfy so that the set {Ci }ni=1 is a GM-RCCS of size n ≥ 2 for δ (A, B). Subsequently,
we shall determine the necessary and sufficient conditions for the existence of such
numbers, and on that basis we shall finally establish the necessary and sufficient
conditions for the existence of an extension of the given probability space, where a
GM-RCCS of size n for δ (A, B) could be found.

Quite evidently, GM-RCCSs differ from GHR-RCCSs only in that they substitute
condition (23) with (73). Consequently, in order to complete the first step of our proof,
we only need to replace Definition 8 with the following one:

Definition 12 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω and any n ≥ 2, a set
{ai , bi , ci , di }ni=1 of real numbers is calledM-admissible for δ (A, B) if and only if it
is quasi-admissible for δ (A, B) and it further satisfies

[ai − p (A)][bi − p (B)] > 0 (i = 1, . . . , n). (78)

Just as before, the adequacy of the above definition is easily established:

Lemma 7 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω and any {Ci }ni=1 ⊆ Ω

where n ≥ 2, the set {Ci }ni=1 is a GM-RCCS of size n for δ (A, B) if and only if
there exists a set {ai , bi , ci , di }ni=1 of M-admissible numbers for δ (A, B) for which
identities (35)–(38) are true.

M-admissible numbers are quasi-admissible by definition. This fact allows us to
build on our previous discussion, to easily prove the following result:

Lemma 8 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω , no M-admissible numbers
exist for δ (A, B) if

Corre (A, B) + p (A) p (B) ≤ 0. (49)
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Proof Lemma8 is demonstrated in a similarway asLemma4. Let (Ω, p) be a classical
probability space with σ -algebra of random events Ω and probability measure p, let
A, B ∈ Ω be arbitrarily chosen so as to satisfy (17), and let us further assume that
for some n ≥ 2, a set {ai , bi , ci , di }ni=1 of M-admissible numbers exists for δ (A, B).
Moreover, let identities (35)–(38) and (44)–(46) be in place.

Showing that some ai , bi ∈ {ai , bi , ci , di }ni=1 exist satisfying

a − ai > 0 (79)

b − bi > 0 (80)

in this case would only require some elementary calculations, as the above inequalities
directly follow from (78) along with (28) and (29). The remainder of the proof would
then proceed in exactly the same way as the analogous proof for Lemma 4. ��

Condition (62) is thus necessary for the existence of M-admissible numbers for
δ (A, B), for any two events A and B satisfying (17) and any n ≥ 2. Moreover, as
with HR-admissible numbers, it is also sufficient:

Lemma 9 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω satisfying (17), a set
{ai , bi , ci , di }ni=1 of M-admissible numbers for δ (A, B) exists for each n ≥ 2 if

Corre (A, B) + p (A) p (B) > 0. (62)

Proof Let (Ω, p) be a classical probability space with σ -algebra of random events Ω

and probability measure p. Moreover, let A, B ∈ Ω satisfy (17) and (62). Proof will
proceed by induction on n.

Let n = 2 be our inductive basis. Because for n = 2 conditions (34) and (78)
become equivalent, this case was already covered in the inductive proof for Lemma 5.
Next, as our inductive hypothesis, let n = m and let {ai , bi , ci , di }mi=1 beM-admissible
for δ (A, B). On this basis, let us now proceed to the last step of our inductive proof,
and let n = m + (r − 1), where r ≥ 2.

Let us first choose some ck ∈ {ai , bi , ci , di }mi=1. Then, (30) and (33) ensure that

it is possible to find a set
{
c jk

}r

j=1
of r ≥ 2 identical real numbers, lying inside the

interval (0, 1), such that
r∑

j=1

c jk =
r∑

j=1

ck
r

= ck . (81)

Furthermore, it is trivially possible to find three sets
{
a j
k

}r

j=1
,
{
b j
k

}r

j=1
and

{
d j
k

}r

j=1
of r ≥ 2 identical real numbers satisfying

a j
k = ak j = 1, . . . , r (82)

b j
k = bk j = 1, . . . , r (83)

d j
k = dk j = 1, . . . , r. (84)
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Given (44)–(45), our inductive hypothesis then implies:

a =
m∑

i=1

ai ci =
m∑

k �=i=1

ai ci + akck =
m∑

k �=i=1

ai ci + ak
ck
r
r =

m∑

k �=i=1

ai ci

+
r∑

j=1

a j
k c

j
k =

m+r∑

k �=i=1

ai ci (85)

b =
m∑

i=1

bi ci =
m∑

k �=i=1

bi ci + bkck =
m∑

k �=i=1

bi ci + bk
ck
r
r =

m∑

k �=i=1

bi ci

+
r∑

j=1

b j
k c

j
k =

m+r∑

k �=i=1

bi ci (86)

1 =
m∑

i=1

ci =
m∑

k �=i=1

ci + ck =
m∑

k �=i=1

ci +
r∑

j=1

c jk =
m+r∑

k �=i=1

ci (87)

ε = dk − akbk = d j
k − a j

k b
j
k j = 1, . . . , r. (88)

This guarantees that the set {ai , bi , ci , di }mk �=i=1 ∪ {
a j , b j , c j , d j

}r
j=1 of 4(m + r − 1)

numbers so obtained satisfies (28)–(31). Furthermore, (32)–(33) and (78) are clearly
satisfied owing to our inductive hypothesis and to theway numbers

{
a j , b j , c j , d j

}r
j=1

were chosen. This is enough to prove that {ai , bi , ci , di }mk �=i=1 ∪ {
a j , b j , c j , d j

}r
j=1

is M-admissible for δ (A, B), therefore concluding our inductive proof. ��
Our existential proof is now virtually complete. Let us just add one final touch:

Proposition 6 Let (Ω, p) be a classical probability space with σ -algebra of random
eventsΩ and probability measure p. For any A, B ∈ Ω satisfying (17) and any n ≥ 2,
an extension (Ω ′, p′) of (Ω, p) including a GM-RCCS of size n for δ (A, B) exists if
and only if A and B satisfy (62).

Proof Proof is in all similar to the proof for Proposition 4, mutatis mutandis. ��
Two final remarks may be added at this point. First, Propositions 4 and 6 both

rectify the results announced in Mazzola (2013), where it was implicitly assumed
that expected correlations should be greater than or equal to zero. This led to the
erroneous claim that a generalised common cause should exist, in some extension
of the initial probability space, for every positive deviation. Second, GHR-RCCSs
and GM-RCCSs for a given deviation may not coexist in the same probability space.
Nevertheless, Propositions 4 and 6 jointly guarantee the following result:

Proposition 7 Let (Ω, p) be a classical probability space with σ -algebra of random
events Ω and probability measure p. For any A, B ∈ Ω satisfying (17), an extension
(Ω ′, p′) of (Ω, p) including a GHR-RCCS of size n ≥ 2 for δ (A, B) exists if and only
if there is some extension (Ω ′′, p′′) of (Ω, p) including a GM-RCCS of size m ≥ 2
for δ (A, B).
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This means that, irrespective of the different probabilistic properties of GHR-
RCCSs and GM-RCCSs, neither model can explain more or different deviations than
the other. The two models are thus to be assessed based not on what they can explain,
but how. The question as to whether M-RCCSs should be preferred to HR-RCCSs,
therefore, is carried over to their generalised counterparts.

5 Discussion

The time has come to consider a few objections. These were raised by two anonymous
referees, so credit for this section will be shared with them.

The first objection focuses on the notion of expected correlation. Back in Sect. 2,
we formulated the generalised principle of the common cause as the proposition that
the role of common causes is to explain statistically significant deviations between the
estimated value of a correlation and its expected value. One may wonder whether this
could make the principle sound subjective, in contrast with the metaphysical status
that is usually conferred on it. Relatedly, as suggested by one of the referees, one may
wish to rephrase the extended principle in purely objectivist terms: conditioning on
the common cause should restore not the expected correlation between two events, but
rather the correlation due the (possibly null) direct causal dependence between them.

Restating the principle along these lines, however, would be neither necessary nor
effective. The notion of expectation here employed, in fact, is deliberately polysemic,
allowing for objective (e.g. statistical) as well as for subjective interpretations. This
polysemy does not prevent a metaphysical interpretation of the principle, but at the
same time it makes room for an epistemological interpretation: in this sense, the princi-
plemay be seen as a rule to preserve subjective beliefs about probabilistic dependences
in the face of recalcitrant statistical evidence. Epistemological interpretations of this
kind have been proposed, for instance, by Fraassen (1982) and Sober (1984).

Notice, moreover, that reformulating the extended principle in purely causal lan-
guage in the way suggested by the referee would immediately expose it to two major
problems. To start with, the principle could not make room for probabilistic corre-
lations resulting from logical or mathematical relations. To wit, certainly there is a
correlation between the number of sides of a regular plane figure and the number of
its internal angles, but it is equally evident that said correlation is the result of nei-
ther a direct causal connection between the two numbers, nor of any common cause.
Introducing the notion of expected correlation easily avoids this problem, as argued
in Sect. 2. Secondarily, if reformulated in the way suggested, the extended principle
would becomemoot unless it were supplemented with some criterion to tell howmuch
of the correlation between two events is due to their causal interaction, and how much
of it needs to be explained by some common cause instead. On the face of it, there
seems to be no other way to do this than looking at the population mean value of the
correlation between events of the same type. Pushed out of the door, the notion of
expected correlation would then get back through the window.

The second objection that we shall address questions the very significance of our
investigation. Such misgivings are based on the following considerations. Conditions
such as (20) and (70) fromHR-RCCS andM-RCCSmodels are intended to ensure that
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the effects of a common cause should be positively correlated. Nevertheless, the objec-
tion goes, they are not strictly needed to explain the positive correlation between the
effects of a common cause: given that these are positively correlated, it is immaterial
whether (20) and (70) actually hold. Rather, all is required for the explanation is that
their correlation should disappear when conditioning on the common cause, i.e. the
screening-off condition (19), (69). On the other hand the existence of a partition satis-
fying (19), (69) is a trivial matter, for some such partition can always be constructed.
The question whether a common cause system of any finite or countable size exists for
a given correlated pair is thus, in one of the referee’s words, a ‘pseudo-question’. By
extension, so too must be the question whether a generalised common cause system
exists for each positive deviation.

Luckily, there are at least two reasons why the above misgivings are unwarranted.
The first reason is that, in reality, conditions (20) and (70) do perform an important
explanatory function. They make it possible to infer the positive correlation between
two events from the existence of their common cause. Hence, they ensure that pos-
itive correlations get explained in accordance with the classical covering-law model
(Hempel 1965). Of course the general applicability of the covering-lawmodel has long
been put into question, but in and of itself this is no reason to deny the explanatory
significance of (20) and (70). Similar considerations also apply to conditions (22) and
(72).

The second reason is that, in any event, the existence of a generalised common cause
system is no trivial matter. More exactly, it can be demonstrated that a partition satisfy-
ing (22), (72)may not exist for a deviation δ (A, B) ifCorre (A, B)+p (A) p (B) < 0.
The details of this proof, however, are beyond the scope of this paper.

6 Conclusion

The principle of the common cause decrees that improbable coincidences ought to
be put down to the action of some common cause. The standard interpretation of
the principle takes this as a requirement that positive correlations between causally
unrelated events should be removed by conditioning on some conjunctive common
cause. The interpretation here promoted, and encapsulated in the extended principle
of the common cause, urges by contrast that common causes should be called for in
order to explain positive deviations between the estimated correlation of two events and
their expected correlation. This paper has outlined two distinct probabilistic models
for systems of common causes that incorporate the extended interpretation of the
principle. GHR-RCCSs have been elaborated by combining the generalised common
causemodel withHR-RCCSs. GM-RCCSs, instead, have been obtained by integrating
generalised common causes with M-RCCSs. The necessary and sufficient conditions
for the existence of finite systems of either kind in classical probability spaces have
been determined.

Our demonstration led to the unexpected result that some extension of the given
classical probability space can be found including aGHR-RCCS of arbitrary finite size
for some specified positive deviation, if and only if a similar extension can be found
including a GM-RCCS of finite size for the same deviation. Even more interestingly,

123



Synthese

in either case the existence of such space is guaranteed if and only if the sum of the
expected correlation of the pair of events under consideration and the product of their
probabilities is greater than zero. The mathematical reason for this limitation is clear:
only under said constraint, in fact, can HR-admissible numbers and M-admissible
numbers for a positive deviation exist. The philosophical interpretation of this result,
instead, is an open question.

Acknowledgements I am grateful to two anonymous referees for their challenging but constructive feed-
back.

Appendix: Proof of Lemma 5

Let (Ω, p) be a classical probability space with σ -algebra of random events Ω and
probability measure p. Moreover, let A, B ∈ Ω satisfy (17) and (62).

To start with, let us observe that (43) is in fact a system of n − 1 equations, namely
one for each value of i = 1, . . . , n−1. Therefore, (39)–(43) jointly comprise a system
of 4+ (n−1) = n+3 equations in 4n variables. This means that each HR-admissible
set for δ (A, B) is determined by a set of 4n − (n + 3) = 3n − 3 parameters, for
every n ≥ 2. To establish the existence of such set, we accordingly need to prove that
such parameters exist. To this purpose, let numbers a, b and ε be understood as per
(44)–(46). Proof will proceed by induction on n.

Let us begin by assuming n = 2 as our inductive basis. This has the effect of
transforming (39)–(43), respectively, into:

a2 = a − c1a1
1 − c1

(89)

b2 = b − c1b1
1 − c1

(90)

c2 = 1 − c1 (91)

d2 = ε + [a − a1c1][b − b1c1]
[1 − c1]2 (92)

d1 − a1b1 = ε. (93)

Since a, b and ε are known by hypothesis, choosing numbers c1, a1 and b1 will
therefore suffice to fix the values of all 4n = 8 variables in the system. In particular,
(89)–(92) immediately produce:

limc1→0 a2 = a (94)

limc1→0 b2 = b (95)

limc1→0 c2 = 1 (96)

limc1→0 d2 = ε + ab, (97)

while on the other hand (17) directly requires that

1 > a, b > 0, (98)
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as it would be easy to verify. Taken together this ensures that, as c1 is taken sufficiently
close to zero:

1 ≥ a2, b2 ≥ 0 (99)

1 ≥ c1, c2 ≥ 0, (100)

while (62) and (17) imply that

1 ≥ d2 ≥ 0. (101)

To determine the remaining numbers, we further need to set a1 and b1. In this case,
our choice will depend on the value of ε, as follows:

ε ≥ 0

{
a > a1 ≥ 0

b > b1 ≥ 0
(102)

ε < 0

{
1 ≥ a1 > a

1 ≥ b1 > b
(103)

Either option is allowed by (98), and either will ensure that

1 ≥ di ≥ 0, (104)

as it would be straightforward to check with the aid of (43), (17) and (62). Thanks
to Lemma 3, this is enough to establish that some set {ai , bi , ci , di }ni=1 of quasi-
admissible numbers exist for δ (A, B) if n = 2. To further show that such set is
HR-admissible for δ (A, B), we only need to observe that (34) can be obtained from
both (102) and (103), owing to (28)–(30).

Let us now assume, as our inductive hypothesis, that some set {ai , bi , ci , di }mi=1 is
HR-admissible for δ (A, B), where n = m > 2. To prove that a HR-admissible set for
δ (A, B) also exists if n = m + 1, let us consider the set

{
a j , bj, c j , am−1, bm−1

}m−2
j=1 ⊂ {ai , bi , ci , di }mi=1 ,

and let us choose numbers a′
m, b′

m, c′
m−1, c

′
m such that:

a j > a′
m > 0 ( j = 1, . . . ,m − 1) (105)

b j > b′
m > 0 ( j = 1, . . . ,m − 1) (106)

cm, cm−1 > c′
m−1 > 0 (107)

1 > c′
m > 0. (108)

Given (39)–(43), the set

{
a j , bj, c j , am−1, bm−1

}m−2
j=1 ∪ {

a′
m, b′

m, c′
m−1, c

′
m

}
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of 3n − 3 parameters will then suffice to determine 4(m + 1) numbers:

{
a j , b j , c j , d j , am−1, bm−1, c

′
m−1, dm−1, a

′
m, b′

m, c′
m, d ′

m, am+1, bm+1, cm+1, dm+1
}m−2
j=1 .

Because numbers
{
a j , b j , c j , d j , am−1, bm−1, c′

m−1, dm−1, a′
m, b′

m, c′
m,

}m−1
j=1 satisfy

conditions (31)–(33) and (34) by hypothesis, all we need to show is that said constraints
are also satisfied by the remaining numbers

{
d ′
m, am+1, bm+1, cm+1, dm+1

}
. To this

purpose, let us first notice that (32)must be true of d ′
m by virtue of (43) and (105)–(106).

Next, thanks to (39)–(42), it will be sufficient to suppose that

a′
m → 0 (109)

b′
m → 0 (110)

c′
m → cm−1 − c′

m−1 (111)

to obtain

lima′
m→0, c′

m→cm−1−c′
m−1

am+1 = am (112)

limb′
m→0, c′

m→cm−1−c′
m−1

bm+1 = bm (113)

limc′
m→cm−1−c′

m−1
cm+1 = cm (114)

lima′
m→0, b′

m→0, c′
m→cm−1−c′

m−1
dm+1 = dm (115)

which we already know, by our inductive hypothesis, to satisfy (31)–(33). Moreover,
(105) and (106), along with the inductive assumption whereby

[am − ai ][bm − bi ] > 0 (i = 1, . . . ,m − 1), (116)

ensures that

[am+1 − ai ][bm+1 − bi ] > 0 (i = 1, . . . ,m), (117)

which togetherwith our inductive hypothesis suffices to establish (34).Due toLemma3
andDefinition 8, the set of 4(m+1) numbers so determined is thereforeHR-admissible
for δ (A, B). Lemma 5 is thus demonstrated by induction.
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