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Abstract 

Understanding human mobility dynamics is of fundamental significance for many 

applications, and a wide range of data-driven mobility studies have been conducted using 

different datasets. Mobility traces which provide digital records of individual mobility allow 

analysis of individual mobility patterns, trends, and anomalies. Bicycle Sharing Systems (BSS) 

with origin-destination (OD) sensing systems that record departure and arrival times of each trip 

are among the most promising urban transport systems which do have such digital data available. 

BSS allow users to choose their own origin, route, and destination as well as travel time based on 

their needs. This flexibility leads to uncertainty on the operator side in terms of system use, and 

this thesis explores both uncertainty and regularity in demand to gain new insights for improving 

BSS deployments, services, and operations. Using BSS data from two cities (London and 

Washington DC), this thesis focuses on three main topics: station neighbourhood analysis, 

individual next place prediction, and prediction of system demand from system-level to 

individual station-level. 

Stations neighbourhood analysis aims to reveal the quality of connections among nearby 

stations by examining users’ behaviour in choosing other stations when their commonly visited 

station is disturbed because it is of out of service (shutdown) or in an imbalanced state (full or 

empty). Two methods are proposed to conduct this analysis which are spatial-mobility-motifs and 

station temporary shutdown. Two metrics are also proposed to measure the quality of connections 

which are impact distance and usage transformation. Results show that 300 metres of travel 

distance is the impact distance of a station shutdown as measured by at least 20% usage change 

for nearby stations. 300 metres is also the most common distance that appears during motif 

analysis when users choose nearby stations within a neighbourhood. Results from these both 

analyses could be used to help BSS operators identify potentially ineffective stations and isolated 

stations. 300 metres can also be used as a standard distance between stations when deploying a 

new system or redesigning the existing network topology. 

User clustering aims to group users with similar mobility behaviour. Information theory is 

then used to measure the next-location predictability of each cluster. The goal is to identify highly 

predictable users so that useful services might be offered based on their predicted next place. Two 

temporal clustering metrics are proposed which are total trips (1 feature) and hourly trips across 

the day (24 features). These metrics adequately reflect the frequency and the regularity of user 

mobility. Three clusters are identified with distinct spatiotemporal characteristics which are 

named casual users, regular users, and commuters. Entropy analysis demonstrates that 
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commuters follow the basic entropy ordering rule that more history provides more predictability. 

Since real entropy is close to the conditional entropy for commuters, this suggests that the next 

location is strongly determined by the previous sequence of stations. Predictability, which is the 

theoretical upper bound of prediction accuracy, is approximately 80% for commuters. The 

accuracy of predicting destination given trip origin and user information is analysed at different 

times and for different clusters, using first and second order Markov models. Using previous trip 

history enhanced with aggregate data for trips without individual history, the highest prediction 

accuracy of 80% is achieved for commuters during the morning peak hours. Similar approaches 

are employed for return-to-next-pickup prediction, but their accuracy is less than the pickup-to-

return accuracy. Trip prediction information could be used for a user-based notification system 

that can proactively notify highly predictable users in advance about information relevant to their 

likely destination. 

Aggregate BSS usage at system level follows a regular daily and weekly pattern, combining 

commuting behaviour with recreation use. Being able to predict system-wide usage can enable 

better planning of redistribution and maintenance activities by operators. Rather than predict 

system-wide use for each hour directly, it is conjectured that greater prediction accuracy can be 

gained by predicting the deviation from the regular weekly pattern. Results show that the 

deviation-based prediction using machine learning predictors can significantly improve the 

prediction performance for both London and Washington DC in comparison with naïve 

approaches based on recent historical averages. Accuracy is also significantly improved 

compared to previously published BSS machine learning predictors. The RRMSE results from 

the best predictor are 16.9% in London using Bayesian Ridge Regression and 16.7% in 

Washington DC using Random Forest Regression for a week of validation data. Using these same 

predictors over two weekly test sets achieves 13.8% and 14.1% in week 1, and 27.5% and 22.7% 

in week 2, which is an anomalous week before Christmas. In all cases these results are much 

better than historical average prediction. The most important input features are the one-previous-

hour deviation, followed by the two-previous-hour deviation. The effect of weather is already 

present in the previous hour inputs, and so separate weather inputs do not add much additional 

prediction information. Station-level prediction has significant error across a whole day, but 

predicting peak hour use in busy stations is much better than using historical averages, and this 

could help BSS operators to better predict unexpectedly heavy use of certain stations at certain 

times. 
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CHAPTER 1 

INTRODUCTION 

Understanding human mobility dynamics is indispensable for a range of applications from 

urban planning [1], traffic forecasting [2] and transit systems [3] to public health [4, 5], 

epidemic prevention [6, 7], emergency response [8], and location-based services [9]. Human 

mobility modelling is possible because humans naturally move with a certain degree of spatial 

and temporal regularity in their daily routines. On the other hand, human mobility also contains 

a degree of irregular or random movement. Individuals might explore unfamiliar places, follow 

a new route, use different travel methods, or they may move in familiar places but at unusual 

times. High regularity of movement equates to high predictability, while high randomness 

brings high uncertainty or entropy. There are multiple complex, interrelated factors that affect 

both the regularity and the randomness of human movement. Therefore, understanding the 

regularity of human mobility is a challenging problem [10]. Improving the prediction of 

individual and population mobility has wide potential applications in the areas mentioned 

above. 

Urban populations need to be served by effective and efficient transportation systems, such 

as roads, cycle paths, public transport and parking facilities, to support activities such as 

commuting to work, shopping, leisure and tourism. The pulse of urban activities that reflects 

their underlying spatial and temporal characteristics can be inferred from human mobility 

dynamics associated with those activities [11]. The study of urban mobility dynamics involves 

understanding where, when, and how citizens move at city-wide scale and at subregion levels. 

If individual or group mobility patterns can be captured appropriately, these can be analysed to 

provide insights about urban mobility patterns at different spatiotemporal scales. This task 

entails capturing records of individual mobility in order to properly analyse their patterns, 

trends, and anomalies. Unfortunately, not all transportation systems enable regular capture of 

such data, and some of them only provide aggregate data on fixed routes and schedules without 

capturing the fine-grained individual mobility behaviour. 

Bicycle Sharing Systems (BSS) with origin-destination (OD) sensing systems that record 

the departure and arrival times of a one-way individual trip are among the most promising 

urban transportation systems which have such fine-grained mobility data available. BSS are a 

subtype of on-demand transport networks that include taxis, hailing services (e.g. Uber), and 
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ridesharing (e.g. carsharing). Unlike conventional public transport systems (e.g. subways and 

buses) with fixed routes, schedules, and transit stops, BSS allow users to choose their own 

route and schedule [12]. Compared to taxis which also have that flexibility, BSS are more 

individualised because taxis can carry a group of people and need drivers, but taxis are more 

flexible in terms of origin and destination. BSS also are either faster or competitive with taxis 

in terms of travel time in dense urban areas [13]. Accordingly, BSS trips are well aligned with 

inner city travellers’ mobility.  

This flexibility obviously brings advantages and challenges such as high efficiency on the 

user’s side as well as uncertainty on the operator’s side [14]. This uncertainty arises because 

users may pick up and return their rented bikes whenever and wherever they want. However, as 

humans tend to move in certain regular patterns on a daily basis, the likely system use could 

potentially be predicted from the movement behaviour history which is embedded in users’ 

previous trip data. This could be further understood by considering some external factors 

which spatially and temporally align with that trip data, such as local weather. In addition, 

uncertainty is involved not only in when and where pickups and returns occur, but uncertainty 

also comes from the individual routes which are followed by users. It is very hard to trace user 

trajectories between stations because BSS are not usually equipped with GPS (Global 

Positioning System) trackers. Furthermore, the uncertainty also arises when a station faces a 

perturbation (e.g. temporary shutdown), or when it is in an imbalanced state (either full or 

empty). How users respond to such circumstances, what the impacts for other stations are, how 

to properly measure this impact, and how to use this impact knowledge to improve BSS 

operations, are all questions where there are not clear answers.  

Recently, most BSS research studies have conducted their analysis and prediction at an 

aggregate level [15-17] to observe the global and local trends, for example at city and cluster 

scale, since almost all BSS public datasets contain information about trips, but these are not 

linked to individual users. This study uses what we believe is the only public BSS dataset that 

provides information on (anonymized) individual users. It covers approximately 6 months of 

BSS system use in London in 2012. In addition, this study will also investigate prediction of 

aggregate BSS system use using some new techniques that will be shown to significantly 

improve prediction accuracy. Three major studies will be undertaken. 

 First, relationships between neighbouring stations will be used to understand spatial 

characteristics of BSS, such as how temporary closure of a station affects its neighbours. 
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Second, different techniques will be used to explore the predictability of individual user 

mobility. Third, different machine-learning techniques will be explored to predict the system-

wide BSS usage, the usage in neighbourhood clusters, and the usage at individual stations. The 

motivations of these investigations are first to improve the design of BSS systems by using the 

spatial insights, second to be able to identify predictable users in order to provide useful advice 

and assistance, and third to assist BSS operators to better predict unusual usage patterns and to 

plan responses to these.  As well as these practical BSS motivations, it is also expected that the 

BSS data analysis will enhance our existing understanding of human mobility patterns in 

general. 

The remainder of the thesis is organized as follows. Chapter 2 presents the literature 

review that critically reviews existing work related to human mobility and BSS analysis. 

Chapter 3 explains the research gaps, research questions, and research tasks in detail. Chapter 4 

presents the dataset pre-processing and spatiotemporal preliminary data analysis. Chapter 5 

discusses the results of station neighbourhood ties analysis. Chapter 6 discusses the user 

clustering and next-place prediction results. Chapter 7 discusses the results of deviation-based 

prediction over the daily and weekly patterns of BSS data. Chapter 8 presents the conclusions, 

original contributions and describes possible future work. 
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CHAPTER 2 

LITERATURE REVIEW 

There has been a long history of interest in human mobility, but the difficulty has always 

been in how to monitor the movements of humans. Trip data from BSS databases is one 

relatively new way to track human movement, and there has been significant recent interest in 

using BSS data to study mobility. Additionally, the recent explosion of interest in Data 

Analytics caused by the availability of big data sets means that researchers are also interested 

in how Data Analytics can improve BSS operations. So this chapter reviews the literature 

corresponding to two major topics: human mobility studies and BSS studies. The human 

mobility review section will present the generic characteristics, models, metrics, limitations, 

and predictability of human mobility. These studies have been done using various sources of 

human mobility data, as well as proxies in which human location and movement is 

approximated by the movement of devices (such as phones) or artefacts (such as banknotes). 

After first providing an overview and some history about BBS, the BSS review section will 

mainly discuss research that relates to the spatiotemporal analysis and prediction of BSS data.  

Even though human mobility studies have been conducted using a wide variety of data 

sources which have different characteristics, there are some generic mobility metrics and 

methods that will be applicable for studying BSS mobility. By reviewing BSS studies 

alongside other human mobility studies, the gaps can be identified where human mobility 

metrics and methods that have not implemented yet in BSS studies. How these methods can 

potentially improve BSS services, deployment, and operation will be able to identified, so that 

the research questions and methodology can be formulated in the next chapter.  

2.1.  Human Mobility Studies 

The majority of studies of human mobility exploit the high degree of regularity and 

predictability of future locations of individuals where movement ranges are mostly dictated by 

daily routine [18, 19]. To understand the nature of human mobility dynamics, a broad range of 

data-driven studies have been conducted. As synthetic data has limited scope to capture the 

fine detail of real human mobility [20], most recent mobility studies have been driven from 

various sources of real world data. These data mobility traces use data such as banknote 

tracking [21, 22], call detail records (CDR) of mobile phones [23-27], taxi data [28, 29], 
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railway system data [30, 31], transit system and smart card data [3, 32], GPS-based traces [29, 

33], and social media with geo-tagging [9, 10, 34]. Such digital information reflects the daily 

mobility activity in certain ways that correspond to the visited locations of proxies or 

individuals at specific times [35]. For instance, the mobility of banknotes corresponds to the 

geographic circulation of notes from person to person, while the mobility from CDR analyses 

reflects the mobile-phone position in terms of the nearest cellular base station. Kang et al. [36] 

summarized three desirable traits of mobile positioning: large sample size, high temporal and 

spatial resolution, and high spatiotemporal dynamics. Although the available datasets 

significantly differ in their features, granularity, and resolution, the results agree on a number 

of quantitative characteristics and metrics of human mobility [26]. For example, mobile-phone 

and banknote studies both result in a power-law distribution of distance travelled.  

This section will review some human mobility topics related to this research, namely 

displacement distribution, waiting time, radius of gyration, preferential return, mobility motifs, 

entropy and predictability, and mobility prediction. Later in the thesis, in Chapter 4, these same 

analyses will be applied to BSS data to investigate whether such analyses are able to provide 

new insights and understanding of BSS usage. 

2.1.1.  Displacement Distribution of Human Mobility 

Individual human trajectories are generally characterised by heavy-tailed distributions, a 

distribution with a “tail” that is heavier than an exponential, that show the complexity of 

human mobility [23, 26]. The heavier the trajectory tail is, the larger the probability of getting 

one or more very large values in its distribution is. Using dollar-bill tracking as a proxy from 

the WheresGeorge online game, Brockmann [21] studied the scaling law of human mobility. 

This work revealed that the probability of a bill traveling a certain distance within a certain 

time falls as an inverse power law P(r) ~ 1/(r
1 + 

), where  = 0.6. The consecutive geographical 

mobility of a bank note is similar to a class of random walks known as Lévy flight in which the 

probability distribution of step-length is heavy-tailed.   

In another study, Song et al. [26] used mobile-phone traces in CDRs and defined jump size 

r as the displacement between consecutive locations showing the distance travelled by an 

individual. The probability P(r) has a heavy-tailed characteristic, P(r) ~ |r|
-1-

 where 0 ≤  

≤ 2. They also suggested the relevance of Lévy flight or continuous-time random-walk (CTRW) 

models for human mobility [26]. This CTRW model is widely used in the random-walk 
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community [22]. However, real human trajectories are not random and do not follow highly 

reproducible scaling laws. This is because humans have a significant propensity to return to the 

locations they visited frequently before, such as their home, workplace, recreation area, or 

shopping centres. Good mobility models should describe the recurrence and temporal 

periodicity inherent to human mobility, in contradiction with random walk models such as 

CTRW. Random methods alone cannot be the basis of a modelling framework which captures 

the basic features of human mobility [26]. 

Barbosa et al. [37] investigated the characteristics of human trajectories by exploring 

mobile phone position data and the Brightkite
1
 data in Brazil using a rank-based approach of 

visited locations. They proposed two rank variables which are the frequency rank and the 

recency rank. Both of those ranks were measured from the accumulated sub-trajectories. Since 

the authors had an interest in individual trajectories, they only considered the data that 

corresponded to the user’s displacement by filtering the recurrent observations in one location. 

For each individual, this produces a time series of trajectories through the observation period. 

Based on their observations, they concluded that human trajectories are biased towards recently 

visited locations [37]. 

The limitations of using mobile positioning are analysed by Kang et al. [36]. They 

suggested that a good positioning device should collect individual’s geo-position continuously 

through time. However, mobile-phone mobility data only contains position information when a 

communication using that device happens. Therefore, the extent to which actual mobility can 

be represented and revealed from mobile phone data needs to be tested appropriately. Their 

results show that, although the mobile trajectories as a sampling of real trajectories have a lot 

of missing detail, they can be used to estimate the actual profiles of individual movement over 

a long time period. 

Meanwhile, Wu et al. [9] used 15 million social media check-in data to construct the 

displacement distribution of individuals in Shanghai, China with area of observation of 50 km 

x 35 km. They assumed the observed area to be divided into square lattices (500 x 500 metres). 

They combined the movement-based approach with the activity-based approach to reproduce 

intra-urban mobility. This is possible because check-in data is able to indicate the travel 

purpose of users by demand-tags that are mostly associated with the venue where they are 

                                                 
1
 Brightkite was a location-based social discovery networking launched in 2007 and closed in 2011. 
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checked in. Then, the authors implemented an agent-based modelling mechanism that produces 

simulated patterns which fit well with the real distribution of observed movements.  

Using GPS-based traces, Zignani and Gaito [33] were able to extract common points of 

interest, called geo-locations. From those geo-locations, they offered a definition of geo-

community which describes the spatial and social context relations of human mobility. Then, 

they conducted a statistical analysis to show the fundamental qualities of human movements. 

Because the GPS points are not spread homogeneously, they defined different types of 

locations by observing the inclination of GPS points that tend to meet in few regions. They 

applied two clustering methods, namely the density-based clustering method and the 

hierarchical agglomerative method. This analysis identified the distance distribution covered 

by individuals both within and between geo-locations including the pause or waiting time. 

They found that the hierarchical clustering method performed better. 

 All these works from different source of data suggest generic spatial displacement 

characteristics in human mobility which are heavy-tailed distributions and not random. They 

follow a certain quality of regularity and are biased towards recently visited locations because 

people have a tendency to return to the locations they visited frequently before. Users also have 

common points of interest, and certain waiting times as described in the next section.   

2.1.2.  Waiting Times Between Mobility 

Another quantity for describing the heavy-tailed distributions of human mobility is waiting 

times P(t) defined as the time a user spends at one location that shows the time between a 

displacement and the next displacement [26], or a time between consecutive trips that are 

expected to vary across individuals [30]. Again, using CDR data, Song et al. [26] depicted the 

heavy-tailed distributions of waiting times as P(t) ~ |t|
-1-

 where 0 ≤  ≤ 1. However, Hasan 

et al. [35] found that this distribution of waiting time is not generally true for all types of 

locations.  

Similarly for other mobility data, waiting times can be an idle time between calls [23] if a 

mobile phone is used as a mobility proxy, or it can be the time when a bank note is saved by an 

individual before it transferred to others [22], or it can be the time for a taxi driver to wait for 

the next passenger [28], or vice versa the time for a passenger to wait for a taxi to arrive [29]. 

This waiting time distribution may reveal useful insights about mobility patterns. For example, 
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a larger waiting time of taxi passengers suggests a lower availability of taxis [29]. In contrast, a 

shorter waiting time of taxi drivers means a higher availability of passengers. 

Another waiting time analysis was conducted by Barbosa et al. [37], but in this study they 

observed the time interval (in hours) between visiting the same location. They found two 

important features about human mobility characteristics. First, peaks are experienced at 

intervals of 24 hours. This captures that temporal regularity where humans tend to revisit to the 

previously visited places as part of their daily routines. Second, that return probability shows 

very rapid decays as the time increases. They presented a different outlook for human mobility 

examination in which this temporal aspect plays a much more important role than the inter-

event times [37]. Papalardo and Simini [19] stated that the waiting time is the temporal 

mechanism showing the distribution of time between two successive journeys. However, it 

does not model the tendency of human to be in certain locations at specific times. 

2.1.3.  Radius of Gyration 

Another feature for describing the complexity of human mobility that also follows a 

heavy-tailed distribution is radius of gyration (RoG). It is understood as the characteristic 

distance covered by an individual when observed up to certain time [23]. In other words, it 

describes the characteristic travel distance of an individual in a certain time period, usually on a 

daily basis [24]. It is formulated as 𝑅𝑜𝐺 = √
1

𝑁
∑  (𝑟�̅� − 𝑟𝑐𝑚̅̅ ̅̅ )2𝑁

𝑖=1  where ri is the i
th

 position 

recorded for an individual user, i = 1,…,N, and 𝑟𝑐𝑚̅̅ ̅̅ =  
1

𝑁
 ∑ �̅�𝑖

𝑁
𝑖=1  is the geometric centre of the 

trajectory [23]. Using 6 months observation (T) of cellular-phone data, Gonzales et al. [23] 

classified the RoG of individuals into three categories which are mostly small (RoGsmall(T) ≤ 3 

km), medium ( 20 ≤RoGmedium(T) ≤ 30 km), or large (RoGlarge(T) ≥ 100 km). The RoG adheres 

to a power-law distribution with an exponential cut-off. Since the RoG follows a heavy-tailed 

distribution [24], this indicates that, even though most of the individual travels are confined to 

less than 3 km, there are a few users who regularly travel hundreds of kilometres. Similarly, 

Song et al. [26] found the growth (as the time interval increases) of radius of gyration was very 

slow and that it also follows a heavy-tailed distribution.  

Later, by assuming that individual travel speed is constant and that individuals have fixed 

commonly-visited locations such as home and workplace where they spend most of their time, 

Xiao-Yong et al. [38] calculated RoG and also showed that the typical area of individual daily 
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movement is an ellipse. It is skewed if the travel distance is increased [25]. They conducted 

their analysis using Mobidrive data which is a travel diary that records travel behaviour of 360 

people in Germany day by day over a 6 week survey period. They simplified the daily travel of 

individuals into three subsequent activities which are commuting from home to workplace, 

going to leisure activities, and returning back home. They found that most people have similar 

orderings of activities even though the times and leisure venues vary.   

For such human mobility quantities above, the probability distributions of jump size P(r), 

waiting times P(t), and radius of gyration P(RoG) show a heavy-tailed distribution 

characteristic where human mobility patterns are mostly concentrated in a region of a few 

kilometres for certain time durations. There are a few individuals who travel much further, and 

also a few individuals who wait much longer than the normal waiting times for their next 

movement. These few outliers result in distributions having heavier tails than a simple power 

law distribution. Furthermore, in terms of spatial context, some regions have unique spatial ties 

to other regions which could vary over time. This suggests the complexity of spatiotemporal 

human mobility patterns cannot be fully predicted by straightforward rules or models.  

2.1.4.  Preferential Return 

As individuals tend to visit similar places as part of their daily routine, the concept of 

preferential return (PR), proposed by Song et al. [24], offers a well-designed model for the 

visitation frequency distribution for returning to previously visited locations. On the other 

hand, they also identified exploration for visiting a new location. In preferential return, they 

defined the probability Πi for returning to a location i as Πi ∝ fi, where fi is the frequency of 

visitation to that location [24]. This PR and exploration reproduce a scaling property of human 

mobility in which more visits will occur if a location is discovered earlier [39].  

Incorporating a recency-based mechanism by including a bias towards recently visited 

locations, Barbosa et al. [37] proposed an extension for the preferential return mechanism with 

a temporal perspective. They tested the respective relationship of the probability of return using 

a different rank analysis. They claimed their approach is based on an experiential proof that if 

the time of last visit to a location is longer, then the probability of finding that user in that 

location is lower. In other words, a user has tendency to return to recently visited locations. 

Furthermore, they suggested that the probability of visitation to specific place is proportional to 

the number of previous visitations to that place. 
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Using both vehicle tracked GPS and mobile phone data, Papparaldo et al. [18] identified 

two distinct classes of individuals: explorers and returners. They claimed that existing models 

cannot describe the existence of these two classes. Then, they proposed what they claimed is a 

more realistic model that would be able to capture the empirical findings of those two classes. 

They used RoG to understand how the k-th most frequent places of an individual govern the 

characteristic distance covered by that person. The role of the k-th most frequent places was 

investigated by comparing the probability distribution of RoGtotal and RoGk where k = 2,….,10. 

The correlation between k-th RoG and total RoG lets them measure the level of similarity 

between recurrent and overall mobility patterns. They found that populations are split into two 

typical classes. Returners limit their mobility to a few locations, and their recurrent patterns are 

comparable to the overall ones. Instead, explorers cannot be restricted to limited locations.  

2.1.5.  Human Mobility Motifs 

Human mobility can also be characterized by the trips among a sequence of visited places 

[40]. As humans mostly move in daily routines, a daily mobility motif can be defined as the 

equivalent spatial class of directed network [41] that represents the traces of those visited 

locations on the daily basis. A directed graph is an ordered pair G = (V, E) where V is the set of 

nodes (or vertices) representing BSS stations, and E is a set of ordered pairs of nodes (i.e., 

directed edges) representing trips. This exhibits a unique daily trace of individuals from one 

location to other locations during a day.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Example of daily mobility motifs in real world redrawn from Jiang et al. [41]. 
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Among a population, there should be similar daily motifs as individuals have similar 

common places to visit (work, home, shop, etc.). Figure 2.1 shows the real world activity 

pattern structures (1a-1f) with the corresponding highly abstract daily motifs format (2a-2f)  

[41]. Schnieder et al. [40] used mobile phone and survey data to find the mobility daily motifs 

of individuals in Paris and Chicago. Using 0.5% occurrence as a minimum threshold that 

should appear in the dataset, they found 17 unique networks that represent motifs, as shown in 

Figure 2.2. This is already sufficient to capture up to 90% of mobile phone and survey 

population in both cities.  

 

 

     

 

 

     

 

 

     

 

Figure 2.2. Daily mobility motifs in Paris and Chicago  

summarised and redrawn from Schnieder et al [40]. 

 

 

     

 

 

     

 

Figure 2.3. Daily mobility motifs in Singapore summarised and redrawn from Jiang et al. [41]. 
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Later, Jiang et al. [41] adopted a similar approach using Singapore CDR cell-phone as well 

as survey data to uncover the Singaporean residential mobility motifs. The found from the 

phone data that on an average weekday, the most frequent motif is that 33% of Singapore 

residents visited 2 places, followed by 30% 3 places, 14% 4 places, 13.5% stayed at home (1 

place), 5.5% 5 places, 2.1% 6 places, and less than 2% visited more than 6 places, as shown in  

Figure 2.3. These motifs cover around 90% of the population. While for survey data in that 

same study, 2-nodes is the most dominant motifs with 55% of the population. 

To the best of our knowledge, this motif analysis has not been investigated yet with BSS 

data. Popular sequences of visited BSS stations for individual users on a daily basis are not 

known. Use of this spatial motif analysis in BSS design and deployment may have potential to 

assist in BSS system operations, and the potential of this analysis is worthy of further 

investigation. 

2.1.6.  Entropy and Predictability 

Being able to predict a traveller’s next location from their current location would allow 

useful information to be relayed to the traveller about their travel. The usefulness of this 

information will depend on the accuracy of the next location prediction. This section explores 

fundamental concepts about trip predictability. 

In information theory, Entropy (S) is a fundamental quantity to measure the uncertainty or 

randomness of movement, and it can be used to capture the degree of predictability. Entropy 

summarises the information that is present in the sequence of locations, characterising a time 

series [42]. Theoretically, there are four different measurements of entropy, Random entropy 

(S
Rand

), Shannon entropy (S
Shan

), Conditional entropy (S
Cond

), and Real entropy (S
Real

). All of 

those will be bound by the relationship: S
Real

 ≤  S
Cond

 ≤  S
Shan

 ≤  S
Rand

. Random entropy captures 

the randomness of mobility by considering only the number of distinct locations visited by a 

user. This means each location is considered as having an equal probability. Shannon entropy, 

also known as temporal-uncorrelated entropy, counts the probability of visiting each distinct 

station. This demonstrates the heterogeneity of visitation patterns. Conditional entropy captures 

the correlation between one location and the subsequent location in the time series. This 

considers frequency and the order in which the locations were visited. Real entropy fully 

captures the spatiotemporal order that presents in user mobility, not only the frequency and 
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order but also the time spent at each location. The detailed formulas for each of these entropies 

are given later in Chapter 6 when these are used for BSS analysis. 

Predictability (Π) is the measurement of users’ future whereabouts [24].  Fano’s inequality 

is used to introduce Πmax as the fundamental limit of predictability. This is useful in the 

scenario where a random variable Y is known to estimate the value of a correlated random 

variable X. It relates the probability of error in estimating X to its conditional entropy S(X|Y). 

Here, it would predict correctly the user’s next location based on the history of locations with a 

maximum probability of Πmax. The accuracy that can be attained by a predictability algorithm 

will be influenced by the inherent characteristics of the users’ movement patterns [43].  

A theoretical limit of predictability has been demonstrated in recent studies. Song et al. 

[24] posed a fundamental question: “What is the role of randomness in human behaviour and 

to what degree are human actions predictable?” Then, they explored the limit of predictability 

by measuring the entropy of each individual’s trajectory among anonymised mobile phone 

records. They found a 93% potential predictability in user mobility, Figure 2.4. This high 

percentage indicates that there is a huge potential to explore the regularities of human mobility 

using mobile phones. Later, Lu et al. [25] measured the movement uncertainties of 500,000 

individual travel patterns among mobile phone users in Cote d’Ivoire by considering the 

frequencies and temporal correlations of individual trajectories. They found that the theoretical 

maximum predictability is as high as 88%, Figure 2.5. Similarly, using a smartphone-based 

study of 500 users in Finland, Qin et al [44] demonstrated that patterns and entropy relate to 

the degree of activities and locations with 78% predictability.  

 

Figure 2.4. Entropy and predictability redrawn from Song et al. [24]. 
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Figure 2.5. Entropy and predictability redrawn from Lu et al. [25]. 

 

Figure 2.6. Entropy and predictability redrawn from Sinatra and Szell [45]. 

Recently, Sinatra and Szell [45] have applied entropy and predictability to measure the 

behavioural actions and mobility of a large number of players in the virtual universe of a 

massive multiplayer online game, the online world Pardus
2
. Here, individuals are not 

performing physical movements, but rather, navigate a virtual avatar. They found that 

movements in virtual human lives follow the same high levels of predictability as real world 

mobility, Figure 2.6. To some extent, the future movement of players can be predicted well if 

the temporal correlation of visited places is accounted for. 

However, to the best of our knowledge, no studies have yet investigated the concept of 

entropy and predictability in BSS data, except our own work conducted as part of this thesis 

[46]. As a specific mode of transport in urban areas, it is expected that the predictability bounds 

of BSS data have unique features that are different from mobile phone data [46]. 
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2.1.7.  Human Mobility Prediction 

In human mobility prediction, numerous spatiotemporal prediction approaches for 

different mobility metrics have been proposed. A simple prediction technique for flows 

between locations uses the historical average at similar times in the past. Regression techniques 

use a parametric model to predict future locations based on the current and past system state, 

and the model parameters are often determined by machine-learning techniques, i.e., 

optimising the parameters to best fit past data. Many different regression models are described 

later in this section. Techniques from time series analysis, such as Auto-Regressive Moving 

Average (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA) are often used.  

Mobility-specific parametric models, such as Gravity and Radiation models have been 

proposed. For individual next place prediction, Markov-chain models use a transition matrix to 

estimate the probabilities of the next system state based (i.e. next location) based on the current 

state. A prediction algorithm could be considered to be good when it shows a better prediction 

than the baseline historical average can achieve [47]. Prediction algorithms are used to predict 

various human mobility metrics such as traffic flows, commuting patterns, next location, travel 

times, passenger numbers, future mobility trends, and mobility classification.  

This section reviews a number of studies in the prediction of different mobility metrics in 

different scenarios in order to understand the range of techniques used, the range of metrics 

that are predicted, the performance metrics used to evaluate the accuracy of the prediction, and 

the accuracies that are achieved for different situations. 

In time series regression-based models, Li et al. [28] proposed an improved ARIMA 

model to predict the spatiotemporal variations of taxi passenger numbers in an extracted 

hotspot using 4000 taxis’ GPS traces in Hangzhou, China, over a year. Their prediction 

performance achieves 5.8% error. When used to predict the location of the likely passengers, 

they can decrease the distance travelled and time taken by 6.4% and 37.1 % respectively. The 

key success of their scenario is the clustering of the pick-up and set-down events of passengers. 

ARIMA models assume the future value of a variable as a linear function of several historical 

observations with random errors. Later, Moreira-Matias et al. [29] proposed three distinct 

short-term prediction models, Time-Varying Poison, Weighted Time-Varying Poison, and an 

ARIMA model, as well as an adaptive (sliding windows) ensemble of time series models to 

predict the spatial distribution of taxi-passengers in order to improve taxi-driver mobility 

intelligence in Porto, Portugal. Their major contribution to the area is due to the adaptive 
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characteristics of their approach in streaming data, while other works mainly conduct their 

experiments using an offline testbed. Using streaming data from 441 taxis, first, a histogram 

series is made to aggregate the information, and then three time-series forecasting techniques 

were conducted to make a prediction. As a result, they can achieve a very good performance 

where the maximum value of error was 28.23%. Meanwhile, the sliding-window ensemble is 

always the best model where the prediction error that can be achieved was always lower than 

26%.  

Massuci et al. [48] tested the Gravity and Radiation models for commuting patterns as well 

as for public transportation flows in England and Wales at national level and city scale. The 

Gravity model observes the flows between origin and destination based on their distance and 

population where the flow is proportional to the product of the OD populations and inversely 

proportional to the power law of their distance. The Radiation model originates from a particle 

diffusion model with emission and absorption rates. The flow can be estimated by considering 

the population in the circular radius of OD where the circle centre itself is the middle point of 

OD. Overall, the gravity model shows better performance. They found that for large cities the 

original Radiation model underestimates the flows of commuting. After introducing a 

normalization factor to generalize the radiation model, a competitive result can be achieved. 

Meanwhile, Ren et al. [49] used a Radiation model to predict the commuting flows in spatial 

networks based on cost-based generalization using US census and highway traffic data. 

Compared with real traffic, they found that their model captures the normal distribution of the 

traffic flows. It achieves a high Pearson Correlation Coefficient (PCC), 0.75, based on travel 

time costs. 

Asahara et al. [50] proposed a variant of a Markov model called the Mixed Markov Model 

(MMM) which is an extension of a standard Markov Model (MM) and a Hidden Markov Model 

(HMM) to predict pedestrian movement in Osaka, Japan. Based on their observations, the two 

previous models were not generic enough to encompass all types of mobility. The MMM was 

proposed due to the existence of similar mobility behaviour among certain pedestrians. They 

achieved 74.4% as the highest prediction accuracy. Later, Gambs et al. [51] adopted the 

concept of a Mobility Markov Chain (MMC) and extended it to n-MMC in order to incorporate 

the n previously visited locations to predict the next location. They used data from three dataset 

which are Phonetic (October 2009 to January 2011), Geolife (April 2007 to October 2011), and 

Synthetic. They found that the prediction accuracy of the next location is in the range of 70% 

to 95% as soon as n = 2.   
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Machine learning is a type of functional approximation [52, 53] based on a parametric 

model, where the model parameters are determined by examining training data consisting of 

sets of input features and their corresponding outputs. Typically, the parameters are chosen so 

that the error is minimised between the real outputs in the training set and the machine-

learning estimation of those outputs based on the corresponding input features. In the area of 

machine learning techniques in mobility prediction, Zhang and Haghani [52] employed a 

Gradient Boosting regression tree method (GBM) to improve the freeway travel time 

prediction in Maryland, US, using 2012 RITIS (Regional Integrated Transportation 

Information System) data. Then, they compared their GBM performance with Random Forest 

(RF) and ARIMA methods. Here, GBM uses a boosting method to generate a decision tree 

sequentially in order to minimize certain loss functions and improve the prediction accuracy at 

the same time. Specifically, this improvement goal is done by introducing a new weak learner 

sequentially and putting emphasis on it to compensate the shortcomings of current weak 

learners. By this technique, they analysed the prediction performance from 105,408 freeway 

travel time records. Using mean absolute percentage error (MAPE) as a metric, their GBM 

solution performed better than RF and ARIMA. The results are 2.01%, 2.04%, and 2.03% 

MAPE for prediction 5 minutes ahead using GBM, RF and ARIMA respectively, 2.77%, 

2.78%, and 2.90% for prediction 15 minutes ahead, and 2.82%, 2.85%, and 3.01% for 

prediction 30 minutes ahead. 

 Later, Lopez et al. [54] proposed Support Vector Machine (SVM) based prediction to 

predict individual mobility behaviour for different modes of transport such as bike, car, bus, 

foot and train that are most likely to be used for travelling. SVM is a discriminative classifier 

algorithm based on the concept of a decision plane to classify a linearly separable dataset with 

decision boundaries. Their data come from crowdsourced data using a dedicated smartphone 

app in the city of Leuven, Belgium, collected from January to April 2015. It consists of 17,040 

validated trips from 292 users and is divided into two datasets, 75% for training and 25% for 

testing. They used 11 input variables which are User ID, Trip ID, Start time, Stop time, Start 

Location, Stop Location, Distance, Transportation mode, Trip purpose, Working day 

identification, and Holiday identification. Using all these features, the prediction accuracy is 

82%, and they used a confusion matrix to explain the existence of misclassifications between 

transport classes. 

Baumann et al. [55] analysed the performance of 18 prediction algorithms focussing on 

their capability to predict the location transitions where individuals move between two places. 
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They observed 37 individuals’ mobility traces over 1.5 years. They found high average 

accuracy for next-place prediction but not for predicting transition between two places. They 

proposed an algorithm called MAJOR by combining 18 methods considered in their analysis 

into a single algorithm. Then, they made the final prediction using the majority vote from all 

those algorithms. The spatiotemporal metrics which are current location, previous location, 

time of the day, day of the week, and weekday/weekend are defined, so that the ability of 

predictor to capture those transitions can be characterised. With MAJOR, they could achieve 

high accuracy of up to 87% for both next-place prediction and transitions prediction.  

For prediction of the next value in a time series, the most useful history is often 

immediately before that value, and so the features that are input to a predictor will often consist 

of the current value and the previous N values, which is called a sliding window of size N+1.  

As the time of the predicted value advances, the set of input features is a window of previous 

values that slides through time to keep pace with the predicted value. In other cases, one might 

be categorizing values in a time series, e.g. to see if they appear anomalous. In that case the 

sliding window may consist of data values before and after the sample in the time series. 

 Moreira-Matias et al. [29] used a sliding window to measure the error of their streaming 

taxi data prediction before a new prediction is done for the next period. Each new prediction 

was used to update the average of the overall prediction. In their scenario, they considered 4 

hours as the sliding window size. 

Meanwhile, Li et al. [28] employed the sliding window mechanism to scan and filter the 

incorrect records from a trajectory using a set of criteria. A record will be rejected if it does not 

meet a defined criterion. Similarly, Chen et al. [56] implemented a sliding window for 

detecting the anomalous events when frequency during a certain hour is much higher than the 

adjacent hours on the same day. They chose 3 hours as the window size and slide it along the 

observed data to scan the centre of window and flag any values that are much higher than their 

neighbours. 

Table 2.1 summarizes the state-of-the-art in human mobility prediction including data 

source, timespan, prediction metrics, methods, and performance assessment. It can be seen that 

most of the studies in Table 2.1 involve individual based predictions, so that the individual 

identities of moving entities are essential, such as taxi ID, mobile phone ID, pedestrians ID, 

and census ID. This is different to recently published studies in BSS prediction that are mostly 

using aggregated system-wide predictions as will be shown in subsection 2.3.7.  
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Table 2.1. Summary of existing work in human mobility predictions. 

Author Data source Timespan Prediction metrics Method Performance 

Li et al. [28] 4000 taxis’ GPS 

traces in 

Hangzhou, 

China 

A year The spatiotemporal 

variations of taxi 

passenger numbers 

in an extracted 

hotspot 

An improved 

ARIMA model 

5.8% error 

Moreira-Matias 

et al. [29] 

441 taxis, in 

Porto, Portugal 

Streaming 

data 

The spatial 

distribution of taxi-

passengers 

Three time-series 

models and an 

adaptive ensemble 

of those three time 

series models. 

Error is lower 

than 26% using 

an adaptive 

ensemble model. 

Massuci et al. 

[48] 

England and 

Wales 

population 

census 

2001 The flow of 

commuting pattern 

Radiation and 

Gravity model 

Gravity model 

shows a better 

performance 

Ren et al. [49] US census and 

highway traffic 

data 

 The commuting 

flows in spatial 

networks based on 

cost-based 

generalization 

Radiation model A high Pearson 

Correlation 

Coefficient 

(PCC), 0.75, 

based on travel 

time costs. 

Asahara et al. 

[50] 

1337 pedestrians 

in Osaka Japan 

February 

2010 

Pedestrian 

movement 

Mixed Markov 

Model 

Prediction 

accuracy 74.4% 

Gambs et al. 

[51] 

Three dataset 

from Phonetic, 

Geolife, and 

Syntetic 

Phonetic 

from Oct 

2009 to Jan 

2011 

Geolife 

from Apr 

2007 to Oct 

2011 

Next place 

prediction 

n
th

-Mobility 

Markov Chain 

Prediction 

accuracy of the 

next location is 

in the range of 

70% to 95% as 

soon as n = 2 

Zhang and 

Haghani 

Regional 

Integrated 

Transportation 

Information  

System (RITIS) 

in Maryland, US 

2012 Travel time 

prediction 

Gradient Boosting, 

Random Forest, 

ARIMA 

2.01%, 2.04%, 

& 2.03% MAPE 

(5 mins ahead), 

2.77%, 2.78%, 

& 2.90% (15 

mins ahead), and 

2.82%, 2.85%, 

and 3.01% (30 

mins ahead) 

Lopez et al. [54] A dedicated 

smartphone app 

in the city of 

Leuven (292 

users) 

January to 

April 2015 

Individual mobility 

behaviour for 

different modes of 

transport  

Support Vector 

Machine (SVM) 

Best prediction 

accuracy is 82% 

Baumann et al. 

[55] 

37 individuals’ 

mobility traces 

from their 

mobile phone 

1.5 years Next-place 

prediction and 

transition prediction 

MAJOR which is a 

combination of 18 

algorithm 

Best prediction 

accuracy is 82% 
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2.2.  BSS Overview  

The first generation of BSS was launched in Amsterdam in 1965 [57]. Recently, the fourth 

generation of BSS with fully automated operation has been widely implemented as a 

sustainable transportation system in many cities. There has been significant growth from 375 

systems comprising 236,000 bikes in May 2011 to 535 systems with an estimated fleet of 

517,000 bikes in April 2013 [58]. These numbers have further increased to 712 systems with 

806,200 bikes in June 2014 [59]. This massive growth of BSS is related to the promotion of 

healthier mobility choices in crowded cities as well as to reduce traffic congestion and air 

pollution. It has also been introduced to be a simple solution to address the under-served 

destinations and the “first or last mile” connection problem in getting citizens from major 

transportation hubs such as bus or train stations to their final destination such as workplaces or 

home, or vice versa. BSS will also prevent people from being troubled with private bike 

ownership issues such as routine maintenance, parking, storage, and theft. Some BSS share 

their trip data repositories for public access. In London and New York, for instance, publically 

available trip data describes up to one million trips a month in summer.  

The growth in global uptake of BSS illustrates the usefulness and popularity of such 

systems, however such systems are not without problems. For example, the only two BSS 

schemes in Australia, Brisbane and Melbourne, have not attracted as much use as anticipated 

[60]. In Brisbane, there were only 200,000 trips over 20 months [61]. In Mumbai India, the 

BSS was closed due to lack of use and failure to implement the model on a sufficiently large 

scale [62]. 

2.2.1.  BSS as a Complex System 

BSS stations are typically spread non-homogeneously over an urban area with a density of 

one station every few hundred metres. The short inter-station distances are because a BSS 

rental is intended for a short one-way individual trip within a city. Users can be registered 

regular users or casual users. A trip occurs when a user picks up a bike in one station, rides it 

on his or her preferred route and returns that bike to a vacant docking slot of another station in 

the system. The system-wide mobility pattern can then be described as a dynamic network. 

This network is formed by the stations and a large traffic flow between stations over time. In 

each station, usage can be measured. Thus, from a network science viewpoint, BSS can be 

analysed as a complex system composed of interconnected stations that exchange bikes [63].  
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If the availability of bikes and empty docking slots cannot meet the instantaneous demand 

level, users may not find available bikes to rent, or may not be able to return the bikes to their 

preferred stations. Significantly more pickups than returns, or vice versa, brings a station to an 

imbalanced state [63], where the station is full (and unavailable for returns) or empty (and 

unavailable for pickups). This is an intrinsic problem of BSS because of its natural one-way 

renting mechanism. Imbalance will obviously decrease the efficiency and service level of the 

system. Redistributing bikes manually from highly loaded stations to the empty ones using 

service trucks is a critical task to keep the system as balanced as possible. Manual 

redistribution significantly increases system cost. For example, in Taipei city, its BSS reached 

a deficit of at least $NT 1 million after running for one year, and redistribution was one of its 

most expensive costs [64]. In Paris’s Vélib, the operational cost for redistributing a bike is 

about $3, and in Barcelona’s Bicing, 50% of 230 service staffs are assigned only to the bike 

redistribution task [65]. These high costs and time-consuming operations will be further 

compounded if the redistribution scenario is reactive, so that bikes are only redistributed after 

imbalances occur. Accordingly, proactive redistribution is needed [66]. There are many studies 

that have been conducted for bikes redistribution scenarios and optimization of vehicle routing 

using both static and dynamic based approaches [67-69]. Static repositioning is conducted 

during the night when the usage is very low and the system is nearly idle, while the dynamic 

rebalancing is performed during the day to deal with forthcoming shortages. However, this 

study will not directly deal with the optimization of the redistribution problem, but it is more 

about the understanding of users’ mobility behaviours that affect the stations usage and other 

aspects of services and operations. Sections 2.2.2, 2.2.3 and 2.2.4 very briefly introduce the 

areas that the research is this thesis will address, so that the subsequent literature review has 

some context. 

2.2.2.  Station Neighbourhood Ties 

As a dynamic network, stations in BSS are not independent and should be relationships 

among nearby stations so that if something happens in one station, it will affect other stations.  

In a BSS operational context, when a station is out of service because of shutdown, or when it 

is in an imbalance state because it is full or empty, it will impact to other stations. This impact 

could depend on the behaviour of the users and also the topology of the system. There has not 

been any published research on these BSS spatial ties, and so this thesis proposes using some 

of the techniques from other (non-BSS) mobility studies such as mobility motifs, to fill in these 
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knowledge gaps. In addition, the application for BSS design and deployment is also 

investigated. 

2.2.3.  BSS Individual Mobility Behaviour 

In many current studies, aggregated BSS analysis is more popular rather than individual-

based ones. This is often because of the lack of any individual identification in most BSS 

publicly available trips data due to privacy issues [63]. Some studies have used the scrapped 

stations usages from BSS websites [11, 70], which lacks individual information. However, the 

dynamics of BSS are directly inherited from users’ individual behaviours. Each user may have 

unique movement styles and preferences that lead to diverse trip frequency, duration, speed, 

waiting times, motifs, distance, and direction. Meanwhile, the same regularities and patterns 

are likely to be associated with the same user type: commuters, casual users, tourists, and night 

workers [12, 71-73], for example. If the homogenous users can be grouped into certain clusters, 

it would be possible to measure cluster predictability level and use their collective trends to 

make a cluster-based prediction than using non-homogenous of whole users. It is also expected 

that the same user types have similar responses to external factors such as hour of the day, day 

of the week, nearby points of interest, station spatial layout, and weather [17]. How users move 

both spatially and temporally over the BSS, therefore, has been a subject of several previous 

studies [30, 71, 72, 74]. However, there is still a room to further investigate entropy and 

predictability for BSS. As described earlier, predictability is the theoretical inverse of entropy 

(or randomness). From an information theory perspective, the performance of a prediction 

algorithm is limited by the predictability metric that is inherent to the data [24, 43]. 

To differentiate users, recent studies [72, 74] employed naïve approaches using 

demographic and subscription status, such as registered users with an annual subscription and 

unregistered users with a limited period subscription. There is a risk in creating user types with 

non-uniform movement patterns that potentially contains outliers. Some unregistered users 

may have regular trips similar to registered users, and vice versa. This thesis hypothesises that 

regularities should be associated with how frequently and regularly users travel, rather than on 

their registration and demographic status, and this will be explored later in Chapter 6. On the 

other hand, some other studies used spatial [71] and temporal mobility pattern [75], but none of 

them conducted further analysis to measure their homogeneity and predictability. Therefore, 

this study proposes users clustering based on their actual temporal behaviour and conducts 
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further analysis about their homogeneity and predictability as well as the application for BSS 

operation. 

2.2.4.  BSS Aggregated Mobility Behaviour 

At the system-wide level, the BSS aggregated mobility pattern is the sum of many 

different individual trips with certain dynamics over time. Using the assumption of the hourly 

usage which consists of a constant (i.e. stationary) underlying weekly pattern (i.e. cycle) plus a 

disturbance to that pattern caused by certain factors, this study proposes a new predictor that 

estimates the current disturbance from the underlying seasonal weekly pattern. This can be 

extended to an underlying weekly pattern that itself changes slowly over the seasons. 

Meanwhile, most BSS studies prefer to predict the absolute values of hourly usage [15-17].   

Predicting system-wide behaviour involves all stations in the system, and there are many 

internal and external features that could be possible features for enhancing prediction. Data 

sizes are large - for instance there were 573 BSS stations and 566,000 users in the London BSS 

Data in 2012 [46] that this project will analyse. Calculating all possible features over hundreds 

of BSS stations and hundreds of thousands of users is very computationally expensive.  

Over the last decade, various data-driven analyses on BSS have been done from different 

perspectives.  These have used either publically available shared-data that mainly contains trip 

information, or the scraped data from BSS websites that take snapshots of station states at 

regular intervals, or survey data that contains the BSS users’ opinions, experiences and 

demographic data. Station usage analyses are intended to identify the fluctuation of demand 

and availability of bikes or docking slots, while trip-based analyses are commonly intended to 

reveal the mobility dynamics and individuals’ behaviours, and survey-based analyses are 

typically related to investigating quality of the BSS services as will be presented more detail in 

the following section. 

2.3.  Previous BSS Studies  

Shared BSS data mostly come from cities in Europe and the USA, with only limited data 

from Asia and Australia. The majority of BSS analyses use data from big cities such as London 

[19, 31, 46, 72, 75-79], Washington DC [12, 17, 27, 47, 56, 76, 80-85], Paris [86-94], and New 

York [17, 81, 89, 95-97].  Other studied data sets are from Chicago [73, 80, 98, 99], Lyon [63, 

65, 74, 100], Boston [12, 76, 80, 101], Barcelona [11, 70, 102], Hangzhou [15, 16, 103], 
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Brisbane [61, 83], Minneapolis [76, 104], Vienna [105, 106], Denver [76, 84], Pisa [64, 107], 

Dublin [14, 108], Minnesota [84], Seville [102], Montreal [109] Helsinki [110], Vancouver 

[111], Nanjing [112], and Castellon [113]. In addition to BSS data, some of those studies also 

used weather data as a feature of their analyses. For spatial visualisation purposes, most of 

these studies used data superimposed on city maps. 

Many different topics are covered in these studies, but this review will focus on BSS 

generations and problems, system design and implementation impact, spatiotemporal analysis, 

user and station clustering, mobility models, weather effects, prediction, and journey advisors. 

2.3.1.  BSS Generations and Problems 

In terms of system operation, there have been four generations of BSS, with significant 

evolution and improvement across generations. The first generation was introduced in July 

1965 in Amsterdam, and was called the white bike or free bike system [39, 57]. Initially, fifty 

white painted bikes were placed throughout the city for free use. However, they were often 

stolen and damaged because they were left unlocked, and this system was soon abandoned. 

Later, there were two other cities that also implemented a similar free bike-sharing scheme, La 

Rochelle in France and Cambridge in the UK in 1974 and 1993 respectively [57].  

The second generation of BSS was launched in January 1995 in Copenhagen, Denmark. 

This scheme had used a coin-deposit system which enabled users to pick up a bike by 

depositing a coin into a dock, then returning the bike to a dock where they received back the 

deposit coin [39]. Soon after this, many cities in Europe and US introduced similar bicycle 

sharing schemes using this coin-deposit system. The weakness of this system was the customer 

anonymity so that, similar to the first generation, the bikes were subject to theft. 

The third generation was started in 1998 in Rennes, France when IT-based systems were 

used. This system had the capability of reading RFID (Radio Frequency Identification) tags on 

bikes, and accepting credit or debit cards for hire as well as for membership. In this generation, 

the user accountability was improved considerably. Recently, the fourth generation has added 

features such as on-line station availability, special pricing for self-rebalancing, and integrated 

billing systems with other transportation means [57]. 

In the fourth generation, the imbalance state between the availability of bikes and vacant 

docking slots still exists as an intrinsic problem and major concern. The one-way trips in BSS 

can result in asymmetric flows [95] which in turn give non-uniform distribution of bikes 
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amongst stations. Vogel et al. [105] adopted a data mining approach to gain insight into the 

complex bike activity patterns in Vienna. They revealed imbalance states in bike distribution 

that can be understood in terms of system structure and activity dynamics. Several studies have 

analysed and proposed some methods to address the imbalance issue from different points of 

view, such as the optimization of fleet routing and the number of fleets [67], a proposal for 

giving incentives to users to rebalance [68], implementing imbalance prediction [17, 27, 69], 

and proposing journey advice for users [108, 114, 115]. Some of those studies will be reviewed 

in the next subsections. 

 Generally, all of the proposed solutions have the same goal which is to guarantee a certain 

quality of service (QoS) level of BSS. This service level expresses the users’ satisfaction with 

the BSS. Knowing the BSS QoS level is crucial because successful implementation of BSS 

requires the ability to cope with a fluctuating demand [116]. Pfrommer et al. [69] proposed a 

simple measurement of BSS QoS where the service level is equal to potential customers minus 

no-service events divided by potential customers. Here, the no-service events correspond to 

users who could not pick up or return bikes because of unavailable resources. Raviv and Kolka 

[116] introduced a user dissatisfaction function which measures the performance of a BSS 

station based on the quality of repositioning. They stated that there are two repositioning 

modes. Static repositioning is conducted during the night when the usage is very low and the 

system is nearly idle, while the dynamic mode is performed during the day to deal with 

forthcoming shortages. In another study, Singla et al. [68] proposed self-balancing by giving 

incentives to users to assist with rebalancing. They employed differential pricing policies and 

provided alternative routes to users for picking up or returning their bikes. Using the Boston 

bike data from July 2011 to October 2012, they compared their incentive policy simulation 

with the already running truck policy, and showed a potentially favorable result. They claimed 

that their work is the first work studying the dynamic incentives for BSS users.   

2.3.2.  BSS System Design and Implementation Impact 

To properly set up a bike-sharing system, the system should be configured in a way that 

meets the users’ needs. Methodologies proposed by Dell’Olio et al. [117] consider the users, 

system and policy aspects in designing BSS. They estimated the potential demand for BSS, as 

well as the willingness of users to pay for travelling within a city, and designed suitable 

locations for stations and the pricing policies of a sharing system. In another study, allowing 

for the interests of both system planners and users, Lin et al. [118] proposed a mathematical 
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model to determine the number and locations of the stations, the network structure of bicycle 

paths that connect between stations, as well as the travel paths for users between each pair of 

origin and destination stations. This work addressed the system design problem in an integrated 

view incorporating setup cost, reallocation cost and travel cost.  

Meanwhile, Eluru and Imani [99] focussed on examining the influence of bicycle 

infrastructure (number of stations and station capacity), land use, and built environment on 

bicycle usage. First, they considered bicycle infrastructure as exogenous or produced by 

external factors in modelling demand. In cases where the bicycle infrastructure is closely 

related to the land-use and urban form, it is important to recognise that developing models 

treating the bicycle infrastructure as exogenous to the dependent variable (bicycle demand) 

might lead to incorrect and biased model estimations. Then, they addressed that challenge by 

proposing an econometric framework to jointly model the decision processes under 

consideration. 

The implementation of BSS has a significant impact on human mobility in an urban area. 

Quantitatively, Jäppinen et al. [110] modelled the potential impact of the BSS implementation 

on public transport travel times in Greater Helsinki, Finland, based on the population and 16 

important destinations in the city. As BSS is intended to solve last mile mobility problem, they 

compared total travel times between using public transport + BSS and using public transport 

only. They found that the mixed scenario, public transport extended with BSS, could reduce 

travel times by more than 10% on average, or around 6 minutes per individual trip. They stated 

that although the time savings per individual may not appear remarkable, the total summed 

across all potential users will be considerable. For example, if the daily public transport trips 

are around 500,000 to or from the city centre (Helsinki Region Transport, 2010), and if there 

are only 5000 trips that use BSS, this equates to 500 hours saving in travel time. While in New 

York City, Faghih-Imani et al. [13] found that BSS also are either faster or competitive with 

taxis in terms of travel time in a dense urban area. 

However, these existing works have not used information from existing BSS data to 

identify the best distance between nearby stations that can be used as a standard of BSS design 

and deployment. As will be shown later, some relatively complex data analytics can give some 

insight into suitable station spacing. 
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2.3.3.  BSS Spatiotemporal Analysis 

From a temporal perspective, investigating the behaviour pattern of a bike-sharing system 

is very helpful to understand the mobility characteristics of a city which can reflect urban 

activity dynamics over time. Borgnat et al. [63] have explored BSS from signal processing and 

data analysis perspectives. They modelled the time evolution of the Velo’v dynamics 

movement in Lyon, France. They varied the aggregated time scale form 15 minutes to 2 hours 

to find a good trade-off between resolution of detail and fluctuations in distributions, and then 

selected 1 hour as the appropriate aggregation time scale. Using that one hour scale, they 

showed that the BSS temporal pattern is mostly cyclostationary over the week. A 

cyclostationary temporal pattern is a periodic pattern that is repeated at regular intervals such 

as daily, weekly or yearly. If there are N time bins in one cycle, then the time series consisting 

of all the points in the same bin (e.g. 9 am Mondays) form a time series, and if each of those N 

time series are statistically stationary, the periodic time series is called cyclostationary.  

This BSS pattern can be divided into two group patterns: weekdays and weekend days. 

Their results on weekdays show three usage peaks, in the morning, at lunchtime and late 

afternoon, whereas on weekend, usage is concentrated in the afternoon.  

Unlike Borgnat et al. [63] who used origin-destination trip data, O’brien et al. [75], in a 

later study, examined the footprint of docking stations activities to conduct a global view of 

BSS data for generating insights into sustainable transportation systems from 38 systems all 

over the world: 16 in Europe and the Middle East, 11 in Asia, 2 in Australasia and 9 in the 

Americas. The bicycle sharing systems that they studied have at least 40 docking stations and a 

clean feed of data. Their concern was to look at the temporal changes in bicycle distribution 

within those stations and to analyse the variation of occupancy rates over time. Looking at the 

diurnal and weekly variations in usage, they compared and contrasted temporal patterns and 

used it as one basis of classification between cities. Elsewhere in Europe, Froehlich et al. [11] 

provided a temporal analysis of Barcelona’s bike station usage patterns to identify shared 

behaviours across stations and show how these behaviours relate to location, neighbourhood 

and time of the day. They demonstrated the potential of using BSS as a data source to gain 

insights into city dynamics and aggregated human behaviour. Their temporal results revealed a 

repeating three-pronged spike in station activity during the weekday, which corresponds to the 

morning, lunch, and evening commutes. Still in Europe, Ciancia et al. [79] presented a 

descriptive PDF of cycling times in London. They found one salient feature of cycling times 
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which is that 7% of all trips are longer than 30 minutes (the free-use trip time). Some trips are 

up to two hours, which is more than enough to travel between any two stations in the service 

area of BSS in London. This range of long trip times fits a so-called fat-tailed distribution, 

where for trips longer than 30 minutes, the PDF of cycling times is proportional to t
-a

 where a 

> 0 (for London, a =3.1).     

From a spatial perspective, BSS can be seen as a directed network graph G = (V, E) where 

nodes (V) represent stations, edges (E) represent the flow between stations, and edge weights 

correspond to the inter-station trip numbers [80]. Accordingly, many graph theoretic methods 

can be applied to BSS networks to examine their connectivity. Bargar et al [80] applied three 

graph algorithms in their spatial analyses which are Maximal Clique Detection (MCD), 

Louvain Modularity Optimization (LMO), and Spatiotemporal Density-Based Spatial 

Clustering of Applications with Noise (ST-DBSCAN). MCD was used to determine the largest 

interconnection link in the network from a subset of trip information. LMO was used to find 

groups of stations that essentially have no perfect cliques but are still highly interconnected. 

ST-DBSCAN was used to cluster similar trips, since it has the capability to integrate temporal 

features and other non-spatial features of data into Density-Based Spatial Clustering by 

defining density using neighbours’ states. Meanwhile, Zhou [98] constructed a similarity graph 

from bike flows then used the fast-greedy algorithm to discover the spatial community of those 

flows. The algorithm goal is to optimize the modularity function which is one index which 

defines the network structure. The higher the modularity index is, the denser the node 

connection is within a community and the rarer it will be with outside nodes.  

Froehlich et al. [11] presented a visualization of stations that show spatial dependencies, 

e.g. uphill stations tend to be empty and less active stations are located at the edge or outer ring 

of the bike-sharing network. Meanwhile, O’brien et al. [75] used one kilometre around each 

docking station as a buffer area approximation that could possibly influence that station. This 

distance is a compromise between the maximum straight-line distance to a bike station that 

someone would likely walk and the minimum distance that a user would be likely to cycle 

outside the boundary of the buffer [75].  

Generally, GPS tracking is not installed on bikes in a BSS, so that the actual trajectory of 

trips cannot be traced. The only positions that can be sensed are the pickup geolocation (origin) 

and the return geolocation (destination). Subsequently, almost all BSS studies simply use the 

Euclidean distance which is the shortest straight line distance in the plane rather than compute 
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the actual travelled distance for their trajectory analysis. O’brien et al. [75] assumed that the 

cycling trajectory within a city usually is not significantly longer than the straight line distance, 

so using Euclidean distance is still reasonable. Austwick et al. [76] used this measure because 

at least the Euclidean distance is free from a set of hypotheses about route choice and routing 

mechanisms. Faghih-Imani and Eluru [99] also used the shortest distance even though they 

stated that the actual journeys may involve a different path. A different approach was used by 

Jensen et al. [100] to get the BSS trip distance by looking at the distance measured by counters 

installed on the bicycles in Lyon, so that they got the precise trip distance as well as time 

travelled. Using that approach, the average trips distance and time travelled was 2.49 km and 

14.7 minutes respectively, giving an average speed 10.16 km/hour. Using the actual distances, 

they also observed the average speed at certain hours of the day. For example, average speed 

was 14.5 km/hour during early weekday mornings.        

Padgham [31] investigated the convergence and divergence of the flux flows using 351 

stations from the London BSS data. He found that the human mobility in collective patterns 

arise from a mixture of both diffusive and directed movement. Meanwhile, Borgnat et al. [63] 

analysed BSS spatial patterns to understand how the flows are distributed spatially along a 

network in which the bike stations are deployed uniformly within a city. They identified areas 

where stations receive more or less incoming and outgoing bikes as well as their flow 

directions. A matrix of flows between stations was constructed and modelled as a directed 

graph. Here, they added the time dimension to the flow matrix, 𝑇[𝑛, 𝑚](𝑡), so that the weights 

of the flow from station 𝑛 to station 𝑚, at time 𝑡, will be the number of trips 𝑇[𝑛, 𝑚]. They also 

revealed that spatial and temporal dependencies exist between stations. 

In order to understand London bikes flows in a way that allows relevant details to be 

perceived, Wood et al. [77] proposed three visualisation approaches: Flow Maps (using curved 

flow symbols to show the flow structures), Gridded View of Stations (maintaining the 

geographical relationship to depict docking station status spatially and temporally), and Origin-

Destination Maps (visualise the OD matrix directly while keeping geographic context). Then, 

they compared those to four existing approaches which are Semi-opaque Euclidean Flows 

Vector (using straight line between OD drawn opaquely), Flows Density Mapping 

(transforming linear flows into a continuous surface), Edge Bundled Flows Vector (using 

graphical aggregation of occupied adjacent pathways), and OD Matrix Visualisation (coping 

with the congestion problem by ascribing equal graphic weight for short and long journeys). 

They concluded that Origin-Destination Maps complement the general idea for visualizing 
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origin-destination flows that is able to display both longer and shorter trip flows 

simultaneously. Also, it geographically shows flows in a manner which is unbiased and 

scalable. 

2.3.4.  BSS Users and Station Clustering 

Understanding the behaviour and characteristics of BSS users has been investigated by 

several researchers. Beecham et al. [71] have used spatial analysis, namely density-estimation, 

in classifying the commuting behaviour in London BSS data to identify the potential 

commuting cyclists and their plausible workplaces. They compared the terminating and 

originating journeys within the same vicinity of derived workplaces between peak-times in the 

morning and in the afternoon [71]. For each user, first, an empirically-defined workplace, or set 

of workplaces, is created. Then, all trips that arrive at this workplace in the morning and depart 

from this workplace in the evening are labelled as commutes [71]. 

Beyond commuters, in another study, Lathia et al. [72] have analysed another type of user 

which is the casual user. Unlike commuters from the previous study, a casual user here is 

simply defined as an unregistered user as opposed to a registered user that may travel more 

frequently. Here, they studied the impact of bike hire policy change in December 2010 for 

casual users from using a registration key to access the system to simply using a debit or credit 

card to do so. Specifically, they investigated how the policy change affected the system’s usage 

throughout the city. They found that quicker access to the system has a significant correlation 

with greater weekend usage for casual users. On the other hand, it also reinforces the weekday 

commuting trend [72].  

Similar to Lathia et al. [72] who used registration data to classify users, Vogel et al. [74] 

have used the period of users’ membership data (annual, weekly or daily) of Velo’v BSS, 

Lyon, where annual membership contains users’ demographic information such as age, gender 

and postcode. However, they stated that using only subscription data to classify users may 

result in improper or biased classes because they may not be generic enough to capture similar 

behaviour. Then, using a k-means clustering method, they clustered the annual membership 

users into nine classes based on cycling patterns distributed according to the intensity and the 

regularity of use. 21 attributes are defined, the first eight corresponding to weekly activity 

while the others correspond to annual activity. Some of those features are averaged number of 

trips made per week, average number of trips made on weekdays, total number of trips made 
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over the year, number of trips made for all months, percentage of movements on the busiest 

weekday, and percentage of movements on the busiest month. Although their clustering 

method exhibits nine classes of users, they then propose that it is fairly easy to interpret them 

into only four clearly separated categories which they call user of heart (intensive, regular 

users), assiduous users, multimodal users, and sporadic users. 

In another study, O’brien et al. [75] collated temporal characteristics of 38 BSS from all 

over the world which are the number of the peaks per day for weekdays and weekends, the 

relative difference between weekend and weekday usage, and average load factor. Using these 

temporal characteristics, they then proposed four user demographic categories, commuters who 

use bikes from home to workplaces during weekdays, utility users who use bikes on weekdays 

for shopping and errands, leisure users who use bikes generally on weekends for fun and 

exercise, and tourist users who use bikes for exploring the city. 

Table 2.2. Summary of existing works in BSS users clusters. 

Author BSS Data Clustering method Users cluster 

Beecham et al. [71] London Spatial analysis (density-estimation) Commuting Pattern 

Lathia et al. [72] London Registration status Casual users 

Vogel et al. [74] Lyon Membership data Annual, Weekly, Daily 

K-mean based on cycling pattern of 

annual users 

User of heart, 

Assiduous users, 

Multimodal users, and 

Sporadic users 

O’brien et al. [75] 18 BSS 

from all 

over the 

world 

Temporal characteristics Commuters, Utility 

users, Leisure users, 

and Tourist users 

 

Table 2.2 summarises the limited existing works in BSS user clustering. There are at least 

three metrics that are used for clustering which are registration or membership status, spatial 

features, and temporal characteristics. However, none of these studies conduct further analysis 

about their homogeneity, how predictable the clusters are, and what the practical benefit for 

BSS operation is by identifying those clusters. 

For stations, segmenting the bike stations into several sections or clusters is useful for 

various operational purposes such as monitoring, prediction and rebalancing. This clustering 

problem has been addressed in a number of studies. Froehlich et al. [11] investigated a 

hierarchical clustering technique called dendrogram clustering over each station’s DayViews. 
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Here, a DayView is calculated by averaging station data that matches certain criteria into a 24 

hour window, discretised into five-minute bins (288 bins/day). They then built two sets of 

clusters: one based on weekday Activity Score DayViews (“Activity Cluster”) and the other on 

weekday Available Bicycle DayViews (“Bicycle Cluster”). In both cases, a normalized 

weekday DayView representation was created for each station and a similarity matrix 

constructed to store the DTW (Dynamic Time Warping) distance between each cluster. Finally, 

their clustering algorithm returned five activity clusters and six bicycle clusters based on flows. 

Borgnat et al. [63] clustered stations in communities and clustered flows of activity 

between stations at finer time-scales. First, to understand the impact of the inhomogeneity of 

the city on the long-term activity of individual stations, they looked for groups of stations 

exchanging many bicycles. This amounts to detecting communities of stations in a network. 

Second, in order to uncover the main properties of flows on the Velo’v station network, a k-

means algorithm is run on T[n,m](t) for t equal to the 19 selected time-features and (n,m) being 

1046 pairs of stations. They then produce four well-separated clusters. 

Vogel et al. [105] did cluster analysis in order to group stations according to their 

normalized bike pickup and return activity. The goal is that data objects within a group are 

similar to each other and different from objects in other groups. They applied three clustering 

algorithms which are k-means (KM), Expectation Maximization (EM) and sequential 

Information Bottleneck (sIB). The EM algorithm extends the KM paradigm, while sIB which is 

an agglomerative clustering method originally designed for cluster analysis of documents is 

used because it is capable of dealing with high dimensionality data. Here, data objects are 

assigned to k clusters whereas the number of clusters has to be chosen beforehand. Based on 

initial partitioning, objects are relocated by minimizing the distance of objects within clusters 

and maximizing the distance of objects in different clusters. Cluster validation indices measure 

if a structure found with cluster analysis is adequate. Then, they used three indexes for cluster 

validation, Davies-Bouldin-Index, Dunn-Index and Silhouette-Index. Their result shows that 

according to the elbow criterion
3
 their three algorithms yield the best cluster for k = 5. 

Etienne and Oukhellou [88] proposed a generative model based on Poisson mixtures to 

analyse the patterns in different areas of Paris using different functions, considering the latent 

factors of each station. To handle the event discrepancy between stations, they introduced 

station scaling factors [88]. They found k = 8 as a good trade-off between the cluster 

                                                 
3
 A naïve procedure to determine the optimal number of clusters that identifies where adding more clusters has 

limited impact on node-centroid distances. 



 

 

33 

 

 

complexity and interoperability. Then, they named those eight clusters as spare-time 1, spare-

time2, parks, railway stations, housing, employment 1, employment 2, and mixed. Meanwhile, 

using similar Paris bike data and also a similar Poisson mixtures based approach, 

Randriamanamihaga et al. [87] proposed a generative count-series model adapted from Poisson 

mixtures model to discover temporal-based clusters over OD flow data. This approach reveals 

how areas with different usage interact over time by considering latent factors. For each edge, 

these latent factors determine the cluster memberships. In other words, this method can be 

applied to cluster the edges of temporal weighted-graph based on the temporal characteristics. 

Their results presented four cluster labels, weekend joyriding, night life, morning works, and 

early bird works, based on socio-economics information across OD flows which are density of 

populations, employment, and commercial zones.  

Another clustering method is proposed by Xu et al. [119] which is an improved k-means 

algorithm to segment stations in Hangzhou based on optimised Simulated Annealing (SA). 

Here, the optimised SA algorithm was used to assign the preliminary cluster centre to the k-

means algorithm. In k-means, the value of k as an input to the algorithm is typically based on 

some criteria such as the prior knowledge, the desired purpose of clusters, and type of clusters. 

The closeness or similarity is a common profile to be used to group the stations where in k-

means the closeness is computed by Euclidean distance. On the other hand, SA is a 

probabilistic method to solve different combinatorial optimization problems both 

unconstrained and bound-constrained. While the traditional k-means clustering has sensitivity 

to the preliminary cluster centre, using the initial centre obtained by the improved algorithm 

will avoid the blind search in the initial stage of k-means and reduce the number of iterations. 

Their results exhibit that the proposed method is more efficient and robust than traditional k-

means clustering.  

Table 2.3 summarises the stations clustering using various methods. Typically, the number 

of clusters is less than 10, so each cluster has many stations. For example, in Paris with 1208 

fixed stations in July 2007 [87, 88], if clusters are set to 8 as proposed by [88], then each 

cluster has an average of 151 stations. Furthermore, because they are clustered by activity 

profiles, one region could consist of different cluster members. On the other hand, if operators 

employ region-based monitoring and distribution, smaller, geographical based clusters may be 

more useful, because they could be easier to manage. 
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Table 2.3. Summary of existing works in BSS station clustering. 

Author BSS Data Clustering method Stations cluster 

Froehlich et al. [11] Barcelona A hierarchical clustering technique called 

dendrogram clustering over each station’s 

DayViews 

6 activity clusters,  

5 bicycle clusters 

Borgnat et al. [63] Lyon K-mean of activity flow between stations 4 well-separated 

clusters 

Vogel et al. [105] Vienna Normalized bike pickup and return 

activity using k-means (KM), Expectation 

Maximization (EM) and sequential 

Information Bottleneck (sIB) 

Three algorithms 

yield the best 

cluster for k = 5 

Etienne and Oukhellou 

[88] 

Paris Poisson mixtures, considering the latent 

factors of each station  

k = 8 as a good 

trade-off between 

the cluster 

complexity and 

interoperability 

Randriamanamihaga et 

al. [87] 

Paris A generative count-series model adapted 

from Poisson mixtures model 

4 cluster labels 

Xu et al. [119] Hangzhou Improved k-means based on optimised 

Simulated Annealing (SA) 

More efficient than 

traditional k-mean 

 

2.3.5.  BSS Mobility Models 

BSS with stations and bike exchange between stations can be modelled as a Markov-chain 

model. Here, each station is a state, and bike exchange is a transition between states where its 

probability can be computed. With discrete time and finite states, BSS with n stations can be 

completely described by n x n transition probability matrix (P) where Pij denotes the one step 

probability of trips from station Si to station Sj. Crisostomi et al. [101] described P as a row-

stochastic and non-negative matrix. Then, since the entity of each row is a probability, each 

row sums to 1. They assumed that a station is related to two states. BSi state associates with a 

parked bike at that station, and TBi state refers to a bike that is moving from that station to any 

other station. Accordingly, at every time window (they use one second for simulation), a bike 

in a BSi state can either move to the travelling state or remain in the same parking state. For a 

bike in a TBi state, it can either keep moving (remains in TBi state because the destination has 

not been reached yet) or may change to a parking state BSj at any destination station. This 

model can be seen in Figure 2.7.a.     

Gast et al. [94] proposed a Markovian model for modelling a single station to show its 

behaviour. Initially, they observed Kendal’s notation for queuing networks where a station is 

modelled as time-inhomogeneous M/M/1/k queue. There were two assumptions in this model. 
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First is memory-less transitions and Poisson processes of user and bike arrival. Second is 

independence between stations. Practically, this is not true because when a station is full no 

bike can dock there; and these queued arrivals will often divert to nearby stations. Conversely, 

if a station is empty, no bike can depart from there which will reduce the arrival rate of other 

stations. Alternatively, more realistic assumptions could consider each trip from origin (i) to 

destination (j) with departure and arrival intensity for each process. Unfortunately, this makes 

the model and parameter fitting more complex but with little gain in modelling accuracy, so 

that they restricted their model to one where each station behaves as an independent M/M/1/k 

queue, Figure 2.7.c. 

Another proposed BSS mobility model is using Latent Dirichlect Allocation (LDA) which 

is a three-level Hierarchical Bayesian Model for discrete data. This statistical model was 

originally developed to analyse document collections that consist of bags of words. Montoliu 

[113] used a topic model based on LDA to uncover the mobility pattern of a BSS in Castellon, 

Spain, in an unsupervised manner. Topic models are statistical generative models which 

represent the mixture of topics in documents. They are learned in latent space because they 

involve latent variables and are useful for modelling task. Topic models have an ability to 

characterise bags, the representation of discrete data. Then the author decoded the time period 

into three symbols, increment (), decrement (), and no change ( ) to characterise the 

station behaviour based on the availability of bikes during the day, Figure 2.7.b. Using this 

scenario, the latent topics that described mobility model can be effectively revealed.  

Using a similar LDA approach, Côme et al. [93] investigated the sizeable OD matrices of 

Paris BSS data using LDA to discover the spatiotemporal behaviour of the system. First, a few 

OD templates were extracted. Then, they were interpreted as typical and temporally localized 

as a demand profile. They defined k (5) OD templates, home   work commute, lunch time, 

work   home commute, evening behaviour, and spare time. Using these templates, they 

observed the stations that receive or lose more bikes than the average in the OD templates. 

Their results show that just a few OD templates can be used to summarise demand profiles for 

the system. 
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                                    (a)                                                                        (b) 

 
                                                                          (c) 

Figure 2.7. The redraw of (a) BSS Markov model [101], (b) LDA model [113], and (c) M/M/1/i  model 

[94]. 

2.3.6.  Weather Effects on BSS 

The impact of weather to the spatiotemporal dynamics of BSS has been investigated in 

some studies. Using 20 months of Brisbane bike data that comprised 285,714 trips, Corcoran et 

al. [61] examined the trip flows in three levels which are system-wide, suburb to suburb, and 

station to station with respect to weather. They employed the flow-comap to observe to what 

degree the weather conditions will modify the dynamics of BSS usage both spatially and 

temporally. They highlighted their results that both rain and winds are significantly correlated 

to the trip numbers at the system-wide level. The total numbers of trips significantly decrease 

for stronger winds and rainfall, while temperature was found not to have a significant impact in 

influencing the number of trips. This is not so surprising because Brisbane lies in the sub-

tropical climate zone with relatively small temperature variations.  

Meanwhile, Gebhart and Nolan [82] conducted the same weather impact investigation for 

BSS trips in Washington DC. They used more weather variables: temperature, rainfall, 

thunderstorm, wind, snow, fog, and humidity levels. They linked those variables to hourly 

number of users and duration of use. Their results show the effect of cold temperatures, 

rainfall, and high level of humidity to diminish both the possibility of using BSS and the 

duration of trips are quite significant. In contrast, the effects of thunderstorms, fog, wind, and 

snow are not statistically significant. 

BS1 BS2 BSN 

TB2 TB1 … 

… 
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In Canada, Gallop et al. [111] modelled bicycle traffic with respect to the weather in 

Vancouver. They observed some weather variables such as temperature, relative humidity, 

wind speed, clearness, fog, and precipitation (drizzle, rain, snow). As they claimed that the 

travelling decision of users to go with bikes is based on current weather rather than forecasted 

weather, their analysis is therefore focussed only on actual weather. Then, they used an 

ARIMA model to conduct the analysis in three stages, identification, estimation, and diagnosis. 

Their results confirm that weather has a substantial impact on bike usage where temperature, 

humidity, rain, and rain in the previous 3 hours are all found to be significant. However, they 

suggested that the impact is overemphasised in the model shown by the failure to interpret the 

complex patterns of serial correlation. 

These three weather impact studies for BSS come with similar conclusion that there are 

certain weather variables which influence individuals in using BSS. However, the variables 

that have a substantial impact are different among different cities. 

2.3.7.  Various Predictions in BSS 

Prediction is one of the most important topics in BSS research because it can help 

operators to plan their bike redistribution, or users to plan their journeys, or researchers to find 

the best prediction method for a particular scenario. Similar to the work on human mobility 

prediction in subsection 2.1.7 above, numerous prediction methods have been applied to BSS 

data. They have been investigated for various prediction purposes such as prediction of traffic 

flows [15, 17], the available of bikes and/or vacant docking slots [47, 70], number of trips [16], 

trips duration [73], level of demand [62, 85], over-demand prediction [81], pairwise demand 

prediction [96], number of usage patterns [27], next place prediction [46], cycle lane usage 

[109], station occupancy [120], the potential destination station and arrival time [73], waiting 

time for the next available bike [14], and pair of pickup and return stations that close to the 

origin and destination places of users [73, 96]. 

Froehlich et al. [11] compared four simple predictive models to predict the availability of 

bikes at each station in Barcelona. They used 13 weeks of scraped website data of bike and 

vacant slots availability that was sampled every 2 minutes. Those models are Last Value (LV), 

Historical Mean (HM), Historical Trend (HT) and Bayesian Network (BN). They applied 

clustering techniques to identify shared behaviours across stations and showed how these 

behaviours relate to location, neighbourhood, and time of day. They then compared the 
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experimental results from those four predictive models of near station usage. They have shown 

that fairly simple predictive models are able to predict station usage with an average error of 

only two bicycles and can classify station states (full, empty, or in-between) with 80% accuracy 

up to two hours into the future.  

Using the same Barcelona data, Kaltenbrunner et al. [70] adopted a statistical model to 

predict the number of the available bikes and vacant docks for each station. They conducted an 

analysis of the activity cycle that can be obtained from the number of bicycles available at the 

nearby stations. First, they focussed on the local cycles, one for every station. Later, they 

aggregated these cycles to infer global activity cycles followed by examining the usefulness of 

these cycles to predict future numbers of bicycles in the stations. They also implemented time 

series analysis methods in the form of an Auto-Regressive Moving Average (ARMA) model. 

As its name implies, an ARMA model incorporates two fundamental models: an Auto-

Regressive (AR) component which is able to exploit relevant information related to the 

autocorrelation nature of the time series, and Moving Average (MA) model which is able to 

incorporate information from additional sources of information generally denominated “input”. 

The ARMA model is trained by means of an optimization procedure aiming at minimizing the 

fitting error within a selected training dataset. Their results reveal that the dynamics of 

neighbouring stations definitely have an important influence on the ability of predicting bicycle 

availability at a given station. Their experimentation also shows that considering a number of 

surrounding stations between 5 and 20 will provide good predictive power. Then, they 

evaluated how the prediction error increases as the time interval for predictions is increased. At 

30 minutes prediction interval, the average prediction error is below than 1 bicycle, and then it 

reaches the maximum number of 3 bicycles after 1 hour prediction interval. 

Differently from Froehlich et al. [11] and Kaltenbrunner et al. [70] who predicted the 

availability of bikes and vacant docks, Borgnat et al. [63] used the data from Lyon’s BSS to 

predict the hourly number of rented bicycles by taking into account factors that are external to 

the cyclic pattern. Here, they predicted the entire traffic in each hour of the day by a 

combination model: the non-stationary amplitude Ad(d) for a given day added to the fluctuation 

F(t) at a specific hour. For prediction of Ad(d), they looked for explanatory factors among 

weather, seasons, number of subscribed users, number of bicycles available, and specific 

conditions such as holidays. While for prediction of F(t), they used a standard empirical 

spectrum analysis. They showed that F(t) is well modelled by an auto-regressive process of 
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order 1 with exogenous input. Using this scheme can decrease the standard deviation of the 

error of the global prediction from 210 bicycles to 120 bicycles per hour. 

Meanwhile, Zeng et al. [97] proposed a global feature-based model to improve BSS 

demand prediction in New York City. They used a Gradient Boosting Decision Tree (GBDT) 

and a Neural Network (NN) as feature extractors and employed four predictors: Linear 

Regression, Decision Tree, Random Forest and Support Vector Regressor. They examined 

three approaches: a city centric model which uses a single predictor using global data from all 

stations’ data, a station centric model which uses an individual predictor for each station, and a 

hybrid model which is the station centric model with global features. They used three 

evaluation metrics: MAE, RMSE, and RMSLE. Using 12 months of training data and 3 months 

of testing data, they demonstrated that using global features from GBDT and NN in a hybrid 

model improves the prediction performance, and they also showed that the best predictor is RF. 

Similar to Zeng et al. [97], Singvhi et al. [96] also used New York BSS data to predict the 

pairwise bike demand in morning rush hours (7 am to 11 am) during weekdays, as the system 

is highly driven by commuters at that time. They also considered other external data as 

covariates such as weather, taxi data, aggregated neighbours, precipitation, and day of the 

week. Using a regression model and RMSE, they demonstrated that examining the pairwise 

trips at neighbourhood stations level can significantly improve the prediction performance, 

compared to considering only individual stations. 

Again, Li et al. [17] used New York BSS data in comparison with Washington DC BSS 

data. They proposed a hierarchical model, which contains a bipartite clustering algorithm, a 

multi-similarity-based inference model, and a check-in inference algorithm, to predict the 

check-out/in of each station cluster in a bike-sharing system, based on historical bike data and 

meteorology data. They evaluated their model using an RMLSE metric. They obtained the 

performances which are significantly beyond other methods such as HA (Historical Average), 

ARMA, GBRT (Gradient Boosting Regression Tree), HP-KNN (Hierarchical Prediction K-

Nearest Neighbour), HP-MSI (Hierarchical Prediction Multi Similarity-based Inference), 

especially under anomalous conditions. 

In Europe, Chen et al. [14] presented a class of algorithm, Two-stage Generalised Additive 

Models, (TGAMs) intended for demand and availability based prediction on various time 

scales. Specifically, it estimates the distribution of waiting times for the next available bike or 

car parking space if the present availability is zero. To test their algorithm, they provided two 
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case studies in Dublin, Ireland, using BSS data and city parking spaces. Then, they compared 

their algorithms to LV, HA, and ARMA. Taking the exogenous variables, weather, and time of 

day, their TGAMs lead to significantly improved performance. They claimed that their 

predictive algorithm can be used for uncertainty-aware journey planning especially for the 

needs to wait for the availability of resources such as bikes/docking slot or city parking lot 

spaces. 

In China, Hangzhou is the first city which implemented a BSS, and currently they have 

one of the largest BSS in the world with around 3000 stations and 60000 bikes. Using 

Hangzhou BSS data from July to December 2011, Xu et al. [15] proposed a hybrid prediction 

model that combined the normalization process, improved k-means clustering, and sixth order 

polynomial smooth Support Vector Machine (SVM) to predict the traffic flows. 

Experimentally, they compared their hybrid model to a Back Propagation Neural Network 

(BP-NN) and pure SVM. They used Error Rate (ER) as the performance metric, with results of 

8.23%, 5.17%, and 3.57% for BP-NN, pure SVM, and hybrid SVM respectively.  

Focussing on using only Random Forest (RF), Patil et al. [62] examined demand 

prediction of BSS data from Washington DC. RF is an ensemble technique in machine 

learning, also called bagging or bootstrap aggregation [52], which combines many weak 

learners so as to create a strong learner [85].  It trains learners on a resampled version of 

training data. Then, using a tuning process to determine the optimal parameters, the authors 

achieved a better result using RMLSE as a performance metric than the result for RF without 

the tuning process. In another study, using a similar RF algorithm, Yang et al. [16] conducted 

traffic prediction of bike check-out and check-in using Hangzhou data. Using CDF and 

RMSLE as performance metrics, they compared their RF algorithm with three baseline 

predictors, HA, ARMA, and HP-MSI. They used the first 20 days of each month as a training 

set and the remaining days for their test set. They proposed case studies for check-out and 

check-in prediction for rainy summer weekday and sunny winter weekday. Their results show 

that the RF predictor outperforms the three baseline predictors in most scenarios.  

Using more predictors, Giot and Cherrier [47] employed five regression systems to predict 

BSS usages up to a day ahead in Washington DC using two years of trip data, 2011 and 2012. 

Those regressors are:  

 Gradient Tree Boosting Regressor (GTBR) uses an ensemble of weak learners. GBR 

incrementally builds the regression function to optimize the loss function or minimize the 
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error metric. Stage by stage, GBR introduces new weak learners to compensate for the 

shortcomings of current weak learners. Each new learner is a regression tree that is fitted 

to the negative gradient to the loss function. Each GBR has several hyperparameters that 

include the number of trees, the depth (or number of leaves), and the shrinkage (or 

learning rate).  

 Bayesian Ridge Regressor (BRR) is a variation on Linear Regression with non-linear 

terms.  BRR includes regularization to handle the trade-off between bias (under-fitting due 

to insufficient model order) and variance (overfitting due to excessive model order) in 

Linear Regression with an L2 term. This will prevent overfitting to training data by 

favouring a simpler model and lead to better generalization with lower regression 

coefficients.  

 Support Vector Regressor (SVR) which relies on kernel functions to minimize the loss 

function in order to get most deviations less than a margin of tolerance or threshold. For a 

non-linear problem, SVR transforms the data into a higher dimensional feature space to 

make it possible to perform the linear separation. Selecting a particular kernel type and 

kernel function parameters is usually based on the distribution of input values of the 

training data and application-domain knowledge.  

 AdaBoost Regressor (ABR) which is short for Adaptive Boosting uses several decision 

tree regressors that are fitted iteratively with increasing weights for successive regressors. 

The latest regressors can fit more detail as the number of boosts is increased with the most 

difficult samples. This boosting technique allows the regressor to fit the data with less 

error than a single decision tree.  

 Random Forest Regressor (RFR) which uses an ensemble approach to building a strong 

learner from a set of weak learners, which are random regression trees on various subsets 

of the training set. It employs the averaging of the output from all those weak regression 

trees as the final regression value. Bootstrapping is used to tune the subset size from the 

original choice. Therefore, RFR is a type of additive model that makes predictions by 

combining decisions from a sequence of base models. 

They compared the performance of those regressors using RMSE to three baseline 

classifiers which are Mean Value, Mean Hour, and Last Hour. They also chose five ranges for 

feature importance which are very relevant (weight > 100), relevant (100 ≥ weight > 10), 

average (10 ≥ weight > 0), and not relevant (weight ~ 0). Their results show that the 
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regressors’ performances are better than the intuitive baseline system. The best two performing 

regressors are RR and ABR with the most relevant feature being the bike usage one hour ago. 

Table 2.4. Summary of existing works in BSS predictions. 

Author Data source Timespan Prediction metrics Method Performance 

Froehlich et al. 

[11] 

Barcelona 13 weeks The availability of 

bikes at each 

station 

HM, LV, HT, BN Avg Err: 17%, 

9%, 9%, and 

8% 

Kaltenbrunner 

et al. [70] 

Barcelona 7 weeks The available bikes 

and vacant docks 

ARMA Mean absolute 

error: 1.39  

Borgnat et al. 

[63] 

Lyon 2 years + 

8 months 

Hourly number of 

rented bikes 

Linear regression Mean relative 

error: 12% 

Zeng et al. [97] New York 1 year Bike demand 

prediction 

LR, DT, RF, 

SVR 

RMSE: 24.1, 

40.1, 25.6, 58.3 

Singvhi et al. 

[96] 

New York 3 months A pairwise bike 

demand 

A regression 

model 

RMSE: 0.42 

Li et al. [17] New York & 

Washington 

DC 

6 months The check-out/in 

of each station 

cluster 

A hierarchical 

model 

ER is reduced 

by 0.03 beyond 

baseline 

method 

Xu et al. [15] Hangzhou 6 months Traffic flows BP-NN, pure 

SVM, and hybrid 

SVM 

Error Rate 

(ER): 8.23%, 

5.17%, and 

3.57% 

Patil et al. [62] Washington 

DC 

2 years Demand prediction RF RMSLE: 0.5 

Yang et al. [16] Hangzhou 1 years Bike check-out and 

check-in 

RF, ARMA, HA, 

and HP-MSI 

RMSLE: 0.42, 

0.48, 0.46, and 

0.46 (check 

out) 

Giot and 

Cherrier [47] 

Washington 

DC 

2 years BSS usage ABR, RR, SVR, 

RFR, and GTBR 

RMSE: 102, 

79, 336, 336, 

312 

 

Table 2.4 summarises the prediction scenarios with different methods, targets, and 

performance evaluations. One similarity among them is that they all focussed on prediction at 

aggregated demand or usages based either at station, cluster, or system-wide level. This could 

be because these metrics are directly related to the BSS operation. On the other hand, trip 

prediction for other mobility modalities have concentrated more on individual prediction as 

shown in subsection 2.1.7. Currently, individual user based prediction in BSS has not been 

widely explored either in terms of its accuracy or in terms how to use this prediction 

information to improve system operations. 
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2.3.8.  BSS Journey Advisor 

One potential application of prediction in BSS is for helping users to plan and navigate 

their trips. Yoon et al. [108] proposed a personal journey advisor application for BSS in 

Dublin. For a given origin and destination, their application suggests the best pair of stations to 

be used to pickup and return the bikes. This is in order to usefully minimize the overall 

walking and biking travel time as well as maximizing the probability to find available bikes at 

the first station and vacant return slots at the second one. An example, in Dublin some bike 

stations can experience no bikes or no empty slots for 3-4 hours a day. Reducing this 

imbalance is an optimization problem. To solve it, they modelled the real mobile renters' 

behaviour in terms of travel time and used the predicted availability at every bike station to 

choose the pair of stations which maximizes their measure of optimality. To develop the 

application, they built a spatiotemporal prediction system that is able to estimate the number of 

available bikes for each station in short and long term intervals, outperforming already 

developed solutions. The prediction system is based on an underlying spatial interaction 

network among the bike stations and takes into account the temporal patterns included in the 

data. They applied a modified ARIMA model by considering spatial interaction and temporal 

factors to predict the available bikes/docks at each station. One of their contributions is to deal 

with spatiotemporal prediction by using signals from neighbouring stations and seasonal 

trends. 

Recently, Yang and Zhang [115] have proposed a novel travel adviser to predict the 

number of available bikes after a given period of time so as to optimize users’ travel choice in 

Barcelona. They used an improved Backpropagation Neural Network (iBP-NN) and Genetic 

Algorithm (GA) as their prediction algorithm and included a novel prediction model 

considering the impact of surrounding stations. They used two parameters, Normalized 

Available Bikes (NAB) and Normalized Activity Score (NAS) to indicate the time pattern of 

bike stations. Here, NAB can effectively reflect the percentage of available bikes, while NAS 

can effectively indicate how active a station is at a given time t. By considering bicycle 

numbers at surrounding stations which can be explicitly factored into the prediction model, the 

algorithm results in significant gains in terms of prediction accuracy. Their experimental 

outcomes demonstrate that their novel approach can appropriately handle the BSS non-linear 

prediction problem. 
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Meanwhile, Zhao et al. [114] developed GreenBicycling, a smart-phone application to 

provide mainly context-aware BSS information as well as to promote healthier lifestyle choices 

in Hangzhou, China. It provides simple interfaces for users to know the number of bikes 

currently at any stations or near any location, the likely number of docking slots upon arrival, 

and the shortest path and the distance between two specific stations. They used a BP-NN as a 

predictor. While for the healthy lifestyle context, they provide a quantitative calorie estimate 

for journeys. 

These three applications depend on the OD input from users so that the applications can 

give information and projections related to the specified origin and destination. However, if 

destinations can be accurately predicted when a user picks up a bike, the application could give 

information proactively. This should be possible for highly predictable users with sufficient 

trip history to give accurate predictions, and this area is worth further investigation. 

2.4.  Review Summary 

The review sections above provide an overview of recent work on human mobility as well 

as on BSS studies. In human mobility studies, many methods, models, and metrics have been 

proposed from various sources of real world data to reveal the spatiotemporal characteristics as 

well as the limitations of human mobility. A certain degree of regularity in human mobility is 

the basis for the majority of the studies. Similarly in BSS studies, a wide variety of 

spatiotemporal analyses have been conducted using BSS data from many cities. Those are 

intended to help the operators provide the best service. However, there are still some 

approaches in human mobility studies that have the potential to be implemented in BSS data as 

a complementary investigation to existing studies such as mobility motifs, entropy, and 

predictability. 

Generally, there are at least three BSS entities that have been used as the topics of analysis 

which are stations, users, and external factors. For stations, there are studies about system 

design and deployment that are mostly from surveys. However, there is still a room for 

improvement, especially in using the user movement behaviours that can be revealed from their 

trip data to determine the practical distance between stations that could have significant impact 

for users’ station preferences. For users, most studies undertook analysis at an aggregate level 

instead of being individually based. This could be due to non-availability of user identification 

in most BSS shared data because of privacy concerns. Further investigations are also needed to 
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explore about to what extent this individual based analysis can be used to improve the BSS 

services. While for demand or usage prediction, there are three level of analyses that can be 

conducted which are system-wide, clusters, and stations level. Further studies are needed to 

explore to what extent these three levels of analysis can assist with the BSS operation. Similar 

daily patterns of usage are observed on weekdays and different patterns on weekends. This 

periodic nature of BSS dynamics on a daily basis and on a weekly basis could be a promising 

technique to be further explored as a basis for prediction.  

The next chapter will investigate the research gaps that can be identified from this 

literature review in more detail, and then the research questions for this thesis will be 

formulated.  Subsequent chapters will present the research methodology, detailed results and 

critical analysis needed to answer each of the research questions in turn. 
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CHAPTER 3 

GAPS AND RESEARCH QUESTIONS 

The problems of spatiotemporal data-driven analysis using BSS data can be viewed from 

three aspects: stations, users, and external factors. Stations, which are the core part of the 

system, are spread non-homogenously across a city, and they have different capacities and 

distances between each other. Users have different behaviours and they are the source of the 

dynamicity of the system. On the other hand, external factors such as seasons and weather will 

influence when users hire bikes adding to the uncertainty of system use. Therefore, an 

understanding of how to incorporate the stations, users, and external factors together to 

characterise current behaviour, predict future behaviour, and use the results to improve the BSS 

deployment, services, and operation remain challenging. This chapter will first analyse the 

gaps in the current state-of-the-art based on the previous Literature Review chapter. Next, these 

gaps will drive the formulation of the key research questions (RQ) for the thesis. Then the 

individual research tasks associated with each RQ will be described. 

3.1.  Gap Analysis 

From the literature review of human mobility and BSS studies in the previous chapter, 

there are gaps that can be identified which suggest directions for further research. In some 

cases, existing analytical methods for human mobility studies in other fields have not been 

applied to the analysis of BSS data. Furthermore, the impact of human mobility analysis needs 

to be more widely applied to practical understanding of BSS system operation. 

3.1.1.  Gaps in spatial analysis 

While temporal aspects of BSS data have been widely analysed, there is scope for more 

investigations in the spatial analysis aspects, especially for how nearby stations affect each 

other, what is referred to in this thesis as stations’ neighborhood ties. As a complex dynamic 

network, if a station is out of service (e.g. temporary shutdown) or in an imbalance state (e.g. 

full or empty), the nearby stations and stations which have high number of connections to that 

station are likely to be affected. The spatial distances over which stations influence their 

neighbours, and the metrics that can be used to analyze these influences, are not clearly known 

from existing work.  
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Another example of neighborhood ties is when users choose to visit a station close to 

another station they often visit. For example, a user might visit any one of a number of stations 

close to their place of work to pick up a bike. In this case, spatial motifs analysis, which has 

not been previously investigated for BSS studies, may give useful insights. For example, a 

worker may have a mobility motif over one day of home  work  home.  However, the 

BSS stations that are used near home and near work might not be the same on both trips.  

Analysis of the distance between different stations used for such a motif, may give useful 

insights into the distances that users are likely to travel to go to an alternate station. As well as 

simply understanding stations’ spatial links, the question of how to use this spatial 

neighborhood ties knowledge in BSS design and deployment has not been investigated. 

Knowing how far users are likely to travel to find alternative stations because of shutdowns or 

imbalances can assist in the location of stations, and could be used to provide notifications to 

users about alternate nearby stations. 

Nearby stations are determined by the distance or time that a user has to travel between 

those stations, either on foot or by bicycle. Most BSS studies in the literature review have used 

the straight-line, Euclidean distance to measure the separation of stations. One has used 

Manhattan distance [73], which maps well to grids of roads that are aligned with the Manhattan 

distance axes, but gives poor estimates for roads that are not so aligned. Both of these distance 

measures give a poor estimate of inter-station travel time when there are obstacles between the 

stations, such a railway line or river that require a roundabout route between stations.  

Waypoint distance, based on the shortest feasible route using available paths, may provide a 

better alternative for BSS spatial analysis.     

3.1.2.  Gaps in users analysis and prediction 

Understanding groups of users who share common behavior is important because their 

spatiotemporal collective trends can be potentially used to improve the BSS services, such as 

providing customized notifications. Some studies have used the explicit subscription and 

demographic information to cluster users but these groups of users may have greatly different 

usage patterns. One study has used spatial density estimation to cluster users, others have used 

temporal information, such as the average number of trips in certain period of times. These 

may give more homogenous behaviour of users in a cluster. However, after clustering, no 

studies have undertaken detailed further investigations regarding the characteristics of each 
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cluster to understand their homogeneity and regularity in terms of spatiotemporal mobility as 

well as entropy and predictability. 

If some users are highly predictable then customized, personalized notifications can be 

provided based on their expected usage. For example, users can be notified if their expected 

destination is likely to be imbalanced.  The ability of existing clustering approaches to capture 

highly predictable users has not been investigated. Current BSS studies have not used 

collective trends of clusters to assist in predictions of future use. The predictability of 

individual next locations, and whether these next locations are highly determined by users’ 

current locations or previous trip history, are not known.  

Using mobility predictions from statistics for a whole cluster maybe useful for providing 

information to users who have no history for particular locations. These trends may vary over 

the course of a day. So, the ensemble of next location prediction using individual history and 

population trends combined with temporal features for every station appears to be a useful area 

for further investigation. Additionally, how to use this knowledge about users in the high 

predictability clusters to improve the quality of BSS services is also worthy of further 

investigation. 

3.1.3.  Gaps in system level analysis and prediction 

As BSS system usage exhibits a regular cyclostationary pattern [63] over the week, this 

pattern may provide a basis for prediction at a system-wide level. The current system usage can 

be thought of as a combination of this regular weekly pattern, plus some current perturbations, 

e.g. due to bad weather. So prediction can be framed as the problem of finding the underlying 

weekly pattern and predicting this perturbation. In terms of conventional time-series analysis, if 

the week is divided into 7 x 24 hours, then the BSS usage consists of 168 stationary processes, 

and the usage at, say, 9 am - 10 am Mondays forms one stationary process. The whole time 

series is called cyclostationary. One particular hour’s usage is a random number drawn from 

the statistics of that hour’s stationary process. So it seems useful to investigate techniques from 

time-series analysis such as estimating the underlying the historical reference, and then seeing 

effects such as bad weather as a predictable perturbation from the underlying historical 

reference. 

Although this technique of seeing usage as an underlying historical trend plus a 

perturbation is common in many time-series forecasting problems, it has not been implemented 
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in BSS studies previously, and its usefulness is unknown. Previous BSS studies have directly 

predicted the total usage value [15-17]. There appears to be scope to make better prediction of 

system usage, and to investigate what factors and features significantly influence the prediction 

performance. It is also useful to understand whether this technique can be implemented at 

different levels of BSS system: system-wide, subsystem level (clusters) and individual station 

level. There is also a need to investigate which performance metrics are most appropriate for 

giving insight into prediction accuracy at these different levels of operation. Most importantly, 

how improving these three levels of prediction can help to improve BSS operations also 

requires investigation. 

3.2.  Research Questions and Tasks 

Based on the gap analysis above, this study formulates four research questions (RQ) that 

form the focus of this thesis. Each RQ below is followed by the general methodology that will 

be applied to answer that question. The more specific methodologies for individual tasks will 

be described at the beginning of each subsequent result chapter. In addition, preliminary data 

analysis is first conducted to understand the basic spatiotemporal characteristics of the data. 

RQ1: What insights can be gained from the BSS stations’ neighbourhood ties? 

This investigation will focus on two spatial metrics which are spatial distance of mobility 

motifs and spatial impact of temporary stations shutdown. First, the most common BSS 

mobility motifs will be determined followed by the calculation of the distance between 

stations to identify what inter-station distance corresponds to a neighbourhood. Second, 

some stations shutdown cases will be examined, and then the impact distance for nearby 

stations will be calculated. To measure the impact distance, looking at changes in usage 

before, during, and after shutdown will be investigated. This will give an insight about 

how the influence of a station decays with distance, and identify typical impact distances. 

If these two approaches give similar distances, then this distance will give useful insights 

about how users respond if they have to choose other stations instead of their commonly 

visited stations. Because this investigation involves distance, a comparison of the 

usefulness of the widely used Euclidean distance and the proposed waypoint distance 

will be also undertaken. 
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RQ2: To what extent can clustering identify highly predictable users, what are the maximum 

limits of predictability, and how can these be achieved? 

If users can be grouped into clusters so that frequent, highly predictable users are all in 

one cluster, then additional individualised notifications can be sent to those based on 

their expected behaviour. This might, for example, request users to return their bicycle to 

a particular station in a neighbourhood which is currently almost empty. 

User clustering in this study aims to cluster users mainly based on the temporal similarity 

of their mobility behaviour. The total trips for a user will show how frequently an 

individual uses BSS since frequent users have more historical data on which to base 

future prediction. The pattern of trips across each day will reflect the regularity of daily 

routines. Users with a regular routine are likely to be more predictable. In order to decide 

on exactly what temporal characteristics might identify frequent users with daily 

routines, some preliminary data analysis will first be carried out to understand the daily 

usage patterns of the BSS. Then, users can be clustered based on their temporal 

characteristics, and appropriate labels will be given for each cluster.  

To test if this proposed clustering technique can capture the highly predictable users, 

entropy and predictability analysis will be applied. From an information theory 

perspective, the entropy results will identify clusters where the predictability of a user’s 

next location is improved by consideration of their past trip history. If predictability is 

improved by using past history, then those clusters are said to have Markovian traits.  

The predictability results will identify the maximum prediction accuracy that could be 

achieved. An ensemble predictor will be investigated which uses individual trip history 

where available and collective trends of clusters where history is absent for that user, in 

order to predict individual trips. To understand the dynamic of prediction accuracy, the 

results will be presented on an hourly basis, and also on a daily basis. This will indicate if 

there are particular times of day when trip predictability is high, and so individual 

personalised notifications are likely to give useful information to users at those times. To 

understand the performance of the prediction algorithms, prediction accuracy will be 

compared to the theoretical limits identified by the predictability level of each cluster. 

 



 

 

51 

 

 

RQ3:  

 

To what extent can the cyclostationary pattern of bicycle sharing systems be used to 

conduct and improve the prediction of BSS usage and which factors are most effective 

for good prediction?  

The detailed scenario of the proposed deviation-based prediction in the cyclostationary 

pattern of the BSS will be investigated to identify the regularity of the underlying 

patterns, the best historical reference values, and the factors which affect perturbations to 

those patterns. Since the perturbations are unlikely to be a linear combination of factors, 

and since there are many factors that could be taken into account, the prediction will use 

machine learning approaches. This needs dataset splitting for training, validation, and 

testing. Feature selection and feature importance will also be investigated. Prediction will 

be investigated at system-wide, cluster level, and individual stations. In addition to the 

London dataset, the same techniques will be applied to the Washington DC BSS data, to 

investigate how generalizable these techniques are. The absolute and relative level of 

prediction errors will be used to analyse the prediction performance. 

RQ4: How can the stations’ neighbourhood ties and highly predictable clusters knowledge, 

as well as the system-wide predictions at different levels, benefit the BSS deployment, 

services, and operations? 

This RQ investigates the practical application of answers from the previous three RQs. 

First, the stations’ neighbourhood ties results could be useful for BSS deployment and 

design because the expected outcome from RQ1 is the appropriate distance between 

stations within a neighbourhood. Second, identifying a cluster of highly predictable users 

from RQ2 enables appropriate individualized notifications that would improve user 

experience and station operations. Third, the three level predictions from RQ3 could be 

beneficial for BSS operations to optimize proactive rebalancing. The potential practical 

contributions of each RQ will be illustrated with examples and the total practical 

contribution of this work will be summarised in this RQ. 
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CHAPTER 4 

PRELIMINARY DATA ANALYSIS 

Intra-city scale mobility typically has trips with relatively short duration and short distance 

characteristics. Understanding mobility first requires measuring mobility, and one method for 

doing this is to use the origin and destination information of trips. One useful source of digital 

urban mobility information is BSS trip data which has exact OD information for each bicycle 

trip. The first step of this investigation, described in this chapter, will be exploratory data 

analysis and visualization of BSS trip data, which will give insights into subsequent data 

analysis and prediction. This preliminary data analysis will investigate the underlying 

properties, metrics, patterns, and trends of BSS mobility dynamics over time and space at both 

individual and aggregate level.  

This data exploration primarily consists of two parts: temporal and spatial analysis. Each 

will be supported by relevant visualization to highlight significant aspects of the data. Firstly, 

temporal analyses will explore mobility patterns at hourly, daily, weekly and monthly time 

scales to look for any consistent and regular patterns at different time resolutions. Knowledge 

of times when the BSS experiences high demand over the course of the day and the size of that 

demand will point to times that are likely to cause usage imbalance. The complexity of the 

distribution of trip durations will be investigated. Not only individual trip durations, but also 

the intervals between trips may have useful information such as identifying daily commuting 

behaviour. Secondly, spatial analyses aim to observe geographical differences in the behaviour 

of BSS users. Trips will be analysed as to whether they follow any preferred flows and 

directions, what the typical ranges of travel are, and to what extent they cause imbalance states 

at stations. To understand whether particular stations are subject to frequent visitations, 

revisitation analysis will be conducted, so that the exploration and preferential return ratio [24] 

can be understood. All these spatial analyses could be useful to identify the areas where high 

demand frequently occurs.  

Analyses such as idle times, distance expansion growth and revisitation need an individual 

sequence of trips for individual users, which is often not publically available. Hence, this 

exploratory data analysis is based on London BSS data from August-November 2012, which 

includes individual, anonymized user IDs associated with each trip as described in the next 
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Table 4.3. User type. 

User 

ID 

Type Description 

1465 1 Registered 

1507 1 Registered 

7086221 0 Unregistered 

 

section. This exploratory data analysis will provide some insights for further analyses in the 

research questions as depicted in the research workflow in Chapter 3. 

4.1.  Datasets 

4.1.1.  Main dataset 

This section presents the main dataset which is the individualized user trip history of 

London’s Cycle Hire Scheme (LCHS)
4
 from August – December 2012.  

 There are six major data fields as shown in Table 4.1: user identifier, pickup/return bike 

stations, start/end timestamp, and trip duration. Stations’ geo-location (latitude, longitude) and 

user registration type are given in separate data files, Table 4.2 and Table 4.3 respectively, 

which are linked to each station and user in Table 4.1.  

Table 4.1. London bike data structure. 

User 

ID 

Pickup Data Return Data Duration 

(minutes) Station Pickup time Station Return time 

1465 251 2012-08-01 06:34 506 2012-08-01 06:40 5.75 

1507 239 2012-08-01 07:05 44 2012-08-01 07:15 9.95 

1465 506 2012-08-01 16:45 251 2012-08-01 16:51 6.00 

 

 

 

 

 

For characterization and prediction studies, the dataset will be divided into training and 

testing datasets. Training dataset, D1, contains the 2012 summer to autumn trips from 1
st
 

August 2012 to 30
th

 November 2012 (122 days~17 weeks), while testing dataset, D2, spans 

from 1
st
 to 23

rd
 December 2012 (23 days). Originally, the dataset covers 2,961,183 trips linked 

to 566,888 users that were collected from 569 bicycle stations in Central London.  The dataset 

then has been cleaned to exclude trips with an unrealistic duration (< 1 min or > 24 hrs). This 

eliminates data that is not valid for the analysis. After removing the 5.25% of affected data, the 

dataset has 2,805,718 trips with 566,456 users. 

                                                 
4
 Downloaded from TFL website (www.tfl.gov.uk) which provides a public open access database with email sign-up permission. 

Table 4.2. Station geolocation. 

Station 

ID 

Street Location Geolocation 

Latitude Longitude 

44 Bruton Street 51.510737 -0.144165 

239 Warren Street 51.524438 -0.138019 

251 Brushfield Street 51.518908 -0.079249 

 

http://www.tfl.gov.uk/
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While more recent datasets are available for London, and for other cities, this 2012 dataset 

is the only publically available data that includes unique user IDs associated with each trip.  

Data from other BSS datasets does not identify individual users, and so cannot be used for 

individual data-driven clustering or prediction. Therefore this five-month London dataset is 

used for the majority of the analysis in this study. 

The London dataset itself categorizes users into two classes: unregistered and registered 

users. This relates to how they subscribe and use the system. Most of the users, 89%, are 

unregistered users who correspond to 43% of the trips, while 11% of registered users have 

57% of trips. This uneven division comes from the average trips per user which is only 2.41 

trips per unregistered user with a standard deviation of 2.45 and 26.71 trips per registered user 

with a standard deviation of 35.26. Registered users are much more frequent riders compared 

to unregistered ones. 

For system prediction in RQ3, another BSS data set will be used for comparison which is 

from Washington DC BSS
5
 in the same period, which does not identify individual users. This 

is to investigate the more general applicability of the system-wide prediction approaches. 

4.1.2.  Complementary Dataset 

Another dataset used in this study mainly for RQ3 are daily historic records of weather
6
 in 

Central London as well as Washington DC. There are four features: Temperature in C, 

Humidity in %, Wind speed in km/hr, Rainfall level in mm/hr. These weather logs are used as 

an independent data stream for validation of clustered users’ behaviour when dealing with 

weather conditions as well as for input features for system-wide prediction.  

4.2.  Temporal Analysis 

This temporal analysis section will investigate BSS dynamics at various time resolutions 

beginning with usage density distributions at hourly, daily, weekly, and monthly resolutions. 

This is followed by waiting times and trip duration analysis. The analysis will identify periods 

when usage is low, moderate, high, or reaches a peak with their corresponding level, and will 

also investigate the periodicity of these patterns. Furthermore, the characteristic of trip duration 

will also be investigated to see if it follows the heavy-tailed distribution that has been observed 

in other mobility studies. 

                                                 
5
 Downloaded from the capital bike share website (https://www.capitalbikeshare.com/system-data) 

6
 Downloaded from the wunderground website (www.wunderground.com) 

https://www.capitalbikeshare.com/system-data
http://www.wunderground.com/
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4.2.1.  Daily Patterns 

The daily BSS usage pattern for the chosen period is shown in Figure 4.1, which shows the 

density distribution of three BSS entities which are bikes, users and trips on a daily basis along 

122 days ~ 17 weeks ~ 4 months of the learning period (01 Aug – 30 Nov 2012). Data has been 

cleaned and preprocessed as described in subsection 4.1.1. While numbers of bikes in the 

system tend to be constant, users and trips are highly variable with a generally decreasing trend 

starting from the last week of September. Usage on weekdays is more than on weekends, and 

trip numbers are higher than user numbers.  

 

Figure 4.1.  Daily numbers of bikes, users and trips. 

These facts indicate at least three preliminary propositions that relate to the daily contexts. 

Firstly, there is significantly more usage on weekdays, suggesting that a significant proportion 

of use is associated with urban commuting. Secondly, many users hired bikes more than once a 

day, and so the idle times between trips may be useful to investigate. Thirdly, usage decreases 

towards the end of the year, i.e. towards winter. This could be related to the weather. 

 
 

Figure 4.2. Weekly averages of trips and users per month. 
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Figure 4.2 summarizes the distribution of trips and users by day of the week for the four 

months under consideration. Generally, the monthly trips average (N) is ordered N
Aug

 > N
Sep

 > 

N
Oct

 > N
Nov

. The average number of trips is about 38% more than the average number of users, 

nearly stable for all days in all months. This means that at least 62% of daily users make only 

one trip. 

4.2.2.  Hourly Patterns 

Hourly patterns show how usage varies over the course of one day. Figure 4.3 displays the 

first three weeks of data, where red colors are weekends and green are weekdays. Here, 

weekends have only one peak in the middle of the day, while weekdays have two peaks, in the 

morning and afternoon. This pattern is similar in the rest of the data. Therefore, hourly pattern 

is cyclostationary (Borgnat et al. [63]), i.e. it contains similar repeating patterns on a daily 

basis both for weekdays (two peaks) and a different daily pattern on weekend days (one peak). 

Having hourly sharp usage peaks may produce asymmetric flows in the system that potentially 

create imbalance states in bike distribution if no effective redistribution is undertaken. The 

daily averages of these hourly patterns grouped by month are presented in Figure 4.4. 

 
 

Figure 4.3.  Hourly trip patterns. 

 There are two sharp peaks on weekdays and only a moderate peak on weekend days 

signaling busy times. On weekday mornings, the peak occurs between 5 am to 9 am and in the 

afternoon it occurs from 3 pm to 7 pm, while it is distributed thorughout the middle of the day 

from 10 am to 6 pm on weekends. The weekday peaks are at times when people usually travel 

to their workplaces in the morning and leave their workplaces in the evening. In other words, a 

commuting characteristic is clearly shown by BSS hourly patterns on weekdays. The fact that 

there are only two peaks also shows a socio-cultural aspect where not many people use bikes 
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during weekday lunch times in London, which is different to a study conducted by Froehlic et 

al. [11] in Barcelona, Borgnat et al. [63] in Lyon, and Cόme et al. [86] in Paris that found three 

spikes during weekdays, in the morning, at lunchtime and late afternoon. On weekends, a 

moderate peak appears in the middle of the day indicating leisure use. Again, this is different 

from weekend patterns of Barcelona which has two peaks around midday and in the afternoon 

[11], but it is somewhat similar to Lyon which has one peak concentrated in the afternoon.    

 
                                    (a) August                                                                   (b) September 

 
                                    (c) October                                                                 (d) November 

Figure 4.4. Average of hourly trip patterns per day of the week for each month. 

In the weekday afternoons of all months, the afternoon commuting peak is lower but 

broader, showing that there is a greater spread of commuting times in the afternoon peak 

compared to the morning peak. BSS data uses GMT (Greenwich Mean Time) or Universal 

Time for recording trip data. During August – October, the UK uses British summer time (1 

hour ahead of GMT), so the November peak (blue line) is shifted by 1 hour when UK time 

returns to GMT as shown more clearly in Figure 4.5. 
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                                   (a) Weekday                                                                  (b) Weekend 

Figure 4.5. Weekday and weekend average of hourly trips patterns with one hour shifted on November. 

 

4.2.3.  Waiting Times 

As shown in subsection 4.2.1, there are a proportion of users who have more than one trip 

a day. Here, the time between trips is defined as the waiting time (WT) which specifically is 

the period between one return and the next pickup of an individual within one day.  

 
                                    (a) August                                                                   (b) September 

 
                                    (c) October                                                                 (d) November 

Figure 4.6. Daily waiting times patterns. 
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For all days in all months as shown in Figure 4.6, there are many waiting times lower than 

100 minutes (~1.5 hours). However, there is also a peak of WT between 400 – 750 minutes 

(6.7 – 10.8 hours) with the peak around (500 minutes ~ 8.33 hours) on weekdays, while this 

peak does not appear at all on weekend days. The length of this waiting time conforms to the 

common working time of around 8 hours on weekdays. Again, this suggests commuting 

behaviour where there are many people use a bike to travel to work in the morning and from 

work in the afternoon. People who have this characteristic (“commuters”) will be further 

analysed in Chapter 6. 

4.2.4.  Trip Duration 

Trip duration is the time from picking up a bike to returning it back to the system. Here, it 

is calculated in seconds. Figure 4.7 shows the trip durations (in log-log scale) are mostly short 

and have a fat tail on the right side. These so-called heavy-tailed characteristics mostly occur 

after 10000 seconds (~2.78 hours). This means that there are many short trip durations, and 

few, but non-negligible, long trip durations (perhaps tourist using the bike for sightseeing over 

several hours). This shows the complexity of human mobility. 

 
                                    (a) August                                                                   (b) September 

 
                                    (c) October                                                                 (d) November 

Figure 4.7. Daily trip duration patterns in log-log scale. 
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Statistically, Table 4.4 lists trip duration averaged by the days of the week. In all cases, the 

standard deviation (STD) is much larger than the average (AVG), around twice the average, 

which is typical of fat tail distributions as illustrated above. Furthermore, there are three other 

trends that could be highlighted from the table. First, trip duration (T) on weekend days is 

longer than on weekdays, T
WD

 < T
WE

. On weekends either people tend to travel further in 

distance or they travel more slowly. This will be examined in the distance and speed analysis in 

the next sub-section. Second, duration (T) in August is higher than September, September is 

higher than October, and October is higher than November, T
Aug

 > T
Sep

 > T
Oct

 > T
Nov

. This 

shows that people tend to travel for less time as winter approaches. Third, all the average 

figures are less than 30 minutes (1800 seconds), the limit of charge-free usage. Based on the 

data shown in Figure 4.7, more than 92% of trips are less than 1800 seconds. So the free rental 

period has a significant effect on usage characteristics.  

Table 4.4. Average and standard deviation of daily trip duration. 

No Day Average (seconds) Standard Deviation (seconds) 

Aug Sep Oct Nov Aug Sep Oct Nov 

1 Mon 1119.8 952.6 850.7 814.1 2286.8 1901.6 1932.7 1619.7 

2 Tue 1066.3 931.7 858.3 807.9 2176.6 1805.2 1739.7 1595.0 

3 Wed 1050.1 912.5 860.8 819.0 2147.5 1742.7 1690.1 1783.0 

4 Thu 1060.0 925.5 854.7 831.4 2116.0 1841.0 1744.1 1753.8 

5 Fri 1112.1 943.3 859.1 842.0 2435.6 2054.4 2122.7 1737.1 

6 Sat 1502.0 1315.5 1172.3 1045.4 2966.5 2541.9 2598.9 2558.4 

7 Sun 1530.0 1290.3 1187.3 1118.9 2923.8 2618.3 2695.3 2460.0 

Avg Weekday 1081.6 933.1 856.7 822.9 2232.5 1869.0 1845.9 1697.7 

Avg Weekend 1516.0 1302.9 1179.8 1082.1 2945.1 2580.1 2647.1 2509.2 

 

 

4.3.  Spatial Analysis 

Spatial analysis focusses on the dynamics of mobility metrics that relate to geographical 

distribution of movement. This gives knowledge about how far people travel, flows and 

directions, where the most pickups, returns and imbalances occur, and which OD routes are 

most popular. This section begins with trip distance followed by station usage activity, trip link 

analysis, and revisited stations. 
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4.3.1.  Trip Distance 

From the origin and destination geo-location of stations, the Euclidian distance which is 

origin destination straight line distance (SLD) can be computed. However, in practice, the trip 

distance is determined by the path which rider chooses. Unlike the fat-tail trip duration 

distribution, the distance distributions as shown in Figure 4.8 are less fat-tailed but more 

skewed. This suggests the variability of distance is not as much as variability in the duration 

distribution. 

 
                                    (a) August                                                                   (b) September 

 
                                    (c) October                                                                 (d) November 

Figure 4.8. Daily trip distance per month in log-log scale. 

 

The average and standard deviation of daily trip distance are listed in Table 4.5. The 

standard deviation for all days and months is less than the average, around 40%. Comparing 

each month, people tend to travel further in August, D
Aug

 > D
Sep

 > D
Oct

 > D
Nov

. This monthly 

decreasing trend is similar with trip durations in each month. Conversely, weekday and 

weekend trends are different for distance and duration. Here, people have a tendency to travel 

further on weekdays than weekends, D
WD

 > D
WE

. This means that people ride faster (further 

distance in shorter time) on weekdays. This phenomenon is expected because weekday 

commuters are more hurried while weekend leisure users are more relaxed. 
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Table 4.5. Average and standard deviation of daily trip distance. 

No Day Average (metres) Standard Deviation (metres) 

Aug Sep Oct Nov Aug Sep Oct Nov 

1 Mon 2836.2 2752.7 2705.5 2706.2 1692.2 1646.0 1592.1 1580.8 

2 Tue 2863.4 2773.9 2710.5 2692.2 1676.8 1647.1 1602.5 1571.0 

3 Wed 2898.7 2762.2 2699.0 2679.0 1679.3 1646.9 1588.6 1564.1 

4 Thu 2875.8 2746.4 2692.1 2673.2 1671.9 1628.6 1583.0 1564.2 

5 Fri 2839.2 2705.5 2621.5 2638.7 1662.4 1609.1 1547.2 1550.9 

6 Sat 2813.5 2662.3 2582.7 2509.1 1720.2 1681.2 1608.4 1571.9 

7 Sun 2788.3 2645.3 2622.7 2592.1 1744.8 1691.1 1638.3 1634.1 

Avg Weekday 2862.7 2748.1 2685.7 2677.8 1676.5 1635.5 1582.7 1566.2 

Avg Weekend 2800.9 2653.8 2602.7 2550.6 1732.5 1686.2 1623.3 1603.0 

 

4.3.2.  Station Activity 

The availability of bikes and vacant docking slots at stations can be seen as a dynamic 

process determined by one state and three activities. The state is available bikes, and activities 

are pickup, return and redistribution processes. As the London BSS data only contains the 

pickup and return information, this section will analyse the weight and balance of those two 

activities spatially during peak times, when stations have highest demand. Figure 4.9.a and b 

show the pickup and return average of the weekday morning peak (5 am to 9 am), while Figure 

4.9.c and d are for the afternoon peak (3 pm to 7 pm) activities. All of these examples are in 

August. 

On weekday mornings, pickup is higher at the outer areas of central London. At the same 

time, for return activity, it is centered on or convergent to the inner areas. This outer to inner 

flow can be stated as an inward flow. This flow is not surprisingly as commuters mostly come 

from suburbs and may use public transport to stations then take bikes for their last mile to their 

destination. Conversely, such activities in the afternoon are the opposite of the morning pattern 

which is from inner to outer. This inner to outer flow can be defined as an outward flow. 

In the morning pickup or afternoon return figures, there are three major bike stations that 

have very high use, denoted by large circles and station IDs. They are 14) Kings Cross Station 

which is a major London railway terminus on the north edge of central London, 112) 

Liverpool Street Station which is a central London railway terminus and connected London 

Underground station in the north-eastern corner of the city of London, and 154) Waterloo 

Station which is a central London railway terminus and London underground station complex. 
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Those bike stations are susceptible to imbalance because of high demand. This state is shown 

in Figures 4.10 which localizes the pickup vs return balance, weighted by the circle size. Those 

are calculated by the absolute value of the difference between pickup and return average in 

each station. 

     

                (a) Weekday morning pickup.                                    (b) Weekday morning return. 

  

                (c) Weekday afternoon pickup.                                 (d) Weekday afternoon return. 

Figure 4.9. Stations activities in the weekday peak times. 

  

              (a) Weekday morning balance.                                (b) Weekday afternoon balance. 

Figure 4.10. Stations balance in the weekday peak times. 

The green circles in Figure 4.10.a denote that there is more pickup than return activity in 

the morning peak hours in those stations, mostly in outer stations. This produces a lack of bikes 

and more empty docking slots. This is defined as positive imbalance. At the same time, the 

opposite situation where return is more than pickup occur in most inner stations. This is shown 

by the brown circles which result in a lack of empty slots and more bikes. This is called as 

14 

154 

112 
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negative imbalance. In some stations the afternoon imbalances are smaller than the morning 

ones, Figure 4.10.b.  

To examine the range of imbalance level on weekdays, the hourly imbalances of ten 

stations averaged over each of four months are presented in Figures 4.11. The three 

aformentioned major stations, 14, 112, and 154, have large imbalance levels. In the mornings 

in August, stations 14 and 154 suffer from pickup > return (positive imbalance) at 6 am, 

reaching an imbalance level +100 for station 14 and +150 for station 154. One hour later, at 7 

am, station 112 receives many more returns than pickups, return > pickup (negative 

imbalance), reaching the imbalance level -110. This circumstance is reversed in the afternoon 

where station 14 and 154 have negative imbalances at 4 pm, while station 112 has a positive 

imbalance at 5 pm. Generally, their afternoon imbalance levels are less than in the morning. 

There are also three other stations which have imbalance levels around ±20. They are station 

273 which has positive imbalance and station 193 and 136 which have negative imbalances in 

the morning and vice versa in the afternoon. Other remaining stations have imbalances less 

than ±5. Due to monthly usage variation, there is increasing imbalance in September and 

decreasing in October and November. 

 
               (a) August                        (b) September                     (c) October                     (d) November 

Figure 4.11. Hour of the day balance (#pickup - #return) of 10 stations on weekdays. 

The same station activities analysis is conducted for weekend peak hours as shown in 

Figure 4.12. Here, pickup activity in the morning is more spread than the weekday mornings, 

and there are not highly dominant stations like on weekdays. One high activity area is shown 

around Hyde Park, shown as a rectangular area. This is a popular recreation area. The activity 

patterns between pickup and return both in the morning and afternoon are not very different. In 

the other words, no inward nor outward flow exists on weekends. As a result, their balance is 
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quite uniform as shown in Figure 4.13. Therefore, the weekend flow can be defined as a 

uniform flow. The redistribution task on weekends is not as essential, because by this uniform 

flow the user self-balancing occurs. 

  

                 (a) Weekend morning pickup                                  (b) Weekend morning return  

  

                (c) Weekend afternoon pickup                               (d) Weekend afternoon return 

Figure 4.12. Stations activities in the weekend peak times. 

  

                (a) Weekend morning balance                             (b) Weekend afternoon balance 

Figure 4.13. Stations balance in the weekend peak times. 

Unlike the imbalance level on weekdays that have dominant stations showing huge 

imbalances, the weekend imbalances are relatively small and random as shown in Figures 4.14. 

Only in August there are stations with imbalance more than ±6, station 303 and 213, with 

maximum value ±9, while in November they are the least where all are less than ±4. Note that 

the imbalance term in this section just considers the pickup and return number per hour. The 

real imbalance should be calculated in consideration of station capacity and the available bikes 

or docking slots at associated hours. 

303 
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              (a) August                       (b) September                       (c) October                     (d) November  

Figure 4.14. Hour of the day balance (#pickup - #return) of 10 stations on weekends. 

4.3.4.  OD Link Analysis 

The daily averages of specific OD trips are shown in Figure 4.15. These figures display 

only links (OD pairs) with more than 2 trips. Here, the darker the line the more trips between 

that OD pair are represented. The inward flow in the weekday morning, Figure 4.15.a, 

produces dominant links in the centre, mostly between the three aforementioned large stations. 

The outward flow in the afternoon, Figure 4.15.b, is more spread covering a larger area. 

However, the three large stations links still remain with additional large links around Hyde 

Park. On weekends, Figure 4.15.c and d, both the morning and afternoon usage is highest 

around Hyde Park with no significant link between the three peak weekday stations.  

  
                       (a) Weekday morning                                                (b) Weekday afternoon 

  
                        (c) Weekend morning                                              (d) Weekend afternoon 

Figure 4.15. Daily average of OD link. 
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Another approach to observe the OD links is using a circular plot. The circular 

visualization in Figure 4.16 shows OD links between the 10 busiest stations. Figure 4.16.a 

shows that major flows in weekday mornings are from station 154 (Waterloo Station) shown 

by the green link. It has five fat links to station 48, 101, 112, 136 and 217, while station 14 

(Kings Cross Station) has only one fat link to station 436. Other fat links are from station 217 

to 193, 273 to 112, 101 to 112, and 14 to 112. Here, station 112 (Liverpool St Station) becomes 

a main destination from other stations. Conversely, in the afternoon it turns into a main origin 

to many stations and station 154 then becomes a main destination as shown by many colours 

coming into it.  

      

                       (a) Weekday morning                                                (b) Weekday afternoon 

Figure 4.16.  OD link of 10 stations during weekday peak times. 

         
                     (a) Weekend morning                                                   (b) Weekend afternoon 

 Figure 4.17. Link of 10 stations during weekend peak times. 
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On weekends, as shown in Figure 4.17, most stations serve as half origin and half 

destination for both mornings and afternoons. For example, consider station 191 (Hyde Park) 

and station 303 (Albert Gate). Half of 191’s links are red (outgoing from 191) and half of 303’s 

links are light blue (outgoing from 303). At the same time, the other half of links to 191 and 

303 are multicolour indicating these stations are destinations for these trips. 

4.3.5.  Revisited Stations 

Figure 4.18 shows the number of visits observed within the month where a pickup visit is 

considered as different to a return visit. For each user, numbers of visits for all visited stations 

are first aggregated per month. This actually shows the relations between each user and each 

visited station weighted by numbers of visits. Then, for all users and stations, those numbers 

are averaged. Referring to the exploration and preferential returns terms by Song et al [24], 

around 80% are only one visit per station per month, and called as the exploration because they 

are a first time visit, while the rest 20% containing revisited stations are referred to as 

preferential returns. For revisited analysis purposes, Figure 4.19 shows revisited stations 

where pickup or return occurs at the same station during a month. The trends are almost similar 

for all months in which two pickups or returns at the same station a month are between 40% 

and 45%. The others are around 15%, 10%, and 5% of three, four and five times revisited, 

while six visitations are also close to 5%. The remainders which are more than six revisited are 

less than 5%. This implies there are frequently visited stations for particular users and indicates 

a certain degree of regularity. How that regularity corresponds to certain users, and whether 

that regularity can be measured as well as predicted will be a major topic in Chapter 6. 

 
                                   (a) Pickup station                                          (b) Return station 

Figure 4.18. Percentage of revisited number of stations. 
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                                   (a) Pickup station                                          (b) Return station 

Figure 4.19. Percentage of revisited number of stations (at least 2 visit a month). 

4.4.  Preliminary Data Analysis Significance Summary 

This chapter has investigated the characteristics, dynamicity, and regularity of human 

mobility in an urban area through intensive spatiotemporal analyses of BSS data. There are 

several significant observations that have been revealed in a spatiotemporal mobility context.  

The number of trips each day is about 38% more than the number of users. This means that 

there are a significant proportion of users who use BSS more than once a day. There is a 

decreasing trend of daily usage as winter approaches where Aug > Sep > Oct > Nov. The trip 

average on weekdays is around 20% more than the average on weekend days. In hourly 

patterns, there is a cyclostationary [63] pattern on a daily basis both for weekdays with two 

sharp peaks and weekends with one moderate peak signaling busy times. The presence of only 

two peaks also shows a socio-cultural aspect where lunchtime mobility in London is less than 

in some other cities. Having hourly sharp usage peaks produce asymmetric flows in the system. 

Peak hours in the weekday morning is from 5 am to 9 am, while in the afternoon is from 3 pm 

to 7 pm. For the weekend, its midday peak is from 10 am to 6 pm. There is a one hour time 

shift in November because British Summer Time ends. 

Waiting times patterns show two types of usage. There are a significant number of short 

waiting times, less than 1.5 hours, showing a characteristic similar to a negative exponential 

distribution. On the other hand, there is also a significant set of waiting times between 6.7 and 

10.8 hours on weekdays that reflect a commuting pattern. In this range, waiting times show a 

shape similar to a normal distribution. This daily waiting time can only be captured if users 

have more than one trip a day. Trip durations are mostly less than 30 minutes, the limit of 

charge-free usage. It is found that more than 92% of trips are less than 30 minutes. So the free 

rental period has a significant effect on usage characteristics. The average trip duration on 

weekdays is less than on the weekends. Trip duration is shorter as winter approaches, Aug > 
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Sep > Oct > Nov. Trip duration shows highly heavy-tailed characteristics that mostly occur 

after 10000 seconds (~2.78 hours). This means that there are many short trip durations, and 

few, but non-negligible, long trip durations. This temporal metric shows the complexity of 

human mobility. 

The distribution of distance is less fat-tailed but more skewed than the duration 

distribution. The average trip distance on weekdays is more than on weekends and there is a 

change as winter approaches where Aug > Sep > Oct > Nov. For station activity, there is an 

inward flow from the outer to inner stations in weekday morning. While in the weekday 

afternoon, there is an outward flow from the inner to outer stations with a wider destination 

area. In weekend mornings and afternoons, there is a more even flow between inner and outer 

stations, called a uniform flow. There are three dominant stations on weekdays which are King 

Cross, Waterloo, and Liverpool St. stations. For the imbalance state, there is the potential for a 

lack of bikes (positive imbalance) in outer stations and lack of empty slots (negative 

imbalance) in inner stations for weekday morning peak times, vice versa in the afternoon. On 

weekends, the system is largely self-balancing because of the uniform flow. Link weight 

follows the station activity observations in which fat links are connected to the three busy 

stations on weekdays, while on the weekends busy stations are around Hyde Park. Referring to 

the exploration and preferential returns terms by Song et al [24], there are around 80% of 

visits (pickups or returns) within a month which are the only visit of that user to that station. In 

mobility terms, this is called exploration because these are first time visits, while the 

remaining 20% of visits are revisited stations, and this is referred to as preferential returns. 
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CHAPTER 5 

STATION NEIGHBOURHOOD ANALYSIS 

Actual human mobility consists of trips to places of social significance to individuals. For 

example, a person may travel from home to work in the morning and work to home in the 

afternoon. The BSS trip is just a portion of the total trip, and the choice of origin and 

destination BSS stations is not unique, even for repetitions of the same total trip. In other 

words, even though the overall source and destination (home, work) are the same, there are a 

number of BSS stations, close to home, that could be used, and a variety of BSS destination 

stations close to work. A choice of stations is useful if stations are unavailable due to closure 

for maintenance, or temporarily unavailable because of imbalance. In that case, a nearby 

station can be used. Users could be advised about alternate nearby stations before they begin 

their journey. BSS operators could estimate the effect of station unavailability on nearby 

stations. However, it is unclear within which station use is spatially correlated, and how close 

is “nearby”?  That is the question that this chapter addresses. 

As a dynamic network, certain neighbourhood ties or spatial correlation should be exist 

among BSS stations so that disturbances at one station will affect other stations. The level of 

the impact will be influenced by the willingness of users to choose alternate nearby stations, 

and by the regularity of trip destinations. A reasonable preliminary assumption is that if users 

have to choose other nearby stations rather than their usual station, the station substitution 

preferences will depend on a certain “nearby-ness” or proximity distance. At an aggregate 

level, this distance may provide insight about how many nearby stations get affected and to 

what degree, when a station is disturbed. Currently the spatial ties between BSS neighbourhood 

stations have not been investigated in the literature. Hence, this chapter will investigate these 

neighbourhood ties in terms of distance and disturbance level from two perspectives. The first 

is from the individuals’ perspective using mobility motifs analysis, which is the analysis of 

users’ daily trip patterns. Second is from the stations’ perspective using the temporary station 

shutdown analysis. Here, the station-usage-based method is proposed to compute the usage 

change before, during, and after shutdown. The distance from mobility motifs analysis will be 

compared with the impact distance of shutdown stations. Possible impacts on BSS operation 

will also be investigated in this chapter.  

Survey data can provide social contexts to individual daily trips, for example, home  

work  shop-near-home. On the other hand, the trace of individuals in BSS data can only be 
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represented by the sequence of their daily visited stations. For the given example above, the 

station trace for a user could be 44  50  45, or 21  75  23 for another user, where the 

numbers represent the stations ID. For a particular user, on a particular day, the visited stations 

can be labelled with letters, where A replaces the first visited station, B the next, etc. If a 

station is revisited in the daily mobility trace, then the previous letter is re-used. If the station 

IDs in the above examples are labelled, then both of the traces become A  B  C. In this 

case, the distance between A and C could reflect whether A and C represent the same overall 

destination (e.g. home) or different overall destinations. In other words, if the station choices 

of consecutive trips are different from the previous ones, then the distances between stations 

may give knowledge about station neighbourhood ties, and whether the choice of stations is 

confined to a certain neighbourhood distance. Since the daily spatial-mobility-motifs of BSS 

have not been previously analysed, this work can also contribute to the literature on motif 

models to complement the existing mobility motif results for cell phones and mobility survey 

data [40, 41]. Previously, in motif analysis, each destination became the origin of the next trip, 

and so a connected directed graph uniquely patterns. With BSS, each trip has a unique origin 

and destination. So, this study also proposes a new technique of consecutive labels (A, B, C) 

on motif nodes to make BSS mobility motifs clearer to understand. 

In BSS operation, the temporary shutdown of a station is sometimes required due to 

reasons such as maintenance, redesign, or special events. This shutdown obviously will change 

the topology of the existing network and may impact on nearby stations. This may affect the 

quality of service, especially for individuals who make their trips regularly via a particular 

station. Individuals’ responses could be different. They may try to find alternative nearby 

stations or they may use other modes of transportation. This might lead to a loss of users, 

especially if the shutdown station has a significant role in the network, and no nearby stations 

are an immediate substitute. In this case, the significance of a station can be expressed in terms 

of location, usage (pickup and return), and number of links (trips) with other stations in the 

network. This leads to some further questions: how the shutdown impact is for nearby stations, 

how to properly measure the impact, to what extent other stations can be an automatic 

substitute for the shutdown station, and how this shutdown knowledge can best be used for the 

BSS operation, design, and deployment. 

When a station shutdown is analysed, which nearby stations will be included in that 

analysis is an essential first step. Considering all the stations in the network seems too large as 

an impact scope since the shutdown will most likely only strongly affect nearby stations. To 
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decide on the relevant impact scope, the proposed station-usage-based method uses an 

approximate radius derived from the trip distance and walking distance suggested by [75] as a 

preliminary radius of observation. Then, the usage transformations before, during, and after 

shutdown are conducted for all stations in this set to see the impact distance. Once the impact 

distance is found, it is also used to identify what we define as the ineffective as well as the 

isolated stations including the related recommendations for BSS operator actions. 

In most BSS datasets, the only positions that can be provided are the origin and destination 

station geo-locations, so that the two-dimensional Euclidean distance between these is widely 

used for the spatial analysis. However, as a simple straight line, Euclidean distance cannot 

capture variations in the actual travel distances which are affected by road layout. In this 

chapter, the usefulness of waypoint distance (i.e., distance between points along a feasible path 

via roads) is compared with Euclidean distance and with Manhattan distance. Finally, the work 

in this chapter is used to answer RQ1 and a part of RQ4. 

5.1.  Methodology 

This section begins with the waypoint distance description and its difference from 

Euclidean and Manhattan distances. This is followed by the method for transforming trip data 

to the daily motifs. Then, the selection of nearby stations is presented. Finally, the concept of 

station-usage-based analysis by means of usage transformation is proposed. Here, a shutdown 

station is identified from the usage dataset because it does not have any usage (pickup or 

return) for a period of several days where a number of shutdown cases will be investigated in 

section 5.3. 

5.1.1.  Waypoint Distance 

BSS usefully capture the individual mobility with clear geo-location of origin-destination, 

albeit without the real route of each trip. Determining the real route of BSS users, rather than 

using the straight-line two-dimensional Euclidean distance [11, 75], is not possible unless each 

bike is equipped with a GPS tracker which it is not the case here. However, a better estimate of 

the distance travelled should be possible. Users will most likely follow the road network and 

many will choose the shortest route. For this reason, this study will infer a trip distance by 

selecting the most likely road segments with the shortest distance between OD from a series of 

route points given by Google Maps API and MapQuest API. This is called the waypoint 

distance, which is described in Figure 5.1. A waypoint refers to an intermediate point on a path 
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at which the direction of travel is changed. Then, a route is defined as a sequence of straight-

line segments from origin, via the waypoint, to the destination. To the best of our knowledge, 

this is the first BSS study which adopts this waypoint distance approach.  

From Figure 5.1, the waypoint distance can be formulated from a series of waypoints 

(𝑃1, 𝑃2, … , 𝑃𝑚) between OD as the sum of Euclidean distances between consecutive points as 

follows: 

𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝐷𝑖𝑠𝑡𝑂𝐷 = ∑ 𝑒𝑖

𝑀+1

𝑖=1

                                                         (5.1) 

Here, 𝑀 is number of waypoints between OD and 𝑒𝑖 is the Euclidean distance between 

each pair of points starting from O and ending at D. 

 

  

 

 

 

 

 

Figure 5.1. (a) Euclidean distance between OD, (b) Four waypoints (P1, P2, P3 and P4) between OD, 

(c) Waypoint distance (e1 + e2 + e3+ e4 + e5) between OD.  

This waypoint distance is different from the Manhattan distance which calculates distance 

as the x-distance plus y-distance based on strictly vertical and horizontal paths which parallel 

along the axes (x,y) [121, 122]. For a set of axes (x,y), the Manhattan distance between OD 

could be:  

 

 

 

 

Figure 5.2. The illustration of axes dependence of Manhattan distance.  
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Experience from other researchers [122] finds that the Euclidean distance typically under-

estimates the road distance, and the Manhattan distance overestimates the distance. Both 

distance measures significantly underestimate the road distance if there is a significant obstacle 

between origin and destination, such as a railway line or river. The waypoint distance is used 

here to provide a more accurate measurement of which BSS stations are nearby each other. 

It is not expected that all BSS users will follow the shortest waypoint route to reach a 

certain destination from a certain origin because they have the freedom to choose their own 

routes. They may be sightseeing, for example. However, the waypoint approach provides a 

practical estimate of the shortest distance compared to Euclidean and Manhattan distances. The 

waypoint distance is useful when comparing effects on stations of a nearby shutdown station, 

since it is the shortest travel distance that is important. Waypoint distance can give a different 

ordered set of nearby stations to a shutdown station. For example, if the order of nearby 

stations from station A using Euclidean distance is B-C-D-E, it could be C-B-E-D using 

waypoint distance. The real example of this case from London BSS is given in subsection 

5.3.1.  

5.1.2.  Spatial Mobility Motifs   

Spatial mobility motifs represent OD trajectories or trace patterns of users over one day in 

a graphical form. More formally, a motif is represented as a directed graph and defined as G = 

(V, E), which consists of a set of V nodes or vertices representing BSS stations and a set E of 

directed edges which represent trips between stations by one user during one day. Two 

mobility motif graphs are said to be equivalent if there is a one-to-one mapping between the 

nodes and edges in the two graphs.  Equivalent graphs are said to represent the same mobility 

motif. 

Therefore, even though different users visit different stations, common spatial patterns 

could be inferred if those OD stations are labelled consecutively by the stations visited over a 

day. Here, the first daily pickup station for each user will be labeled with A. The subsequently 

visited stations in that day will be labeled either with a new label (B, C, D, …) if that station 

has not yet been visited or with the previously used label corresponding to a station that has 

been visited. Figure 5.3 illustrates how a similar daily motif is drawn from two users with 

different OD trips as listed in Table 5.1. 
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Table 5.1. Daily trips example of two users. 

User 

ID 

Pickup Data Return Data 

Station Pickup time Station Return time 

1465 251 2012-08-01 06:34 506 2012-08-01 06:40 

1465 506 2012-08-01 16:45 255 2012-08-01 16:51 

1507 239 2012-08-01 07:05 44 2012-08-01 07:15 

1507 44 2012-08-01 17:00 345 2012-08-01 17:20 

 

 

 

 

(a) User 1465             (b) User 1507              (c) Equivalent motif         (d) A to C distance 

Figure 5.3. From stations traces to equivalent motif AB BC. 

It can be seen from Table 5.1 that the pickup station for the second trip of each user is the 

return station of their previous trip. Therefore, if visited stations are labelled in alphabetical 

order (A,B,C,D,E,F,…), their motifs become AB BC, Figure 5.3.c. In this case, directed 

edges stand for a trip from pickup to return station, and the numbers on edges are the trip 

sequence numbers. 

The motifs in Figure 5.3 above may represent a simpler total trip motif, such as home  

work  home, with the user choosing different stations to leave and return home. Looking at 

the distances between A and C in motifs like Figure 5.3.d across all of the BSS trips may give 

some understanding of what distances typically corresponding to nearby stations. 

The labels assist in distinguishing different motifs which cannot be distinguished just from 

unlabeled edges and nodes as used in previous motifs analysis in [41] and [40]. For example, 

two labelled graphs AB BC and AB CA, Figure 5.4.a&b, represent different motifs 

with labelled graphs, but would be indistinguishable with unlabelled graphs, as in Figure 5.4.c. 

 

 

                             

                     (a)                                          (b)                                           (c)   

Figure 5.4. The labelled and unlabelled motifs. 
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Not only node labels, but edge labels also have an important role to distinguish different 

motifs such as AB BA BC and AB BC BA as shown in Figure 5.5.a&b. Even 

with node labels, these motifs could not be distinguished. 

 

 

 

                        (a)                                             (b)                                                (c)  

Figure 5.5. The labelled (with edge numbers) and unlabelled motifs                                           

5.1.3.  Impact Distance 

A preliminary assumption for the maximum distance of the significant effects of a station 

shutdown is needed to determine the set of nearby stations that will be analysed. In this case, 

the median trip distance on section 4.3.1 will be employ with an assumption that most users 

travel are confined by that distance. Another measure of impact distance from a station is taken 

from another human mobility study which is a typical walking distance suggested by O’brien 

et al. [75].  

During station shutdown, it is proposed that the set of stations which are affected by a 

shutdown, called the nearby stations, are those that are within a specific distance, called the 

impact radius, of the shutdown station.   

5.1.4.  Station Usage Changes 

There are two steps to understanding the impact of a station shutdown on the BSS 

operations. The first step is to estimate the maximum reasonable impact radius, and therefore 

the set of possible impacted stations. The second step is to understand the usage changes, or 

transformations, in those nearby stations to determine which stations are most affected, and 

therefore what the actual impact radius is. Two measures of change of usage are proposed: 

before-to-during (BtoD) and during-to-after (DtoA) shutdown. For a shutdown length of D 

days, usage is analysed over 5 periods of D days as shown in Figure 5.6. This will give at least 

two comparisons to see the uniformity of the changes. When the system is in normal operation 

without a shutdown, both backward and forward windows comparisons should show negligible 

usage changes. Meanwhile, the similar length of periods will allow direct usage comparisons 
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over the period of evaluation. For example, if the length of a shutdown is 7 days, then the 

average of usage in 1 to 7 days before (B1toD), as well as 8 to 14 days before (B2toD), are 

compared with the average of usage during shutdown.  

 

 

 

 

 

 

 

Figure 5.6. The usage changes before-to-during and during-to-after. 

The percentage of changes for each nearby station can be calculated as: 

𝐵𝑛𝑡𝑜𝐷 (%) = 100 ∗  (
𝑈𝑠𝑎𝑔𝑒 𝐷 − 𝑈𝑠𝑎𝑔𝑒 𝐵

𝑈𝑠𝑎𝑔𝑒 𝐵
) , 𝐷𝑡𝑜𝐴𝑛 (%) = 100 ∗ (

𝑈𝑠𝑎𝑔𝑒 𝐴 − 𝑈𝑠𝑎𝑔𝑒 𝐷

𝑈𝑠𝑎𝑔𝑒 𝐴
)   (5.5) 

It is expected that 𝐵𝑛𝑡𝑜𝐷 will be positive with a decreasing impact as distance increases 

because the nearby stations will probably receive more use during the shutdown. Conversely, 

𝐷𝑡𝑜𝐴𝑛 will be negative because the nearby stations will return back to their normal state when 

the shutdown is finished. If a stations has little or no changes, then the shutdown has no impact 

on that station. 

5.2.  Spatial Mobility Motifs Analysis 

Using the methodology in section 5.1.2, this section investigates the characteristics of BSS 

mobility motifs to understand the daily movement patterns of BSS. By looking at common 

motifs, common BSS usage patterns can be identified. This may aid BSS system operations, 

but also will be useful in understanding human mobility more generally. As reviewed in 

Chapter 2, previous human mobility motif studies were conducted by Schineider et al. [40] and 

Jiang et al. [41] using surveys and mobile phone datasets. Adopting the concept of motifs from 

network theory, they consider a daily network pattern as a motif if that network is found in 

more than 0.5% of the dataset [40]. Using this threshold, they found 17 and 11 unique daily 

mobility networks respectively in analogy to motifs in complex networks, where this threshold 

is also used in this section to find BSS motifs.  

Days of 

shutdown 

Days After 

shutdown (1) 

Days After 

shutdown (2) 

Days Before 

shutdown (2) 

Days Before 

shutdown (1) 

BtoD 

Transitions Transitions 

similar length of days 

(before-to-during) DtoA (during-to-after) 



 

 

79 

 

 

5.2.1.  Daily Trips Count 

The extraction of BSS mobility daily motifs in this section starts from the calculation of 

how many trips each individual makes per day. Figure 5.7 summarizes the percentage of users 

who make a certain number of trips on a daily basis averaged by weekday and weekend, and 

observed per month. In all months, the majority of users make only one trip a day reaching 

around 55% of users on weekday and 60% on weekend. Then, users with two trips a day are 

around 35% on weekday and 30% on weekend, and users with three trips a day are around 5% 

on weekday and 8% on weekend. The remainders are more than three trips. This study will 

only consider up to three trips a day which covers more than 90% of users. As the number of 

trips increases, the number of possible motifs increases exponentially, so numbers in particular 

motifs beyond three trips are negligible. The details of all the different motif types are listed in 

section 5.2.2. 

 
               (a) August                      (b) September                       (c) October                      (d) November  

Figure 5.7. Percentage of number of daily trips per user. 

5.2.2.  Daily Motifs Type 

Observing from one to three trips a day, there are 216 network patterns found as candidate 

motifs. They are 2 networks for one trip a day, 15 networks for two trips a day and 199 

networks for three trips a day. However, only a few of them are popular networks. Table 5.2 

shows the 12 top networks based on their appearance on weekdays and weekends for the four 

months period.  

Considering 0.5% as a minimum threshold [40], only 10 daily network patterns can be 

considered as common motifs. Two motifs are from one trip a day: AB and AA, four 

motifs are from two trips a day: AB CD, AB BC, AB BA and AB CA, and 

four other motifs from three trips a day: AB CD EF, AB BC DE, AB CD 

DE, and AB BC CD.  
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Table 5.2. Twelve top networks (10 as motifs of more than 0.5%) 

No 1 2 3 4 

M
o

ti
f 

AB 

 

 

 

AB CD 

 

 

 

AB BC 

 

 

 

AB BA 

 

 

 

% Aug Sep Oct Nov Aug Sep Oct Nov Aug Sep Oct Nov Aug Sep Oct Nov 

WD 56.15 55.08 54.90 53.44 10.06 9.93 9.37 9.39 9.44 9.93 9.96 10.24 8.31 9.13 10.01 10.77 

WE 59.93 58.72 59.91 60.32 9.60 9.37 8.81 8.05 7.62 7.48 7.48 7.26 5.33 6.35 7.04 7.81 

No 5 6 7 8 

M
o

ti
f 

AB CA 

 

 

 

AA 

 

 

 

 

AB CD EF 

 

 

 

AB BC DE 

 

 

 

% Aug Sep Oct Nov Aug Sep Oct Nov Aug Sep Oct Nov Aug Sep Oct Nov 

WD 6.52 6.76 7.12 7.41 0.98 0.76 0.68 0.59 0.92 0.84 0.68 0.69 0.72 0.68 0.59 0.59 

WE 4.87 5.26 5.27 5.34 1.77 1.64 1.50 1.50 1.32 1.32 1.23 0.99 0.93 0.95 0.85 0.67 

No 9 10 11 12 

M
o

ti
f 

AB CD DE 

 

 

 

AB BC CD 

 

 

 

AB CD EA 

 

 

 

AB AC 

 

 

 

 

% Aug Sep Oct Nov Aug Sep Oct Nov Aug Sep Oct Nov Aug Sep Oct Nov 

WD 0.68 0.65 0.58 0.60 0.65 0.65 0.57 0.59 0.37 0.38 0.38 0.39 0.35 0.35 0.33 0.37 

WE 0.90 0.91 0.71 0.67 0.87 0.78 0.66 0.64 0.43 0.50 0.48 0.43 0.48 0.47 0.45 0.45 

 

In all months, the motifs can be categorized by three groups based on their percentage 

range as shown in Figures 5.8. The first is the most dominant one, AB, which is 54% of all 

weekday trips and 59% on weekends.  

The second group consists of four motifs which span from 5% to 10%. All of them are 

from 2 trips a day (motif no 2, 3, 4, and 5). They are AB CD where there is no similar or 

recurrent visited stations, AB BC where the second pickup is same as the previous return, 

AB BA where the second trip is exactly the reverse of the previous trip, and AB CA 

where the last return comes back to the first pickup.  

In the third group, there are five motifs with a small percentage range between 0.5% and 

1.5%. There is one roundtrip or self-loop from one trip a day which is motif AA, while 

others come from the three trips a day. Motif AB CD EF is a motif with no recurrent 

stations which means users who have this motif must visit six different stations a day. Then, 
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motif AB BC DE with one revisited station where the second pickup is the previous 

return, followed by motif AB CD DE also with one revisited station. The last motif is 

AB BC CD with two revisited stations.  

 

                (a) August                     (b) September                       (c) October                    (d) November 

Figure 5.8. Percentage of daily motifs. 

The following insights can be noted from this data. Only 10 of 216 motifs are common 

(>0.5%). This is fewer than common motifs from cell phone and mobility survey data. There 

are only 3 motifs without daily revisited stations, motif 1, 2 and 7, but their total percentage is 

high, around 66.4%. The number of visited stations in the 10 motifs varies from 1 to 6 different 

stations. In the next section, analysis of these motifs will be used to estimate the typical 

distance between nearby alternate stations for trips. 

5.2.3.  Distance Analysis of Daily Mobility Motifs 

It is our conjecture that a significant proportion of users who make BSS trips between 

social destinations such as home, or work, will sometimes use different origin or destination 

BSS stations.  So in some significant proportion of trips with, say, three different stations, such 

as (AB  BC), it will be the case that A and C are different BSS stations used for the same 

social location.  Looking at the distribution of distances between A and C will give insight into 

the typical distances between nearby stations. 

 In particular, these distance observations are made for motif no 2 (AB  CD), no 3 

(AB  BC) and no 5 (AB  C A) as shown in Figure 5.8. Results show that for motifs 2 

and 5, Figure 5.9.a and d, they have tendency to pick up bikes for the second trip close to the 

previous station where they returned the bike for the first trip, with most common inter-station 

distances of 300 m  to 500 m. An inter-station distance of 100 m is much less common, 

perhaps due to the fact that not many pairs of stations are this close to each other.  
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Similar characteristics occur for returning bikes on the second trip, Figure 5.9.b. This 

means users tend to pick up and return the bikes in a similar area. However, a different result 

occurs for motif no 3, Figure 5.9.c, where their distance between first pickup and the second 

return stations are about 2 kilometres which means these are usually two quite separate trips. 

By looking at the peaks in Figures 5.9.a, b, and d, these results show that if users choose a 

different station in a previously visited area, the inter-station distance in this neighbourhood is 

most commonly around 300 m.      

 

  (a) WP distance distribution of B to C motif no 2     (b) WP distance distribution of D to A motif no 2 

 

(c) WP distance distribution of C to A motif no 3      (d) WP distance distribution of B to C motif no 5 

Figure 5.9. Distance distribution of nearby OD stations based on daily motifs. 

5.3.  Shutdown Stations Analysis 

Usage changes in nearby stations when a station is shut down. An example of this usage 

transformation is shown in Figure 5.10 with one shutdown station and corresponding daily 

usage patterns of nearby stations. In this example, the shutdown station is station 360 (11 days 

of shutdown, days 40 to 50) which is denoted with the red circle. It can be seen that there are 

usages transformation in nearby stations which vary as a function of distance. A significantly 

increased usage occurs in station 177 and 316, while a slight increase also happens in station 

359 and 320, as shown in Figure 5.11. By looking at a number of shutdown cases, the impact 

radius is analysed using the proposed methods in the subsection 5.1.4. 
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Figure 5.10. The usage pattern of shutdown station and its nearby stations geolocation.  

 
                            (a)                                                    (b)                                                  (c) 

 
                            (d)                                                    (e)                                                  (f)                         

Figure 5.11. Daily usage patterns of nearby stations from the shutdown station. 

5.3.1.  Nearby Stations Set 

Using the trip distance curves in Figure 4.8 of previous chapter which have a peak distance 

(median distance) of around 1 km, and together with the walking distance suggested by  

O’brien et al. [75] which is also 1 km, this 1 km is used as an initial radius from the shutdown 

station. Then, eight shutdown cases are observed measuring distance both with Euclidean and 

waypoint distance from the shutdown station. The set of nearby stations example based on 

formula 5.1 can be seen in Figure 5.12 for station 141 (red circle with station ID). It can be 

seen using the same 1 km distance, the stations reached by a waypoint distance of 1 km contain 

fewer stations (22 stations) than by Euclidean distance (44 stations). 

Impact radius? 
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(a) Euclidean distance                              (b) Waypoint distance 

Figure 5.12. Stations set considering 1 km distance to the shutdown station. 

The list of nearby stations ordered by inter-station distance, gives also a different list 

ordering when using Euclidean and waypoint distance. For example, the nearby stations order 

from station 48 based on Euclidean distance, Figure 5.13.a is different with waypoint distance, 

Figure 5.13.b. This different order may give different results when observing the usages 

transformation.  

 

 

(a) Order by Euclidean distance (metres) 

 

 

 

 

(b) Order by waypoint distance (metres) 

Figure 5.13. Nearby stations order from the central based on Euclidean and waypoint distance 

5.3.2.  Daily Usages Transformation  

Implementing the station-usage analysis using equation 5.5 for all the shutdown cases, the 

results of daily pickup transitions of nearby stations before-to-during and during-to-after 

shutdown can be seen in Figure 5.14 and Figure 5.15 for Euclidean and waypoint distance 

order respectively. Observing for pickup on weekdays, figures on the left side (a, c, e, g, i, k, 

and m) present the transitions from before-to-during (𝐵𝑛𝑡𝑜𝐷) shutdown, while on the right side 

(b, d, f, h, j, l, and n) present the transitions from during-to-after (𝐷𝑡𝑜𝐴𝑛) shutdown. Red circles 
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represent the transitions relative to one window before (B1toD) and after shutdown (DtoA1), 

and blue circles represent the transitions relative to two windows before (B2toD) and after 

shutdown (DtoA2).  

The figures can be interpreted as: when a station is shut down for a certain period of days 

and if BntoD figures (left side) give significant positive values, it means the stations are 

impacted with increased usage, because a number of users choose nearby stations as substitutes 

for the shutdown station. Within the impact radius stations are significantly affected. For more 

distant stations, the effect should be less. Similar behaviour occurs when the shutdown station 

is re-activated. If DtoAn figures (right side) give significant negative values, it indicates the 

nearby station is impacted, because users who previously choose the nearby stations come back 

to use the re-activated shutdown station.   

The approximate impact radius can be observed to be a few hundred metres from the 

shutdown stations. Generally, using Euclidean distance order, Figure 5.14 shows that the 

affected stations seem in the radius of 200 m. While using waypoint distance order, Figures 

5.15 give an impact radius of around 300 m.  

However, looking in Table 5.3 shows that the nearest stations from the shutdown, within 

the 200 m Euclidean distance are not always impacted. This can be seen for station 514 

(Euclidean: 194 m) and 112 (Euclidean: 205 m) where no transformations occur. Their 

waypoint distances are 325 m and 483 m respectively. By contrast, all stations which are less 

than 300 m of waypoint distance are impacted. For BntoD, the affected stations get increased 

usages from 20% to 80% (e,g,i,k,m). Similarly for DtoAn, they get similar decreased usages. 

This fact gives an insight that a waypoint distance of 300 m is a good estimator of the limit of 

the distance users will walk to an alternate nearby station.   

It can also be seen from Table 5.3 that not all stations impact their neighbours during 

shutdown. For example, station 112 with very high daily usage (282.5 and 264.4 for one and 

two windows before shutdown) does not increase the usage of station 393, the nearest station, 

even though their Euclidean distance is 205 m. Their waypoint distance is 485 m which is 

further than users normally will walk to an alternate station. On the other hand, station 197 

which has daily usage around 75 to 85, much smaller than station 112, has a significant impact 

on its two nearby stations because their waypoint distances are less than 300 m. This means 

that the waypoint distance is a more reliable estimate of impact radius than the Euclidean 

distance and also better at predicting the relative impact to nearby stations. 
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Figure 5.14. Average daily pickup transition (%) of nearby stations before-to-during and during-to-

after shutdown ordered by Euclidean distance. 
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Figure 5.15. Average daily pickup transition (%) of nearby stations before-to-during and during-to-

after shutdown ordered by waypoint distance.  
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Table 5.3. The transitions of before-to-during and during-to-after for average daily pickup               

(five closest stations to the shutdown station). 

Shutdown 

Station 

ID 

Nearby 

Station 

ID 

Euclidean 

Distance 

(metres) 

Waypoint 

Distance 

(metres) 

Average daily pickup % of transition (Formula 5.5) 

Before 

2 

Before 

1 

During 

Shutdown 

After   

1 

After   

2 

B2toD 

(%) 

B1toD 

(%) 

DtoA1 

(%) 

DtoA2 

(%) 

297         

(4 days) 

   17 13.7 0 15.2 10.5     

549 126 322 31 28.5 34 24.75 27.5 9.7 19.3 -37.4 -23.6 

548 284 644 15.5 12.25 10 11.5 12.5 -35.5 -18.4 13.0 20.0 

324 324 698 49 44.5 53 51.5 47 8.2 19.1 -2.9 -12.8 

371 324 616 19 13 14.5 12.75 14 -23.7 11.5 -13.7 -3.6 

235 343 702 48.5 48.5 42 47.75 41.5 -13.4 -13.4 12.0 -1.2 

514         

(4 days) 

   33.6 35.6 0 27.0 31.0     

400 194 325 41.0 41.0 36.5 43.3 50.0 -11.0 -11.0 15.6 27.0 

403 204 605 32.0 38.7 36.0 32.5 41.0 12.5 -6.9 -10.8 12.2 

210 259 306 62.0 54.3 57.0 58.5 57.5 -8.1 4.9 2.6 0.9 

99 262 483 48.0 45.3 59.0 44.5 51.5 22.9 30.1 -32.6 -14.6 

121 305 644 42.7 42.7 45.5 42.8 44.5 6.6 6.6 -6.4 -2.2 

141         

(5 days) 

   37.3 33.6 0 24.3 27.6     

301 87 161 67.3 67.7 97.4 59.3 65.0 44.7 43.9 -64.2 -49.8 

106 134 280 45.3 45.7 54.8 35.7 42.0 20.9 20.0 -53.6 -30.5 

210 368 644 72.0 62.0 77.0 57.3 44.7 6.9 24.2 -34.3 -72.4 

6 375 550 45.7 51.7 63.0 46.3 52.3 38.0 21.9 -36.0 -20.4 

116 411 644 93.7 99.3 124.6 92.7 111.3 33.0 25.4 -34.5 -11.9 

48           

(7 days) 

   76.6 82.4 0 62.5 69.9     

136 131 170 70.2 73.2 123.4 56.6 46.6 75.8 68.6 -54.1 -62.2 

71 327 483 128.8 132.2 149.4 94.2 76.6 16.0 13.0 -36.9 -48.7 

101 443 591 200.4 208.2 245.8 178.8 156.4 22.7 18.1 -27.3 -36.4 

427 461 644 146.8 153.6 155.4 104.8 90.8 5.9 1.2 -32.6 -41.6 

120 555 805 84.0 80.6 86.4 52.2 52.2 2.9 7.2 -39.6 -39.6 

197       

(10 days) 

   74.8 86.7 0 78.5 81.1     

173 125 132 52.4 51.1 96.9 59.4 55.5 84.9 89.4 -63.1 -74.5 

377 144 234 48.8 48.7 64.3 50.9 39.2 50.4 26.7 -26.4 -64.1 

154 215 483 302.5 306.1 289.3 282.4 283.8 -4.4 -5.5 -2.4 -1.9 

361 223 322 66.8 62.3 65.7 62.6 56.0 -1.6 5.5 -4.9 -17.3 

273 223 334 91.8 86.9 91.3 78.3 64.0 -0.5 5.1 -16.7 -42.6 

386       

(11 days) 

   72.3 66.8 0 49.4 73.1     

383 90 160 47.8 39.0 65.0 40.7 47.8 36.1 66.7 -37.4 -26.5 

192 242 321 65.0 65.1 56.8 60.6 80.2 -12.6 -12.8 6.7 41.3 

109 280 482 86.0 71.4 74.1 72.0 91.3 -13.8 3.8 -2.8 23.2 

244 307 500 42.9 41.7 39.0 40.4 52.8 -9.0 -6.5 3.7 35.3 

260 380 729 41.9 39.9 38.4 42.7 53.8 -8.2 -3.5 11.1 39.9 

360       

(11 days) 

   58.6 72.7 0 52.7 61.1     

177 167 177 86.9 106.9 131.7 71.1 71.4 51.6 23.2 -85.1 -84.3 

316 246 483 86.4 98.6 115.6 83.9 98.7 33.8 17.2 -37.8 -17.1 

118 248 464 29.3 32.4 37.1 26.3 27.9 26.9 14.4 -41.2 -33.1 

359 258 335 52.0 60.9 63.3 40.4 43.0 21.8 4.1 -56.7 -47.3 

299 332 427 30.4 32.3 37.2 24.7 24.7 22.5 15.3 -50.6 -50.9 

112       

(14 days) 

   264.4 285.5 0 181.8 190.8     

393 205 483 65.0 75.4 71.1 63.5 55.0 9.4 -5.7 -12.0 -29.3 

546 230 325 50.2 58.8 55.2 46.8 49.9 10.0 -6.1 -17.9 -10.6 

27 288 405 59.2 63.6 60.9 49.9 50.1 2.9 -4.2 -22.0 -21.6 

66 335 483 111.7 126.9 101.0 107.6 112.7 -9.6 -20.4 6.1 10.4 

67 386 483 68.6 85.9 65.0 68.4 73.6 -5.2 -24.3 5.0 11.7 
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A combined graph for all the shutdown stations is presented in Figure 5.16 where the 

waypoint distance order gives a better representation of impact decay over distance. It can be 

seen that the nearest station using waypoint distance gets the highest impact, while this is not 

the case in the Euclidean distance order. 

 
                                       (a)                                                                       (b) 

 
                                       (c)                                                                       (d) 

Figure 5.16. The recaps of average daily pickup transitions (%) of nearby stations ≤ 400 metres. 

 

5.4.  The Impact Distance Application 

5.4.1.  Ineffective stations 

Knowledge from the shutdown impact distance as well as the users’ spatial-mobility-

motifs can be applied for detecting ineffective stations. The previous results of both analyses 

show that 300 m is the limit of the distance for choosing an alternate station. Hence, an 

ineffective station can be identified based on this distance combined its usage relative to its 

nearby stations. If a station has low usage, less than a threshold (), and if its removal from the 

network still gives inter-station distances in the range of 300 m between the remaining nearby 

stations, then this station can be labelled ineffective. This is because its removal is unlikely to 

have a big impact on the network. Its users can still be handled by nearby stations within 300 m 

as substitute stations. Removing ineffective stations and reallocating their resources can give 
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better overall system utilisation. Two cases are presented in Figure 5.17 with related 

Euclidean/waypoint distance and daily average usages. 

  

                                   (a)                                                                       (b)  

Figure 5.17. Ineffective stations example based on distance. 

If  is set less than an average of 20 uses per day (subjective value) in the area shown in 

Figure 5.17.a, station 494, 551, and 556 are candidate ineffective stations. Now, by observing 

their distance to the nearest stations, they could be eliminated or amalgamated with the nearest 

stations. In this case, station 494 and 551 can be amalgamated with station 570, while station 

556 can be amalgamated with station 502. Removing these three stations still give inter-station 

distances below than 300 m for the remaining stations.  

In the area shown Figure 5.17.b, station 21 and 90 are candidate ineffective stations. In this 

case, station 90 can be eliminated or amalgamated with station 452 because there is station 131 

that can be a backup for station 452. Similarly, station 21 can be eliminated amalgamated with 

station 98 because there is station 20 that can be a backup for station 98. In addition, these 

examples also indicate that if two stations are very close, one of them will be more dominant or 

receive more usage than the other. One of the next examples will show where a station could 

not be removed because the 300 m distance would be violated. 
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5.4.2.  Isolated stations 

An isolated station can be defined as a station that has high usage, and has no other 

stations within 300 m waypoint distance. An example of an isolated station is shown in Figure 

5.18. Station 419 has high usage compared to its nearby stations. Its nearest station is station 

245 at 585 m waypoint distance. If this isolated station is shut down or is full or empty, there is 

no nearby station within 300 m that can be a substitute. So, adding a new nearby station within 

300 m is recommended.   

  

Figure 5.18. The isolated station example based on distance. 

  

Figure 5.19. Two isolated stations example in Hyde Park. 

An example of relatively isolated stations which provide mutual backup is shown in Figure 

5.18. Stations 300 and 248 are in the centre of Hyde Park. In this case, even though station 300 
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and 248 are isolated with long distances to others, but they are still quite close to each other 

(230 m and 350 m for Euclidean and waypoint distance respectively). So, if one of them is shut 

down or full or empty, the other one still acts as a substitute. Reducing their separation would 

be better, because now it is around 350 m waypoint distance.  

5.5.  Station Neighbourhood Significance Summary 

The results in this chapter show that nearby stations has neighbourhood ties, and that 300 

m is the waypoint distance where these ties are significant. Two approaches, the spatial 

mobility motifs and the temporary shutdown station analysis, support this finding. Ten motifs 

are found where 300 m waypoint distance is the most common inter-station distance for users 

who choose different stations in the same area. Similarly for the shutdown stations analysis, 

300 m waypoint distance is the distance with significant impact for usage changes in nearby 

stations. These changes decay from 80% to 20% as inter-station distance increases to 300 m.  

This work has potential practical application in BSS system design, operation and 

maintenance. This impact distance knowledge can be used by the BSS operator to plan for 

station shutdown by ensuring other stations within 300 m can effectively cope with increased 

usage. Combined with usage information, this impact distance knowledge could be to identify 

ineffective stations in the network that can be eliminated. Another application is to identify 

isolated stations with high usage where a new nearby station in 300 m is recommended to 

provide system reliability, so that other alternate stations are sufficiently nearby to cope with 

station unavailability. 

Finally, when a new BSS is planned for a city, this work provides additional planning 

insights. An inter-station distance of a maximum of 300 m will provide reasonable alternative 

stations during station unavailability. Furthermore, station distance should be calculated using 

waypoint distance, not Euclidean distance. Stations very close to each other are not advised – 

one is likely to be ineffective. The identified ineffective stations in the analysis in 5.4.1 were 

all close to a much more popular station. Also, from the spatial motifs distance distribution, 

Figure 5.19, a very close station (100 m or so) is not a dominant alternate choice for users. 
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CHAPTER 6 

USER CLUSTERING AND NEXT PLACE PREDICTION 

One of the common goals of human mobility studies is to be able to predict future trips, 

either at the level of individuals, or as aggregate movements across the area under study.  

Being able to predict the next location for individual users can potentially improve services to 

the users, for example suggesting nearby stations if their predicted target station is likely to be 

full when they arrive. Results presented in the preliminary data analysis chapter show that BSS 

has spatial and temporal regularities as well as significant randomness. The system wide 

regularity is likely to translate into individual trends in patterns of usage for some frequent 

users. Trips by some other classes of users are likely to be much less predictable, particularly 

when those users do not have a long trip history. Identifying users who demonstrate high 

regularity in the form of consistent temporal patterns seems significant for prediction and 

operation. Intuitively, users who regularly use the BSS for home-work commuting are likely to 

make similar trips at similar times on work days. To identify such users, this study will use a 

clustering approach based on appropriate temporal features of their trip data. Such features 

might correspond to patterns such as daily commuting. This chapter investigates prediction of 

individual users’ next locations. Meanwhile, the next chapter deals with the different problem 

of predicting system-wide usage. 

To the best of our knowledge, no previous research has investigated individual user trip 

predictability and prediction using BSS data, and so the results presented here are new for BSS 

mobility data. Previous work in BSS prediction has concentrated on the system-wide based 

predictions [47, 63, 70]. The London 2012 BSS data is the only publically available data 

tagged with individual user information. 

The user-based analysis in this chapter consists of five sub-topics: user clustering, cluster 

characterization, cluster entropy and predictability, user next-location prediction, and practical 

applications. First, user clustering aims to classify users based on similar movement behaviour 

that is reflected in the regularity of their trip patterns. Since temporal regularity is more 

meaningful for frequent BSS users, the total number of trips as well as the number of hourly 

trips will be proposed as clustering features. Total trips will show how frequently an individual 

uses the BSS, while the hourly trip patterns will reflect the travel regularity within a user’s 

daily routine. It is expected that clustering on these temporal patterns will provide more 
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homogeneous classes of users, rather than basing clusters solely on subscription categories. In 

addition, it also provides the ability to have more than two clusters. The proposed clustering 

will be compared to the user clusters from existing studies [74] and [75].   

Second, to identify differences between clusters, the spatiotemporal metrics in Chapter 4 

and 5 will be analysed by cluster. This cluster characterization analysis will highlight specific 

mobility behaviour of different groups of users at an aggregate level. Metrics will examine how 

users in different clusters use the BSS hourly and daily, their waiting times before the next trip, 

how their use is affected by season, how quickly they ride, their spatial extent as measured by 

their RoG, and their spatial daily motifs. These characteristics will allow meaningful labels for 

these clusters. 

Third, the randomness and regularity of each cluster is examined using techniques from 

information theory, and entropy and predictability will be calculated [24]. This provide an 

upper bound to the potential prediction accuracy that can be achieved by a prediction algorithm 

[25]. Different entropy measures can be used to determine whether users’ future trips have a 

strong spatiotemporal correlation with past trips, and depend only upon the current location, 

not on the sequence of trips that preceded it. If this is the case, then a Markov model should be 

a useful predictor. 

Fourth, different prediction scenarios will be used to predict the next user location either 

for pickup-to-return or return-to-pickup. When a user visits a new station, their past history 

cannot be used for prediction. Subsection 4.2.5 showed that only around 20% of trips contain 

revisited stations. Accordingly, population-based prediction per cluster that represents the 

collective trends will be used to make a prediction if an individual-based prediction is not 

possible. In addition, to capture finer temporal resolution, the trip history will be further 

subdivided based on day of the week and time of the day rather than using the whole history as 

one OD transition matrix. Further analysis will determine which method gives better prediction 

accuracy. The dynamics of prediction accuracy over time and the correlation strength of 

pickup-ride-return and return-wait-pickup will also be examined to get insights into the quality 

of prediction. This will also be compared to individual prediction results from previous 

mobility studies from other modalities. 

Fifth, some possible applications of this work in BSS operations will be presented, such as 

identifying the most common stations, shortest routes, and visiting times of highly predictable 
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users, and using this information to provide individualized notifications for those users. 

Finally, the results of this chapter will be used to answer RQ2 and a part of RQ4. 

6.1.  Technical Background 

Before addressing the five topics mentioned above, this section presents the technical 

background mostly from information theory. It begins with entropy, followed by predictability, 

prediction accuracy, Markov models, the next place prediction scenario, and k-means 

clustering. 

6.1.1.  Entropy 

Entropy is commonly used to capture the degree of randomness in a list of visited 

locations in which there are temporal scales of variability between locations. Here, entropy is 

applied to measure the randomness of BSS mobility denoted by the sequence of visited 

locations where pickup and return stations are both counted as visited locations without 

considering the routes in between. Following [24, 42, 45], there are four different 

representations of entropy.  

a. The random entropy (𝑆𝑖
𝑅𝑎𝑛𝑑) for an individual user 𝑖 only considers the number of 

distinct BSS stations, 𝑁, visited by that user. 

𝑆𝑖
𝑅𝑎𝑛𝑑 =  𝑙𝑜𝑔2 𝑁                                                                       (6.1) 

Because log20 is undefined, we need N>0. Since all users visit at least one station, 𝑁  > 

0 for all users. 

b. The Shannon entropy (𝑆𝑖
𝑆ℎ𝑎𝑛) for an individual user 𝑖 counts the probability of 

visiting each distinct visited station, j, in his/her visitation history, summed across all 

stations that are visited at least once.  

𝑆𝑖
𝑆ℎ𝑎𝑛 =  − ∑ 𝑝𝑖𝑗

𝑁
𝑗=1 𝑙𝑜𝑔2 𝑝𝑖𝑗                                                   (6.2) 

where 𝑝𝑖𝑗 = number of visits to station j by user i / total visits for all stations visited by 

user i. This will ensure that 𝑝𝑖𝑗 is always > 0. 

c. The conditional entropy (𝑆𝑖
𝐶𝑜𝑛𝑑) for an individual user 𝑖 captures the correlation 

between visiting one BSS station xt-1 with the subsequent station xt in the time series of 
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locations. Here, t denotes the integer order in the sequence of visited stations, so that   

xt-1 is the previously visited station before station xt. 

𝑆𝑖
𝐶𝑜𝑛𝑑 =  − ∑ ∑ 𝑝𝑖𝑥𝑡−1∈𝑋𝑖𝑥𝑡∈𝑋𝑖

(𝑥𝑡−1, 𝑥𝑡)𝑙𝑜𝑔2 𝑝𝑖(𝑥𝑡|𝑥𝑡−1)     (6.3) 

where 𝑋𝑖 is the set of all stations visited by an individual user 𝑖, pi(xt-1,xt) is the 

probability of visiting the ordered pair of visited stations, xt-1 and xt by user 𝑖, while 

pi(xt|xt-1)=pi(xt-1,xt)/pi(xt-1) is the probability of visiting the visited station xt at time-

ordered t given a preceding visited station, xt-1 by user 𝑖. Only pairs that appear in a 

user’s history are used to ensure pi(xt|xt-1) > 0. 

d. The real entropy evaluates the randomness based on the full spatiotemporal 

information of the sequence: frequency, visitation order and time spent. It is estimated 

using a Lempel-Ziv (LZ) algorithm estimator that searches for repeated sequences of 

locations. More precisely, for a sequence of length n, the estimated value of entropy is  

𝑆𝑖
𝑅𝑒𝑎𝑙 =  (

∑ 𝑙𝑚
𝑛
𝑚=2

𝑛 𝑙𝑜𝑔2𝑛
)

−1

                                                                  (6.4) 

Where lm is the length of the shortest sequences of locations starting at position m that 

does not appear in the part of sequences up to position m - 1. 

6.1.2.  Predictability 

An important measure is predictability Π which is the upper bound of the accuracy for a 

prediction algorithm to correctly predict the user’s next location [24]. For instance, Π = 0.4 

means that the user’s next location is 40% predictable at most, while at least 60% of his/her 

next locations are random and unpredictable. The predictability Π𝑖 of user i is subject to Fano’s 

inequality [123] and can be related to the user’s entropy S𝑖 by:  

𝑆𝑖
 = 𝐻(∏ ) + 

𝑖 (1 − ∏ )𝑙𝑜𝑔2(𝑁𝑖 − 1)
𝑖                                        (6.5) 

with 𝐻(∏ )𝑖  being the binary entropy function which is defined as the entropy of a Bernoulli 

process with the probability of success Π𝑖
 that can take only two values: 1 (success) and 0 

(failure). 

 𝐻(∏ )𝑖 = − ∏ 𝑙𝑜𝑔2 ∏ − (1 − ∏ )𝑙𝑜𝑔2(1 − ∏ )   
𝑖


𝑖


𝑖


𝑖                             (6.6)     

where  is a placeholder for any type of entropy, and 𝑁𝑖 is the total possible locations visited by 

user i based on his/her history. In other words, given the entropy S, we can find the 

predictability Π by solving Equation (6.5) numerically. In this thesis, the solution is obtained 
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by the fsolve function of the optimization package in Python where it returns the roots of the 

(non-linear) equations defined by func(x) = 0 given a starting estimate. 

The different predictability values give upper bounds for prediction accuracy, based on 

using different information. Random predictability represents the accuracy possible by 

randomly selecting one of out the set of possible locations as the prediction, Shannon 

predictability gives the prediction accuracy of selecting the most popularly visited location for 

that user, conditional predictability gives the accuracy possible by basing the prediction on the 

one previously visited station, and real predictability gives the accuracy possible by using the 

complete history. 

6.1.3.  Prediction Accuracy 

Prediction accuracy of a predictor can be defined as a ratio between the number of correct 

predictions over the total number of predictions [51]. Here, the correct prediction is set by 

discrete validation prediction in which the prediction outcome is binary (true or false). 

𝑃𝐴𝑐𝑐 =  
𝑃𝑡𝑟𝑢𝑒

𝑃𝑎𝑙𝑙(𝑡𝑟𝑢𝑒+𝑓𝑎𝑙𝑠𝑒)
                                                           (6.7) 

6.1.4.  Markov Model 

A Markov Model uses the current state (locations) to determine the likelihoods of the 

subsequent state (the possible next locations). This predictor provides a simple approach to 

capture sequential dependence, and is defined by a set of states 𝑆 =  {𝑆1, … , 𝑆𝑛}, a transition 

matrix 𝑇 =  {𝑇1,1, … , 𝑇𝑛,𝑛}, and a vector of initial probabilities 𝑃 =  {𝑝1,1, … , 𝑝𝑛,𝑛} [26]. Each 

transition ti,j has a probability pi,j assigned to it that corresponds to the probability of moving 

from state Si to state Sj [51]. Here, a state can be a location (if only one previous location is 

considered) or can be a sequence of previously visited locations. This will define the order of 

Markov Model. A first order model states equal to the one location, and a second order model 

has states which are ordered pairs of visited stations. 

Once a Markov model is built, then the next state (location) is predicted from the current 

state based on the highest transition probability.   

A Markov Model can be represented either as a directed graph, Figure. 6.1, or a 

probability transition matrix, Table 6.1. It is shown that the total probability from one state to 

all other states is 1. 
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6.1.5.  Next Place Prediction Scenarios 

The first prediction scenario is the first order Markov Model which considers only one 

location, either pickup or return station, depending on the desired prediction of the next station 

activity (pickup-to-return or return-to-pickup prediction). To predict the next return station, the 

predictor will only observe one previous pickup station, Figure 6.2.a. To predict the next 

pickup station, the predictor will only observe one previous return station, Figure 6.2.b. In this 

case, the predictor will search for the highest probability value in the OD transition matrix to 

find where that user is most likely returning his/her bike or most likely picking up a new bike. 

The OD transition matrix will be constructed based on individual history. However, 

prediction can also be attempted when a user visits a new station with no trip history. In this 

case, the population-based history will be used. Using this approach, predictions can be 

attempted for all trips in a test set. This will also show if using the population-based history can 

assist the accuracy. The prediction accuracy itself will be presented per user cluster in two 

temporal forms, on a daily basis within the test set and on an hourly basis on weekdays to see 

the accuracy dynamics over time. 

Pickup to Return Prediction Prev. Return to Next Pickup Prediction 

   

 

 

 

 

 

 

 

                                       (a)                                                                               (b) 

Figure 6.2. Prediction scenario of the first order Markov Model. 

0.18 
A 

Figure 6.1. Graph representation example of 

transition states by nodes and edges. 
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Table 6.1. The probability transition matrix 

example. 

State Ai+1 Bi+1 Ci+1 Di+1 

Ai 0.05 0.7 0.1 0.15 

Bi 0.45 0 0.55 0 

Ci 0.8 0 0 0.2 

Di 0 0.67 0.18 0.15 
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The second scenario is the second order Markov Model as shown in Figure 6.4. Here, 

instead of considering only one previous station, this model examines the two consecutive 

previous stations as states in the transition matrix. This pair will make the OD transition matrix 

much larger. The example of the second order Markov Model for three stations (A, B, C) is 

shown in probability transition diagrams, Figure 6.3, and probability transition matrix, Table 

6.2. This approach may improve the accuracy for users with sufficient trips to build such a 

transition matrix. 
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                                       (a)                                                                               (b) 

Figure 6.4. Prediction scenario of the second order Markov Model. 
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Table 6.2. The second order 

probability transition matrix example. 

State Ai+1 Bi+1 Ci+1 

AAi 0.18 0.6 0.22 

ABi 0.75 0.25 0 

ACi 0.1 0.75 0.15 

BBi 0 0 1 

BAi 0.5 0 0.5 

BCi 0.2 0.8 0 

CCi 0.4 0.2 0.4 

CAi 0.25 0.25 0.5 

CBi 0.3 0.5 0.2 

 

BA BC 

0.5 

0.4 
0.5 

Figure 6.3. The second order probability transition states.  
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The third and fourth scenarios are made by taking into account the temporal aspect of trip 

data, daily or hourly, as shown in Figure 6.5. Here, separate OD transition matrices will be 

constructed based on either the day of the week (third scenario) or peak times of the day (fourth 

scenario). For day of the week, the OD matrix will be divided into seven, while for peak times 

of the day it will be divided into three: OD matrix in the morning peak (5 – 9 am), afternoon 

peak (3 – 7 pm) and the times out of those peaks. Then the algorithm will examine the day or 

time when the trip activity occurs and look to the associated OD Matrix. For example, if a user 

takes a bike on Monday, then the daily based predictor uses the Monday OD matrix, or if a 

user takes a bike at 7 am, then the hourly based predictor only uses the morning OD matrix. 

This subdivided matrix approach may be able to increase the accuracy by capturing users’ 

temporal routines. 

Pickup to Return Prediction Prev. Return to Next Pickup Prediction 

   

 

 

 

 

 

 

 

                                       (a)                                                                               (b) 

Figure 6.5. Prediction scenario of the first order Markov Model using peak time and daily filter. 

6.1.6.  K-Means 

K-means is one of the simplest unsupervised learning algorithms which aims to partition a 

group of data points into a small number of clusters. By defining k centres first, one for each 

cluster, each point from the given data will be associated with the initial nearest centroid or 

centre of the cluster. Then, iterative refinement will be employed to re-calculate the new k 

centroids and a new binding has to be done between each point and the nearest new centroids. 

This looping process will be done continuously until centroids do not move anymore. If X = 

{x1, x2, … , xn} is a set of feature vectors, then the k-means algorithm attempts to minimize the 

squared distance function: 𝑂 = ∑ ∑ (‖𝑥 − 𝜇𝑖‖)2
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vectors into k clusters, namely 𝐺1 … 𝐺𝑘 where μ𝑖 is the centroid of cluster 𝐺𝑖. Commonly, the 

components of the feature vectors are normalized to give them equal weight in clustering.  

6.2.  Preliminary Entropy and Predictability 

To measure the randomness of visitation patterns or the uncertainties of movements among 

users, the four types of entropy (S) will be compared. The inverse of entropy yields 

predictability (Π) that expresses how predictable a user’s movements are. 

6.2.1.  Randomness and Regularity of All Users 

Using formulas 6.1 to 6.6, all types of entropy and predictability are computed for all users 

to get the preliminary insights of their distributions as shown in Figure 6.6. As the maximum 

value of entropy is nearly 7 shown by random entropy, the bins sizes are set to 15 so that users 

are placed into bins of entropy around (0 to 0.5), and then the percentages are shown for each 

bin. Similar bins sizes are also implemented for predictability distribution. 

 
                                          (a)                                                                               (b) 

Figure 6.6. Entropy and predictability of all users. 

It can be seen that the entropy distributions do not follow the rule of entropy order, S
Real

 ≤  

S
Cond

 ≤  S
Shan

 ≤  S
Rand

, and the predictability distributions are jagged and hard to analyse. This 

suggests that BSS users have wide ranges of entropy (from 0.1 to 6.9) and predictability (from 

0.05 to 0.95) that reflect the variety of randomness as well as regularity. Users with a low 

number of trips, e.g., one trip will give very low entropy as well as very high predictability 

which relates to the peaks left (entropy) and right (predictability). If users with similar mobility 

behaviour, either those with high randomness or those with high regularity, are separated into 

different clusters, then highly predictable users may be able to be more easily identified. 
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6.2.2.  Randomness and Regularity of Subscription-based Users 

Most BSS trip data separates users based on their subscription status, such as registered 

and unregistered users. Registered users might have an annual subscription, while unregistered 

users just provide payment details each time they hire. Table 6.3 shows that around 90% of 

users are unregistered users. However, their trips only cover 36.5% of total trips. This means 

that the remaining 10% who are registered users have 63.5% of total trips. There is a large 

difference in the average trip numbers per user, 1.9 and 32.4 respectively for unregistered and 

registered users. Furthermore, the standard deviations of trip numbers are slightly higher than 

their averages. This will produce a fat-tail in the right side of their distribution as shown in 

Figure 6.7. This figure also demonstrates the overlaps in distribution in which some registered 

users have a small number of trips, and some unregistered users have a quite high number of 

trips. This may lead to the inhomogeneous characteristics within clusters. In other words, some 

unregistered users show registered user characteristics and vice versa. So, they become outliers 

in their own subscription group. 

Table 6.3. The statistics of users by subscription. 

Users 

Types 

Number of trips per user % of    

Users 

% of     

Trips Min Avg Stdev Max 

Unregistered 1 1.9 2.1 162 90.33% 36.50% 

Registered 1 32.4 44.6 1054 9.67% 63.50% 

 

 

Figure 6.7. Total trips distribution per user by subscription in log-log scale (bins 100). 
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Using this subscription status, the entropy and predictability distributions can then be 

separated as shown in Figure 6.8. Unregistered users show almost similar jagged distributions 

compared to the previous distributions for all users. Meanwhile, registered users show a better 

normal distribution, but they still do not follow the entropy rule order and still contain peaks in 

the lower side of entropy (left side) as well as in the higher side of predictability (right side) 

corresponding to users with a small number of trips. Subscription status does separate 

predictable users and so different user clustering is proposed in the next section. 

 
                                         (a)                                                                                (b) 

 
                                          (c)                                                                               (d) 

Figure 6.8. Entropy and predictability of unregistered users (a,b) and registered users (c,d). 

6.3.  User Clustering 

The previous preliminary entropy and predictability results show that there are still outliers 

in the groups of users by subscription. On the other hand, group-based analysis and prediction 

benefits from homogenous user groups. Hence, this section proposes user clusters using two 

temporal approaches which are total trip clustering using upper and lower bound thresholds 

and hourly trip clustering using k-means, as described in detail below. Table 6.4 summarizes 
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the percentages, average and upper and lower bound threshold of each user cluster. Firstly, the 

preliminary labels are simply given using alphabetic order which are cluster A, B, and C or D, 

E, and F. Later, each cluster will be labelled based on their spatiotemporal characteristics. 

Three clusters are chosen since we anticipate that users are either frequent users, rare users, or 

somewhere in between. It is expected that frequent users will have obvious different 

spatiotemporal characteristics to rare users, while the outliers of both will be grouped into one 

middle cluster. 

Table 6.4. The statistics of users clustering. 

Clusters 

Users 

% of Subscription Number of trips per user % of    

Users 

% of     

Trips Unreg Regist Min Avg Stdev Max 

Cluster by Total Trips: 

Cluster A 96.02 % 3.98 % 1 1.8 1.1 7 91.86 % 33.65% 

Cluster B 35.47 % 64.53 % 8 18.5 10.9 49 2.15 % 22.51% 

Cluster C 0.17 % 99.83 % 50 100.6 49.2 1054 5.99 % 43.84% 

Cluster by Hourly Trips: 

Cluster D 92.97 % 7.03 % 1 2.5 3.8 92 97.15 % 50.50 % 

Cluster E 0.39 % 99.61 % 23 68.7 34.9 357 0.77 % 29.04 % 

Cluster F 0.02 % 99.98 % 39 131.7 55.9 1054 2.08 % 20.45 % 

 

For the three proposed user clusters based on total trips, the thresholds for the clusters are 

listed in Table 6.4, and has been published in [46]. The threshold less than 8 captures lowest 

third of trips, more than 50 captures 99% of registered users, and leaves outliers to the middle 

cluster. Here, cluster A is intended for users who have few trips, and they could be very hard 

to predict because of a lack of history data for learning. On the other hand, cluster C is 

intended for users who have a lot of trips and is expected to be the most predictable user group. 

Cluster B is intended to accommodate users who have mixed characteristics between cluster 

A and cluster C. 

Using 50 trips as the lower threshold for cluster C [23], they are only around 6% of users 

but have around 44% of trips. Almost all members of this cluster come from registered users, 

only 0.17% come from unregistered users. Cluster A, on the other hand, dominate the users’ 

population where the upper threshold of this categorization is at 7 [46]. Using this threshold, 

they are almost 92% of users, where 96% of them are from unregistered users and only 4% are 

from registered users. However, their trips which are 33.65% of the total are still less than 

cluster C trips. Cluster B, with total trips between 8 and 49, is the cluster with the least 

members and has only 2.15% of the users and 22.51% of the trips. Using this threshold 
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technique, there is (by definition) no overlap in trip number distributions as shown in Figure 

6.9.a.  

     
                                       (a)                                                                       (b)                                              

Figure 6.9. Total trips distribution per user cluster in log-log scale. 

The second proposed user clustering approach in this study is based on the pattern of the 

hourly trips using k-means. This aims to observe whether the number of the hourly trip in daily 

basis can give a significant differentiation of user clusters. Here, total trips (T) per user are 

averaged (A) per hour of the day for the whole learning dataset as:  

𝑇𝐷𝑎𝑖𝑙𝑦𝑇𝑟𝑖𝑝𝑠 = 𝐴ℎ0 +  𝐴ℎ1 + 𝐴ℎ2 + ⋯ + 𝐴ℎ23                                (6.8) 

As a result, each user has 24 hours of trips that are used as 24 input features for k-means 

clustering without any scaling or normalization. As listed in Table 6.4 and shown in Figure 

6.9.b, this approach gives a different breakup.  Most unregistrered users are still in one Cluster 

(D), but now registered users are split between Clusters E and F. The next section will present 

the characterization of each cluster to investigate their usefulness for prediction. Afterwards, an 

appropriate label can be given to each of these clusters. 

6.4.  Cluster Characterization 

This section will characterize each cluster using the spatiotemporal analysis methods that 

have been presented in the preliminary data analysis and also stations’ neighbourhood ties 

chapters to find any significant differences among them so that they can be labelled. Analysis 

starts with cluster daily pattern analysis mainly to reveal if clusters have strong indications of 

typical commuting patterns, and how usage patterns vary along the period of study. This is 

followed by analysis of cluster hourly patterns and waiting times. These analyses aim to further 
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explore the commuting patterns as well as the variability of trips at a smaller time scale. 

Features of trip speed, users’ distance growth via RoG analysis, and the spatial motifs of each 

cluster will be explored. Finally, after all spatiotemporal characteristics are highlighted then the 

associated label is given for each cluster. 

6.4.1.  Cluster Daily Pattern 

Daily pattern analysis in Chapter 4 explained some trends of temporal metrics. There is 

more usage on weekdays than on weekends, a proportion of users travelled more than once a 

day, and usage decreases towards the end of the year. It is expected that each proposed user 

cluster has distinct behaviour for these contexts. Their daily usage patterns are presented in 

Figure 6.10.       

 
                         (a) Cluster A-by-total                                                  (b) Cluster D-by-hour 

 
                          (c) Cluster B-by-total                                               (d) Cluster E-by-hour 

 
                          (e) Cluster C-by-total                                                (f) Cluster F-by-hour 

Figure 6.10. Daily trips and user number of each cluster.  
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It can clearly be seen that clusters A/D and C/F have different daily trip patterns. Both of 

clusters A/D, Figure 6.10.a&b, are strongly affected by season, decreasing towards winter, 

while both of clusters C/F, Figure 6.10.e&f, are relatively more stable. In terms of weekday 

and weekend usage, cluster C show clear commuting patterns where weekday usage is much 

more than weekend usage and clusters B and E also show this pattern. Meanwhile, clusters A 

and D show the opposite trend where weekend usage is more than weekdays.   

The size of the cluster A and D differ by only 6.29%, but there is significant difference in 

average number of trips, as shown in Figures 6.10.a&b. The commuting pattern in clusters 

B,C,E and F appears because their average trips per user are large enough to establish that 

pattern.  

6.4.2.  Cluster Hourly Pattern 

The clearest temporal pattern given by the overall hourly trip patterns in the preliminary 

data analysis chapter were identifying peak times and commuting usage on weekdays. In this 

section, clusters C and F strongly show these traits in the morning and afternoon peak times 

with low usages in the middle of the day, shown by the green lines in Figure 6.11. Cluster B 

shows a similar tendency to cluster C but with lower peaks. On the other hand, clusters A and 

D show a small peak in the morning, then after 9 am they gradually increase until reaching a 

peak at 4 pm and 5 pm in the afternoon. On weekends, trips are dominated by cluster A/D with 

a broad peak from 9 am to 8 pm, while cluster F has the least number of trips, as shown in 

Figure 6.11.b. This means that clusters C/F are very active on weekdays and inactive on 

weekends.  

 
                                            (a)                                                                              (b)                             

Figure 6.11. Weekday and weekend hourly trip patterns per cluster. 
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6.4.3.  Cluster Waiting Time 

Waiting time is one of the temporal metrics that can also show commuting patterns on 

weekdays. Shown by the green lines in Figures 6.12, both of cluster C and F have a high 

number of waiting times between 500 and 700 minutes (7-10 hours) on weekdays followed by 

cluster B and E suggesting the normal office hours length. Meanwhile, cluster A and D have 

the lowest number of waiting times between 500 and 700 minutes, but they have the highest 

short waiting times, WT < 100 minutes, while cluster C and F is the least. Again, this tells that 

cluster C and F show a strong commuting pattern.  

 
                                         (a)                                                                              (b)    

Figure 6.12. Weekday and weekend waiting time patterns per cluster. 

6.4.4.  Cluster Trip Speed 

Using the waypoint distance as explained in Chapter 5, the variability of trip speed based 

on user clusters in the morning peak time of August are presented in Figure 6.13. Each cluster 

has different trip speed, and Table 6.5 lists their average for the day of the week.  

 
(a)                                                                                (b) 

Figure 6.13. Weekday and weekend trip speed patterns per cluster. 
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As expected, trip speed on weekdays is higher than on weekends. The fastest day for all 

clusters is on Friday. Cluster C are faster than cluster B, and cluster B are faster than cluster A. 

Cluster C-by-totals are the fastest riders, 14.86 km/hr, while cluster A-by-totals riders are the 

slowest, 10.80 km/hr. Furthermore, the very slow speed on the left side of distribution mostly 

belongs to cluster A shown by the red lines, where is it expected that riders have done lots of 

sightseeing between origin and destination rather than travelling the shortest route (which is 

used for speed estimation).  

Table 6.5. The average of daily trips speed per user cluster. 

No Day Average Speed (km/hr) 

Cluster by Total Trips Cluster by Hourly Trips 

A B C A B C 

1 Mon 12.83 14.03 14.68 13.40 14.60 14.62 

2 Tue 13.07 14.17 14.85 13.58 14.73 14.82 

3 Wed 13.23 14.08 14.83 13.60 14.69 14.80 

4 Thu 13.28 14.23 14.89 13.72 14.74 14.88 

5 Fri 13.41 14.31 15.04 13.80 14.88 15.03 

6 Sat 10.92 13.50 14.21 11.78 14.21 14.12 

7 Sun 10.68 13.74 14.51 11.60 14.64 14.12 

Avg Weekday 13.17 14.16 14.86 13.62 14.73 14.83 

Avg Weekend 10.80 13.62 14.36 11.69 14.42 14.12 

 

One study conducted by Jensen et al. [100] in Lyon, France, got a precise distance using a 

counter installed on the bicycle. Then, by using those real distances and duration, they got the 

average speed on early weekday mornings of 14.5 km/hr. Using waypoint distance in this 

study, cluster B and C give a similar speed result on weekdays, where trips are mostly 

commuting. 

6.4.5.  Cluster RoG 

Radius of gyration (RoG) calculations of each cluster show the distinctive skewness as 

depicted in Figures 6.14. If mobility data captures a reasonable number of trips for users, then 

one would expect the RoG curve to show a peak in spatial extent at a characteristic distance 

related to common trip length [46]. The RoG curves for clusters A and D do not show this 

characteristic, rather the RoG shows a similar shape to the plot of trip distance. This suggests 
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that for many users in these clusters, there is insufficient data to clearly identify that user’s 

mobility patterns, and poor prediction accuracy might be expected. 

 
   (a)                                                                                (b) 

Figure 6.14. ROG patterns of the user clusters in log-log scale. 

6.4.6.  Cluster Motifs 

The common spatial trace pattern of each cluster can be seen in the percentage of motifs as 

shown in Figure 6.15 for six top motifs. Here, the percentages are computed per cluster for 

motifs which appear in that cluster.  

 

 

 

 
 

 

 

 
 

 

 

 

Figure 6.15. Cluster daily spatial-mobility-motifs. 

The fact that the four two-trip motifs are all above 10% during weekdays for clusters C 

and F suggests that daily patterns are complex, and perhaps less predictable. One might expect 
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a simple home  work  home social pattern to usually correspond to a ABA motif for 

BSS usage. This appears not to be the case, and this may affect prediction accuracy. Also, the 

motif diagrams show that clusters A and D have similar patterns, and clusters C and F have 

similar patterns, as expected, since their membership is similar (A/D low use, C/F high use).  

More surprisingly, B and E are similar to each other and different from the others. Hence only 

three labels will be used – one for A/D, one for B/E and one for C/F. 

6.4.7.  Cluster Label 

The previous spatiotemporal analyses of each cluster show that there are distinctive 

characteristics mainly between clusters A/D and C/F. Clusters C/F show strong commuting 

patterns where they are more active on weekday with similar high peak time both in the 

morning and the evening, and less active on weekends. They also reflect the most frequent 

users and relatively stable toward season. In addition, they also have waiting times on 

weekdays which are close to the office hours, ride faster than others, and show more 

commuting motifs. Therefore, clusters C/F will be labelled as commuters. Clusters B/E show 

quite similar behaviour to clusters C/F, but they are less frequent than cluster C and will be 

labelled as regular users. Conversely, clusters A/D show seasonal and sightseeing traits which 

are active on weekend and weekday afternoons, the slowest riders, and highly affected by 

season. Therefore, they are labelled as casual users. These labels, commuters, regular, and 

casual users, will be used to the rest of the analyses in this chapter. To differentiate clusters 

either from total trips or hourly trips, their name will be written as cluster-by-total or cluster-

by-hour, for example commuters-by-total or commuters-by-hour. 

On the other hand, in term of cluster labels, Vogel et al. [74] proposed four clusters 

focussing only on annual users which are user of heart, assiduous users, multimodal users, 

and sporadic users. Similarly, O’brien et al. [75] also proposed four clusters which are 

commuters, utility users, leisure users, and tourist users. However, none of them conducted 

further analysis to understand how predictable each cluster is. 

6.5.  Entropy and Predictability of Users by Cluster 

Examining entropy and predictability by user cluster will show whether the user clustering 

approach can give a substantial difference to how prediction might be done. Entropy can also 

be used to infer the significance of the Markov Chain transition probabilities, i.e. whether the 

next station is highly predicted from the current station. As stated earlier, predictability can be 
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used as a theoretical upper bound of the prediction that could be possibly achieved using a 

suitable prediction algorithm [46]. 

6.5.1.  Entropy 

The entropy computation needs a sequence of visited places. Here, the sequence of visited 

stations per user in the learning set is used without distinguishing pickup and return activities 

Random, Shannon, Conditional and Real Entropy are computed based on equations in section 

6.1.1. Hence, each user will have four metrics of entropy as displayed in Figure 6.16. 

Casual-by-total and casual-by-hour users, Figure 6.16.a&b, show jagged histograms for all 

types of entropy which make them hard to analyse. The large proportion of very low entropy 

values corresponds to a small number of trips and prediction accuracy for these users will be 

unlikely to be high. [46]. This low entropy spike was previously shown to also be present for 

registered users in the preliminary entropy analysis subsection 6.1.2. Some registered users 

with low trips behave more like unregistered users. In the new clusters, these anomalous users 

are correctly clustered in the casual user clusters. 

On the other hand, the entropy distribution of regular users and commuters are smoother, 

showing normal distribution form, Figure 6.16.c-f. Entropy of commuter-by-total, commuters-

by-hour and regular-by-hour clusters satisfy the basic entropy ordering rule: S
Rand

 ≥ S
Shan

 ≥ 

S
Cond

 ≥ S
Real

. This also suggests that hourly-based clustering is better than total-based 

clustering from the entropy perspective, in terms of identifying different groups of potentially 

predictable users. Note that estimation of different types of entropy and the above inequality 

becomes exact only for infinitely long sequences where that all location and transition 

probabilities can be accurately calculated  [46]. 

To interpret what useful insights are provided by entropy, one cluster is chosen: the 

entropy of commuters-by-hour, Figure 6.16.f. Here, the means of S
Rand

, S
Shan

, S
Cond

 and S
Real

 

are 4.5, 3, 2 and 1.5 consecutively. Since the S
Rand

 mean is 4.5, this indicates that the next bike 

station for a user could randomly be found in any of 2
Srand

 ≈ 2
4.5

 ≈ 23 stations. This high 

random possibility is a result of considering only the distinct visited stations. On the other 

hand, if visitation frequency is counted, then the uncertainty will be shown in Shannon entropy 

with the mean value of 3, S
Shan

 ≈ 2
3
 ≈ 8 stations. So S

Shan
 gives fewer high likelihood next 

station options than S
Rand

. Similarly, if the sequence order of station visitation is taken into 

account, then the conditional entropy greatly reduces to S
Cond

 ≈ 2
2
 ≈ 4 stations. Finally, by 

considering the whole history, real entropy can give the smallest next place possibility which is 
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S
Real

 ≈ 2
1.5

 ≈ 2.8 ≈ 3 stations. Since real entropy is close to conditional entropy, this suggests 

that entropy is strongly determined by location history, with most information in just the one 

last visited station. So Markov transition probabilities can be used for prediction. 

 
                                         (a)                                                                                (b) 

 
                                          (c)                                                                               (d) 

 
                                          (e)                                                                               (f) 

Figure 6.16. Random, Shannon, Conditional and Real Entropy of each group of users. 

6.5.2.  Predictability 

Predictability is the inversion of entropy (which can be thought of as unpredictability). 

Figures 6.17 show the predictability distribution as the inverse of the entropy and Table 6.6 

presents their peak value. Focusing on real predictability, Π
Real

, commuters have the highest 
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values which are around 0.78 for commuters-by-total, and 0.80 for commuters-by-hour. 

Regular users only have 0.67 for regular-by-total and 0.75 for regular-by-hour, while for casual 

users, it is jagged and hard to analyse.  

 
                                         (a)                                                                               (b) 

 
                                         (c)                                                                               (d) 

 
                                         (e)                                                                               (f) 

Figure 6.17. Random, Shannon, Conditional and Real predictability of each group of users 

All these predictability values indicate there is a possibility that, respectively, around 78% 

and 80% of commuters-by-total’ and commuters-by-hour’ next station whereabouts could be 

predicted using a good prediction algorithm, while the remaining 20% and 22% of cases are 
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hard to predict. In this case, predictability provides a theoretical upper bound of prediction 

algorithm performance [46]. More specifically, for actual prediction accuracy, this is a target 

that could possibly be achieved by a good algorithm [25]. 

Table 6.6. Peak predictability of commuters and regular users. 

Cluster Peak Predictability 

Shannon Conditional Real 

Regular-by-total 0.43 0.80 0.67 

Regular-by-hour 0.51 0.76 0.75 

Commuters-by-total 0.54 0.76 0.78 

Commuters-by-hour 0.54 0.75 0.80 

 

Other studies have investigated the fundamental regularity of human mobility using 

different mobility modalities, but this is the first study to investigate the predictability of 

individual BSS users. Therefore, this work adds to previous studies based on different mobility 

modalities. 

6.5.3.  Markovian traits 

The real predictability is close to the conditional predictability, Π
Real

 ~ Π
Cond

, and this 

strongly suggests most of the information about the likely next location is contained in the 

current location, with a weak dependence on previous history. The prediction problem can be 

posed where the actual predictability can be represented by the conditional predictability [46]. 

Considering only the last station yields almost the same predictability as considering the entire 

trip history. In this case, a Markov model predictor where states correspond to locations could 

achieve close to 78% to 80% prediction accuracy, especially for commuter-by-total, commuter-

by-hour and regular-by-hour users. On the other hand, casual users will be hard to predict. 

The predictability of BSS users can be compared to other predictability studies using these 

information theory methods but using other mobility modalities. For  mobile phone data, Song 

et al. [24], Lu et al. [25], and Qin et al [44] found 93%, 88%, and 78% of predictability 

respectively. The high predictability of Song et al. [24] and Lu et al. [25] could be due to 

mobility tracking using mobile phone considering the nearest cellular base station as a position. 

Hence, even though an individual moves around near the same base stations, he/she will be 

considered to be in the same place. Predictability of BSS users in this study is close to the 

result of Qin et al [44] which is 78%. However, Song et al. [24] and Qin et al [44] did not 
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continue their work to the prediction to show whether their high predictability results can be 

achieved in practice. Meanwhile, Lu et al. [25] implemented a Markov Chain model to conduct 

prediction, and they could achieve an accuracy at their predictability level using the first order 

Markov model. 

6.6.  Users Next Place Prediction 

In this section, the Markov Chain based predictor will be constructed to predict the user’s 

next location based on their trip history ensemble with the collective trends of the cluster for 

trips with unavailable history. Four types of Markov predictor based on their OD matrix 

selection as proposed in subsection 6.1.5 will be applied to pickup-to-return as well as return-

to-pickup prediction. First, using the whole trip history as one OD probability matrix, the first 

order Markov Model will be used. Second, it will be extended to the second order model to see 

whether the higher order can help to increase the accuracy. Third and fourth, the splitting OD 

matrix approaches based on day-of-the-week and peak-times-of-the-day will be investigated as 

a possibility to improve the accuracy.  

Separate transition matrix probabilities are calculated for each user based on all their trips 

in the training period. Consider the first order predictor based on all trips, for pickup-to-return 

prediction, the transition probabilities for A  B are calculated on the number of trips that start 

at A and end at B for that user throughout the training set and the highest probability will be 

used. Similarly, for return-to-pickup prediction, the transition probabilities for A  B are 

calculated on the number of trips where the previous trip ended at A and the next trip starts at 

B for that user throughout the training set and the highest probability will be used. Then for 

prediction, each pickup is predicted using the most likely transition from the previous return 

location in the return-to-pickup matrix, and each return is predicted by the most likely 

transition from the pickup-to-return matrix. 

6.6.1.  Pickup to Return Prediction Accuracy 

The return prediction is first conducted for all users without cluster on a daily basis within 

23 days of the testing period, and using formula 6.6 the accuracy is calculated which is only 

43% on weekday and 18% on weekend. Then, the return prediction is conducted for each user 

cluster using the proposed scenarios as in subsection 6.1.5. The results show that this cluster-

based prediction accuracy is higher than prediction without clustering. The daily accuracy of 

each cluster for individual-based method is shown in Figure 6.18, while the cluster average 
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accuracy for whole period and splitting over weekday and weekend is given in Table 6.7. 

There are four general trends of the results which are prediction accuracy on weekdays is 

higher than on weekends, the commuters are more accurately predicted than regular and casual 

users, cluster by-hourly-trips give better accuracy than cluster by-total-trips, and the ensemble 

of first order Markov Model with peak-times-of-the-day matrix give the highest accuracy.          

 
                                         (a)                                                                               (b) 

Figure 6.18. Daily pickup-to-return prediction accuracy. 

Table 6.7. The average of pickup-to-return prediction accuracy for each method. 

Method Total-based clusters Hourly-based clusters 

Weekday Weekend Weekday Weekend 

Cas. Reg. Com. Cas. Reg. Com. Cas. Reg. Com. Cas. Reg. Com. 

Individual-based prediction 

1
st
 Order Markov full matrix 51.3 56.1 64.1 34.7 35.6 39.9 53.2 60.2 68.9 35.4 40.1 38.1 

2
nd

 Order Markov full matrix 49.5 54.5 62.7 34.7 34.4 38.9 51.4 58.5 67.9 34.5 38.8 37.7 

1
st
 Order  Markov daily 

matrix  49.6 52.9 61.4 34.0 34.9 40.8 49.8 56.8 66.9 34.5 40.1 40.9 

1
st
 Order  Markov peak matrix 51.5 55.9 64.2 35.1 34.6 40.2 52.9 60.2 69.1 34.6 39.4 40.0 

Individual + collective trends prediction 

1
st
 Order Markov full matrix 14.5 48.7 60.6 6.2 26.4 34.4 24.9 56.1 65.7 11.4 34.1 32.8 

2
nd

 Order Markov full matrix 14.0 47.7 59.3 6.0 25.9 33.8 24.5 54.6 64.7 12.5 33.3 32.5 

1
st
 Order  Markov daily 

matrix  14.0 45.5 58.0 6.2 25.7 35.1 23.1 52.9 63.7 11.8 34.0 35.1 

1
st
 Order  Markov peak matrix 14.5 48.4 60.6 6.2 25.5 34.6 25.1 56.0 65.8 12.2 33.5 34.4 

 

However, the results suggest that the prediction accuracy on a daily basis is still lower than 

the highest predictability level that was calculated in section 6.4.2 which is around 80% for 

commuters-by-hour. In daily basis, the maximum accuracy that can be achieved here by this 

cluster is around 70% using the ensemble of first order Markov Model with peak-times-of-the-
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day matrix. This can be seen in days 4, 6, 11, 14, and 19 as shown in Figure 6.18.b. This 

suggests that peak-times-of-the-day matrix can slightly improve prediction, while it is not the 

case for the second order Markov Model and the day-of-the-week OD matrix. Furthermore, 

implementing the collective trends to predict trip without history cannot improve the accuracy 

significantly. 

It cannot be expected that accuracy will be stable across the hours of the day, since 

commuters, as the most predictable users, do not spread their trips homogenously across every 

hour during the day. To see which hours of the day significantly contribute to shape the daily 

accuracy dynamics, Figures 6.19 show the average prediction accuracy per user cluster in an 

hourly basis on weekdays. 

 
                                          (a)                                                                               (b) 

Figure 6.19. Hourly pickup-to-return prediction accuracy. 

It can be seen that the peak periods from 5 am to 9 am when commuters are dominant in 

the system have the highest accuracy, reaching 78%-80%, similar to the theoretical 

predictability. This morning peak period could contribute most to keep the daily accuracy high 

because other hours are less predictable. The least predictable time is at midday and early 

morning.  

6.6.2.  Return to Pickup Prediction Accuracy 

Similar approaches of pickup-to-return prediction in the previous subsection are 

implemented for return-to-pickup prediction in this section to understand whether it also has 

similar trends. It can be seen from Figure 6.20, the highest prediction accuracy every week are 

always on Mondays, day 3, 10 and 17, while other weekdays are lower than Monday with 

gradually decreasing patterns over the week where Monday > Tuesday > Wednesday > 

Thursday > Friday. However, all of those are lower than return prediction accuracy.  
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                                         (a)                                                                               (b) 

Figure 6.20. Daily return-to-pickup prediction accuracy. 

Table 6.8. The average of return-to-pickup prediction accuracy for each method. 

Method Total-based clusters Hourly-based clusters 

Weekday Weekend Weekday Weekend 

Cas. Reg. Com. Cas. Reg. Com. Cas. Reg. Com. Cas. Reg. Com. 

Individual-based prediction 

1
st
 Order Markov full matrix 37.0 45.2 51.6 30.6 35.0 46.0 40.9 48.8 54.7 33.4 43.4 49.3 

2
nd

 Order Markov full matrix 36.4 43.6 50.4 30.2 33.1 43.3 39.5 47.3 53.8 31.9 40.9 46.5 

1
st
 Order  Markov daily 

matrix  35.9 40.3 48.2 30.0 31.5 41.8 37.5 44.3 52.1 30.8 39.1 45.5 

1
st
 Order  Markov peak matrix 36.3 43.7 50.6 29.9 32.8 44.4 39.5 47.5 54.1 31.6 41.6 48.0 

Individual + collective trends prediction 

1
st
 Order Markov full matrix 20.0 39.0 48.6 13.8 27.1 40.4 25.4 45.1 52.3 16.7 37.6 43.3 

2
nd

 Order Markov full matrix 17.8 37.5 47.4 11.8 25.3 37.5 23.7 43.6 51.3 14.9 34.9 40.4 

1
st
 Order  Markov daily 

matrix  19.7 35.1 45.5 13.8 24.8 37.0 24.0 41.2 49.9 16.2 34.3 40.3 

1
st
 Order  Markov peak matrix 19.8 37.8 47.8 13.7 25.7 39.0 24.9 44.0 51.8 16.3 36.2 42.2 

 

Among different prediction scenarios, the results show that the first order Markov Model 

gives the highest accuracy followed by the second order Markov Model, then the peak-based 

and daily-based OD matrix. This suggests that temporal aspects of the OD matrix which are 

day and peak time cannot improve the accuracy of return-to-pickup prediction. The accuracy of 

hourly return-to-pickup prediction follows the daily tendencies which are lower than pickup-to-

return prediction as shown in Figure 6.21. The highest accuracy is in the morning peak time, 5 

am to 9 am. Again, clusters by-hourly-trip give better accuracy than the others. 
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                                           (a)                                                                               (b) 

Figure 6.21. Hourly return-to-pickup prediction accuracy. 

The results of both pickup and return prediction above, where the pickup prediction is 

mostly below than 60% while the return prediction can reach 80% in weekday morning, 

suggest that the correlation between return-waiting-pickup is less than pickup-ride-return. 

This fact suggests that once people pickup bikes they are likely more predictable with their 

intended destination, compared to the next trip that they will make. Overall, the results show 

that user clustering by-hourly-trips can give better prediction accuracy than clustering by-total-

trips.  

Recall, that if there is no entry in the transition matrix, i.e. a user visits a new station, then 

the predictor uses a collective population-based matrix. This matrix can be one matrix for all 

users over all times. It can be specific to each cluster for all times, or it can be specific to a 

cluster and the time of day (morning-peak, afternoon-peak, other). How the collective trends of 

clusters can actually help the prediction can be seen from Figure 6.22. 

  

Figure 6.22. The True prediction by population (collective trends). 

Figure 6.22 shows that there is increase around 8.8% of True prediction number for trips 

without history if using the clusters collective trends instead of using all population trends 

(without clustering). Then, if the clusters collective trends are divided by peak time, correct 
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predictions increase around 20%. This suggests that collective trends of clusters in peak time 

can be used to improve the True prediction number, even though this is only 6% of all trips 

without history. 

6.7.  Practical Application 

If a user’s next location can be reasonably accurately predicted, then personalized 

notifications can be sent to that user relevant to their expected trip. If trips are unpredictable, 

then sending notifications is more likely to be useless and annoying. 

So the first step is to identify which trips are most predictable. These trips can be observed 

from the high predictable users which are commuters. It is recommended that only these users 

are targeted for personalized notifications. Furthermore, times of trips affects predictability, 

and it is also recommended to send notifications only during peak times when the accuracy is 

higher than other time slots. 

Next is the nature of notifications. If stations will be shut down or likely to be full or 

empty at particular times ahead, or if the shortest routes to the likely destination are congested, 

an advance notification can be sent automatically or proactively to these highly predictable 

users as they start their trip. The notification can include the possible alternative nearby 

stations, routes, or time of travel. This is possible because the common visited stations, shortest 

routes and visiting times of those users are mostly known from their regular history. This user-

based notification system will make the system more intelligent, and it can complement the 

journey advisor systems proposed by Yoon et al. [108]  and Yang and Zhang [115] which use 

station-usage analysis as the basis of their advisory system. 

If a user has several higher-probability next destinations which are close to each other 

(within 300 m, as indicated in the station neighbourhood discussion in Chapter 5), then the 

notification could suggest an alternate station that the user is known to also use, and may be 

almost as convenient. Even if the predicted destination is not full, the system might suggest a 

preferred nearby alternate destination to assist with user-based station rebalancing, perhaps 

offering an incentive to use the alternate destination. 

6.8.  Next Place Prediction Significance Summary 

This chapter has first investigated how users are properly clustered using their temporal 

features and labelled using their spatiotemporal characteristics. Then, their randomness shown 
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by entropy and the limit of their regularity shown by predictability are measured to get the 

upper bound of predictability that is achievable in prediction.  

Results suggest that the proposed temporal clustering technique using hourly trip numbers 

that reflect the frequency and regularity of mobility per hour on a daily basis can properly 

capture the homogeneous users in terms of spatiotemporal characteristics and predictability. 

Two group of users show obviously different behaviours, while a third group shows behavior 

which combines aspects of those two. Comparing to other predictability studies in information 

theory fields, using mobile phone data, Song et al. [24], Lu et al. [25], and Qin et al [44] found 

predictability of 93%, 88%, and 78%, respectively. The upper bound of predictability for 

commuters in this study which is 80% is close to the result of Qin et al [44]. However, Song et 

al. [24] and Qin et al [44] did not continue their work to actual prediction to show whether their 

high predictability results can be achieved by a predictor. Meanwhile, Lu et al. [25] 

implemented a Markov Chain (MC) model to conduct prediction, and they achieved an 

accuracy similar to their predictability level using a first order MC model. In this study, 

prediction using the first order Markov Model at different times of day can achieve prediction 

accuracy similar to the predictability level, especially for commuters during the peak times on 

weekdays. This proposed technique uses an ensemble which combines the collective trends of 

the user’s cluster to predict trips without history for that user, and this improves accuracy 

compared to just using individual history.  

Highly predictable users can be provided with personal notifications that can complement 

the journey advisor systems proposed by Yoon et al. [108]  and Yang and Zhang [115]. This 

proposed personal notification may assist with user-based station rebalancing. For example, if 

a highly predictable user has several higher-probability next destinations which are close to 

each other (within 300 m, as indicated in the station neighbourhood discussion in Chapter 5), 

then an alternate station that the user is known to also use, and may be almost as convenient, 

could be suggested even if the predicted destination is not full. Incentives might be provided to 

encourage this user-based rebalancing. 
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CHAPTER 7 

SYSTEM-WIDE PREDICTION 

The previous chapter dealt with issues about predicting the behaviour of BSS users, and 

their predictability, and how this might be used to enhance their experience. This chapter deals 

with the predictability of aggregate system use, and is about issues that affect the BSS operator. 

Estimating system-wide usage at particular times on particular days is useful for BSS operators 

in order to ensure, as far as possible, that there are sufficient bicycles available to service that 

demand. Good demand prediction will enable operators to better plan rebalancing and 

maintenance activities. 

This chapter investigates a prediction method for system level usage based on the 

cyclostationary traits that are strongly evident in hourly BSS patterns over the week [63]. The 

assumption here is that the hourly usage consists of a consistent (i.e. statistically stationary) 

underlying weekly pattern (i.e. cycle) plus a disturbance to that pattern caused by certain 

factors. This can be extended to an underlying weekly pattern that itself changes slowly over 

the seasons, so that the normal or average weekly pattern in winter is different to that in 

summer. Rather than predict the absolute values of hourly usage, this new predictor estimates 

the current disturbance from the underlying seasonal weekly pattern. If the estimation is 

positive, it means that the current state of BSS is busier than the historical reference, and if 

negative, usage is lower than average. Although relatively common in other time series 

forecasting studies, no previously published studies of BSS usage have used this type of 

approach. This technique is commonly used to model time series such as the daily temperature 

within a yearly cycle. For example, the daily maximum temperature in London on the 1
st
 of 

June in previous years is a reasonable estimation of the maximum temperature for the same 

date in this year. In this case, there are 365 interleaved stationary processes where each of them 

takes a new value once per year that is usually similar to the previous year. Similarly, if BSS 

prediction uses hourly bins within a weekly cycle (24/7), there will be 168 interleaved 

stationary processes that must be taken into account. 

This chapter will analyse the prediction of BSS usage at three levels (system-wide, cluster-

based, individual). By measuring the prediction performance at different levels, it will be 

possible to analyse if there is a spatial correlation in prediction performance so that areas that 

are better predicted can be identified. The broadest level for prediction is the aggregate of all 
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bike stations in the BSS and can be treated as one entity, called the system-wide level. At this 

level, the only prediction variable is trips that are counted from either the number of pickups or 

number of returns, because at this level each pickup results in one return (although not 

necessarily in the same hour). In other words, trips in this study are defined as the number of 

bikes that are rented in the system within each one hour period. At the middle level, the system 

can be divided into sub-systems called clusters that consist of a group stations with similar 

features in a region. At this cluster level, the prediction can be in terms of three different 

parameters that represent the usage of the cluster. These metrics are pickup, which is bikes out 

from the cluster, return, which is bikes into the cluster, and balance between return and pickup 

(pickup minus return). The finest level of prediction is individual bike stations which have the 

same prediction variables as clusters. At this station level, the spatial correlation between 

stations can be investigated. Most of the existing BSS studies undertake prediction at system-

level [10, 11, 21, 49, 70, 81, 90], only a few predict at a cluster level [65] and at the station 

level [2, 87], and none at all investigate all three levels in one study. It would be expected that 

the system usage on an hourly basis will become more chaotic or unpredictable as prediction 

moves from system-wide to cluster to station level.  

While some existing BSS prediction studies use signal processing and data mining 

approaches [11, 63, 75, 105], this study will analyse machine learning techniques as an 

alternative to those approaches. This chapter will investigate how the proposed prediction 

scenario can be implemented using machine learning predictors at each level, how the 

underlying stationary patterns will be estimated, which external factors should be taken into 

account for prediction, how to properly measure prediction performance, and how their 

performance compares to existing similar studies [47]. The practical implications of this 

prediction approach that bring to the BSS operation will also be analysed. Finally, the work in 

this chapter will be used to answer RQ3 and a part of RQ4. 

This chapter is organized as follows. It starts with a methodology section, followed by 

analyses of prediction results of system-wide, cluster and station levels. It concludes with an 

analysis of the practical significance of the results. 

7.1.  Methodology 

This methodology section begins with an explanation of the seasonal-based prediction 

scenario. This is followed consecutively by dataset splitting and pre-processing, machine 
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learning predictor and feature selection, feature importance, a sliding window technique for 

underlying pattern estimation, and performance analysis metrics. 

7.1.1.  Deviation-based Prediction Scenario 

The deviation-based prediction used in this study is defined as the prediction of current 

state based on a deviation from the recent historical reference at the same time bin. Here, time 

dependant features (individual pickup and return times) will be organised chronologically into 

a series of time bins. To give a good trade-off between the resolution of details and 

fluctuations, following Borgnat et al. [63], the prediction bin is every 1 hour. In the rest of this 

chapter, each hour will be referred to by its starting time, so Tuesday 9 am means the hour 

from Tuesday 09:00:00 to 09:59:59. Hence, there will be 24 stationary processes on a daily 

basis and 168 on a weekly basis. This needs a clean dataset with one number of trips each hour. 

At the system-wide level, the only prediction target is number of trips in this hour, while in 

cluster and station levels, prediction targets are number of pickups, returns, or balance between 

them. This prediction scenario is illustrated in Figure 7.1, for the case where the historical 

pattern is the previous week’s trips. 

 

 

 

 

 

Figure 7.1. The deviation-based prediction scenario. 

An important first step in the prediction is to investigate how the historical average of 

usage is derived, and this depends on how the periodic pattern is considered. One could 

consider the 24*7=168 cyclostationary bin approach described earlier, where historical 

averages are based on previous usage at that same time in previous weeks. Another choice 

would be to assume that there is one daily pattern for weekdays, and one for weekends, and so 

the reference would be the same time at the previous day. The last choice is that the pattern 

depends on very local temporal variations, and so the historical reference is the previous hour. 

Specifically, consider estimation of the next hour’s usage. Figure 7.1 shows that the 

number of current trips on Tuesday at 9 am can be predicted as the number of trips at the same 

day and time a week ago plus or minus a deviation. In addition to the previous week, there are 

Mo Tu We Th Fr Sa Su Mo 

9am 9am 

Tnow 

Tweek-1 Deviation 

Tu Su Tu We Th Fr Sa 

Tweek-2 

9am 

Mo Su Tu We Th Fr Sa 

Tweek-3 

9am 



 

 

126 

 

 

two other temporal features that could be possible as reference points, viz., the previous hour 

and the previous day. If the previous hour is a reference point, the number of trips on Tuesday 

at 9 am can be calculated as a number of trips at 8 am with some deviations. If the previous day 

is used, the reference point will be Monday at 9 am. Using this technique, the predictor predicts 

the deviation, and the current state will be estimated by adding this predicted deviation to the 

reference points that are already known.  

Possible estimates of the historical patterns can use not just one reference point but the 

average of several historical reference points. Such averages may give a better estimate of the 

underlying seasonal pattern by cancelling out disturbances. For example, using three previous 

weeks, the reference point will be the average of those three previous same-day-&-time values. 

However, using many historical values, such as a whole year, may hide seasonal changes, and 

also hide underlying trends such as increasingly popularity of the BSS. The best choice of 

cyclostationary pattern estimator will be explored in this chapter.  

Based on the aforementioned explanations, this deviation-based prediction scenario over 

the cyclostationary pattern of BSS data based on N previous weeks can then be formulated as 

follows: 

𝑇𝑃𝑟𝑒𝑑𝑁𝑜𝑤 = 𝐷𝑃𝑟𝑒𝑑 + 
1

𝑁
∑ 𝑇𝑤𝑒𝑒𝑘.𝑖

𝑁

𝑖=1

                                             (7.1) 

If the predictor considers hourly and daily history, the week term in the formula can be 

substituted by hour or day. Specifically for daily references, since weekdays and weekend days 

have different patterns, the daily basis will consider these separately. For example, Monday’s 

prediction will be based on Friday, not on Sunday, Sunday will be based on Saturday, and 

Saturday will be based on the previous Sunday. For a whole day, prediction consists of a set of 

24 estimates of references and deviations for each hour as shown below:  

𝑇𝑃𝑟𝑒𝑑𝐷𝑎𝑦 = {(𝑇𝑅𝑒𝑓_ℎ0 + 𝐷𝑃𝑟𝑒𝑑_ℎ0), (𝑇𝑅𝑒𝑓_ℎ1 +  𝐷𝑃𝑟𝑒𝑑_ℎ1), … , (𝑇𝑅𝑒𝑓ℎ23
+ 𝐷𝑃𝑟𝑒𝑑ℎ23

)}     (7.2) 

7.1.2.  Dataset Selection and Splitting 

Unlike the two previous chapters that required user IDs for individual analysis, the 

prediction task in this chapter looks at aggregate station usage, so that other BSS datasets 

without user ID can be used. Here, two BSS datasets from London and Washington DC with 

trips from August to December 2012 will be used. This investigates whether the proposed 
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prediction method is generic enough to be applicable to a different dataset without knowing its 

patterns in advance (Washington DC dataset). In machine learning prediction tasks, it is 

common practice to split data into at least two sets which are for training and testing. However, 

in this study data will be divided into three sets. The first set is four months for training (1
st
 

August – 30
th

 November), the second set is one week for validation (1
st
 – 7

th
 December), and 

the third set is two weeks for testing (8
th

 – 21
st
 December). Predictors will be tested first with 

the validation set to find the best features and hyperparameter settings. Then the best predictor 

will be used with the test set to judge the performance of the predictor. The dataset has been 

cleaned to exclude trips with unrealistic durations (< 1 minute or > 24 hours). For London, the 

remaining data are 2,805,718 records with 566,456 users and 573 stations. For Washington 

DC, the remaining data are 891,297 records and 194 stations with no individual user 

information. The London BSS is significantly larger than Washington DC BSS. 

Another complementary data source used in this study is an hourly historic record of 

weather
7
 in Central London and Washington DC. This weather log consists of temperature, 

humidity, wind speed and rainfall. It was already seen earlier in Chapter 6 that casual users in 

London are significantly reduced on rainy days and on colder days. This dataset will be used to 

investigate whether these weather features can improve the prediction performance. 

7.1.3.  Machine Learning Predictors 

As the target output is a numerical value, the problem can be stated as a regression 

problem, i.e. applying a best-fit model to a series of numerical values. BSS patterns are not 

linearly related to prediction features, its dataset is large, and many factors can be taken into 

account in prediction, so this prediction scenario will be implemented using machine learning 

techniques. There are many different machine learning algorithms that could be used, each 

with different hyperparameter spaces to explore. The key research question here is not to 

decide on which machine learning algorithm is best, but rather to decide which historical 

average assists prediction most, and which sets of features are most helpful. Also, by using the 

same algorithms as other researchers, we can more easily compare our prediction results to this 

other work. 

Following the approach from Giot and Cherrier [47] who employed five regression 

systems to predict the BSS usages in Washington data, this cyclostationary-based prediction 

                                                 
7
 Downloaded from the wunderground website (www.wunderground.com) 

http://www.wunderground.com/
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scenario also employs all those regressors that have been reviewed in Chapter 2 which are 

Gradient Boosting Regressor (GBR), Bayesian Ridge Regressor (BRR), Support Vector 

Regressor (SVR), AdaBoost Regressor (ABR), Random Forest Regressor (RFR), plus 

Decision Tree Regressor (DTR), to see which regressor gives the best performance for the 

proposed cyclostationary-based prediction scenario in London as well as Washington data. 

Later, prediction results from this study will be compared to the previous work [47] for 

Washington data to see whether the cyclostationary-based prediction is better than existing 

work without this cyclostationary approach.   

Other regressors, such as Artificial Neural Networks or Linear Regression with non-linear 

features could also be explored, but the above regressors have been chosen because these 

regressors have a relatively small hyper-parameter space that needs to be searched compared 

to the very broad range of parameters for techniques like Neural Networks. 

7.1.4.  Naïve Predictors 

The prediction results from all these machine learning regressors will be compared to two 

naïve approaches as a baseline benchmark. This aims to see whether the complex machine 

learning techniques make better predictions than the simple naïve historical approaches. Those 

two naïve approaches are first based on historical average (HA) and second based on 

deviation average (DA) from reference points. The historical average approach assumes that 

deviations from cyclostationary patterns are unpredictable and uses an estimated deviation of 

zero. Meanwhile, the deviation average approach assumes that changes in usage patterns are 

seasonal (e.g. reducing usage towards winter), and so the historical trend is slowly increasing 

or decreasing based on the deviations in the recent past.  

Because many different approaches are being explored, it is necessary to devise some clear 

terminology, hence the following definitions. The length of the historical average (HA) will be 

first made from the whole learning set which is four months (HA4Month), then for the one last 

month (HA1Month), and the one last week (HA1Week). This is to see whether longer or 

shorter historical averages make any difference. Then, for the deviations average (DA), three 

reference values will be used: one (DA1Ref), the average of two (DA2Ref), and the average of 

three (DA3Ref) previous deviations. As there are 3 types of references, hour (Hr), day (Dy) 

and week (Wk), the deviation average prediction will be conducted for each of these 

references. Accordingly, there are 9 combinations of DA predictors which are DA1RefHr, 
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DA1RefDy, DA1RefWk, DA2RefHr, DA2RefDy, DA2RefWk, DA3RefHr, DA3RefDy, and 

DA3RefWk. 

7.1.5.  Feature Selection and Feature Importance 

Extracting, transforming and selecting features are some of the crucial preliminary tasks in 

machine learning prediction. In this cyclostationary scenario, the day/time of the estimated 

output and the previous reference points are key features. The current prediction time features 

are hour of the day, day of the week, and month of the year for the current prediction. Here, 

year and public holidays are not considered because the data in the validation and test sets are 

in the same year and no holidays appear in that data.  

Several other potential features are investigated such as the previous state, weather, and 

percentage of unregistered users. The first are the deviations at one and two hours ago, 

motivated by the fact that very recent usage figures might indicate whether this particular day 

is a busy day or not for the BSS, or for this cluster or station. The second is the weather 

conditions (temperature, humidity, wind speed and rain) to see the role of external factors. The 

third is the percentage of unregistered users who used the BSS one and two hours ago at each 

level to see whether their ratio has an impact. The unregistered users’ ratio is considered 

because their usages are more varied than registered users. For the station level prediction, the 

state of the nearby neighbourhood will be added to see the spatial correlation between stations.  

Given three data sets (training, validation, testing), first, the predictor will be trained using 

the training set. Second, the hyper-parameters will be tuned on the validation set, using a grid 

search. The detailed results from this grid-search of the hyper-parameter space and the chosen 

hyper-parameters for each regressor are presented in the appendix. Third, a feature importance 

test will be applied to rank the features automatically in terms of their impact in shaping the 

prediction output. For example, for the random forest regressor, the method is to keep track of 

the reduction in impurity or mean-square error that is attributed to each feature as the data falls 

through the trees in the forest. The feature importance technique that is used is the gini 

importance or mean decrease impurity and is defined as the total decrease in node impurity 

(weighted by the probability of reaching that node which is approximated by the proportion of 

samples reaching that node) averaged over all trees of the ensemble [124]. Fourth, the 

performance will be tested on the unseen test set. By adding the validation set to the training 

set as a new training set, prediction will be conducted on the test set with the selected best 
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regressor. In this case, the regressor is selected from the validation results that give the best 

performance with tuned hyper-parameters as well as with the most significant features.  

7.1.6.  Sliding Windows Technique 

The cyclostationary pattern of BSS actually has a seasonal component which changes from 

season to season, so that the pattern relevant to the predicted time is the history closest to the 

current time. Furthermore, there is a tension between a long training set which reduces effect of 

disturbances, but tends to reduce ability to adapt to the seasonal or popularity trends, and a 

smaller training set which can react to recent changes but is more sensitive to disturbances. To 

overcome this issue, a sliding window technique (SWT) is proposed for this cyclostationary-

based prediction where a fix-length training set time window will move forward behind the test 

set on a daily basis. In other words, as each day passes, the last predicted day will become a 

new member of the training set to predict the next day, while the first day of training set will be 

dropped. This can be seen in Figure 7.2.  

 

 

 

 

 

 

 

 

 

Figure 7.2. The sliding window technique. 

This technique means that each prediction uses the most recent usage data available, 

allows the predictor to track seasonal trends, and long term increased usage trends, and each 

training set will be a similar length. Consequently, the predictors must be retrained every time 

they move forward. The best size for the sliding window will be experimentally determined. 
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7.1.7.  Performance Analysis 

Once the prediction has been done, performance analysis is needed to interpret how well 

the prediction fits with reality by comparing the predicted values with the actual ones. The 

well-known root mean square error (RMSE) will be employed as a basic performance metric. 

The advantage of using RMSE is that it provides an error metric that has the same unit as the 

prediction output. The RMSE formula is as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

           (7.4),         𝑅𝑅𝑀𝑆𝐸(%) = 100 ∗ (
𝑅𝑀𝑆𝐸

𝑇𝑟𝑖𝑝𝑠𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ
)        (7.5)  

where 𝑛 is the number of samples to predict, 𝑦𝑖 is the ground truth and  �̂�𝑖 is the prediction of 

sample 𝑖, and  TripsgroundTruth  is the average of yi . 

While most BSS prediction studies only use the RMSE prediction accuracy metric, this 

study will also use a transformation of  RMSE to a relative metric (RRMSE(%)), which is 

calculated by dividing RMSE by the ground truth of average predicted trips. The error ratio of 

prediction relative to the ground truth can be easier to interpret. For example an RMSE of 10 

indicates a good estimate if the average correct value is 1000 and a poor estimate if the average 

correct value is 2. Here, RRMSE figures of 1% and 500% are more informative. Another 

alternative “relative” error measure is MAPE, which averages the absolute value of each error 

relative to the individual correct value. However, at the level of individual prediction, many 

actual values are zero, and MAPE is undefined (or infinite). The reason for using a relative 

measure is to be able to compare data with different scales (in this case London and 

Washington DC). RRMSE also preserves the same ordering of accuracy as RMSE for different 

predictors for one city, which MAPE does not necessarily do. 

In the cluster and station levels, in addition to RMSE and RRMSE, the RRMSE range is 

used which is the categorization of relative error based on certain ranges of scores. This gives 

another informative measure for practical applications which indicates how often the 

predictions are “good” or “bad”. Following the daily sliding windows method, each sliding 

window will yield a daily RMSE from 24 hourly bins. Therefore, the performance over the 

whole day will be computed as one average of daily RMSE as follows: 

𝑅𝑀𝑆𝐸𝑎𝑣𝑔 =
1

24
∑ 𝑅𝑀𝑆𝐸𝑖

24

𝑖=1

                                                  (7.6) 
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7.2.  System-Wide Prediction Implementation 

For the system-wide scale, three approaches to prediction are compared: naïve prediction 

based on historical average of the same day-of-the-week and same hour-of-the-day with three 

different lengths of average (HA4Month, HA1Month, and HA1Week), naïve prediction based 

on past deviations of one, average of two, and average of three for hour, day, and week 

references (DA1RefHr, DA1RefDy, DA1RefWk, DA2RefHr, DA2RefDy, DA2RefWk, 

DA3RefHr, DA3RefDy, and DA3RefWk), and machine learning prediction based on past 

deviations (ABR, BRR, DTR, GBR, SVR, and RFR) with input variables being hour of the 

day, day of the week, month of the year, the previous one and two hour states, weather 

(temperature, humidity, wind speed and rain), and percentage of users.  

All these predictors will be tested in London and Washington data. Comparison will also 

be made with the work from Giot and Cherrier [47] for Washington data. Following the 

methodology defined in the previous section, the predictions are done first on the validation 

set. Then, after getting the best features and predictor with tuned hyper-parameters, the 

predictions are conducted using the test set. Finally, the performance metrics are analysed and 

comparisons are conducted among the three approaches. 

7.2.1.  Naïve Prediction Results 

The naïve prediction is conducted using the weekly-daily-hourly basis that is applied to 

predict the current hour trip number in the validation set. Here, the weekly-daily-hourly basis 

means there are 24 hours bins for each day of the week which is equal to 168 hourly average 

bins. First, RMSE is computed, and then the RRMSE is calculated from the hourly trip average 

in the validation set which is 816.25 in London and 231.25 in Washington DC. All the 

prediction performance in RMSE and RRME are presented in Table 7.1.  
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Table 7.1. Naïve prediction RMSE and RRMSE results. 

No Predictor London Data Washington Data 

RMSE RRMSE (%) RMSE RRMSE (%) 

Historical Average 

1 HA4Month 625.2 76.6 69.6 30.1 

2 HA1Month 225.3 27.6 54.6 23.6 

3 HA1Week 277.5 34.0 100.6 43.5 

Deviation Average 

4 DA1RefHr 169.8 20.8 43.9 19.0 

5 DA1RefDy 207.3 25.4 70.1 30.3 

6 DA1RefWk 306.1 37.5 108.2 46.8 

7 DA2RefHr 185.3 22.7 44.6 19.3 

8 DA2RefDy 200.8 24.6 86.3 37.3 

9 DA2RefWk 244.9 30.0 81.6 35.3 

10 DA3RefHr 189.4 23.2 45.8 19.8 

11 DA3RefDy 200.8 24.6 86.7 37.5 

12 DA3RefWk 247.3 30.3 57.6 24.9 

 

It can be seen from Table 7.1 that for historical average (HA) based prediction (lines 1-3 in 

the table), the best predictor for both cities is one month historical average (line 2) with 

RRMSE 27.6% and 23.6% for London and Washington data respectively. This suggests that 

shorter and longer averages perform worse. In London itself, the end of daylight saving (refer 

to Chapter 4 subsection 4.2.2) obviously has a significant effect on the four months average to 

reduce the accuracy. Using just the previous week does not even out any weekly disturbances, 

and does not represent the underlying trend. Individual weekly disturbances will give high 

error. Therefore, in deviation average (DA) based predictions, only one month deviation 

averages are used. For one reference (lines 4-6), average of two references (lines 7-9), and 

average of three references (lines 10-12), the best predictions all come from the hour reference. 

Among all, the one hour reference (DA1RefHr) is the best with RRMSE 20.8% and 19.0% for 

London and Washington data respectively. This indicates that DA predictors are better than 

HA predictors. 
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           (a) HA4Month                                 (b) HA1Month                                  (c) HA1Week 

 
           (d) DA1RefHr                                 (e) DA1RefDy                                   (f) DA1RefWk 

 
           (g) DA2RefHr                                  (h) DA2RefDy                                 (i) DA2RefWk 

 
           (j) DA3RefHr                                  (k) DA3RefDy                                  (l) DA3RefWk 

Figure 7.3. Naïve prediction Vs real trips (London) for 168 hours prediction (light green circles) with 

binning (blue circles). (a-c) HA, (d-c) DA1Ref, (g-i) DA2Ref references, and (j-l) DA3Ref. 

To visually observe how close the prediction results compare to the ground truth, the 

visual comparisons of the predicted trips vs real trips are presented in Figure 7.3 for London 

and Figure 7.4 for Washington data. The light green circles represent all predicted points (168 

hours ~ green circles) along 7 days in validation set. A lower RRMSE will be where the circles 

are closest to the diagonal line corresponding to perfect prediction, and the visually best 

predictor is DA1RefHr, Figure 7.3.d and 7.4.d, which agrees with the results from Table 7.1. 
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            (a) HA4Month                                 (b) HA1Month                                 (c) HA1Week 

 
            (d) DA1RefHr                                 (e) DA1RefDy                                  (f) DA1RefWk 

 
            (g) DA2RefHr                                 (h) DA2RefDy                                  (i) DA2RefWk 

 
             (j) DA3RefHr                                 (k) DA3RefDy                                  (l) DA3RefWk 

Figure 7.4. Naïve prediction Vs real trips (Washington) for 168 hours prediction (light green circles) 

with binning (blue circles). (a-c) HA, (d-c) DA1Ref, (g-i) DA2Ref references, and (j-l) DA3Ref. 

As the deviation based prediction using previous hour reference are better than day and 

week references in both cities, this suggests that the state one hour previously is very 

significant as a prediction feature for the current state in this prediction scenario. In other 

words, using this naïve approach, a closer reference point to the intended state is better. Based 

on this result, the machine learning approach in the next section will only focus on using the 
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deviation-based approach. The main goal is to investigate whether more complex prediction 

methods yield better results.  

7.2.2.  Coefficient Correlation and Feature Importance 

How each feature correlates independently with the predicted metric is evaluated with a 

Pearson’s Coefficient Correlation test, while the importance of each feature in machine 

learning prediction is evaluated with a feature importance test. Both tests are done with the 

training dataset. Note that BRR does not provide feature importance, it has a coefficient weight 

for each parameter so that it is represented by a numerical value instead of a percentage. The 

test results for each reference are shown in Table 7.2 as percentages except for BRR. 

Following the Evans range of correlation [125], for the Current Time, all features have 

very weak (0 – 19%) and weak correlation (20 – 39%). This is because only a couple of these 

many time features are active for any one measurement. Any one time feature (eg. hr1) is only 

active for a small percentage of examples. Only the one previous hour state based on week and 

day reference have a strong (60 – 79%) and very strong (80 – 100%) correlation respectively. 

Then, their correlations decrease for the two previous hour state. 

For weather features, most of them are very weak. However, this could be that the effect of 

weather is already present in the previous hour inputs, and so separate weather inputs do not 

add much additional information. Similarly, the percentages of unregistered users have a very 

weak correlation. The feature importance for ML also exhibits a similar trend to the Pearson 

correlation. 
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Table 7.2. Pearson’s Coefficient Correlation and ML Feature Importance or Coefficient. 

Features Pearson’s Coeff Correlation ML Feature Importance/Coef 

LON WAS LON WAS 

Hrs Day Week Hrs Day Week Hrs Day Week Hrs Day Week 

      RF BR GB RF GB RF 

% % % % % % % Coef % % % % 

State of times (Month of the year) 

 Aug 0 16 13 0 0 35 0.2 -0.08 0.0 0.1 0.3 0.2 

 Sep 0 -4 -2 0 2 -1 0.1 -0.14 0.6 0.1 0.3 0.1 

 Oct 0 -7 -6 0 -2 -18 0.0 0.14 0.2 0.2 0.4 0.2 

 Nov 0 -5 -5 0 -1 -16 0.1 0.10 0.3 0.3 0.1 0.1 

 Dec nan nan nan nan nan nan 0.1 0.01 0.1 0.0 0.0 0.0 

State of times (Day of the week) 

 Mon 0 -16 -4 0 -12 -2 0.2 -0.04 0.2 0.1 0.5 0.2 

 Tue 0 6 -4 0 -1 -3 0.3 0.02 0.1 0.1 0.3 0.2 

 Wed 0 9 2 0 16 3 0.1 -0.03 0.1 0.1 0.3 0.2 

 Thu 0 5 3 0 -3 2 0.1 -0.02 0.3 0.1 0.2 0.1 

 Fri 0 0 4 0 1 2 0.1 0.02 0.1 0.3 0.4 0.2 

 Sat 0 5 0 0 13 1 0.3 0.02 0.2 0.2 0.3 0.2 

 Sun -1 -9 -2 -1 -15 -4 0.0 0.00 0.0 0.4 0.6 0.1 

State of times (Hour of the day) 

 h0 -4 -1 0 -7 0 -2 0.0 0.01 0.0 0.1 0.3 0.0 

 h1 -2 -1 0 -5 0 -2 0.0 0.01 0.0 0.2 0.0 0.0 

 h2 -1 -1 0 -3 0 -2 0.0 0.01 0.0 0.0 0.0 0.0 

 h2 -1 -1 0 -2 0 -2 0.0 0.01 0.0 0.0 0.0 0.0 

 h4 0 -1 0 -1 0 -2 0.0 0.01 0.0 0.0 0.0 0.0 

 h5 8 -1 -1 3 0 -2 0.1 0.00 0.2 0.1 0.0 0.0 

 h6 26 0 -2 12 0 -1 0.0 -0.01 2.2 0.1 0.1 0.1 

 h7 35 2 -2 31 0 0 0.2 0.00 3.6 0.5 2.1 1.5 

 h8 -18 2 5 31 0 3 0.6 0.05 1.3 0.4 0.8 0.5 

 h9 -22 0 2 -31 0 1 0.0 -0.01 0.0 4.7 0.7 0.7 

 h10 -3 0 0 -9 0 0 0.0 -0.01 0.1 0.1 0.2 0.1 

 h11 7 0 -1 8 0 0 0.1 -0.01 0.0 1.1 0.1 0.2 

 h12 4 0 0 10 0 1 0.4 0.00 0.1 0.4 0.3 0.1 

 h13 -1 0 0 -1 0 1 0.5 -0.01 0.0 1.1 0.2 0.1 

 h14 2 0 -1 -3 0 1 0.3 -0.02 0.1 0.6 0.1 0.1 

 h15 9 1 -2 3 0 2 0.2 -0.02 0.4 0.5 0.2 0.1 

 h16 29 2 -4 14 0 2 0.8 -0.03 3.5 1.0 0.3 0.4 

 h17 -3 2 1 32 -1 3 5.7 0.01 0.5 5.9 1.1 0.8 

 h18 -25 1 2 -10 -1 2 5.7 0.00 0.3 2.1 0.5 0.4 

 h19 -19 0 1 -26 -1 0 0.2 -0.01 0.3 0.2 0.4 0.3 

 h20 -10 0 0 -19 0 0 0.2 0.00 0.0 1.7 0.1 0.1 

 h21 -5 -1 0 -12 0 -1 0.0 0.00 0.0 0.0 0.2 0.1 

 h22 -3 -1 0 -8 0 -1 0.0 0.01 0.0 0.0 0.1 0.0 

 h23 -4 -1 0 -8 0 -1 0.0 0.01 0.0 0.0 0.1 0.0 

One previous hour states 

 Deviation to ref points 44 83 77 31 75 87 35.3 0.91 42.3 29.3 63.0 74.5 

 Percentage of unreg users -9 8 9 -7 14 25 4.9 -0.09 7.4 4.5 3.7 2.3 

 Temperature -3 14 17 -8 1 34 0.5 -0.97 3.0 0.8 2.2 1.4 

 Humidity 5 -20 -19 17 -7 -3 0.5 -0.32 2.5 1.0 2.0 1.3 

 Wind speed 0 -1 -8 -9 -19 -16 0.3 -0.86 3.6 0.6 2.4 1.6 

 Rain status 2 -25 -23 1 -15 -16 0.1 -0.15 0.9 0.2 0.2 0.1 

Two previous hours states 

 Deviation to ref points -25 64 55 -19 52 71 39.7 -0.19 13.0 30.9 4.9 3.9 

 Percentage of unreg users 16 8 7 -14 11 21 0.9 0.03 4.7 7.1 3.5 2.6 

 Temperature -3 13 16 -9 1 33 0.5 -0.14 2.9 1.0 2.4 1.4 

 Humidity 6 -17 -17 19 -5 -1 0.4 -0.41 2.2 1.0 2.2 1.5 

 Wind speed 0 -1 -8 -8 -17 -16 0.3 -0.36 2.0 0.6 1.8 1.5 

 Rain status 7 -23 -21 1 -16 -17 0.1 -0.19 0.6 0.1 0.3 0.3 
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7.2.2.  Machine Learning Prediction in Validation Dataset 

The machine learning prediction in this section uses the historical references that give the 

best performance in naïve deviation-based prediction for each reference type (hour, day or 

week). In London, they are one previous hour (DA1RefHr), the average of two days 

(DA2RefDy), and the average of two weeks (DA2RefWk). While in Washington DC, they are 

one hour (DA1RefHr), one day (DA1RefDy), and the average of three weeks (DA3RefWk).  

Following the proposed feature selection described earlier, the primary time features 

consist of the current month, day and hour. The format of these features is constructed as a 

binary value (1 or 0) for each category. Hence, the feature current time will be as follow: 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑖𝑚𝑒 = 𝐴𝑢𝑔, 𝑆𝑒𝑝, 𝑂𝑐𝑡, 𝑁𝑜𝑣, 𝐷𝑒𝑐, 𝑆𝑢𝑛, 𝑀𝑜𝑛, 𝑇𝑢𝑒, 𝑊𝑒𝑑, 𝑇ℎ𝑢, 𝐹𝑟𝑖, 𝑆𝑎𝑡,

ℎ1, ℎ2, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, ℎ7, ℎ8, ℎ9, ℎ10, ℎ11, ℎ12, ℎ13,

ℎ14, ℎ15, ℎ16, ℎ17, ℎ18, ℎ19, ℎ20, ℎ21, ℎ22, ℎ23, ℎ24  

Here, there are 36 fields in the Current Time: 5 fields for months, 7 fields for days of the week, 

24 fields for hour of the day. For example, if the reference point is on Tuesday, 4
th

 December at 

9 am, then the Current Time features with value 1 are only Dec, Tue, and h9, while others will 

be 0. These features can be extended if the data covers a complete 12 months, or if the holidays 

along the learning period are included as a feature, or if four seasons are taken into account. 

To see the effect of combining features, the ML prediction is conducted in three rounds. In 

the first round, the one previous hour metrics such as one previous hour deviation, one 

previous hour of casual user percentages, and one previous hour of weather (temperature, 

humidity, wind speed and rain) are added so that 42 features are used. In the second round, the 

two previous hour’s metrics are added so that 48 features are used. In the third round, the 

features which have strong and very strong correlation only are considered to see whether 

using fewer, better features can give a better result. Using six regressors as explained in the 

Methodology Section, Table 7.3 presents RMSE and RRMSE for each reference type of each 

round for both cities including the features are used. 

The first round prediction using Current Time (36 features) and one previous hour metrics 

(6 features) can achieve better performance than the naïve predictors. The best prediction error 

is 17.1% RRMSE for London using SVR with two day reference and 17.4% for Washington 

DC using RFR with three week reference.  
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Table 7.3. RMSE and the percentage of RMSE of the system-wide prediction. 

Ref. Prediction of London Prediction of Washington DC 

RMSE RRMSE (%) RMSE RRMSE (%) 

AB BR DT GB RF SV AB BR DT GB RF SV AB BR DT GB RF SV AB BR DT GB RF SV 

1st Features: Current Time (Aug, Sep, Oct, Nov, Dec, Sun, Mon, Tue, Wed, Thu, Fri, Sat, h1, h2, h3, h4, h5, h6, h7, h8, h9, 

h10, h11, h12, h13, h14, h15, h16, h17, h18, h19, h20, h21, h22, h23, h24), one previous hour metrics (deviation1, casual 

percentage1, temperature1, humidity1, wind speed1 and rain1) 

HR 497 660 396 337 259 619 60.9 80.8 48.5 41.3 31.7 75.8 74.4 78.3 61.4 53.1 41.4 119.3 32.1 33.8 26.5 22.9 17.9 51.5 

DY 285 141 369 183 171 140 34.9 17.2 45.2 22.4 20.9 17.1 58.8 46.6 85.4 48.7 48.7 46.6 25.4 20.1 36.9 21.0 21.0 20.1 

WK 370 164 284 154 195 159 45.3 20.1 34.8 18.9 23.9 19.5 60.2 44.4 71.3 40.7 40.4 43.5 26.0 19.2 30.8 17.6 17.4 18.8 

2nd Features: Current Time (Aug, Sep, Oct, Nov, Dec, Sun, Mon, Tue, Wed, Thu, Fri, Sat, h1, h2, h3, h4, h5, h6, h7, h8, h9, 

h10, h11, h12, h13, h14, h15, h16, h17, h18, h19, h20, h21, h22, h23, h24), one previous hour metrics (deviation1, casual 

percentage1, temperature1, humidity1, wind speed1 and rain1), two previous hour metrics (deviation2, casual 

percentage2, temperature2, humidity2, wind speed2 and rain2) 

HR 339 528 339 217 157 521 41.5 64.7 41.5 26.5 19.3 63.9 66.3 75.6 49.1 50.4 38.5 113.3 28.7 32.7 21.3 21.8 16.7 49.0 

DY 166 138 334 171 151 139 20.3 16.9 40.9 20.9 18.5 17.0 56.6 47.4 82.0 46.3 47.2 46.4 24.5 20.5 35.5 20.1 20.4 20.1 

WK 234 164 192 158 169 159 28.6 20.1 23.5 19.4 20.7 19.5 67.1 44.7 62.4 39.4 39.3 43.3 29.1 19.4 27.0 17.1 17.0 18.7 

3rd  Features: Current Time (Aug, Sep, Oct, Nov, Dec, Sun, Mon, Tue, Wed, Thu, Fri, Sat, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, 

h11, h12, h13, h14, h15, h16, h17, h18, h19, h20, h21, h22, h23, h24), the strong & very strong features (deviation1, deviation2) 

HR 274 508 226 482 143 530 33.5 62.2 27.7 59.1 17.5 64.9 72.2 74.9 54.7 68.5 39.2 113.7 31.2 32.4 23.6 29.6 16.9 49.1 

DY 225 138 231 151 147 139 27.5 16.9 28.3 18.5 18.0 17.0 69.6 47.7 74.4 58.1 44.1 46.6 30.1 20.6 32.1 25.1 19.0 20.1 

WK 227 157 244 175 171 158 27.8 19.2 29.9 21.4 21.0 19.3 76.4 44.6 61.3 51.5 39.4 43.6 33.0 19.3 26.5 22.2 17.0 18.8 

Noted: The best prediction from Giot and Cherrier 

[47] for Washington data using RMSE metric 102 79 - 312 336 336       

 

The second round prediction by adding the two previous hour metrics to the first round 

prediction gives an improvement in both cities for almost all predictors and references. This 

means that two previous hour metrics can improve the prediction. The best performance that 

can be achieved in this round is 16.9% for London using BRR with two day reference and 

16.7% for Washington DC using RFR with one hour reference.  

The third round prediction by choosing only the features that have strong and very strong 

correlation, which are the one and two previous hours deviation (Table 7.2), gives almost 

similar results to the second round prediction. The best performance that can be achieved in 

this round is also 16.9% for London using BRR with two day reference and 16.9% for 

Washington DC using RFR with one hour reference. All results suggest that the one and two 

previous hours deviation have a role to improve the prediction performance of the current state.  

Compared to the existing works from Giot and Cherrier [47] using Washington DC data as 

can be seen in the bottom of Table 7.3, their smallest RMSE is 79 by Ridge Regression. 

Meanwhile, using similar Ridge Regression, this study achieves RMSE 75.5. The smallest 

RMSE is 38.5 using Random Forest, while their Random Forest gives an RMSE of 336. This 

means that the proposed deviation-based prediction in this study is much better.    
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                                            (a)                                                                 (b) 

Figure 7.5. The best performance of ML prediction round three. 

For the best predictor, Figure 7.5 suggests that the distribution between real trips as a 

ground truth and the prediction is quite linear if trips for London are less than 1800 and 

Washington DC are less 300 per hour. This is because most hourly trips occurred below than 

those points so that there are enough data to learn. However, that visualization cannot give the 

time information of prediction. Hence, in order to see at what times the prediction gives over-

estimations and under-estimations, Figure 7.6 visualizes the time series patterns of errors.  

 
                                    (a)                                                                                (b) 

 
                                    (c)                                                                                (d) 

Figure 7.6. (a-b) Real trips Vs Best ML prediction in validation set (BRR for London and RFR for 

Washington DC), (c-d) Error distribution (real trips minus ML prediction). 
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It is clearly seen in both cities that over and under estimations mostly happen in peak 

times. In London, for example, there is a slight underestimate on Monday and Tuesday 

afternoon, but on Wednesday and Thursday afternoon the predictor overestimates. Its 

overestimate increases on Friday morning because the actual trips drop and do not follow a 

common level with the rest of the week at that time. This shows that there is a significant 

decrease in using BSS at that time that cannot be easily predicted. 

7.2.4.  Machine Learning Prediction in Testing Dataset 

After obtaining the best predictor, the best references, and the strong and very strong 

features, now prediction is done for the two weeks of the test set to see the generalization of the 

model. Here, the only strong and very strong features are used because they give almost similar 

RRMSE with using all features. The ML results are shown in Figure 7.7 for the test set week 1: 

8
th

 -14
th

 December (Figure 7.7.a&b) and week 2: 15
th

 – 21
st
 December (Figure 7.7.c&d), and 

the comparisons to the naïve approach are given in the next paragraph. 

 
                                        (a)                                                                        (b) 

 
                                               (c)                                                                        (d) 

Figure 7.7. The ML prediction of testing set: (a,b) week 1 and (c,d) week 2. 
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The ML results show that for the testing set week 1 there is an improvement in 

performance from the validation set. Now, RRMSE for London is 13.8% and Washington DC 

is 14.1% while in the validation set it is 16.9% and 16.7% for London and Washington DC 

respectively. On the other hand, for testing set week 2 there is a downgraded performance to 

27.5% for London and 22.7% for Washington DC. The reason of these phenomena can be 

explained using Figure 7.7 and 7.8. However, all the ML results are still better than the naïve 

approaches (DA1RefHr) which are 20.5% (week 1) and 44.5% (week 2) for London, and 

16.9% (week 1) and 24.1% (week 2) for Washington DC.  

Figure 7.8 shows that week 1 of testing set (8
th

 – 14
th

 December) for both cities look 

normal, with no significant uncommon patterns happening in actual trips (black line). The only 

underestimated predictions occur similarly on Monday and Tuesday for both cities and slight 

overestimates for the days after that in London. On the other hand, there are the unusual 

patterns in week 2 in London, Figure 7.9.a, starting from Wednesday afternoon where trips in 

peak times decrease significantly different from the previous Monday and Tuesday. This trend 

is followed by the days after Wednesday. While in Washington DC, it happens on Friday, 

Figure 7.9.b. Those decreases could be because a Christmas holiday effect had already begun. 

 
                                     (a)                                                                               (b) 

 
                                     (c)                                                                               (d) 

Figure 7.8. The ML prediction of test set week 1 (a,b) and error distribution (c,d). 
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Comparing week 2 of the testing set (15
th

 – 21
st
 December) patterns in both cities, there are 

interesting phenomena occurring where the predictor shows different responses to the sudden 

outlier patterns, Figure 7.9. In London, when real trips (black line) on Wednesday afternoon 

suddenly dropped and the predictor cannot predict it well, the predictor overestimates, but the 

day after (on Thursday afternoon) the predictor can predict it correctly. Similarly, when trips 

on Thursday morning dropped, then on Friday morning a reasonable prediction can be made so 

that there is no significant error on Friday. This daily basis adjustment works because of the 

implementation of one-day reference in London. While in Washington DC, its adjustment is 

even more responsive since its prediction scenario uses the previous hour reference. This can 

be seen on Friday in Figure 7.9.b. When trips on Friday morning and afternoon drop to less 

than the previous days, the predictor can still give a good prediction following the actual trips 

so that no significant errors happen, unlike London that needs a day to wait to respond to the 

sudden outlier patterns and return to the right level.  

 

 
       (a)                                                                               (b)                      

                     

       (c)                                                                               (d)                      

Figure 7.9. The ML prediction on testing set week 2 (a,b) and error distribution (c,d). 
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7.3.  Cluster Prediction 

Clustering is a technique to identify groups whose members exhibit similar behaviour. 

Clustering in this study aims not to get the optimal clusters, but more to implement the 

proposed cyclostationary prediction scenario into smaller BSS sub-systems. This is to test 

whether localized hourly prediction can achieve a similar performance level to the system-wide 

prediction. From a practical operational viewpoint, the question is whether one can predict 

unbalanced bicycle use in a certain geographic area that might need proactive rebalancing. 

Here, clustering based on station geolocation is needed so that the clusters members will 

be in similar region or close each other. The prediction will also give an insight which parts of 

the system are better predicted, whether the ML approach is still better than the naïve 

approach, and whether cluster-based prediction performance is similar to the system-wide 

performance. As stated in the Methodology section, the prediction metrics at the cluster level 

can be divided into three outputs, pickups (bike out), returns (bike in) and balance (out minus 

in), which represent different aspects of the cluster activities.  

7.3.1.  K-Means Clustering 

In k-means clustering, the number of clusters, k, can vary from 1 to the number of stations 

in the system using geographical location as the features. Then, the average distances to the 

centre of each cluster are calculated. Figure 7.10 shows the relationship between number of 

clusters and their average radius. If 1 km is selected as the average radius to the centre based 

on a reasonable walking distance, the approximate number of clusters is 75 (seventy five). This 

approximation is implemented in both cities as they show almost similar cluster numbers. 

 

Figure 7.10. Cluster number vs distance to the centre.  
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Statistically, using 75 as number of clusters gives the minimum, average and maximum 

numbers of stations in a cluster in London as 2, 7.65 and 15, while in Washington DC they are 

1, 2.58 and 7 respectively. Their distributions on the map can be seen in Figure 7.11. This 

region-based clustering gives cluster members close to each other. Other studies about station 

clusters have used station activities profile to give a small number of clusters of similar usage 

patterns. 

  
                                                           (a)                                                                          (b) 

Figure 7.11. Map of BSS cluster station in (a) London and (b) Washington DC . 

7.3.2.  Cluster Prediction RRMSE-Range 

At this cluster level, predictions are conducted using the best predictor algorithm from the 

system-wide prediction which is BRR for London and RFR for Washington DC. Then, they are 

compared to naïve prediction (DA1RefHrs). Three weeks of predictions are made where each 

week contains three different activities, pickup, return, and balance, where balance is number 

of pickup minus number of return.  

Here, the RRMSE of 75 clusters is categorized in the form of error ranges to visualize 

performance across all the clusters, and the each range bin describes a 20% band of RRMSE 

because the prediction performance of system-wide prediction is approximately 20%. For 

example, if clusters have RRMSE 25% or 30%, then they will be categorized in the range bin 

20% to 40%. This will give an insight into how the errors differ across clusters. The results of 

the RRMSE-range are summarized in Table 7.4 for the ML approach and Table 7.5 for the 

naïve approach with the heat map showing the number of stations that fall in the associated 

range, and where darker red means more clusters in that band.  

The results show that prediction at cluster level cannot reach the good performance of 

system-wide prediction since none of the results has RRMSE below 20%. Generally, for the 



 

 

146 

 

 

ML approach in Table 7.4, the RRMSE of pickup and return prediction are relatively similar, 

mostly in the range of 40-60% for London and 60-80% for Washington DC. On the other 

hand, the prediction of balance is less than the individual pickup and return prediction. They 

are mostly in the range of 80-120% for London and 140-200% for Washington DC. This 

suggests that the prediction in London with larger station numbers for each cluster is better 

than in Washington DC. The prediction using ML approach is still better than using naïve 

prediction, Table 7.5, where numbers of clusters with RRMSE in the range 20% to 40% and 

40% to 60% using the ML approach are higher than using the naïve approach.   

Table 7.4. RRMSE-Range of 75 clusters using BRR (London) and RFR (Washington DC). 

Error Range Number of Clusters in LONDON (BRR) Number of Clusters in WASHINGTON DC (RFR) 

Validation set Test set week 1 Test set week 2 Validation set Test set week 1 Test set week 2 

> ≤ Out In Bal Out In Bal Out In Bal Out In Bal Out In Bal Out In Bal 

0% 20%                   
20% 40% 20 18  20 22   1  2 2  1 1   1  
40% 60% 38 38 5 37 34 6 38 45  8 11  12 10  10 7  
60% 80% 10 12 11 12 11 11 24 16 4 15 13 2 12 13  11 15 1 

80% 100% 3 3 20 1 3 20 7 8 11 8 7 5 4 7 6 8 6 4 

100% 120% 2 2 18 3 3 19 3 2 24 8 5 5 8 5 6 5 5 6 

120% 140% 1  9  1 6 1 2 19 3 5 10 6 2 5 6 4 8 

140% 160%  2 9 1 1 10 1 1 12 4 2 10 5 9 8 5 4 6 

160% 180% 1  2 1  2 1  4 5 5 10 6 3 15 2 2 13 

180% 200%   1   1   1 5 5 11 3 3 11 5 3 10 

> 200%          17 20 22 18 22 24 23 28 27 

#Clusters 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 

 

Table 7.5. RRMSE-Range of 75 clusters using naïve prediction (DA1RefHrs). 

Error Range Number of Clusters in LONDON (Naïve) Number of Clusters in WASHINGTON (Naïve) 

Validation set Test set week 1 Test set week 2 Validation set Test set week 1 Test set week 2 

> ≤ Out In Out Out In Bal Out In Bal Out In Bal Out In Bal Out In Bal 

0% 20%                   
20% 40% 1 3  3 1      2        
40% 60% 33 31 2 33 36 2 1 3  7 6  10 7  4 5  
60% 80% 22 20 6 19 20 7 24 27  9 12  5 9  11 11  
80% 100% 11 13 7 13 11 10 31 29 5 8 8 1 11 10  6 9 1 

100% 120% 4 4 17 2 2 13 12 9 9 10 3 5 5 3 7 6 2 5 

120% 140% 2 1 18 1  19 3 2 14 5 5 4 7 4 4 6 5 3 

140% 160%  1 5 2 4 8 1 3 17 2 4 7 3 6 3 3 3 5 

160% 180% 1  11 1  4 2  15 4 1 6 3 1 8 3 1 6 

180% 200%  1 5   8 1 2 6 3 3 8 2 4 4 5 5 2 

> 200% 1 1 4 1 1 4   9 27 31 44 29 31 49 31 34 53 

#Clusters 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 

The high RRMSE could be due to the low numbers of pickups and returns at certain hours 

at cluster level, such as in the early morning, midday, and at night. The percentage of relative 
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error will be high. This suggests that hourly based prediction is not practical at this smaller 

subsystem level. This will be even clearer with station level prediction.  

To see the relationship of prediction range with the spatial distribution of clusters, Figures 

7.12 show the RRMSE-Range of pickup and return prediction on the map of London (a, b) and 

Washington DC (c, d). This visualization aims to see whether clusters with certain prediction 

range sit in certain places. Here, red denotes less than 40%, blue is 40.1-60%, dark green is 

60.1-80%, light green is 80.1-100%, orange 100.1-120% and yellow is more than 120.1%.  

 
(a) Pickup (London) 

 
(b) Return (London) 
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                     (c)  Pickup (Washington DC)                                 (d) Return (Washington DC) 

Figure 7.12. The RRMSE-Range of pickup and return on the map where red is less than 40%, blue is 

between 40.1% and 60%, green is between 60.1% and 80%, light green is between 80.1% and 100%, 

gold is between 100.1% and 120%, and yellow is more than 120.1% . 

It can be seen for both cities that the smaller RRMSE clusters are in the centre of the map. 

Stations near the city centre are better predicted than outer stations. Stations with higher use 

exhibit more consistent usage patterns compared to those clusters which lead to better 

prediction. 

Overall, cluster-based prediction of hourly usage does not appear to be sufficiently 

accurate to be useful for BSS operations. 

7.4. Station Prediction 

Station level prediction can be seen as a particular example of cluster prediction where one 

cluster has one member station. Therefore, all analyses will be similar to the previous cluster 

analyses but at a much larger scale. Before the prediction results are presented, the station 

usage pattern and station usage range on an hourly basis will be analysed to get a high-level 

view of how their hourly usages are distributed, and how the low usages at certain hours, early 

morning, midday, and at night, will potentially produce high relative errors. On the other hand, 

the peak time usages may be larger and more predictable. The station hourly usage prediction 

will be presented first to show the potential disadvantage of hourly based prediction at station 

level. Then, the peak hours based prediction will be proposed that could be more useful than 

hourly based prediction across the whole day. Imbalance is more likely during high usage 

periods, and effective prediction during these peak times will be of most practical benefit. 
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7.4.1.  Station Hourly Usage Pattern 

The averages of station hourly usage for each station are shown in Figure 7.13 by one 

point per station, ordered from highest to lowest. As explained in subsection 7.1.4, those 

actually include many zeros in the data because many stations, especially the small stations in 

the outer part of the city, do not receive pickup and return every hour, especially out of peak 

hours. Usage in these very quiet times is not predictable, but it is also not very useful, since it 

has little effect on BSS operations. This will be further shown in the following hourly usage 

distribution analysis.  

 
                                           (a)                                                                                (b) 

 
                                           (c)                                                                                (d) 

Figure 7.13. The average of hourly pickup and return of all stations. 

 
                                           (a)                                                                                (b) 

Figure 7.14. The average histogram of hourly pickup and return of all stations. 
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As can be seen, the hourly usage averages of stations in London are more varied than 

Washington DC which looks more homogenous at average of pickup and return around 1.3 per 

hour. The histograms of both averages have means which are similar at around 1 to 1.5 per 

hour as shown in Figure 7.14. Then, to define the range bins of a table of station use, two times 

the mean of the histogram is used, i.e. 2. The resulting hourly heat map of the number of 

stations based on their hourly average range can be seen in Table 7.6 and 7.7. 

It is shown that in London before 5 am almost all stations have hours usage of less than 2, 

while even at peak times in the morning and afternoon, there are more than one hundred 

stations with usage less than 2 bikes. In Washington DC, on the other hand,  all stations receive 

usage less than 2 bikes before 7 am, while during the afternoon peak the majority of station 

numbers increase only from range 0-2 to range 2-4, and only 14 stations have an hourly 

average more than 4 as shown in Table 7.7. Based on this distribution, it seems it is not 

sensible to predict usage before 5am in London and before 7am in Washington DC. To check 

this, the next section will first predict whole hours followed by the prediction of peak hours. 

Table 7.6. The heat map table of number of stations based on their hourly average (London). 

Range Hour of the day (LONDON) 

>  ≤ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

0 2 572 573 573 573 573 531 293 114 141 317 429 339 302 314 305 240 151 130 192 333 450 501 521 554 

2 4 1         34 172 125 183 208 129 192 201 197 194 177 139 151 199 170 99 60 47 17 

4 6           5 56 125 138 40 13 34 51 48 57 95 96 104 103 49 20 9 3 2 

6 8           1 30 83 61 4 2 7 15 11 13 36 61 70 39 14 3 3 2   

8 10             7 54 23 3   1 3 2 3 15 37 46 20 5 1       

10 12             4 30 13 1     1 1 1 6 37 23 10 1         

12 14           1 3 15 5             2 11 21 3           

14 16             1 11 2             2 13 7 4           

16 18             2 2                 10 8 2 1         

18 20               4 2               6 1             

> 20           1 5 10 5               12 12 1           

 

Table 7.7. The heat map table of number of stations based on their hourly average (Washington DC). 

Range Hour of the day (WASHINGTON DC) 

>  ≤ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

0 2 194 194 194 194 194 194 194 194 15 190 194 189 94 99 124 93 1     20 187 194 194 194 

2 4                 179 4   5 100 95 70 101 193 180 194 174 7       

4 6                                   14             

 



 

 

151 

 

 

7.4.2.  Station Hourly Usage Prediction 

Similar to cluster prediction, the ranges of station prediction use a 20% range and are 

compared between the ML and naïve approaches. The results are shown in Table 7.8 and 7.9.  

Table 7.8. RRMSE-Range using BRR (LON) and RFR (WAS. DC). 

Error Level 
LONDON (BRR) WASHINGTON DC (RFR) 

Validation set Test set week 1 Test set week 2 Validation set Test set week 1 Test set week 2 

>  ≤ Out In Bal Out In Bal Out In Bal Out In Bal Out In Bal Out In Bal 

0% 20%                                     

20% 40% 
  

1 
               

40% 60% 6 5 1 5 5 2 
 

1 
          

60% 80% 38 46 1 39 45 1 11 14 2 
         

80% 100% 119 109 1 116 91 6 60 64 1 
         

100% 120% 153 135 36 142 139 34 137 120 5 
         

120% 140% 79 84 98 96 107 92 113 131 53 4 4 
 

8 
   

2 
 

140% 160% 69 68 160 55 61 155 86 77 141 11 2 
 

34 8 
 

2 5 
 

160% 180% 37 48 133 37 38 133 53 49 174 15 17 
 

42 21 4 14 13 
 

180% 200% 27 24 71 30 25 77 39 51 104 27 32 
 

29 29 26 31 27 13 

200% 220% 15 13 30 15 21 31 21 14 49 36 25 1 33 32 53 31 22 29 

220% 240% 9 13 19 15 12 13 14 15 15 20 30 3 28 19 42 39 25 51 

240% 260% 3 6 7 3 7 9 13 9 8 17 16 6 8 15 32 22 24 49 

260% 280% 3 3 3 2 1 4 3 4 7 10 13 16 7 10 21 17 29 23 

280% 300% 3 3 
 

4 4 2 6 3 2 9 9 32 4 13 10 14 14 13 

> 300% 2 3 1 5 4 2 4 3 2 28 32 43 0 8 0 2 6 0 

 
Table 7.9. RRMSE-Range using naïve prediction (DA1RefHr). 

Error Level 
LONDON (Naive) WASHINGTON DC (Naive) 

Validation set Test set week 1 Test set week 2 Validation set Test set week 1 Test set week 2 

>  ≤ Out In Bal Out In Bal Out In Bal Out In Bal Out In Bal Out In Bal 

0% 20% 
                  

20% 40% 
                  

40% 60% 6 6 2 2 3 
             

60% 80% 69 68 1 50 44 2 4 1 
          

80% 100% 142 141 10 115 109 12 34 40 
          

100% 120% 128 121 66 158 149 52 115 121 9 
         

120% 140% 88 81 156 73 85 131 112 104 54 
         

140% 160% 52 63 139 55 59 172 100 94 134 
         

160% 180% 30 34 106 37 33 98 54 74 171 
   

4 
     

180% 200% 16 17 48 25 36 44 57 41 93 
   

24 
     

200% 220% 14 12 21 17 14 20 32 28 49 3 
  

26 
 

7 
   

220% 240% 6 6 11 12 8 14 18 21 24 6 2 1 23 
 

17 
   

240% 260% 5 2 1 5 5 7 12 12 16 5 2 4 14 1 29 
   

260% 280% 5 3 1 3 2 4 8 10 2 15 7 7 12 7 26 1 
 

6 

280% 300% 
 

4 1 3 6 3 5 7 8 8 12 17 9 9 34 2 2 10 

> 300% 5 8 3 11 13 7 15 13 6 157 171 165 82 177 81 191 192 178 
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At this station level, the performance decreases significantly compared to the cluster level.  

It can be seen that RRMSE for pickup and return for most stations in London are in the range 

of 100-120% followed by 80-100%, 120-140%, and 140-160%. While in Washington DC, 

results are even poorer in the range of 200-240%. The spatial distribution of RRMSE per 

station is presented on the maps of London and Washington DC, Figure 7.15. Stations in the 

inner cities (Red Circles) have better range than the outer ones (Green Circles) for both cities. 

The red circle of return is spread broader than the green ones. The colour legend that 

corresponds to the RRMSE levels is shown in Figure 7.15.e.  

 
(a) Pickup (London) 

 
(b) Return (London) 

   
                  (c)  Pickup (Washington DC)                      (d) Return (Washington DC)                  (e) 

Figure 7.15. Station RRMSE of pickup and return on the map where the upper bound of RRMSE is 

shown in (e). 
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7.4.3.  Station Peak-Hour Usage Prediction 

The low hourly prediction accuracy at station level, shown by high RRMSE, can be 

explained with an example: if a station receives no pickup or return at certain hours but the 

predictor predicts 1 or 2, this gives 100% or 200% error respectively which is a very high 

RRMSE. This suggests that RRMSE is not an appropriate metric for small BSS subsystems. As 

stated earlier in this section, prediction on an hourly basis is not practical for BSS operations, 

especially for redistribution purposes. There would be a very high cost if stations are visited by 

the operator to redistribute the bikes every hour or many times in a day. Ideally, stations should 

be balanced just before peak hours. Therefore, the peak-hour based prediction to predict the 

total usages during the coming peak hour seems more useful and will be tested in this section. 

As shown in the Preliminary Data Analysis (subsection 4.2.2), the peak hours occur 

between 5 am to 9 am in the morning and 3 pm and 7 pm in the afternoon. Accordingly, the 

prediction is made two times a day which are at one hour before those peak hours using the 

cyclosationary deviation-based method as previously proposed for system-wide. The ten 

busiest stations of each city are predicted for the two weeks of the testing dataset, a one day 

previous reference is used, and the best ML predictors in system-wide prediction, BRR for 

London and RFR for Washington DC, are employed. Furthermore, the nearest station usage is 

added as an input feature to capture the spatial dependency features. Then, the prediction error 

is compared to the naïve approaches, DA1RefD, as shown in Table 7.10 for RRMSE (%) and 

Table 7.11 for RMSE (rounded) where red colour means naïve is better than ML, blue means 

both are similar, and blck means that ML is better. 

Results in both cities show that, in the majority of cases, ML predictors give better 

prediction (smaller RRMSE) than the naïve approaches. Predictions for pickup in the morning 

peak mostly give less error than the return prediction. Conversely, predictions for return in the 

afternoon peak mostly give less error than the pickup prediction. When there is no anomalous 

usage in week one, the ML predictor gives RRMSE mostly less than 20% for both cities. The 

increasing errors occur in week two when there is anomalous usage at the end of the week as 

shown in subsection 7.2.4.    

For balance predictions, this has higher RRMSE than pickup and return predictions. This 

is because balance itself comes from pickup minus return that makes its value smaller, and 

RRMSE relatively higher. However, in terms of RMSE, balance errors are quite similar to 

pickup or return errors, and some of them are even smaller as shown in Table 7.11. 
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Table 7.10. RRMSE (%) of peak hours prediction using Machine Learning (BRR for London & RFR 

for Washington DC) and Naïve Prediction (DA1RefD).  

Station ID Machine Learning Prediction Naïve Prediction 

Pickup Return Balance Pickup Return Balance 

Week1 Week2 Week1 Week2 Week1 Week2 Week1 Week2 Week1 Week2 Week1 Week2 

LONDON Morning Peak (5am-9am) 

14 13.4 48.6 18.8 46.7 13.3 61.4 13.4 72.9 32.9 57.0 11.7 77.8 

45 16.7 32.0 20.2 39.8 60.9 62.5 20.1 56.0 32.4 74.0 76.1 100.0 

95 21.2 38.4 19.3 30.8 58.4 61.7 24.7 34.1 22.5 34.6 77.8 82.3 

101 18.5 28.3 18.7 33.9 29.6 85.3 23.1 51.9 16.8 61.5 49.3 68.3 

104 20.9 33.5 20.5 41.3 35.4 72.4 16.7 23.2 27.3 41.3 88.6 88.5 

154 5.8 14.8 20.3 59.3 5.0 13.0 19.8 46.8 30.4 35.6 14.9 16.9 

194 21.6 38.0 16.8 35.9 50.6 90.8 31.2 57.0 22.4 49.4 75.9 77.8 

270 19.2 34.7 23.2 28.7 30.0 64.8 21.7 44.2 32.5 45.9 35.0 71.3 

341 18.7 35.7 24.4 49.2 40.0 53.9 30.0 44.6 44.8 71.1 80.0 53.9 

374 20.1 34.8 21.9 51.2 27.4 28.6 48.3 60.2 49.2 42.7 51.7 57.1 

LONDON Afternoon Peak (3pm-7pm) 

14 25.4 36.8 14.7 21.5 13.1 24.5 36.3 55.3 18.1 26.0 29.5 31.2 

45 32.5 33.0 19.3 29.2 70.1 76.1 37.1 52.8 27.1 34.0 87.6 91.3 

95 22.5 32.6 17.9 49.4 77.8 71.8 16.9 32.6 26.8 41.2 97.3 71.8 

101 13.6 27.1 18.7 22.8 67.7 73.7 18.2 51.8 28.1 42.7 90.3 92.1 

104 14.8 50.8 24.8 39.9 84.0 82.3 44.5 22.6 27.3 21.5 98.0 82.3 

154 22.2 40.2 9.6 27.9 10.6 27.2 50.0 80.3 16.7 34.3 11.9 34.4 

194 16.0 38.9 23.2 29.1 82.9 88.8 20.1 49.3 23.2 43.6 36.8 98.6 

270 46.7 29.4 19.4 25.7 61.5 33.3 57.0 35.3 24.9 32.1 66.2 40.0 

341 18.1 47.3 26.8 41.7 55.2 61.7 32.6 52.0 36.8 50.0 92.1 102.9 

374 25.9 54.4 20.1 32.2 21.6 35.3 77.8 85.5 42.7 85.9 23.2 58.8 

WASHINGTON DC Morning Peak (5am-9am) 

31101 21.9 53.9 18.9 35.9 39.8 76.9 26.2 70.0 37.8 71.8 34.1 92.3 

31103 17.3 20.4 58.3 45.1 15.2 14.9 25.9 24.4 87.5 90.3 15.2 19.9 

31110 25.0 23.7 35.6 18.2 46.6 62.2 30.0 47.4 47.4 36.4 69.9 77.8 

31214 26.1 10.4 51.9 37.5 52.5 18.0 31.3 26.1 64.9 50.0 61.2 35.9 

31229 48.6 20.2 52.5 47.7 36.8 32.6 44.5 48.6 70.1 79.5 52.6 70.5 

31239 35.9 14.3 36.1 16.4 63.6 38.4 41.9 28.6 39.7 32.7 54.5 67.1 

31241 40.2 31.0 34.6 24.5 36.8 48.9 44.2 22.2 25.9 29.4 92.1 97.7 

31600 26.9 15.8 47.7 26.4 24.4 35.0 26.9 26.3 63.6 52.8 32.5 35.0 

31612 27.8 22.9 46.7 63.7 25.2 14.0 33.3 28.7 93.5 63.7 31.5 35.0 

31619 28.3 22.7 56.0 50.0 28.3 32.0 21.2 29.1 84.0 75.0 24.3 36.0 

WASHINGTON DC Afternoon Peak (3pm-7pm) 

31101 24.5 47.0 19.7 27.5 24.8 22.8 48.9 67.9 37.0 58.1 44.7 51.2 

31103 18.9 42.7 25.2 49.6 79.3 75.6 33.0 42.7 33.6 55.2 92.5 94.5 

31110 42.0 14.8 15.4 20.7 95.4 100.0 51.3 34.5 30.8 33.1 47.7 60.0 

31214 22.0 17.4 17.6 27.8 88.5 92.3 40.3 30.4 30.2 47.2 88.5 76.9 

31229 30.9 22.1 18.7 14.7 36.8 47.6 54.9 29.5 29.1 29.5 57.9 61.2 

31239 27.1 34.8 24.0 33.6 35.0 41.2 23.7 29.8 28.0 33.6 52.5 61.7 

31241 30.4 26.9 22.0 28.2 73.8 96.0 19.0 34.6 25.7 34.5 110.7 82.3 

31600 19.3 33.6 25.3 16.0 64.5 70.0 38.6 56.0 25.3 24.0 82.9 84.0 

31612 37.3 38.9 24.8 29.2 42.4 87.5 46.7 46.7 34.8 38.9 74.2 98.5 

31619 38.2 49.0 15.9 17.8 25.5 28.9 44.6 70.0 28.6 39.1 31.8 64.9 

 



 

 

155 

 

 

Table 7.11. RMSE (rounded) of peak hours prediction using Machine Learning (BRR for London & 

RFR for Washington DC) and Naïve Prediction (DA1RefD).  

Station ID Machine Learning Prediction Naïve Prediction 

Pickup Return Balance Pickup Return Balance 

Week1 Week2 Week1 Week2 Week1 Week2 Week1 Week2 Week1 Week2 Week1 Week2 

LONDON Morning Peak (5am-9am) 

14 20 56 4 9 17 60 20 84 7 11 15 76 

45 5 8 5 7 4 5 6 14 8 13 5 8 

95 6 9 6 8 3 3 7 8 7 9 4 4 

101 8 12 10 16 3 5 10 22 9 29 5 4 

104 10 13 12 20 4 9 8 9 16 20 10 11 

154 10 24 2 5 8 20 34 76 3 3 24 26 

194 9 14 9 16 6 7 13 21 12 22 9 6 

270 8 11 5 5 6 10 9 14 7 8 7 11 

341 5 8 6 9 2 3 8 10 11 13 4 3 

374 10 11 4 6 9 6 24 19 9 5 17 12 

LONDON Afternoon Peak (3pm-7pm) 

14 7 8 22 24 16 22 10 12 27 29 36 28 

45 7 5 5 6 4 5 8 8 7 7 5 6 

95 8 9 6 12 4 4 6 9 9 10 5 4 

101 6 11 8 8 3 4 8 21 12 15 4 5 

104 7 18 10 13 6 4 21 8 11 7 7 4 

154 4 7 16 39 16 34 9 14 28 48 18 43 

194 8 15 14 14 9 9 10 19 14 21 4 10 

270 9 5 7 8 13 5 11 6 9 10 14 6 

341 5 10 8 10 3 3 9 11 11 12 5 5 

374 4 7 16 15 14 12 12 11 34 40 15 20 

WASHINGTON DC Morning Peak (5am-9am) 

31101 5 10 1 2 7 10 6 13 2 4 6 12 

31103 4 5 2 2 3 3 6 6 3 4 3 4 

31110 5 4 6 2 2 4 6 8 8 4 3 5 

31214 5 2 4 3 6 2 6 5 5 4 7 4 

31229 12 5 3 3 7 6 11 12 4 5 10 13 

31239 6 2 10 4 7 4 7 4 11 8 6 7 

31241 10 7 8 5 2 3 11 5 6 6 5 6 

31600 5 3 3 2 3 4 5 5 4 4 4 4 

31612 5 4 1 2 4 2 6 5 2 2 5 5 

31619 8 7 2 2 7 8 6 9 3 3 6 9 

WASHINGTON DC Afternoon Peak (3pm-7pm) 

31101 5 9 8 9 5 4 10 13 15 19 9 9 

31103 4 8 3 9 6 4 7 8 4 10 7 5 

31110 9 3 4 5 6 5 11 7 8 8 3 3 

31214 6 4 7 10 11 12 11 7 12 17 11 10 

31229 9 6 9 6 7 7 16 8 14 12 11 9 

31239 8 7 6 6 2 2 7 6 7 6 3 3 

31241 8 7 6 9 2 7 5 9 7 11 3 6 

31600 4 6 8 4 7 5 8 10 8 6 9 6 

31612 4 5 5 6 4 8 5 6 7 8 7 9 

31619 6 7 5 5 4 4 7 10 9 11 5 9 
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7.5.  Practical Applications 

More accurate prediction of BSS activity at system-wide, cluster or individual station level 

allows BSS operator to more accurate plan their systems operations. For example, at a 

particularly busy time for the system as a whole, more human resources can be deployed for 

bike redistribution to ensure that the system can provide sufficient resources to meet demand 

(bikes for pickups, empty docking slots for returns). At less busy times, less redistribution can 

be scheduled, saving human resources and cost. 

Predicting higher or lower use in particular clusters, or in individual stations can assist by 

targeting the best sources and destinations of bikes for redistribution. Additionally, if particular 

stations are likely to be imbalanced, notifications at those stations on electronic billboards can 

point users to the closest stations (within a 300 m neighbourhood) which are most likely to 

have either bikes or docking slots available. 

The above analysis has shown that usage in clusters and at individual stations on an hourly 

basis across the whole day cannot be sufficiently accurately predicted to provide useful 

operational intelligence. However, taking the example of individual stations, it has been shown 

that usefully accurate information can be obtained if the total usage across the morning peak 

and the afternoon peak at busy stations is predicted. Accurate usage for busy stations at busy 

times will enable BSS operators to better plan bike redistribution twice a day, before each of 

the peaks. 

7.6.  Summary and Significance of Results 

This chapter has investigated deviation-based prediction referenced from the 

cyclostationary pattern of BSS usage data. Prediction has been investigated at system-wide, 

cluster, and station levels using machine learning approaches. There are several significant 

outcomes in terms of the implementation and performance of these proposed prediction 

scenarios at each level in comparison with naïve predictions and previously published 

prediction results. 

The RRMSE of different machine learning approaches and different methods for 

calculating the historical baseline are investigated with a validation dataset. For London, using 

the historical average for prediction, the best RRMSE is 27.6% using the historical baseline of 

the last month (HA1Month). This is reduced to 20.3% by using the best historical deviation 
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prediction which is the one previous hour deviation (DA1RefHr) prediction. Using machine 

learning to predict deviations gives an RRMSE of 16.9% by using a BRR predictor with the 

average of the two days as the deviation reference. Similar trends occur in Washington DC. 

There is an improvement from 23.6% when using the historical average of last month 

(HA1Month) to 19.0% when using the historical deviation prediction with one previous hour 

deviation (DA1RefHr) and to 16.7% using an RFR predictor with one previous hour baseline 

for calculating deviation. 

These results show that the machine learning predictors can improve the prediction 

performance by similar levels for both cities. Here, the single very strong feature identified for 

machine learning is the one-previous-hour deviation, followed by the two-previous-hour 

deviation as a strong feature. The effect of weather is already present in the previous hour 

inputs, and so separate weather inputs do not add much additional prediction information.  

These results are compared to the existing works from Giot and Cherrier [47] using similar 

data from Washington DC, but predicting usage directly (rather than deviation-based 

prediction).  Their smallest RMSE for the next hour prediction is 79 using Ridge Regression. 

Meanwhile, using similar Ridge Regression, this study achieves an RMSE of 75.5. More 

importantly, using a Random Forest Regressor gives an RMSE of 38.5, while their Random 

Forest result is 336. This means that the proposed deviation-based prediction in this study gives 

considerably better results than attempting to estimate usage directly. 

The best scenarios (predictor, reference, and feature) are then applied to a 2 week test set.  

For week 1 the machine learning predictors achieve an RRMSE of 13.8% in London and 

14.1% in Washington DC, and for week 2 approaching the Christmas holidays, 27.5% in 

London and 22.7% in Washington DC. These test set results show that the machine learning 

approaches give useful improvements in performance compared to naïve historical-average 

approaches. 

The error in the “normal” week 1 of about 14% is of the same order as the 12% error given 

by Borgnat et al [63] for Barcelona for hourly number of rented bikes, and much better than the 

results of Yang et al [16] for Hangzhou for bike check-in and check-out, where their RMSLE 

of 0.42 to 0.48 corresponds to a relative error that is likely to be greater than 60%. While direct 

comparisons are not possible in different cities, our results still appear promising. 

As a general principle, it is recommended to use the previous hour reference for the 

cyclostationary-based prediction scenario in BSS as implemented for Washington DC. Its 
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adjustment to sudden outlier patterns is faster than previous-day and previous-week references. 

When seasonal fluctuations are evident, the sliding window technique is also recommended. 

This will enable the training set to be as close as possible in time to the testing set so that the 

system is more responsive to seasonal changes in demand, however it does need more frequent 

retraining. 

At the level of cluster and station level prediction, the accuracy of hourly usage prediction 

with machine learning, measured by RRMSE across the whole day is not very good. There are 

high prediction errors outside of peak hours, such as early morning, midday and at night when 

the usages are very low. For example, if a station receives 1 pickup but the predictor predicts 2, 

this gives 100% RRMSE.  

Therefore, morning and afternoon peak times prediction is then proposed for busy stations.  

This gives much better results. From an operational viewpoint, accurate prediction of busy 

stations at busy times is most useful, since this can give an estimation of potential upcoming 

imbalances before peak hours occur so that proper redistribution can be done if high usage is 

predicted, or redistribution costs can be saved when predicted use is low. 
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CHAPTER 8 

CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK 

8.1.  Conclusions 

Intensive data analyses have been undertaken to investigate aspects of mobility dynamics 

that are buried in BSS data in order to answer the four research questions as proposed in 

Chapter 3. The answers to each research question are given below. 

8.1.1. RQ1 (What insights can be gained from the BSS stations neighbourhood ties?) 

Through intensive spatial analysis in Chapter 5, several useful insights have been gained.  

Spatial motifs can give insights into common daily mobility patterns. Since conventional 

unlabeled motifs as used in previous studies have some ambiguous interpretations, a labelled 

motif notation has been developed that ensures that patterns are uniquely interpreted. Based on 

0.5% threshold from all possible motifs that may appear, the 10 common spatial network 

patterns can be considered as motifs in BSS mobility. In addition, distance analysis for certain 

motifs reveals that users typically select a station from within a 300 m neighbourhood of their 

origin or destination. 

In terms of distances between stations, this study introduces the notion of the waypoint 

distance for use in BSS studies, which gives a better shortest route representation between OD 

stations than the widely-used Euclidean distance. This waypoint distance also gives a more 

accurate distance than using the Manhattan distance, which is highly dependent on the choice 

of XY axes. When studying the impact distance of a station shutdown, waypoint distance also 

gives a more reliable measure for determining affected nearby stations. Results show that there 

is typically increased usage of 20% to 80 % before-to-during shutdown for nearby stations less 

than 300 m from the shutdown station. Conversely, a similar percentage of decreased usage 

occurs during-to-after shutdown for those 300 m nearby stations.  

The results from these two different approaches suggest that there is a strong relationship 

between disturbances at one station and other nearby stations within 300 m waypoint. These 

disturbances could be a temporary shutdown or station imbalance. If a station is unavailable, 

users tend look for alternate stations within 300 m. So this distance should be considered when 

BSS station locations are chosen during system design. 



 

 

160 

 

 

8.1.2. RQ2 (To what extent can clustering identify highly predictable users, what are 

the maximum limits of predictability, and how can these be achieved?) 

Chapter 6 has investigated how users can be clustered using their temporal characteristics 

and then labelled after observing their mobility behaviour using various spatiotemporal 

metrics. These clusters identify users with similar usage characteristics, especially those who 

are highly predictable. While one study [74] used various temporal features, this study uses 

two different feature sets for clustering:  total trips (1 feature) and the number of hourly trips 

across the day (24 features). This can adequately reflect the trip frequency and the trip 

regularity of the users. Results show the distinct spatiotemporal characteristics of the proposed 

clusters which are labelled as casual users, regular users, and commuters. 

Casual users show seasonal and recreational traits and they have relatively few trips and 

short waiting times. They are more active on weekends and weekday afternoons, strongly 

affected by season (decreasing as winter approaches) and they are the slowest riders, 

suggesting sightseeing rather than simple transport. Commuters show resilient commuting 

patterns where weekday usages are much more than weekend usage, and usage is less affected 

by the season. They have two weekday usage peaks in mornings and afternoons, and also a 

high proportion of waiting times that correspond with daily working hours. They are the fastest 

riders and demonstrate a RoG skewed towards small distances showing a characteristic 

distribution of length scale. Meanwhile, regular users have traits that are a mixture of 

commuters and casual users. 

Casual users have irregular histograms for all types of entropy. This suggests that a large 

number of users with few trips results in a small number of discrete entropy values [46]. 

Instead, the entropy distribution of regular users and commuters are smoother, showing a 

typical form for these histograms. The entropy of commuters follows the basic entropy 

ordering rule: S
Rand

 ≥ S
Shan

 ≥ S
Cond

 ≥ S
Real

, while for regular users only the hourly-based 

cluster closely follows this rule. This suggests that hourly-based clustering is better than 

subscription and total trips based clustering for identifying homogeneous user groups. 

Since real entropy is close to the conditional entropy for commuters, this suggests that 

entropy is strongly determined by the sequence of recently visited stations. This indicates that 

the trip data has Markovian traits where the actual predictability can be represented by the 

conditional one [46].  In other words, the next location of a BSS commuter is dependent on the 

one previously visited location, and it does not depend on locations further in the past.  
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The predictability results show that a Markov model predictor for commuters’ next 

locations has an upper bound of 80% for prediction accuracy, and that about 20% of next 

locations are effectively random and unpredictable.  Predictability of BSS users in this study is 

close to the predictability using mobile phone data conducted by Qin et al [44]. However, they 

did not continue their work to the prediction to show whether their predictability results can be 

achieved. Meanwhile, Lu et al. [25] implemented a Markov Chain (MC) model to conduct 

prediction, and they could achieved an accuracy similar to their predictability level using a first 

order Markov Chain model. 

Using a first order Markov Chain predictor, prediction accuracy is better for commuters 

than regular and casual users, and cluster by-hourly-trips gives better prediction accuracy than 

by-total-trips. In pickup-to-return prediction, using the ensemble of a first order Markov Model 

with peak time OD matrix and with commuter collective trends for trips that are not in a user’s 

history, a prediction accuracy is achieved which corresponds to the predictability bound of 

80% during the morning peak when commuters are dominant in the system. Similar 

approaches are implemented for return-to-pickup prediction, but their accuracy is less than the 

pickup-to-return. Other techniques like the second order MM and the daily matrix do not 

improve the accuracy. The results of both return and pickup predictions above show that the 

correlation of the pickup-ride-return is stronger than the return-waiting-pickup. This fact 

suggests that once people pickup bikes especially in the morning peak of weekdays they are 

likely more predictable with their intended destination. Potential uses of this prediction are 

discussed under RQ4 below. 

8.1.3. RQ3 (To what extent can the cyclostationary pattern of bicycle sharing systems 

be used to conduct and improve the prediction of BSS usage and which factors are 

most effective for good prediction?)  

Chapter 7 describes a deviation-based prediction method using cyclostationary patterns of 

BSS data. Predictors are implemented at system-wide, cluster, and station levels using machine 

learning approaches. Results suggest that the deviation-based prediction using machine 

learning predictors can improve the prediction performance in comparison to naïve approaches 

based on recent historical averages. Results are significant better than results in previously 

published studies [47]. The best RRMSE that can be achieved by different ML techniques are 

16.9% in London using BRR and 16.7% in Washington DC using RFR in a validation set. 

Using these ML techniques, good results are achieved in two weeks of testing data - 13.8 % 
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and 14.1% in week 1, and 27.5 % and 22.7% in an anomalous week 2. Using similar data from 

Washington DC, Giot and Cherrier [47] achieved a smallest RMSE for the next hour prediction 

of 79 by Ridge Regression. Meanwhile, using similar Ridge Regression, this study achieves 

RMSE 75.5. The best ML predictor in this study has an RMSE of 38.5 using Random Forest, 

compared to Giot & Cherrier’s Random Forest results of 336. This shows that the proposed 

deviation-based prediction in this study is a significant improvement over previous BSS 

prediction methods. 

It is also found that the very strong feature for ML prediction is the one-previous-hour 

deviation, followed by the two-previous-hour deviation as a strong feature. The effect of 

weather is already present in the previous hour inputs, and so separate weather inputs do not 

add much additional prediction information. Therefore, it is recommended to use the previous 

hour reference for the deviation-based prediction in BSS. Its adjustment to sudden outlier 

patterns is faster than previous-day and previous-week references. Furthermore, when the 

seasonal fluctuations are evident, the sliding window technique should be implemented. This 

will enable the new training sets to adapt the predictor quickly to seasonal changes, but it does 

require frequent retraining. 

Comparing system-wide, cluster, and station level prediction, the results show good 

prediction accuracy at the system-wide level. The inner-city clusters and stations are better 

predicted than the outer ones as they tend to receive more pickups and returns which make 

their cyclostationary patterns more constant. Hourly-based cluster and station predictions do 

not give useful prediction accuracy, however, predicting usage for the busiest stations at the 

busiest times does give useful information for optimizing BSS operations. 

8.1.4. RQ4 (What do the station neighbourhood ties and high predictable clusters 

knowledge, as well as the system-wide predictions at different levels, bring to the BSS 

deployment, services, and operations?) 

Results from Chapters 5, 6, and 7 all have potential impact on BSS systems operations. 

This section collects these potential uses in order to answer RQ4. 

A waypoint distance of 300 m is found to be the distance that users will travel to an 

alternate station in the same neighbourhood. This knowledge can be used by BSS operators 

when a station is temporarily shutdown by focusing the availability of resources for nearby 

stations within 300 m waypoint distance. Combined with the average usage data, another 
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possible application is to identify the ineffective stations in the network that can be eliminated 

because its deletion will not significantly impact system availability. Yet another possible 

application is to identify isolated stations with high usage where a new nearby station within 

300 m is recommended. This new station is intended as a backup if the main station is shut 

down or imbalanced. For a new BSS in new cities, this 300 m waypoint distance between 

stations can be used as a planning guideline to avoid isolated stations and ineffective station 

locations. 

The knowledge from user clustering and next place prediction can be used to identify the 

likely destination of predictable users.  The most predictable users are identified as commuters 

during the morning peak. One possible application is a user-specific notification system that 

can proactively notify highly predictable users. For example, if their predicted destination 

station will be shut down or full or empty at particular times ahead, or if there are delays on the 

route, a notification can be sent automatically when the user starts a trip. The notification can 

include the possible nearby stations, routes, or time of travel. This might, for example, request 

users to return their bicycle to a particular station in a neighbourhood (within 300 m, as 

indicated in the station neighbourhood analysis result) which is currently almost empty to assist 

with user-based station rebalancing. This user-based notification will make the system more 

efficient, and it can complement the existing journey advisor systems which are not user 

specific. 

More accurate prediction of BSS activity at system-wide, cluster or individual station level 

allows BSS operators to more accurate plan their systems operations. For example, at a 

particularly busy time for the system as a whole, more human resources can be deployed for 

bike redistribution to ensure that the system can provide sufficient resources to meet demand 

(bikes for pickups, empty docking slots for returns).  At less busy times, less redistribution can 

be scheduled, saving human resources and cost. 

Predicting higher or lower use in particular clusters, or in individual stations can assist by 

targeting the best sources and destinations of bikes for redistribution. Additionally, if particular 

stations are likely to be imbalanced, notifications at those stations on electronic billboards can 

point users to the closest stations (within a 300 m neighbourhood) which are most likely to 

have either bikes or docking slots available. 

The analysis in this study has shown that usage in clusters and at individual stations on an 

hourly basis across the whole day cannot be sufficiently accurately predicted to provide useful 
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operational intelligence. However, taking the example of individual stations, it has been shown 

that usefully accurate information can be obtained if the total usage across the morning peak 

and the afternoon peak at busy stations is predicted when the system is highly driven by 

commuters at that time. Accurate usage for busy stations at busy times will enable BSS 

operators to better plan bike redistribution twice a day, before each of the peaks, and will also 

enable better scheduling of appropriate human resources for these redistribution activities. 

8.2.  Original Contributions 

This thesis makes the following contributions. 

The first contribution has been in identifying the neighbourhood in which BSS stations 

affect each other. The analysis of trip behaviour has identified typical BSS mobility motifs, and 

in turn analysis of these motifs has identified 300 m as the typical neighbourhood of a station. 

Furthermore, it has been shown that 300 m waypoint distance is a better measure of 

neighbourhood than measures using Euclidean distance or Manhattan distance. Analysis of 

station shutdowns has also confirmed the neighbourhood of a station as 300 m waypoint 

distance. This distance has implications for BSS design and operations. 

The second contribution is the identification of highly-predictable BSS users. Using novel 

temporal clustering features, a highly predictable class of users is identified, referred to as 

commuters. Using information theory of entropy and predictability, a first order Markov Chain 

predictor is proposed, which combines individual and system-wide information. It is shown 

that during peak times, this predictor has a prediction accuracy close to the theoretical 

predictability of 80%. This information could enable user-specific notifications to improve 

system efficiency. 

The third contribution is in the area of system usage.  At system-level, a predictor based on 

deviations from historical average usage patterns, and using machine learning prediction 

techniques is used to predict total system usage on an hourly basis.  It is compared to predictors 

based on historical averages of use, historical deviations in use, and machine learning 

approaches by other researchers based on direct prediction of system use. The new predictor is 

shown to have significantly better prediction accuracy. The usage estimation at station level 

also identify that useful predictions can be made with the machine learning approaches for the 

busiest stations at the busiest times. System prediction can aid with better planning of bike 

redistribution. 
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8.3.  Future Work 

This mobility analysis has been undertaken with a limited time span of BSS data (London 

2012), which is the only publically available data that we found with individual user 

identification. A longer data set over several years would allow a more detailed analysis of 

usage variations over the whole year, and also investigate the year-to-year trends in system 

usage. 

There is also no publically available information on the methods that BSS operators use to 

rebalance bike stations, so the direct application of this mobility analysis to system rebalancing 

has not been possible. The application of the insights from this work to real BSS operations 

would also be a useful future direction. The first possibility is to investigate whether the types 

of user-specific notifications suggested do indeed improved system efficiency and user 

satisfaction. Second, if the prediction of system usage can be done for several hours ahead, 

then the station level prediction can then be extended to assist operators to plan their 

redistributions as efficiently as possible. 
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APPENDIX A 
 

A1. The search space of hyper-parameters in validation set  

Regressor Hyper-parameters space 

ABR param_grid = {“n_estimators”: [100,200,300,400,500,600,700,800,900,1000], “learning_rate”: 

[1,2,3,4]} 

BRR param_grid = {“ n_iter”: [100,200,300,400,500,600,700,800,900,1000], “tol”: [0.001, 0.01, 0.1, 

1]} 

GBR param_grid = {“n_estimators”: [100,200,300,400,500,600,700,800,900,1000], “learning_rate” : 

[0.001, 0.01, 0.1, 1]} 

SVR param_grid = {“cache_size”: [100,200,300,400,500,600,700,800,900,1000], “C”: [0.001, 0.01, 

0.1, 1], “kernel”:[“linear”]} 

RFR param_grid = {“n_estimators”: [100,200,300,400,500,600,700,800,900,1000]} 
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A2. RMSE of each regressor in validation set for all search spaces 

Based on Table 7.1, prediction is done in 3 rounds for each reference where the features 

for round 1 are current times and one previous hour state, round 2 are current times, one and 

two previous hours state, round 3 are current times, the strong and very strong features. 

A2.1. ABR Hyper-parameters for London  

Reference Prediction 

round 

learning_rate n_estimators 

100 200 300 400 500 600 700 800 900 1000 

Hour 1 1 437 386 390 385 446 392 371 489 403 359 

2 476 505 477 532 569 534 382 446 488 463 

3 540 515 1459 665 1042 725 715 490 571 578 

4 1075 1130 535 1692 1536 1430 1846 1828 1556 1740 

2 1 317 404 401 399 387 340 354 405 383 366 

2 356 357 376 383 410 377 371 340 398 392 

3 249 306 301 301 295 274 309 313 370 275 

4 912 784 998 1475 740 1366 1547 1608 718 358 

3 1 254 256 260 248 258 268 250 258 263 260 

2 243 252 263 264 250 257 261 265 260 262 

3 240 244 258 250 261 267 428 256 254 234 

4 419 1608 1488 1679 300 682 1732 636 529 1002 

Day 1 1 191 216 206 291 263 167 213 224 197 192 

2 286 269 274 306 325 306 224 293 319 321 

3 274 282 288 316 309 293 284 326 301 281 

4 196 1140 461 759 1362 441 794 922 713 1266 

2 1 232 273 270 287 299 252 236 180 300 203 

2 254 251 312 296 315 264 286 297 288 304 

3 270 265 283 252 289 287 265 277 287 272 

4 898 1278 486 1504 302 327 631 401 634 626 

3 1 383 284 361 410 396 382 279 311 405 387 

2 396 395 438 427 422 379 429 421 426 278 

3 251 313 359 371 321 318 332 332 336 338 

4 202 458 427 339 841 766 433 671 1045 1423 

Week 1 1 232 213 238 271 292 255 242 227 218 199 

2 329 471 389 395 455 415 424 447 360 333 

3 428 525 414 455 469 470 461 475 491 483 

4 795 1004 734 628 1092 1019 636 1038 497 1009 

2 1 252 314 353 359 329 318 355 347 379 271 

2 258 312 336 329 306 315 355 335 341 349 

3 310 328 357 298 338 310 299 301 316 284 

4 1234 1046 660 874 359 946 802 1034 755 555 

3 1 218 212 216 240 208 220 200 199 211 212 

2 237 248 249 275 257 256 255 254 275 266 

3 241 240 278 258 264 282 271 253 369 274 

4 556 1836 1340 315 537 326 1673 1233 667 499 
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A2.2. BRR Hyper-parameters for London 

Reference Prediction 

round 

toll n_iter 

100 200 300 400 500 600 700 800 900 1000 

Hour 1 0.001 595 595 595 595 595 595 595 595 595 595 

0.01 595 595 595 595 595 595 595 595 595 595 

0.1 595 595 595 595 595 595 595 595 595 595 

1 547 547 547 547 547 547 547 547 547 547 

2 0.001 543 543 543 543 543 543 543 543 543 543 

0.01 543 543 543 543 543 543 543 543 543 543 

0.1 543 543 543 543 543 543 543 543 543 543 

1 543 543 543 543 543 543 543 543 543 543 

3 0.001 498 498 498 498 498 498 498 498 498 498 

0.01 498 498 498 498 498 498 498 498 498 498 

0.1 498 498 498 498 498 498 498 498 498 498 

1 498 498 498 498 498 498 498 498 498 498 

Day 1 0.001 140 140 140 140 140 140 140 140 140 140 

0.01 140 140 140 140 140 140 140 140 140 140 

0.1 140 140 140 140 140 140 140 140 140 140 

1 140 140 140 140 140 140 140 140 140 140 

2 0.001 138 138 138 138 138 138 138 138 138 138 

0.01 138 138 138 138 138 138 138 138 138 138 

0.1 138 138 138 138 138 138 138 138 138 138 

1 138 138 138 138 138 138 138 138 138 138 

3 0.001 138 138 138 138 138 138 138 138 138 138 

0.01 138 138 138 138 138 138 138 138 138 138 

0.1 138 138 138 138 138 138 138 138 138 138 

1 138 138 138 138 138 138 138 138 138 138 

Week 1 0.001 163 163 163 163 163 163 163 163 163 163 

0.01 163 163 163 163 163 163 163 163 163 163 

0.1 163 163 163 163 163 163 163 163 163 163 

1 163 163 163 163 163 163 163 163 163 163 

2 0.001 164 164 164 164 164 164 164 164 164 164 

0.01 164 164 164 164 164 164 164 164 164 164 

0.1 164 164 164 164 164 164 164 164 164 164 

1 164 164 164 164 164 164 164 164 164 164 

3 0.001 157 157 157 157 157 157 157 157 157 157 

0.01 157 157 157 157 157 157 157 157 157 157 

0.1 157 157 157 157 157 157 157 157 157 157 

1 157 157 157 157 157 157 157 157 157 157 
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A2.3. GBR Hyper-parameters for London 

Reference Prediction 

round 

learning_rate n_estimators 

100 200 300 400 500 600 700 800 900 1000 

Hour 1 0.001 539 513 491 472 457 444 435 427 420 415 

0.01 416 363 341 332 334 339 345 351 350 349 

0.1 334 351 360 367 373 388 386 403 414 405 

1 753 708 725 709 721 724 675 715 727 719 

2 0.001 524 491 460 431 409 388 371 357 345 334 

0.01 333 261 243 242 240 235 229 227 223 222 

0.1 210 235 256 278 269 267 271 272 274 278 

1 504 491 508 498 517 485 490 559 491 496 

3 0.001 525 496 468 442 419 397 380 365 352 341 

0.01 340 265 241 230 221 215 211 207 205 201 

0.1 211 173 167 166 163 165 164 163 161 161 

1 206 204 203 203 202 204 204 203 201 204 

Day 1 0.001 186 186 184 181 176 173 170 167 164 162 

0.01 162 163 167 170 172 175 179 183 184 190 

0.1 185 210 257 270 267 267 272 268 271 270 

1 334 336 344 346 357 350 362 364 351 349 

2 0.001 186 186 184 181 177 173 170 167 165 163 

0.01 163 164 163 161 161 165 167 168 169 167 

0.1 167 189 194 202 213 219 218 223 235 230 

1 364 361 361 386 361 392 392 361 377 387 

3 0.001 178 170 164 159 154 151 148 146 144 143 

0.01 143 142 144 144 143 143 143 143 143 145 

0.1 147 152 154 158 159 161 161 161 163 163 

1 207 216 217 214 215 211 210 209 218 217 

Week 1 0.001 206 197 189 182 177 172 169 166 164 162 

0.01 162 157 156 159 164 169 175 179 180 181 

0.1 192 227 256 264 276 283 276 277 268 280 

1 387 338 335 398 338 344 346 354 406 343 

2 0.001 207 198 191 185 181 177 174 172 169 168 

0.01 168 161 159 164 168 172 178 183 188 194 

0.1 186 201 205 199 211 200 210 210 213 219 

1 436 480 438 444 475 450 440 439 473 473 

3 0.001 206 197 188 182 176 171 167 165 162 161 

0.01 160 155 155 156 157 158 159 161 162 163 

0.1 165 165 164 164 164 159 164 162 164 170 

1 202 210 209 222 216 223 217 223 220 219 
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A2.4. SVR Hyper-parameters (Kernel Linear) for London 

Reference Prediction 

round 

C cache_size 

100 200 300 400 500 600 700 800 900 1000 

Hour 1 0.001 563 563 563 563 563 563 563 563 563 563 

0.01 565 565 565 565 565 565 565 565 565 565 

0.1 565 565 565 565 565 565 565 565 565 565 

1 555 555 555 555 555 555 555 555 555 555 

2 0.001 516 516 516 516 516 516 516 516 516 516 

0.01 509 509 509 509 509 509 509 509 509 509 

0.1 504 504 504 504 504 504 504 504 504 504 

1 502 502 502 502 502 502 502 502 502 502 

3 0.001 521 521 521 521 521 521 521 521 521 521 

0.01 520 520 520 520 520 520 520 520 520 520 

0.1 519 519 519 519 519 519 519 519 519 519 

1 515 515 515 515 515 515 515 515 515 515 

Day 1 0.001 140 140 140 140 140 140 140 140 140 140 

0.01 140 140 140 140 140 140 140 140 140 140 

0.1 140 140 140 140 140 140 140 140 140 140 

1 140 140 140 140 140 140 140 140 140 140 

2 0.001 139 139 139 139 139 139 139 139 139 139 

0.01 139 139 139 139 139 139 139 139 139 139 

0.1 139 139 139 139 139 139 139 139 139 139 

1 140 140 140 140 140 140 140 140 140 140 

3 0.001 139 139 139 139 139 139 139 139 139 139 

0.01 139 139 139 139 139 139 139 139 139 139 

0.1 139 139 139 139 139 139 139 139 139 139 

1 139 139 139 139 139 139 139 139 139 139 

Week 1 0.001 158 158 158 158 158 158 158 158 158 158 

0.01 158 158 158 158 158 158 158 158 158 158 

0.1 159 159 159 159 159 159 159 159 159 159 

1 161 161 161 161 161 161 161 161 161 161 

2 0.001 158 158 158 158 158 158 158 158 158 158 

0.01 159 159 159 159 159 159 159 159 159 159 

0.1 159 159 159 159 159 159 159 159 159 159 

1 162 162 162 162 162 162 162 162 162 162 

3 0.001 158 158 158 158 158 158 158 158 158 158 

0.01 158 158 158 158 158 158 158 158 158 158 

0.1 158 158 158 158 158 158 158 158 158 158 

1 158 158 158 158 158 158 158 158 158 158 
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A2.5. RFR Hyper-parameters for London 

Reference Prediction 

round 

 n_estimators 

100 200 300 400 500 600 700 800 900 1000 

Hour 1  273 292 295 293 290 299 291 287 293 291 

2  212 220 210 206 209 206 210 205 199 206 

3  144 144 142 142 144 144 142 146 146 146 

Day 1  177 166 176 176 178 173 172 171 175 173 

2  163 159 158 160 154 162 156 157 157 157 

3  147 148 149 146 149 146 146 147 147 149 

Week 1  204 178 186 185 187 187 188 188 187 187 

2  171 169 175 171 174 176 173 168 176 170 

3  164 162 159 163 162 162 162 163 163 161 

 

A2.6. ABR Hyper-parameters for Washington 

Reference Prediction 

round 

learning_rate n_estimators 

100 200 300 400 500 600 700 800 900 1000 

Hour 1 1 72 73 67 70 70 69 72 75 68 78 

2 67 74 81 72 83 77 68 76 79 79 

3 75 74 79 74 74 73 78 73 72 73 

4 189 145 105 134 161 160 170 316 111 218 

2 1 66 74 78 78 78 78 80 79 77 79 

2 73 79 73 74 73 74 73 71 73 76 

3 63 68 64 64 68 65 69 67 66 65 

4 135 98 156 137 140 174 200 148 114 192 

3 1 69 74 75 72 74 75 72 70 78 75 

2 73 72 72 76 73 75 75 71 72 74 

3 67 71 67 73 68 71 71 67 73 70 

4 99 75 134 140 151 94 113 114 109 105 

Day 1 1 53 58 56 64 61 63 62 55 64 64 

2 55 56 57 59 60 60 57 61 59 59 

3 71 58 65 62 60 59 60 61 62 64 

4 134 167 100 145 111 180 260 150 111 69 

2 1 59 59 64 63 64 62 62 63 63 63 

2 58 59 61 64 62 60 62 63 63 61 

3 65 72 70 69 66 71 70 73 67 72 

4 107 145 139 96 94 89 209 106 200 267 

3 1 64 74 75 64 69 71 70 67 56 68 

2 83 65 75 67 66 62 59 67 62 61 

3 70 74 77 75 76 77 77 77 75 76 

4 293 242 106 273 391 154 210 167 112 214 

Week 1 1 60 65 58 62 59 77 65 62 61 62 

2 60 65 67 67 58 73 63 69 64 63 

3 62 66 53 53 56 59 56 55 54 54 

4 62 138 71 184 89 169 127 281 148 62 

2 1 71 69 83 71 71 74 82 76 72 69 

2 80 63 69 64 65 67 72 69 67 68 

3 58 54 49 53 52 55 54 55 53 53 

4 321 91 196 217 243 64 258 97 171 254 

3 1 86 75 78 82 74 77 81 68 71 72 

2 93 93 89 89 78 76 82 84 94 90 

3 85 93 88 79 82 83 89 89 84 82 

4 337 158 100 231 121 126 153 341 112 92 
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A2.7. BRR Hyper-parameters for Washington 

Reference Prediction 

round 

toll n_iter 

100 200 300 400 500 600 700 800 900 1000 

Hour 1 0.001 79 79 79 79 79 79 79 79 79 79 

0.01 79 79 79 79 79 79 79 79 79 79 

0.1 79 79 79 79 79 79 79 79 79 79 

1 79 79 79 79 79 79 79 79 79 79 

2 0.001 76 76 76 76 76 76 76 76 76 76 

0.01 76 76 76 76 76 76 76 76 76 76 

0.1 76 76 76 76 76 76 76 76 76 76 

1 76 76 76 76 76 76 76 76 76 76 

3 0.001 75 75 75 75 75 75 75 75 75 75 

0.01 75 75 75 75 75 75 75 75 75 75 

0.1 75 75 75 75 75 75 75 75 75 75 

1 75 75 75 75 75 75 75 75 75 75 

Day 1 0.001 47 47 47 47 47 47 47 47 47 47 

0.01 47 47 47 47 47 47 47 47 47 47 

0.1 47 47 47 47 47 47 47 47 47 47 

1 47 47 47 47 47 47 47 47 47 47 

2 0.001 47 47 47 47 47 47 47 47 47 47 

0.01 47 47 47 47 47 47 47 47 47 47 

0.1 47 47 47 47 47 47 47 47 47 47 

1 47 47 47 47 47 47 47 47 47 47 

3 0.001 47 47 47 47 47 47 47 47 47 47 

0.01 47 47 47 47 47 47 47 47 47 47 

0.1 47 47 47 47 47 47 47 47 47 47 

1 48 48 48 48 48 48 48 48 48 48 

Week 1 0.001 45 45 45 45 45 45 45 45 45 45 

0.01 45 45 45 45 45 45 45 45 45 45 

0.1 45 45 45 45 45 45 45 45 45 45 

1 45 45 45 45 45 45 45 45 45 45 

2 0.001 45 45 45 45 45 45 45 45 45 45 

0.01 45 45 45 45 45 45 45 45 45 45 

0.1 45 45 45 45 45 45 45 45 45 45 

1 45 45 45 45 45 45 45 45 45 45 

3 0.001 45 45 45 45 45 45 45 45 45 45 

0.01 45 45 45 45 45 45 45 45 45 45 

0.1 45 45 45 45 45 45 45 45 45 45 

1 45 45 45 45 45 45 45 45 45 45 
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A2.8. GBR Hyper-parameters for Washington 

Reference Prediction 

round 

learning_rate n_estimators 

100 200 300 400 500 600 700 800 900 1000 

Hour 1 0.001 119 113 107 102 98 94 90 87 84 82 

0.01 82 66 60 56 54 53 52 51 50 50 

0.1 51 47 47 47 47 46 45 45 45 45 

1 55 58 59 59 60 60 59 59 60 60 

2 0.001 118 112 106 100 96 92 88 85 83 80 

0.01 80 63 58 56 54 54 53 53 53 52 

0.1 51 48 46 45 45 45 45 44 44 44 

1 56 57 62 59 62 58 62 61 58 59 

3 0.001 118 112 106 101 96 92 89 86 83 81 

0.01 81 65 58 54 51 49 48 47 46 45 

0.1 45 43 42 41 41 42 42 43 43 44 

1 51 53 49 50 52 50 52 52 50 50 

Day 1 0.001 68 65 62 60 58 56 55 53 52 51 

0.01 51 48 47 47 48 48 48 48 48 47 

0.1 48 50 51 51 52 52 52 52 52 53 

1 51 55 60 61 63 61 62 61 61 62 

2 0.001 68 65 62 60 58 56 55 53 52 51 

0.01 51 48 47 46 47 47 48 48 48 48 

0.1 48 48 47 47 48 47 47 48 47 48 

1 59 67 68 64 69 63 70 63 65 64 

3 0.001 68 65 62 60 58 56 54 53 52 51 

0.01 51 47 46 45 45 44 44 43 43 43 

0.1 43 41 42 43 43 43 44 45 45 46 

1 48 56 55 56 62 61 61 61 58 62 

Week 1 0.001 58 56 54 52 51 50 48 47 47 46 

0.01 46 43 42 41 41 41 41 41 41 41 

0.1 41 42 42 41 42 42 42 42 42 42 

1 51 54 56 56 57 56 58 58 58 58 

2 0.001 58 56 54 52 51 50 48 47 47 46 

0.01 46 43 42 41 41 41 41 41 40 40 

0.1 40 39 39 39 40 40 40 41 41 41 

1 53 56 58 60 60 59 61 61 61 61 

3 0.001 58 56 54 53 51 50 49 48 47 46 

0.01 46 43 42 41 41 40 40 39 39 39 

0.1 40 39 40 40 41 41 42 42 42 42 

1 52 54 58 58 59 59 60 59 60 61 
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A2.9. SVR Hyper-parameters (Kernel Linear) for Washington 

Reference Prediction 

round 

C cache_size 

100 200 300 400 500 600 700 800 900 1000 

Hour 1 0.001 122 122 122 122 122 122 122 122 122 122 

0.01 123 123 123 123 123 123 123 123 123 123 

0.1 120 120 120 120 120 120 120 120 120 120 

1 104 104 104 104 104 104 104 104 104 104 

2 0.001 116 116 116 116 116 116 116 116 116 116 

0.01 116 116 116 116 116 116 116 116 116 116 

0.1 114 114 114 114 114 114 114 114 114 114 

1 100 100 100 100 100 100 100 100 100 100 

3 0.001 118 118 118 118 118 118 118 118 118 118 

0.01 117 117 117 117 117 117 117 117 117 117 

0.1 114 114 114 114 114 114 114 114 114 114 

1 97 97 97 97 97 97 97 97 97 97 

Day 1 0.001 47 47 47 47 47 47 47 47 47 47 

0.01 46 46 46 46 46 46 46 46 46 46 

0.1 46 46 46 46 46 46 46 46 46 46 

1 46 46 46 46 46 46 46 46 46 46 

2 0.001 47 47 47 47 47 47 47 47 47 47 

0.01 47 47 47 47 47 47 47 47 47 47 

0.1 46 46 46 46 46 46 46 46 46 46 

1 46 46 46 46 46 46 46 46 46 46 

3 0.001 47 47 47 47 47 47 47 47 47 47 

0.01 47 47 47 47 47 47 47 47 47 47 

0.1 46 46 46 46 46 46 46 46 46 46 

1 46 46 46 46 46 46 46 46 46 46 

Week 1 0.001 44 44 44 44 44 44 44 44 44 44 

0.01 44 44 44 44 44 44 44 44 44 44 

0.1 44 44 44 44 44 44 44 44 44 44 

1 43 43 43 43 43 43 43 43 43 43 

2 0.001 44 44 44 44 44 44 44 44 44 44 

0.01 44 44 44 44 44 44 44 44 44 44 

0.1 43 43 43 43 43 43 43 43 43 43 

1 42 42 42 42 42 42 42 42 42 42 

3 0.001 44 44 44 44 44 44 44 44 44 44 

0.01 44 44 44 44 44 44 44 44 44 44 

0.1 44 44 44 44 44 44 44 44 44 44 

1 43 43 43 43 43 43 43 43 43 43 
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A2.10. RFR Hyper-parameters for Washington 

Reference Prediction 

round 

 n_estimators 

100 200 300 400 500 600 700 800 900 1000 

Hour 1  42 42 42 42 42 43 42 42 42 42 

2  39 38 38 39 39 38 39 38 38 39 

3  41 41 41 41 41 41 41 41 41 41 

Day 1  48 48 48 48 48 48 47 48 48 48 

2  48 48 48 48 47 48 47 47 47 47 

3  44 45 43 44 44 44 43 44 44 44 

Week 1  43 42 42 43 42 42 43 42 42 42 

2  40 40 40 40 40 40 40 40 40 40 

3  41 40 40 39 39 40 39 40 40 39 

 

 

A.3. The best hyper-parameters of each ML regressor for system-wide prediction  

Regressor Ref. Features Hyper-parameters 

LONDON 

ABR Hour Round 1 {'base_estimator':None, 'learning_rate':1.0, 'loss':'linear', 'n_estimators':1000, 

'random_state':None} 

Round 2 {'base_estimator':None, 'learning_rate':3.0, 'loss':'linear', 'n_estimators':600, 

'random_state':None} 

Round 3 {'base_estimator':None, 'learning_rate':3.0, 'loss':'linear', 'n_estimators':100, 

'random_state':None} 

Day Round 1 {'base_estimator':None, 'learning_rate':1.0, 'loss':'linear', 'n_estimators':600, 

'random_state':None} 

Round 2 {'base_estimator':None, 'learning_rate':1.0, 'loss':'linear', 'n_estimators':800, 

'random_state':None} 

Round 3 {'base_estimator':None, 'learning_rate':4.0, 'loss':'linear', 'n_estimators':100, 

'random_state':None} 

Week Round 1 {'base_estimator':None, 'learning_rate':1.0, 'loss':'linear', 'n_estimators':1000, 

'random_state':None} 

Round 2 {'base_estimator':None, 'learning_rate':1.0, 'loss':'linear', 'n_estimators':100, 

'random_state':None} 

Round 3 {'base_estimator':None, 'learning_rate':1.0, 'loss':'linear', 'n_estimators':800, 

'random_state':None} 

BRR All Refs. All Rounds { 'alpha_1':1e-06, 'alpha_2':1e-06, 'compute_score':False, 'copy_X':True, 

'fit_intercept':True, 'lambda_1':1e-06, 'lambda_2':1e-06, 'n_iter':100, 

'normalize':False, 'tol':1, 'verbose':False} 

DTR All refs. All Rounds  {'criterion':'mse', 'max_depth':None, 'max_features':None, 

'max_leaf_nodes':None, 'min_samples_leaf':1, 'min_samples_split':2, 

'min_weight_fraction_leaf':0.0, 'presort':False, 'random_state':None, 

'splitter':'best'} 

GBR Hour Round 1 {'alpha':0.9, 'init':None, 'learning_rate':0.01, 'loss':'ls', 'max_depth':2, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':400, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 2 {'alpha':0.9, 'init':None, 'learning_rate':0.1, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':100, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 
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'warm_start':False} 

Round 3 {'alpha':0.9, 'init':None, 'learning_rate':0.1, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None, 'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':900, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Day Round 1 {'alpha':0.9, 'init':None, 'learning_rate':0.01, 'loss':'ls', 'max_depth':2, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':100, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 2 {'alpha':0.9, 'init':None, 'learning_rate':0.01, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':400, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 3 {'alpha':0.9, 'init':None, 'learning_rate':0.01, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None, 'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':200, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Week Round 1 {'alpha':0.9, 'init':None, 'learning_rate':0.01, 'loss':'ls', 'max_depth':2, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':300, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 2 {'alpha':0.9, 'init':None, 'learning_rate':0.01, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':300, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 3 {'alpha':0.9, 'init':None, 'learning_rate':0.01, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None, 'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':300, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

SVR Hour All Rounds {'C':1, 'cache_size':100, 'coef0':0.0, 'degree':3, 'epsilon':0.1, 'gamma':'auto', 

'kernel':'linear', 'max_iter':-1, 'shrinking':True, 'tol':0.001, 'verbose':False} 

 Other 

Ref. 

All Rounds 'C':0.001, 'cache_size':100, 'coef0':0.0, 'degree':3, 'epsilon':0.1, 'gamma':'auto', 

'kernel':'linear', 'max_iter':-1, 'shrinking':True, 'tol':0.001, 'verbose':False} 

RFR Hour Round 1 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 100, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 2 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1,  'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 900, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 3 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 300, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Day Round 1 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 200, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 
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Round 2 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1,  'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 500, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 3 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 400, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Week Round 1 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 200, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 2 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1,  'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 800, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 3 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 300, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

WASHINGTON DC 

ABR Hour Round 1 {'base_estimator':None, 'learning_rate':2.0, 'loss':'linear', 'n_estimators':100, 

'random_state':None} 

Round 2 {'base_estimator':None, 'learning_rate':3.0, 'loss':'linear', 'n_estimators':100, 

'random_state':None} 

Round 3 {'base_estimator':None, 'learning_rate':3.0, 'loss':'linear', 'n_estimators':100, 

'random_state':None} 

Day Round 1 {'base_estimator':None, 'learning_rate':1.0, 'loss':'linear', 'n_estimators':100, 

'random_state':None} 

Round 2 {'base_estimator':None, 'learning_rate':2.0, 'loss':'linear', 'n_estimators':100, 

'random_state':None} 

Round 3 {'base_estimator':None, 'learning_rate':1.0, 'loss':'linear', 'n_estimators':900, 

'random_state':None} 

Week Round 1 {'base_estimator':None, 'learning_rate':3.0, 'loss':'linear', 'n_estimators':300, 

'random_state':None} 

Round 2 {'base_estimator':None, 'learning_rate':3.0, 'loss':'linear', 'n_estimators':300, 

'random_state':None} 

Round 3 {'base_estimator':None, 'learning_rate':1.0, 'loss':'linear', 'n_estimators':800, 

'random_state':None} 

BRR All Refs. All Rounds { 'alpha_1':1e-06, 'alpha_2':1e-06, 'compute_score':False, 'copy_X':True, 

'fit_intercept':True, 'lambda_1':1e-06, 'lambda_2':1e-06, 'n_iter':100, 

'normalize':False, 'tol':1, 'verbose':False} 

DTR All refs. All Rounds  {'criterion':'mse', 'max_depth':None, 'max_features':None, 

'max_leaf_nodes':None, 'min_samples_leaf':1, 'min_samples_split':2, 

'min_weight_fraction_leaf':0.0, 'presort':False, 'random_state':None, 

'splitter':'best'} 

GBR Hour Round 1 {'alpha':0.9, 'init':None, 'learning_rate':0.1, 'loss':'ls', 'max_depth':2, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':700, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 2 {'alpha':0.9, 'init':None, 'learning_rate':0.1, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':800, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 
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'warm_start':False} 

Round 3 {'alpha':0.9, 'init':None, 'learning_rate':0.1, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None, 'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':400, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Day Round 1 {'alpha':0.9, 'init':None, 'learning_rate':0.01, 'loss':'ls', 'max_depth':2, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':300, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 2 {'alpha':0.9, 'init':None, 'learning_rate':0.01, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':400, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 3 {'alpha':0.9, 'init':None, 'learning_rate':0.1, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None, 'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':200, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Week Round 1 {'alpha':0.9, 'init':None, 'learning_rate':0.1, 'loss':'ls', 'max_depth':2, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':100, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 2 {'alpha':0.9, 'init':None, 'learning_rate':0.1, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None,'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':200, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

Round 3 {'alpha':0.9, 'init':None, 'learning_rate':0.1, 'loss':'ls', 'max_depth':4, 

'max_features':None, 'max_leaf_nodes':None, 'min_samples_leaf':1, 

'min_samples_split':2, 'min_weight_fraction_leaf':0.0, 'n_estimators':200, 

'presort':'auto', 'random_state':None, 'subsample':1.0, 'verbose':0, 

'warm_start':False} 

SVR All Ref. All Rounds {'C':1, 'cache_size':100, 'coef0':0.0, 'degree':3, 'epsilon':0.1, 'gamma':'auto', 

'kernel':'linear', 'max_iter':-1, 'shrinking':True, 'tol':0.001, 'verbose':False} 

RFR Hour Round 1 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 100, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 2 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1,  'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 200, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 3 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 100, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Day Round 1 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 100, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 2 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1,  'min_samples_split' : 2, 
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'min_weight_fraction_leaf' : 0.0, 'n_estimators': 500, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 3 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 300, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Week Round 1 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 200, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 2 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1,  'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 100, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

Round 3 {'bootstrap': True, 'criterion': 'mse', 'max_depth': None,'max_features':'auto', 

'max_leaf_nodes': None, 'min_samples_leaf': 1, 'min_samples_split' : 2, 

'min_weight_fraction_leaf' : 0.0, 'n_estimators': 400, 'n_jobs' : 1, 'oob_score' : 

False, 'random_state' : None, 'verbose': 0, 'warm_start' : False} 

 


