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Abstract For the reconstruction and interpolation of precipitation fields, we present the application of a
stochastic approach called Random Mixing. Generated fields are based on a data set consisting of rain
gauge observations and path-averaged rain rates estimated using Commercial Microwave Link (CML)
derived information. Precipitation fields are received as linear combination of unconditional spatial random
fields, where the spatial dependence structure is described by copulas. The weights of the linear
combination are optimized such that the observations and the spatial structure of the precipitation
observations are reproduced. The innovation of the approach is that this strategy enables the simulation of
ensembles of precipitation fields of any size. Each ensemble member is in concordance with the observed
path-averaged CML derived rain rates and additionally reflects the observed rainfall variability along the
CML paths. The ensemble spread allows additionally an estimation of the uncertainty of the reconstructed
precipitation fields. The method is demonstrated both for a synthetic data set and a real-world data set in
South Germany. While the synthetic example allows an evaluation against a known reference, the second
example demonstrates the applicability for real-world observations. Generated precipitation fields of both
examples reproduce the spatial precipitation pattern in good quality. A performance evaluation of Random
Mixing compared to Ordinary Kriging demonstrates an improvement of the reconstruction of the observed
spatial variability. Random Mixing is concluded to be a beneficial new approach for the provision of
precipitation fields and ensembles of them, in particular when different measurement types are combined.

1. Introduction

Knowledge of the spatiotemporal distribution of rainfall is crucial for the understanding of the regional water
cycle. Since precipitation has a high variability both in space and time, the available spatiotemporal products
often still suffer from limited quality. Precipitation fields derived from atmospheric models can suffer from sig-
nificant limitations concerning the reproduction of the spatiotemporal distribution of rainfall fields (e. g., Frei
et al., 2003; Randall et al., 2007; Smiatek et al., 2016). Stochastic precipitation fields conditioned on observa-
tions are assumed to be more reliable, even when considering measurement uncertainties.

Most common are observations from rain gauge stations, which provide high-quality information for a spe-
cific measurement point. Their main disadvantage is the limited spatial representativeness, which can lead
to significant biases in interpolated rainfall fields in particular in complex terrain. Additional uncertainties
can be caused by wind or exposure-induced errors (e. g., Ne�spor & Sevruk, 1999; Sevruk & Zahlavova, 1994).

A further prevalent source of precipitation information is weather radars. They provide measurements with
a fairly high spatial resolution, depending on the radar system and the distance from the radar, but typically
in the range of 1 km. The accuracy of weather radar measurements, however, suffers from the uncertainty
of the relation between the measured reflectivity Z and the desired quantity, the rain rate R (Ulbrich & Lee,
1999). Additional errors are induced by the effect of the vertical profile of reflectivity (e. g., Hazenberg et al.,
2011; Joss & Pittini, 1991), beam blockage, and bright band interception (e. g., Andrieu et al., 1997; Germann
et al., 2006; Wagner et al., 2012). The latter two are particularly present in mountain areas. In order to reduce
the uncertainties induced by the complex relation between reflectivity and precipitation, radar observations
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are combined with rain gauge measurements. Combining methods range from Mean Field Bias correction
(e. g., Seo & Breidenbach, 2002; Thorndahl et al., 2014), over various geostatistical approaches (e. g.,
Goudenhoofdt & Delobbe, 2009), to nonparametric approaches (e. g., Hasan et al., 2016a, 2016b). Hasan
et al. (2016a) showed recently that in case of a large available amount of data such nonparametric merging
approaches are less sensitive to the effects of the vertical reflectivity profile.

The technique of exploiting data from existing CML networks was introduced as an alternative method for
rainfall estimations by Messer et al. (2006). This technique relies on the fact that precipitation attenuates the
microwave radiation along the path between a transmitting to a receiving antenna. The observed attenua-

tion A in dB can be related to a path-averaged rain rate (�R) via the relation A5að�RÞbL5a
Ð

LrðxÞbdx (Olsen

et al., 1978), where L is the length of the CML and a, b are constants depending on the radiation frequency
and on the rain drop-size distribution (DSD) (Jameson, 1991). Compared to the Z-R relation of the weather
radar, this A-R relation is relatively robust to changes in the DSD, in particular in the frequency band
between 20 and 40 GHz, which is typical for CMLs. One further advantage of CMLs is that there already exist
large networks of them in almost all inhabited areas around the globe (Global System for Mobile Communi-
cations, 2017, available at http://www.gsma.com/aboutus/gsm-technology/gsm). Uncertainties are induced
for example by wet antennas or the spatial variability of the assumed DSD along the link path (e. g., Berne &
Uijlenhoet, 2007; Leijnse et al., 2008; Overeem et al., 2011).

Several studies have shown the successful usage of CMLs for rainfall estimations (e. g., Chwala et al., 2012;
Doumounia et al., 2014; Overeem et al., 2011; Zinevich et al., 2010). The potential of such rainfall estimations
for hydrological model simulations has recently been shown by Smiatek et al. (2017). Bianchi et al. (2013)
have introduced an assimilation based method to obtain rain rate information by combining rain gauge,
radar, and microwave link observations. The reconstruction of spatiotemporal precipitation dynamics by
assimilating a rainfall advection model and CML observations is shown by Zinevich et al. (2008b). Liberman
et al. (2014b) have improved radar-based rainfall mapping by integrating CML information. In addition, vari-
ous approaches exist which aim at 2-D precipitation field reconstructions based on CMLs, e. g., (Overeem
et al., 2013, 2016) have assigned the CML measurement as point information on the center of the links and
have interpolated this data using Ordinary Kriging or Inverse Distance Weighting. Based on the work of
(Giuli et al., 1991, 1999), e. g., Zinevich et al. (2008a) and D’Amico et al. (2016) have reconstructed precipita-
tion fields utilizing CMLs using a tomographic model. Further approaches divide each link into subsegments
and achieve the rain rates of the subsegments by e. g., a sampling algorithm (Goldshtein et al., 2009), an
iterative Newton-Raphson algorithm (Liberman & Messer, 2014a), or a measurement model (Roy et al.,
2014). Subsequently the authors use these estimates for the reconstruction of the rainfall pattern.

In this study, we apply the stochastic Random Mixing method (B�ardossy & H€orning, 2015) on a combined
data set of rain gauge and CML precipitation measurements to reconstruct precipitation fields. Following this
method, a precipitation field is received as a linear combination of unconditional spatial random fields in
which the spatial dependence structure is described by copulas. By varying the weights of the linear combina-
tion such fields are generated which reproduce the observations and the observed spatial structure. One
advantage of Random Mixing is that this linear combination is directly constrained by the observations,
thereby the rain gauge observations are linear constraints and the CML observations are nonlinear ones. This
implies that the CML measurements have not to be transformed into point or pixel information. Since the
equation system given by the linear combination and its constraints has not a unique solution, Random Mix-
ing has the benefit of generating ensembles of possible reconstructions. Each ensemble member is in concor-
dance with the combined observational data and reflect the observed rainfall variability. Especially, each field
reflects the observed rain rates but the precipitation values along the CML paths vary within the ensemble.
Moreover, such ensembles of reconstructed rainfall fields allow additionally an uncertainty estimation.

For the evaluation of precipitation fields generated by Random Mixing, we utilize as a first example a syn-
thetic data set based on a virtual reality (VR): Rain gauge observations and CML measurements are gener-
ated from an atmospheric model simulation of the Neckar catchment. In this case, the model simulation
represents the VR in which synthetic observations allow to mimic advantages and disadvantages of real
observations. This VR setup enables a detailed evaluation of the reconstructed or interpolated precipitation
fields, including a comparison to the existing algorithm of Overeem et al. (2013), against the known refer-
ence. A second example demonstrates the applicability of Random Mixing to real observations. Here, the
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interpolation is based on rain gauge observations provided by DWD Climate Data Center (CDC) and real-
time data of CML networks acquired with the system introduced by Chwala et al. (2016). Due to the current
availability of CML measurements, the applicability to real observations for the Neckar catchment was not
yet feasible. Instead we have chosen a neighboring area for the second example. As reference for the evalu-
ation of the real-world example, we use the so-called RADOLAN RW data set (Radar Online Calibration), a
radar product generated by the CDC (Bartels et al., 2004).

2. Method

The idea of Random Mixing is an extension of the Gradual Deformation approach first presented by Hu
(2000). It has been shown that any spatially normally distributed random field Z(x) can be expressed as a lin-
ear combination of n independent random fields YiðxÞ with the corresponding weights ai:

ZðxÞ5
Xn

i51

aiYiðxÞ (1)

The expected value (E) of this field Z(x) has to be 0 with E ZðxÞ½ �5E YiðxÞ½ �50, and the variance (Var) is
Var ZðxÞ½ �5Var YiðxÞ½ �51. Thereby the spatial distribution of these random fields is described by the covari-
ance matrix C. For the construction of the covariance of the linear combination, it is assumed that all YiðxÞ
share the same covariance CYiðxÞ and that:

Xn

i51

a2
i 51 (2)

If equation (2) is satisfied, it follows CZðxÞ5CYiðxÞ.

While Hu (2000) requires a normally distributed random field Z(x), B�ardossy and H€orning (2015) showed
that this requirement can be weakened by the assumption that the spatial dependence of Z(x) can be repre-
sented by Gaussian copulas. The advantage of copulas is the ability to describe the dependence structure
independent of the marginal distribution. A detailed introduction can be found in Nelsen (1999). The appli-
cation of copulas for hydrometeorological problems was successfully shown in e.g., B�ardossy and Pegram
(2013), Laux et al. (2011), Mao et al. (2015), Serinaldi (2009), and Vogl et al. (2012).

This study aims at the reconstruction of spatial precipitation fields R(x) based on rain gauge and path aver-
aged CML observations. Precipitation is usually not spatially normally distributed hence the field R(x) does
not fulfill the requirement of Hu (2000). Using the advantage of the copula approach, the precipitation field
R(x) can be transformed into a normally distributed field Z(x). The resulting field Z(x) fulfills the weakened
requirement for the use of Random Mixing. When F(r) denotes the marginal distribution of the precipitation
field R(x) and U21 is the inverse standard normal distribution, then this transformation into a normally dis-
tributed field can be described by ZðxÞ5U21 FðrÞð Þ.

Following the methodology proposed in B�ardossy and H€orning (2015), the construction of such a field Z(x)
can be realized by a stepwise procedure. Assuming that the rain gauge observations represent the frequen-
cies of precipitation amounts of the field R(x), as a first step the marginal distribution F(r) is estimated based
on the rain gauge observations RðxkÞ at locations xk with k 2 ½1 . . . K �. K denotes the amount of rain gauge
stations. Afterward the transformation of the rain gauge observations RðxkÞ into a normally distributed vari-
able is performed using zk5U21 FðRðxkÞÞð Þ. Based on the transformed observations zk, a Gaussian copula
model, reflecting the spatial dependence structure of the rain gauge observations, is constructed. The con-
struction of such a copula model has been described in B�ardossy and Li (2008). This copula model is used
to simulate n unconditional random fields YiðxÞ with i 2 ½1 . . . n�.

Subsequently, one has to find such ai that Z(x) satisfies the rain gauge observations. This can be expressed
by the linear system:

ZðxkÞ5
Xn

i51

aiYiðxkÞ5zk; (3)

for all k� 1; . . . ; K½ �. If n, with n> K, is large enough, equation (3) has infinite solutions. However, not all solu-
tions necessarily satisfy equation (2). Therefore B�ardossy and H€orning (2015) suggested to find a solution of
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equation (3) in which the sum of the squared weights ai is minimized with a minimum much smaller than
one:

Xn

i51

a0i
� �2 � 1: (4)

Equations (3) and (4) describe the quadratic optimization problem arg min½a01;...;a0n�
Pn

i51 a0i
� �2

, which can be
easily solved. If this minimum is larger than 1, n, the number of unconditional fields YiðxÞ, will be increased
until a minimum much smaller than 1 is found. The resulting field

Z0ðxÞ5
Xn

i51

a0i YiðxÞ (5)

solves equation (3) and consequently reproduces the rain gauge observations, but has a much lower vari-
ance as the target field Z(x). Therefore Z0ðxÞ is called a quasi-interpolation.

To preserve the variance of Z(x) a second component Z00ðxÞ, which is also expressed by a linear combina-
tion, has to be added. Each addend UmðxÞ with m� 1; . . . ; J2K½ � of Z00ðxÞ has to fulfill

UmðxkÞ50 (6)

for each rain gauge observation k� 1; . . . ; K½ �. Consequently, any linear combination of UmðxÞ added to Z0ðxÞ
will fulfill equation (3).

Each field UmðxÞ will also be constructed as a linear combination of JðJ > KÞ unconditional fields. These
fields have the same spatial properties as YiðxÞ. The construction of the Um is explained in more detail by
B�ardossy and H€orning (2015). Consequently, Z00ðxÞ can be specified as the following homogeneous system:

Z00ðxÞ5pða0; kÞ
XJ2K

m51

kmUmðxÞ (7)

with the corresponding weights km for the Um. The function pða0; kÞ is a function of the weight vectors a05
a0i
� �

i2 1;...;nf g and k5 kmð Þm2 1;...;J2Kf g which map into R. Function p is designed in such way that the com-
bined weights of the sum ZðxÞ5Z0ðxÞ1Z00ðxÞ solve equation (2) (B�ardossy & H€orning, 2015). The main
advantage of this construction is that one can generate an infinite number of conditional fields by modify-
ing the weights km. Particularly by varying km fields Z(x) can be constructed which are in concordance with
the observed path averaged CML rain rates �R .

In order to find such km the observed rain rates, �R have to be compared with the corresponding values of
the field Z(x). Therefore, for each CML path Ln , with n 2 ½1; . . . ;N� and N denoting the amount of CMLs, the
path-averaged rain rate of the field Z(x) is calculated as:ð

Ln

F21 U ZðxÞð Þð Þdx: (8)

Here, U is the standard normal distribution and F21 the inverse marginal distribution. The comparison between
the observed CML values �Rn and the corresponding path-averaged rain rates of Z(x) (equation (8)) formulate
nonlinear conditions. These nonlinear conditions can be achieved by minimizing the distance between the
observed path averaged CML rain rates and the corresponding path integrated rain rates of the field Z(x):

fobj : 5
XN
n51

ð
Ln

F21 U ZðxÞð Þð Þdx2�Rn

 !2

< E: (9)

Here, fobj denotes the objective function and E a defined threshold. Until a set of weights ðk1; . . . ; kJ2KÞ which
minimizes the objective function with fobj < E has been found, J has to be increased. The resulting field

ZðxÞ5
Xn

i51

a0i YiðxkÞ1pða0; kÞ
XJ2K

m51

kmUmðxÞ (10)

solves equations (2) and (3) and is in concordance with the CML observations.
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The back transformed field RðxÞ5F21 U ZðxÞð Þð Þ is one possible recon-
struction of the spatial precipitation field based on the given rain
gauge and CML observations. One has to be aware that for each
choice of the random fields YiðxÞ and terms of the sum of the Um the
resulting field Z(x) and thus R(x) could be different. Hence, by using
Random Mixing one can generate ensembles of random fields which
agree with the observations with any count of ensemble members.
Figure 1 shows the flowchart of the method.

3. Data

3.1. Synthetic Data Set
The synthetic data set is generated from the Consortium for Small-Scale
Modeling (COSMO v4.21) model (Baldauf et al., 2011) coupled to the
Community Land Model (CLM), a land-surface model (Lawrence &
Chase, 2007). The COSMO model is a nonhydrostatic numerical weather
prediction model, which is based on thermo-hydrodynamical equa-
tions. Since COSMO is a limited-area model, it needs lateral boundary
conditions. These are provided by the COSMO-DE model which is run
with a horizontal resolution of 2.8 km spanning the whole of Germany.
The lateral boundary forcing as well as the constant fields (topography,
land-mask etc.) are downscaled to a 1.1 km grid by linear interpolation.
For the atmosphere forcing, the lateral boundary conditions are
nudged against the internal model solution. This is done over a transi-
tion of a 12 km zone between the two domains. The resulting domain
for our precipitation fields cover a rectangular area of approx.
57,850 km2, with a horizontal resolution of approx. 1.1 km (0.018 in
rotated COSMO latitude-longitude coordinates), which includes the
whole Neckar catchment of approx. 14,000 km2, located in South Ger-
many. After a spin up of 100 model days (each day is forced with the
atmospheric data from 1 January 2007), the simulation period is run
from 2007 to 2013. To avoid boundary issues, we restrict our interpola-
tion area of the catchment from 47.88N to 49.638N and 7.958W to
10.378W (Figure 2, grey box). In the following, we call the synthetic data
set the VR. From this VR, we extract virtual hourly observations which
mimic rain gauge observations (K 5 71, yellow dots in Figure 2) and
CML precipitation estimations (N 5 53, yellow lines in Figure 2).

3.2. Real-World Observations
The real-world CML observations are located in the area from 47.958N
to 48.608N and 10.328W to 11.58W (Figure 2, dashed box). In this region,
data for 67 CMLs (N 5 67) are available with 1 min temporal resolution
via the data acquisition system developed and continuously operated

by Chwala et al. (2016). To derive rainfall information from the raw CML data, i.e., the transmitted (TX) and
received signal (RX) levels, the acquired time series are processed using the method introduced by Schleiss
and Berne (2010) to identify rainy periods. The required parameters (a window length and a threshold) have
been set based on findings from a comparison between CML data and radar data, performed for a different
period. Hence, the parameters are not optimized for the individual CMLs and individual rain events. This may
introduce false-positive or false-negative errors in the detection of the rainy periods, but guarantees that the
CML data processing is independent from the rain gauge and radar measurements also used in this study. A
window length value of 50 min was used for all CMLs and the threshold value was set to 0.5 dB for CMLs with
constant TX level and to 0.8 dB for CMLs with variable TX level. This distinction is necessary, since the variable
TX level is noisier than the received signal level, due to coarser quantization of the recorded values, 1dB for
TX, 0.3 dB for RX records. In a subsequent step, the rain rate is calculated from attenuation using the standard
relation provided by the International Telecommunication Union.

Figure 1. Flowchart of the Random Mixing algorithm.
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The rain gauge measurements, which are combined with the CLM data,
are provided by the CDC (DWD Climate Data Center (CDC), 2016). For
the specific time interval in this study, data of 11 observational stations
are available within the area of the CML locations. In order to base the
spatial distribution on more points, we extent our catchment area to
47.788N to 48.748N and 10.18W to 11.78W (Figure 2, solid white lined
box), in which data of 29 observational stations are available (K 5 29,
red diamonds in Figure 2). Since the CDC provides hourly data sets for
the rain gauges, we integrate the CLM data to a hourly data set.

3.3. RADOLAN RW Precipitation
As reference for evaluation of the real-world example, we use the so-
called RADOLAN RW data set (Radar Online Calibration), which is also a
CDC product (DWD CDC, 2016). The RADOLAN RW data set provides
precipitation information with an 1 km spatial and an hourly (h) tem-
poral resolution. The RADOLAN RW precipitation product is based on a
quality-controlled radar composite from 17 German weather radars
and adapted to hourly rain gauge observations. This routine procedure
has been developed within the RADOLAN project (Bartels et al., 2004)
by the German Weather Service (DWD) in cooperation with the water
management administrations of the federal states (LAWA) and oper-
ates since June 2005. We are aware that the RADOLAN RW data set has
its own uncertainties due to the measurements itself as well as to the
composing process. However, since the RADOLAN RW data set is a
widely used reference for precipitation pattern estimations (e. g.,
K€uhnlein et al., 2014; Philipp et al., 2016; Weijenborg et al., 2015), we
use this data set for the evaluation of advantages and disadvantages
of the Random Mixing method.

4. Examples and Evaluations

Both examples, based on synthetic and on real observations, are utilizing a chosen precipitation event.
Within these examples, for each time step we are generated 75 single realizations of possible solutions of
the reconstructed precipitation field. An overview of the setup can be found in the Appendix A.

For evaluation the reconstructed precipitation fields using Random Mixing are compared to the correspond-
ing reference fields as well as to interpolated rainfall fields using the method proposed by Overeem et al.
(2013). They are assigned the observed path-averaged rain rates �RN as point observations of the center of
each link. Subsequently all observation points are interpolated using Ordinary Kriging. In the following,
fields generated using Random Mixing are denoted with RM and fields are interpolated using the Ordinary
Kriging based method proposed by Overeem et al. (2013) are denoted with OK.

The performance of both methods is evaluated using the Root-Mean-Square Error (RMSE), the correlation
coefficient (q), and the coefficient of determination (r2):

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i51

Ri
sim2Ri

ref

� �2

s
(11)

q5
covðRsim; Rref Þ

rsimrref
(12)

r25

Xn

i51
Ri

sim2meanðRi
ref Þ

� �2Xn

i51
Ri

ref 2meanðRi
ref Þ

� �2 (13)

Here Rsim denotes the precipitation fields generated using RM or OK and Rref is the corresponding reference
precipitation fields, r is the standard deviation, and cov is the covariance.

Stuttgart
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Figure 2. Description of the observational data sets: The grey box marks the
area which is used for the synthetic example, the virtual observations consists
of 71 synthetic rain gauges (yellow dots) and 53 synthetic CMLs (yellow lines).
The solid white box marks the interpolation area of the real-world example; the
observations consist of 29 rain gauges operated by the CDC (red diamonds),
and 67 CMLs operated from Ericsson (red lines). The dashed box marks the
area of the CML locations.
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The quality measures stated above present a pixel-wise comparison between two fields which result in case
of slightly displaced patterns in a double penalty error. Therefore we choose as an additional quality mea-
sure the Fraction Skill Score (FSS) (Roberts & Humphrey, 2008). The FSS is a fuzzy verification measure which
compares the fractional precipitation coverage of a certain precipitation amount (threshold) for two pat-
terns. For a chosen threshold, which defines the rainy grid cells, the FSS is calculated by:

FSS512

XN

i;j51
ðPref Þi;j2ðPsimÞi;j
� �2

XN

i;j51
ðPref Þ2i;j1

XN

i;j51
ðPsimÞ2i;j

(14)

Here Pref and Psim are the fractional reference (ref) and reconstructed (sim) precipitation areas in each neigh-
borhood, and N describes the neighborhood size with the indices i and j for pixels into longitude and lati-
tude direction. The FSS values for each threshold and neighborhood size range between 0 and 1 (perfect
coverage). If the FSS value passes 0:51 fref

2 , a reasonable skill is achieved. Here fref is the wet-area ratio of the
reference field.

4.1. Synthetic Test Case
The first example is the synthetic test case based on the VR. Utilizing the VR, we generate faultless hourly
observations, 71 virtual rain gauge and 53 virtual CML observations. For demonstration we choose a precipi-
tation event which lasted over 4 days (from 6 P.M. on 30 May 2013 until 1 A.M. on 2 June 2013). Based on

Figure 3. Comparison between the (a) VR precipitation field and (b–f) fields generated using Random Mixing exemplarily for the time step 31 May 2013 5 P.M. in
mm/h: (a) VR precipitation field, (b) one single reconstruction based on rain gauge observations only, and (c) one single reconstruction based on the combined
data set of rain gauge and CML observations. An interpolation of the combined data set from rain gauge and CML observations is shown, calculated as mean field
based (d) on 5 random fields, (e) on 20 random fields, and (f) on 75 random fields. The black dots mark the locations of virtual rain gauges and the grey lines
locations of virtual CMLs.
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the virtual observations, we have simulated 75 random fields for each time step separately following the
Random Mixing method. Each single random field is one possible reconstruction of the spatial rainfall field.

Figure 3 demonstrates the generation of precipitation fields using RM exemplarily for 5 P.M. on 31 May
2013. Figure 3a shows the VR reference field. The rainfall field shown in Figure 3b is an example for a single
reconstruction which is in concordance with the rain gauge observations only. This means the field solves
equation (5) to equation (7), but the CML observations are not used. A single random field which is in con-
cordance with both, the rain gauge and CML measurements is shown in Figure 3c. This single reconstruc-
tion solves additionally also equation (9), hence the distance to the observed path-averaged rain rates �Rn is
minimized. Comparing both fields (b, c) to the reference precipitation field of the VR (a), it can be seen both
reconstructions mirror the main pattern, i.e., heavier precipitation in mountainous regions and the Alpine
foothills (in the south of the domain) as well as drier regions in the North-East and the Neckar valley, fairly
well. However, it can also be seen that the reconstruction, based on rain gauges only (Figure 3b), misses the
smaller structures. This is likely a result of the limited spatial representativeness of rain gauges. Including
CML observations into the reconstruction clearly improves the small-scale precipitation patterns (Figure 3c).

For this synthetic examples, we have simulated 75 single realizations (RM fields) as exemplarily depicted in
Figure 3c. Since the CML observations are integral measures, describing a path-averaged rain rate, they do
not give an unique solution for the reconstruction at the observed path. Furthermore, any RM precipitation
field is only one selected possible solution of an infinite number. Depending on performance requirements,
the outcome by using the Random Mixing can vary from single reconstructions, over ensembles of possible
reconstructions, to observation-based interpolations on the basis of an ensemble of reconstructed precipita-
tion fields. The second row of the figure shows the ensemble mean of 5 single realizations (d), 20 single
realizations (e), and all 75 single realizations (f). A comparison with the VR precipitation shows that each
ensemble mean reflects the main pattern of the VR reasonably well. However, while a single random field
tends to be too noisy compared to the VR rainfall field, using an increasing number of random fields for the
interpolation results in a more structured pattern, but then the extremes are smoothed. Therefore, the inter-
polation is highly dependent on the chosen quantity of random fields. In the following, we will reference
the mean calculated over an ensemble of five single reconstructions (Figure 3d) as RM interpolation.

The dispersion of the 75 single realizations around the ensemble mean precipitation is expressed by the
coefficient of variation. It is calculated as the ratio of the standard deviation to the mean. Figure 4 shows
the coefficient of variation between the 75 possible precipitation reconstructions of the virtual example

Figure 4. Coefficient of variation of all 75 single random fields generated using the Random Mixing method exemplarily for the time step 31 May 2013 5 P.M. in
mm/h: (a) reconstructions based on rain gauge observations only and (b) reconstructions based on the combined data set of rain gauge and CML observations.
The black dots mark the locations of virtual rain gauges and the grey lines locations of virtual CMLs.
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based on rain gauges only (a) and based on the combined data consisting of rain gauges and CML observa-
tions (b). High values of the coefficient of variation indicate a high range of uncertainties relative to the pre-
cipitation amount and vice versa. For this time step, the coefficient of variation is relatively low over most of
the catchment area. Only in the north-east of the catchment and south-west of Stuttgart (extending approx-
imately from 48.58N and 8.58E to 48.88N and 98E) a higher coefficient of variation can be found. Using the
combined observation data decreases the coefficient of variation over most of the area.

A direct comparison of the interpolation using OK against the interpolation using RM in respect to the VR
(Figure 3a) is shown in Figure 5. Here the left column shows the interpolations using OK (a) and RM (c), the
right column shows the difference plots of OK 2 VR (b) and RM 2 VR (d). Both methods reflect the main
precipitation (left column) well with a slight underestimation of the mean value by 0.28 mm/h for OK and
by 0.15 mm/h for RM. Moreover, the difference patterns in respect to the VR are comparable for both meth-
ods. The difference to the VR is for RM and OK less than 6 1 mm/h over most of the area. Only in the areas
of higher precipitation, the Black Forest region (in the west of the domain) and the Swabian Alps, the inter-
polation using OK and the interpolation using RM show obvious differences. While OK underestimates

Figure 5. Comparison of interpolation using OK and RM exemplarily for the time step 31 May 2013 5 P.M. in mm/h. The interpolated precipitation field using OK resp.
RM is depicted at left column (a) resp. (c). The right column shows the difference plots regarding to the VR, OK 2 VR (b) resp. RM 2 VR (d). The black dots mark the
locations of virtual rain gauges. The locations of the virtual CML are marked in grey, (a and b) as dots for the paths center and (c and d) lines for the link path.
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higher precipitation values by approx. 8.2 mm/h, the underestimation
by RM is 7.5 mm/h. However, the Figures 5b and 5d do not show such
remarkable differences among each other.

Since slight shifts of the pattern result in two errors (see Figure 5), an
under as well as an overestimation located closely together (double
penalty effect), we have calculated the FSS for different thresholds
(Figure 6). While both methods show a mostly identical performance
for a threshold of 2 mm/h, RM shows superior performance when
using higher thresholds. For a threshold of 4 mm/h, RM has reached a
reasonable skill at the used resolution of 1.1 km while OK reaches a
reasonable skill at a resolution of 5.5 km corresponding to five grid
cells. Using a threshold of 6 mm/h, RM reaches a reasonable perfor-
mance at a resolution of approx. 4 km (four grid cells), while OK does
not show a reasonable performance at all. This dominance of RM
regarding the reconstruction of the higher thresholds is an advantage
given by the method; using a linear combination of fields following
the observed spatial dependence structure, instead of a pure interpo-
lation method, allows the generation of extreme values between the
observed ones.

The chronological sequence of the area mean precipitation of the VR
(black), the interpolations using OK (red) and RM (solid blue line), one possible single reconstruction using
RM (dashed blue line), and the spread between the 75 single realizations (RFs, blue shade) for the precipita-
tion event are shown in Figure 7. It is demonstrated that its timing is well captured by both interpolations,
using OK (red) or RM (blue), as well as by all single realizations. However, all precipitation fields generated
using OK and nearly all fields generated using RM tend to a slight underestimation of the mean field precip-
itation over most of the period. Furthermore, the onset of the area mean precipitation of the reconstruc-
tions or interpolations has a delay of around 7 h when using RM, which results most likely from the
construction itself. Since during the first 7 h only sparse rain showers occur, the virtual rain gauges do not
catch these showers and consequently they are not included within the spatial distribution. OK instead,
uses all measurements equally, hence the onset of the interpolation is nearly correct.

Figure 8 shows the interpolated rainfall using OK (b) and RM (c) accu-
mulated over the period of the precipitation event compared to the
accumulated VR precipitation (a). The accumulations of both interpo-
lations as well as the VR reveal the typical summer precipitation pat-
tern for the Neckar area, with the driest areas at north-west and
wetter regions in mountainous regions as well as the Alpine foothills.
Both interpolations show a dry bias in the areas of the Black Forest
and the Swabian Alps compared to the VR. While this dry bias is con-
stant over the whole area when using the RM, the interpolation using
OK shows additionally a wet bias at the north-west part of the catch-
ment area. The accumulated rainfall of the RM interpolation ranges
between dry areas with 7 mm in the north-west and wet areas with
152 mm in the mountainous regions, it underestimates the VR precipi-
tation which ranges from 13 to 205 mm. In contrast the OK interpola-
tion has a smaller range between dry (14 mm) and wet areas
(140 mm) as the VR. The area mean precipitation is with an amount of
approx. 58 mm the same for both interpolation methods; both inter-
polation methods underestimate the area mean precipitation of the
VR by approx. 10 mm.

The quality of the interpolated precipitation time series is also con-
firmed by Figure 9 on a hourly timescale for OK (a) and RM (b). It is
shown that both interpolations fit the mean precipitation values fairly
well, but tend to underestimate the extreme rainfall. While OK clearly
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Figure 6. FSS for the interpolation using OK (red) and RM (blue) calculated for
different sizes of neighborhoods for the thresholds of 2 mm/h (left), 4 mm/h
(middle), and 6 mm/h (right) exemplarily for the time step 31 May 2013 5 P.M.
The dashed line marks the cut-off point after which a reasonable skill has been
achieved.

Figure 7. Area mean of hourly precipitation fields over the period of the pre-
cipitation event. The chronological sequence of the VR precipitation (black), the
interpolation using OK (red), the interpolation using RM (solid blue line), one
possible single reconstruction using RM (dashed blue line), and the spread
between the 75 single realizations (RF, blue shade).
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does not reproduce higher rainfall amounts, the underestimation of rainfall amounts is less intense when
using RM. However the pixels of higher values for the RM interpolation are often slightly displaced (see also
Figure 6). This is also verified by the correlation coefficient q, it is 0.8 when using RM and 0.7 when using
OK. The coefficient of determination is 0.64 for RM and 0.48 for OK.

Summarizing, the virtual example demonstrates that the RM method is capable to generated ensembles of
single reconstructions or interpolations, using rain gauge and CML precipitation observations, which reflect
the spatial and temporal behavior of the known reference reasonably well. It has been shown that the dry
bias in the extreme values has been reduced when using the interpolation with RM instead of OK. Also the
spatial variation is, although pixel with extreme values are slightly displaced, well presented by the RM
interpolation. This has been verified by the FSS. However, the precipitation fields generated using RM
(reconstruction of single realizations or interpolation) exhibit a dry bias compared to the VR precipitation
fields. One reason for the dry bias might be that the marginal distribution is estimated based on the rain

Figure 8. Accumulated precipitation pattern over the precipitation event in mm of (a) the VR, (b) the interpolation using OK, and (c) the interpolation using RM.
The black dots mark the locations of virtual rain gauges. The locations of the virtual CML are marked in grey, (a and b) as dots for the paths center and (a and c)
lines for the link path.

Figure 9. Pixel-wise (size: �1.1 km2) validation of the interpolated precipitation against VR precipitation on an hourly basis for (a) OK and (b) RM over the whole
simulation period. The black line denotes the 1:1 line.
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gauges. Hence, if the rain gauge stations do not fully represent the frequency distribution, the method
shows decreased performance (see also underestimation at Figure 8c or shifted onset at Figure 7).

4.2. Real-World Test Case
For demonstration of RM on real precipitation observations, we have chosen a 5 h precipitation event
occurring over the study area located in Bavaria (see Figure 2 white solid box, red marks). This rain shower
is moved from north-west of the study area southward. The observed time period of this precipitation event
counts from 8 P.M. at 22 June 2015 until 12 A.M. at 23 June 2015. For this 5 h time period, we use the RM
method to interpolate the combined set of precipitation observations, consisting of rain gauge and CML
measurements (see section 3.2). Like in the previous section (section 4.1), the interpolation is calculated as

Figure 10. (a–c and g–i) Interpolated precipitation fields using RM, for the period 22 June 2015 8 P.M. to 23 June 201512 A.M., compared to (d–f and j–l) RADOLAN
precipitation fields. Hourly precipitation fields are shown at (a–c and g, h) resp. (d–f and j, k) for the RM interpolation resp. the RADOLAN data set. The accumulated
RM resp. RADOLAN precipitation is pictured at (i) resp. (l). The points and lines at the figures (a–c and g–i) mark the observations, rain gauges, and CMLs, which are
used by RM. The dashed box marks the area where CML measurements are available and the grey triangle marks the location of the city of Munich.
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the mean over five single reconstructions of the precipitation field. Subsequently, the interpolated time
series of precipitation fields is evaluated against the corresponding RADOLAN data set (section 3.3).

Figure 10 shows the interpolated hourly precipitation fields using the RM method (a–c and g, h) compared
to the precipitation fields of the RADOLAN data set (d–f and j, k). As in the virtual example, when comparing
the RM interpolations with the corresponding RADOLAN fields, the interpolations capture the main precipi-
tation pattern very well, but tend to underestimate the heavier precipitation values. The maximal hourly
precipitation of the RADOLAN data ranges from 7.7 mm/h at 12 A.M. to 11 mm/h at 10 P.M. This is much
higher than the range of the maximal hourly precipitation of the RM interpolation which is between 5 mm/
h at 11 P.M. and 8.2 mm/h at 12 A.M. However, the area mean of the hourly precipitation over the interpo-
lated area differs less than 1 mm/h compared to the corresponding area mean of the RADOLAN data. The
interpolated mean values are slightly underestimating (overestimating) the RADOLAN data from 9 P.M. to
11 P.M. (8 P.M. and 12 A.M.). Furthermore, the precipitation fields of the RADOLAN data exhibit local
minima-maxima patterns, this is particularly noticeable from 8 P.M. until 10 P.M. (Figures 10d–10f). These
local minima-maxima patterns are most likely due to the limited temporal resolution, which induces this
pattern for fast moving showers of rain. Since Random Mixing is not predisposed for this kind of uncertain-
ties, the interpolations do not illustrate such local minima-maxima patterns.

Evaluating the pattern of the accumulated precipitation over the 5 h interval, both the RM interpolation
(Figure 10i) and the RADOLAN (Figure 10l) main pattern are relatively similar. However, the underestimation
of the interpolated high precipitation values is especially apparent for the accumulated pattern. While the
accumulated precipitation of the interpolations ranges between 3.5 and 18 mm, the accumulation of the
RADOLAN data ranges from 3.5 to 23 mm.

One reason for the underestimation can be found at the definition of Random Mixing: The marginal distri-
bution and hence the spatial structure has been defined by the rain gauge observations. In case that the
CML observations indicate high precipitation amounts and if simultaneously this high precipitation
amounts are not reflected by the rain gauge observations, the resulting single reconstructions can have
high uncertainties around the CML observations. An example for such a case is the precipitation field at 9
P.M. While the interpolation smoothed out the extreme values of the area from 48 to 48.58N and 10
to 10.58E (Figure 10b versus Figure 10e), the five single reconstructions do indicate high precipitation
values (example single reconstruction Figure 11a), but the exact locations differ between the single

Figure 11. Single random fields of reconstructed precipitation for 22 June 2015 (a) 9 P.M. and (b) 11 P.M.. The points and lines at the figures mark the observations,
rain gauges, and CMLs, which are used by Random Mixing. The dashed box marks the area where CML measurements are available and the grey triangle marks
the location of the city of Munich.
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reconstructions. Another possibility is shown e. g., in Figure 10g versus Figure 10j. Here, the rain gauges are
also not reflecting high precipitation values and the path-averaged rain rate given by the CML observations
include no particularly high precipitation amounts. Hence, the corresponding single reconstructions do not
include the higher precipitation amounts (Figure 11b).

The pixel-wise comparison of the interpolation with the RADOLAN data is shown in Figure 12. The hourly
comparison (Figure 12a) shows an overall agreement between pixels of the interpolation and RADOLAN
data set, which is also shown by a correlation coefficient of 0.84 and coefficient of determination of 0.70. As
seen earlier for the spatial pattern, RM tends to underestimate the count of precipitation pixels, especially
the pixels of high values. There is only a small number of pixels in which the RM interpolation overestimates
the RADOLAN data. Furthermore, a mismatch of dry RADOLAN pixels, in which the RM interpolation indi-
cates precipitation, is detected. However, the mean precipitation per pixel is very similar between the RM
interpolation (2.09 mm/h) and the RADOLAN data (2.34 mm/h). Considering the pixel-wise comparison of
the accumulated precipitation (Figure 12b), the underestimation of the RADOLAN pattern by the RM pattern
can also be seen. Here, the RADOLAN mean value (11.7 mm) is underestimated by more than 1 mm by RM
(10.5 mm). Likewise the accumulated interpolation has a well pixel-wise performance, with a correlation
coefficient (coefficient of determination) of 0.75 (0.56). However, both the correlation coefficient and coeffi-
cient of determination are lower as the ones in the hourly evaluation. One reason might be the lower varia-
tion of accumulated precipitation amounts of the interpolation compared to the RADOLAN data (Figure 10i
and 10l).

Summarizing, this example demonstrates that Random Mixing generates precipitation fields in a good qual-
ity compared to the RADOLAN data set. One has to be aware that both the interpolation using RM and also
the corresponding RADOLAN data set are based on the same rain gauge data, which might result in an
unrealistic high correlation. Nevertheless, since the RADOLAN data are a widely used gridded data set for
hourly precipitation, we decided to use it as the reference for the real-world example.

5. Conclusions and Perspectives

This study presents the first application of the RM method to reconstruct or interpolate precipitation fields
on the basis of a combined data set, consisting of rain gauge and CML observations. RM constrains directly
on the CML information, without any transformation into pixel data. The resulting reconstructed precipita-
tion fields are in concordance with the rain gauge and CML observations and additionally reflect the
observed rainfall variability along the CML paths. We have demonstrated the approach on both a virtual as
well as a real-world data set. Both examples show that RM is capable to simulate single reconstructions,

Figure 12. Pixel-wise (size: �1.1 km2) validation of the (a) RM interpolation against the RADOLAN data on an hourly basis and (b) for the accumulated precipitation
of the 5 h precipitation event. The black line denotes the 1:1 line.
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respectively, interpolations of the target precipitation pattern in a
good quality. A pixel by pixel comparison between the interpolated
time series of the virtual observational data set and the virtual reality
results in a Pearson correlation coefficient of 0.8. The pixel-wise com-
parison of the time series of the real-world example yields even a
Pearson correlation coefficient of 0.84.

Utilizing the synthetic example, the RM interpolation has a compara-
ble high quality as the established method introduced by Overeem
et al. (2013). The quality measures RMSE, correlation coefficient (q),
and the coefficient of determination (r2) of RM and OK evaluated
against the VR are very similar, with a slight improvement if using RM

(Table 1). An apparent improvement of the similarity of the neighborhood evaluated against the VR has
been demonstrated by using RM in comparison to OK. The improvement is in particular present for higher
precipitation values. It has been shown that the marginal distribution estimated on the basis of the rain
gauges is a reasonable estimate, which otherwise most likely causes the underestimation of precipitation
amounts. This is particularly noticeable for extreme precipitation amounts or onsets of rainy periods. Thus
one future enhancement of the methodology could be the consideration of CML observations for the esti-
mation of both, the marginal distribution F(r) and spatial copula model. This could be realized by incorporat-
ing a nonparametric merging approach as proposed by e. g., Hasan et al. (2016b) for the combination of
rain gauge and radar observations, into the RM algorithm.

Due to the construction details, one distinctive feature of RM is its capability to generate ensembles of any
desired size. We have shown that each ensemble member solves the constraints given by the observations.
This ensemble generation enables the estimation of the uncertainty of the observation-based reconstruc-
tion. In particular, since RM uses the observed path-averaged CML-derived rain rate directly, the variability
in rainfall intensity along the link path can be estimated. Moreover, a well-known approach for hydrological
forecasts is data assimilation, which requires a large ensemble of rainfall fields as input. RM mixing repre-
sents a novel approach to create such arbitrarily large ensembles relatively fast and requiring relatively low
computational power.

In this study, the spatial dependence of the precipitation fields is described using Gaussian copulas. How-
ever, in reality the spatial dependence structure of precipitation might not be symmetric. This asymmetry
can be seen especially at locations with extreme precipitation values. For an improved representation of the
strong dependence in extreme values, the application of a nonmonotonic transformation of the Gaussian
copula (e.g., AghaKouchak et al., 2010; B�ardossy & Li, 2008; Haslauer et al., 2012; H€orning, 2016) can be an
alternative. Since precipitation amount is related to the topography, further improvement could be
obtained by the incorporation of topographic information into the spatial dependence structure of precipi-
tation (B�ardossy & Pegram, 2013).

Appendix A: Setup Details

When running the RM algorithm one has to choose the number of the first set of addends of the linear
combinations utilized at equations (5) and (7). The n which has been used at equation (5) for the quasi-
interpolation has to be greater than the number of rain gauge observations (K) in order to get an undercon-
strained system of equations. Hence, we define the starting value of n with n0 :5K1b0:5 � Kc. If n has to be
increased, the next ni11 is ni11 :5ni1b0:5 � Kc. The counter J, with J>K, has been defined similar, with a start
value J0 :5K120 and Ji11 :5Ji120.

The threshold E of equation (9) is defined for each time step separately. It is depending on the CML derived
path-averaged rain rates �Rn (the number of CMLs is N) and is set as E50:5 � min n�½1;...;N�ð�RnÞ

� �
.

The full synthetic data set used in section 4.1 can be obtained from Haese and Schalge (2017). It consists of
synthetic rain gauge observations and CML-derived path-averaged rain rates, as well as the reference pre-
cipitation fields. At the current state, it is not possible to publish the metadata of the locations of the real-
world CML paths. Since this metadata are necessary for the usage of the CML observations, we do not pub-
lish the CML-derived path-averaged rain rates.

Table 1
Summary of Quality Measures to Test the Performance of Random Mixing (RM)
and Ordinary Kriging (OK) for a Single Time Step (Exemplarily for 31 May 5 pm)
as Well as the Whole Precipitation Event

Method RMSE (mm/h) q r2

RM (31 May 5 P.M.) 1.07 0.77 0.59
OK (31 May 5 P.M.) 1.20 0.71 0.50
RM 1.14 0.8 0.64
OK 1.65 0.7 0.48
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