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Abstract

One of the most well-known theorems of linear algebra states that every linear operator on a complex
vector space has a Jordan decomposition. There are now numerous ways to prove this theorem, how-
ever a standard method of proof relies on the existence of an eigenvector. Given a finite-dimensional,
complex vector space V , every linear operator T : V → V has an eigenvector (i.e. a v ∈ V such that
(T −λI)v = 0 for some λ ∈ C). If we are lucky, V may have a basis consisting of eigenvectors of T ,
in which case, T is diagonalisable. Unfortunately this is not always the case. However, by relaxing
the condition (T − λI)v = 0 to the weaker condition (T − λI)nv = 0 for some n ∈ N, we can
always obtain a basis of generalised eigenvectors. In fact, there is a canonical decomposition of V
into generalised eigenspaces and this is essentially the Jordan decomposition.

The topic of this thesis is an analogous theorem for differential operators. The existence of a Jordan
decomposition in this setting was first proved by Turrittin following work of Hukuhara in the one-
dimensional case. Subsequently, Levelt proved uniqueness and provided a more conceptual proof of
the original result. As a corollary, Levelt showed that every differential operator has an eigenvector.
He also noted that this was a strange chain of logic: in the linear setting, the existence of an eigen-
vector is a much easier result and is in fact used to obtain the Jordan decomposition. Levelt remarked
that a direct proof of his corollary would provide a much simpler proof of the Jordan decomposition
for differential operators. It is this remark that stimulated the work of this thesis. Although there have
been numerous alternative proofs and applications of the Hukuhara-Levelt-Turrittin theorem, it ap-
pears that Levelt’s suggestion has not been carried out in the literature. Our goal is to provide a proof
of the Hukuhara-Levelt-Turrittin theorem that mimics the proof of the usual Jordan decomposition
theorem.
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1. INTRODUCTION

One of the most well-known theorems of linear algebra states that every linear operator on a complex
vector space has a Jordan decomposition. There are now numerous ways to prove this theorem, how-
ever a standard method of proof relies on the existence of an eigenvector. Given a finite-dimensional,
complex vector space V , every linear operator T : V → V has an eigenvector (i.e. a v ∈ V such that
(T −λI)v = 0 for some λ ∈ C). If we are lucky, V may have a basis consisting of eigenvectors of T ,
in which case, T is diagonalisable. Unfortunately this is not always the case. However, by relaxing
the condition (T − λI)v = 0 to the weaker condition (T − λI)nv = 0 for some n ∈ N, we can
always obtain a basis of generalised eigenvectors. In fact, there is a canonical decomposition of V
into generalised eigenspaces and this is essentially the Jordan decomposition.

The topic of this thesis is an analogous theorem for differential operators. The existence of a Jor-
dan decomposition in this setting was first proved by Turrittin [Tur55] following work of Hukuhara
[Huk41] in the one-dimensional case. Subsequently, Levelt [Lev75] proved uniqueness and provided
a more conceptual proof of the original result. As a corollary, Levelt showed that every differential
operator has an eigenvector. He also noted that this was a strange chain of logic: in the linear setting,
the existence of an eigenvector is a much easier result and is in fact used to obtain the Jordan decom-
position. Levelt remarked that a direct proof of his corollary would provide a much simpler proof
of the Jordan decomposition for differential operators. It is this remark that stimulated the work of
this thesis. Although there have been numerous alternative proofs and applications of the Hukuhara-
Levelt-Turrittin theorem (see [BV83, BBDE05, KS16, Kat87, Kat70, Ked10a, Luu15, Mal79, Pra83,
Ras15, Rob80, vdPS03, Was65]), it appears that Levelt’s suggestion has not been carried out in the
literature. Our goal is to provide a proof of the Hukuhara-Levelt-Turrittin theorem that mimics the
proof of the usual Jordan decomposition theorem.

In the linear setting, the existence of an eigenvector is a consequence of the fundamental theorem
of algebra. This theorem guarantees that every polynomial splits completely into linear factors over
an algebraically closed field. In the differential setting, there is also a ring of polynomials however
this ring is not commutative. Despite this, there is a factorisation result for polynomials in this ring
(see e.g. [Pra83]). In section 7 we give a proof of this result and use this to prove Levelt’s corollary
directly in Section 8.1. We then give a new proof of the Hukuhara-Levelt-Turrittin theorem using this
result.

Sometime after Levelt proved his result, Babbitt and Varadarajan [BV83] gave a group theoretic
proof of the Hukuhara-Levelt-Turrittin theorem. They also showed that the decomposition could be
extended to reductive algebraic groups other than GL(n). This is perhaps not surprising given that this
can also be done in the linear setting (usually known as the Jordan-Chevalley decomposition). Again,
though, the proof in [BV83] is very different to the proof in the linear setting. We have therefore given
an alternative proof of their result in Section 9 with the intent of emphasising the analogy between
the linear and differential settings.

2. BACKGROUND

The purpose of this section is to informally introduce the main objects of this thesis: differential oper-
ators. We will do this through various points of view, each increasing in sophistication. Hopefully this
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provides the reader with some insight into why we would be interested in a decomposition theorem
such as the Hukuhara-Levelt-Turrittin theorem. A more formal treatment of differential operators is
given in sections 6.1 and 6.2.

2.1. Linear Differential Equations. Consider a linear differential equation of the form:

(2.1) y(n) + a1y
(n−1) + · · ·+ any = 0, y = y(t), ai ∈ C((t)).

Given such an equation, one can always obtain a system of first-order linear differential equations
by introducing n variables y1, . . . , yn with y1 := y and yi = y

′
i−1 for 2 ≤ i ≤ n. We can write the

resulting system of equations in matrix form:

(2.2)
d

dt


y1

y2

...
yn−1

yn

 =


0 1 0 . . . 0

0 0 1 . . . 0
... . . . . . . ...
0 0 1

−an −an−1 . . . −a1




y1

y2

...
yn−1

yn

 ,

which can be compactly written as y′ = −Ay (the reason for the negative sign is so that we can
write this instead as y′ + Ay = 0). Note that y is now a vector which lives in the vector space
V := (C((t)))n. Our point of view is that the equation (2.2) defines an operator on this vector space
which we denote d + A : V → V . Here d : V → V is the operator which sends y to y

′ . Note that
whilst d + A is a C-linear operator, it is not a C((t))-linear operator (i.e. it is not a linear operator on
V ). In fact, d+ A satisfies the Leibniz rule:

(d+ A)(av) = a(d+ A)(v) + a′v, ∀a ∈ C((t)).

We call such operators differential operators on V . From this point of view, we need not restrict
ourselves to considering only matrices arising from linear differential equations (so-called companion
matrices), but can allow A to be any n× n matrix with C((t)) entries1. It turns out, however, that this
does not actually introduce anything new; i.e. we can always find a basis of V such that A is the
companion matrix of some linear differential equation. This amazing fact is called the cyclic vector
theorem (which will be discussed further in Section 6) and is a major point of difference between
differential and linear operators. In addition, whereas the rational canonical form of a linear operator
is essentially unique, this is not the case in the differential setting.

Another point of difference between the two settings is the action of GL(V ) on the matrix A. In both
settings, this action arises as a change of basis of V , but in the differential setting, such a change of
basis does not correspond to a conjugation of A by some element in GL(V ). In fact, if we make a
change of basis by g ∈ GL(V ), then, in the new basis, our matrix equation (2.2) becomes:

(gy)′ = −Agy =⇒ g′y + gy′ = −Agy

=⇒ y′ = −(g−1Ag + g−1g′)y,

where g′ is the matrix obtained by differentiating each entry of g. We call the action g ·A 7→ g−1Ag+

g−1g′ the gauge action of GL(V ) on A and say that the matrices A and g−1Ag + g−1g′ are gauge
equivalent. From this point of view, the Hukuhara-Levelt-Turrittin theorem roughly tells us that there
exists a gauge transformation that will put the matrix A in Jordan canonical form.

1In fact, we can allow the entries of these matrices to be from any differential field.
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2.2. Regular Singular Differential Equations. In the setting of linear differential equations, there
is an ‘easy’ case in which the Hukuhara-Levelt-Turrittin decomposition can be proved directly: the
case of regular singular differential equations. In Section 2.1, we allowed our system of differential
equations to have entries in C((t)). This means that there are points at which the matrix A can have
singularities. If A is gauge equivalent to a matrix that contains at most a pole of order one at a
point, the equation is said to be regular singular at that point; otherwise, the equation is said to
have an irregular singularity at the point. This dichotomy plays an important role in all proofs of the
Hukuhara-Levelt-Turrittin theorem and the themes introduced here will appear in our discussion of a
differential Hensel’s Lemma (see Section 7.3). There are also many equivalent characterisations of
regular singularities which will be discussed throughout.

Suppose that our system of differential equations y′ = −Ay has a regular singularity at t = 0. We
can re-write2 this system as ty′ = −By, where the entries of B are now holomorphic at t = 0.
It is now possible to naively search for a gauge transformation that will simplify the matrix B (c.f.
[Was65, §5], [vdPS03, §3.1.1]). Let

B = B0 +B1t+B2t
2 + · · · , P = I + P1t+ P2t

2 + · · · ,

so that P is an invertible matrix. We claim that P can be chosen so that gauge transformation of B
by P yields B0. That is, we can choose P such that PB0 = BP + tP ′. Expanding both sides of this
equation we have:

B0

∑
i≥0

Pit
i =

∑
i≥0

(
iPi +

i∑
j=0

Bi−jPj

)
ti, P0 := I.

Comparing powers of t leads to the following recursive definition of the Pi:

(2.3) B0Pi − Pi(B0 − iI) = −(Bi +Bi−1P1 + · · ·+B1Pi−1).

Here we come across an inherent technical difficulty in the differential setting: if (and only if) B0 and
B0 − iI share an eigenvalue, it is possible that the left-hand side of (2.3) is 0 without Pi necessarily
being 0 (see [Was65, Theorem 4.1]). Thus, if the eigenvalues of B0 do not differ by integers, then
we can solve (2.3) for P . Luckily, if the eigenvalues of B0 do differ by integers, there is a gauge
transformation that will yield a matrix whose constant term has repeated eigenvalues (see [Was65,
§5.3]). Such transformations are classically called shearing transformations and will be discussed
further in section 7.3. Note that having made a gauge transformation to B0, the Hukuhara-Levelt-
Turrittin decomposition can be realised by taking the usual (linear) Jordan decomposition ofB0.

We briefly mention what happens for irregular singular equations. One can attempt the same naive
approach as above, however the recursive definition obtained (c.f. equation (2.3)) is always singular.
In fact, in the irregular singular case, the left-hand side of (2.3) is just B0Pi − PiB0. It is possible
for this to be 0 without Pi necessarily being 0. Thus, a more sophisticated approach is required (see
[Was65, §11]).

2.3. Flat Connections on Vector Bundles. In this section we introduce the geometric setting of our
work. Many of the applications of the Hukuhara-Levelt-Turrittin theorem are in the realm of geomet-
ric representation theory. In this setting one is interested in flat connections on vector bundles (and

2This introduces a subtle difference in the meaning of gauge transformation. Now g′ is the matrix obtained by applying
the derivation t d

dt to the entries of g. This will be discussed in detail in §6.
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more generally, flat connections on principal G-bundles for reductive groups G other than GL(n,C)).
In general, one can think of connections as a coordinate-free way to describe differential equations
on a real manifold. For a proper treatment of the material presented here, the reader should refer to
[GH94, Chapter 0, §5] and [Fre07, §1.2].

Let X be a smooth manifold and π : E → X a complex vector bundle of rank n over X . That
is, E is a smooth manifold and for each point x ∈ X , there is neighbourhood U ⊂ X of x such
that π−1(U) ∼= U × Cn. Moreover, for any two overlapping trivializations, say Uα, Uβ , we obtain
a transition map gαβ : Uα ∩ Uβ → GL(n,C). Denote by Ω0(E) the sheaf of sections of the vector
bundle E and by Ω1(E) the sheaf of E-valued one-forms. We define a connection on E as a C-linear
mapping D : Ω0(E)→ Ω1(E) that satisfies the Leibniz rule:

D(fξ) = f ·D(ξ) + df · ξ, f ∈ OX , ξ ∈ Ω0(E),

where OX the sheaf of smooth functions on X and df is the differential of the function f .

Recall that a local frame for E over an open subset U ⊂ X is a collection of n smooth sections
{f1, . . . , fn} such that {f1(x), . . . , fn(x)} forms a basis of the fibre π−1(x) for each x ∈ U . The
existence of a local frame is equivalent to the existence of a local trivialization. Given a local frame
{f1, . . . , fn}, we can represent the action ofD by a matrix of one-forms whose columns are theD(fi);
that is, locally we can write D = d + A where A is a matrix of one-forms. If we make a change of
frame f ′i =

∑
j gijfj , then the connection matrix becomes

A 7→ g−1Ag + g−1dg.

This is precisely the gauge transformation that was discussed in Section 2.1.

We now discuss the adjective flat. Using the connection D, we can define operators D : Ωp(E) →
Ωp+1(E) by simply forcing Leibniz’s rule, i.e. by requiring that D(fξ) = df · ξ + f ∧ D(ξ) for
f ∈ Ωp(E) and ξ ∈ Ω0(E). By abuse of notation we also call these operators D and in particular,
we denote by D2 the composition D ◦D : Ω0(E)→ Ω2(E). This operator is known as the curvature
tensor of D. If D2 = 0, then the connection is said to be flat. In this setting, the Hukuhara-Levelt-
Turrittin theorem can be viewed as a classification of meromorphic flat connections on the open disc
with its center removed.

2.4. Extended Loop Algebras. The relationship between differential operators and linear operators
can be pushed further: recall that the collection of all linear operators on a finite-dimensional vector
space forms a Lie algebra gl(V ). The set of all differential operators on a vector space also has a
natural Lie algebra structure and we can reformulate the Hukuhara-Levelt-Turrittin theorem in this
setting.

Let g be a simple Lie algebra over C and set K := C((t)). The loop algebra3 is defined to be the Lie
algebra gK := g ⊗C K with Lie bracket [x ⊗ f, y ⊗ g] := [x, y] ⊗ fg (where [x, y] denotes the Lie
bracket of x and y in g). Let d : K → K be the map f 7→ tdf

dt
. This map is additive and satisfies the

Leibniz rule (i.e. d is a derivation on K — see Section 6.1). Note that d extends to a derivation of
the Lie algebra gK via d(x ⊗ f) = x ⊗ d(f) (where, by abuse of notation, we have used d for both

3This algebra can be viewed as the completion of the algebra of polynomial maps from S1 to g.
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the derivation on K and its extension to gK). Using d, we can construct the extended loop algebra
ĝ := Cd⊕ gK which is a Lie algebra with Lie bracket:

(2.4) [αd+ A, βd+B] := [A,B] + αd(B)− βd(A),

for A,B ∈ gK and α, β ∈ C.

The extended loop algebra “exponentiates” to an algebraic group Ĝ. We briefly describe the con-
struction of this group following [Kum02, §13.2]. It is well known that there is a unique (up to
isomorphism) connected, simply-connected, complex algebraic group G whose Lie algebra is g (see
[Bou98, Chapter III, §6.3]). We define the loop group to be the K-points of G, denoted G(K). One
can consider G(K) to be the “exponentiation” of the loop algebra gK. We can extend G(K) by “ex-
ponentiating” the derivation d in ĝ to obtain the extended loop group Ĝ. The adjoint action of Ĝ on ĝ

restricts to give the following action of G(K) on ĝ:

Ad(g) · (x+ αd) = Ad(g)(x) + αg−1t
dg

dt
+ αd, g ∈ G(K).

Note that Ad(g)(x) on the right-hand side is the extension of the usual adjoint action of G on g to
an action of G(K) on gK. It is clear that this action of G(K) on ĝ coincides with the gauge action
described in Section 2.1.

We can reformulate the Hukuhara-Levelt-Turrittin theorem in this context. The adjoint action of Ĝ
partitions ĝ into orbits. The Hukuhara-Levelt-Turrittin theorem implies that (after a finite extension)
each orbit contains a unique element of the form λd + S + N where λ ∈ C, λd + S is semisimple,
N is a nilpotent linear operator and [λd + S,N ] = 0 (where the bracket is the one defined by (2.4)).
From this point of view, it would be desirable to seek a classification of conjugacy classes of affine
Kac-Moody algebras (including the twisted Kac-Moody algebras). For some results in this direction,
cf. [BV83]. If instead of conjugacy classes in ĝ, we consider the conjugacy classes in Ĝ, then we
obtain the notion of q-difference operators. There is also a version of Jordan decomposition for these
objects, cf. [Pra83].
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3. JORDAN DECOMPOSITION FOR LINEAR OPERATORS

The purpose of this section is to remind the reader of the general theory of linear operators on finite-
dimensional vector spaces. Many of the results presented here have analogues in the differential
setting and the intent is that the development of the classical theory here will be mimicked in the
differential setting.

Let k be a field and k̄ the algebraic closure of k. Throughout this section V will denote a finite-
dimensional vector space. We refer the reader to Dummit and Foote [DF04, chapter 12] for the
general theory of modules over a principal ideal domain (in particular for the definitions of principal
ideal domain, Euclidean domain, etc.) and to [Axl15] for a good introduction to linear algebra.

3.1. Jordan Decomposition over Algebraically Closed Fields. It is well known that over k̄ any
matrix can be put into Jordan normal form:

Theorem 3.1 (Jordan Normal Form). Let V be a vector space over k̄ and T : V → V a linear
operator. Then there exists a basis of V in which the operator T is represented by a Jordan matrix,
i.e. a matrix of the form: 

J1

J2

. . .
Jn


where each Ji is a Jordan block:

Ji =


λi 1

λi 1
. . . 1

λi


and λi ∈ k̄. Moreover, this matrix representation is unique up to reordering of the Jordan blocks.

One way to prove Theorem 3.1 is to consider V as a k̄[x]-module where x acts as a linear operator on
V . Because k̄ is algebraically closed, the non-zero prime ideals of k̄[x] are generated by x− λ where
λ ∈ k̄. The fundamental theorem of finitely-generated modules over a principal ideal domain (PID)
then implies that V decomposes as

V ∼= k̄[x]/〈x− λ1〉r1 ⊕ · · · ⊕ k̄[x]/〈x− λn〉rn .

Moreover, this decomposition is unique up to reordering of the summands. For the summand k̄[x]/〈x−
λi〉ri , choosing the basis {(x−λi)ri−1, (x−λi)ri−2, . . . , 1} yields a Jordan block matrix for that sum-
mand.

There is a second formulation of Theorem 3.1 which we will use frequently. It relies on the following
types of linear operators:

Definition 3.2 (Nilpotent Linear Operator). Let V be a vector space. A linear operator T : V → V

satisfying T n = 0 for some positive integer n is called nilpotent.
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Definition 3.3 (Diagonalizable Operator). Let V be a vector space over k̄ and T : V → V be a linear
operator. Then T is diagonalizable if the following equivalent conditions hold:

(i) There exists a basis of V for which the matrix of T is diagonal;

(ii) There is a basis of V consisting of eigenvectors for T ;

(iii) The minimal polynomial of T splits in k̄ with distinct roots.

(iv) Every T -invariant subspace W ⊂ V has a T -invariant complement W ′, i.e. V = W ⊕W ′.

Theorem 3.1 implies the following:

Theorem 3.4 (Jordan Decomposition over Algebraically Closed Fields). Let V be a vector space
over k̄ and let T : V → V be a linear operator. Then there exists a diagonalizable operator, S, and a
nilpotent operator, N , such that:

(i) T = S +N ;

(ii) S and N commute, i.e. SN = NS.

Moreover, (S,N) is the unique pair of operators satisfying (i) and (ii).

3.2. Jordan Decomposition over Arbitrary Fields. We now want to discuss the notion of Jordan
decomposition over the field k. This introduces a problem in that some operators that “should” be
diagonalizable will not be (in the sense of Definition 3.3). The main issue is that k may no longer
contain the eigenvalues of an operator. To remedy this, we make the following definitions:

Definition 3.5 (Simple Linear Operator). Let V be a vector space over k and let T : V → V be a
linear operator. We call T simple if the following equivalent conditions hold:

(i) The corresponding k[x]-module is simple (i.e. it contains no non-zero proper submodules);

(ii) V contains no non-trivial T -invariant subspaces.

(iii) The minimal polynomial of T is irreducible (over k) of degree dim(V ).

Definition 3.6 (Semisimple Linear Operator). Let V be a vector space over k and let T : V → V be
a linear operator. We call T semisimple if the following equivalent conditions hold:

(i) The corresponding k[x]-module is a direct sum of simple modules

(ii) Every T -invariant subspace, W , of V has a complement, W ′ (i.e. V = W ⊕W ′)

(iii) The minimal polynomial of T is square-free.

Note that if k = k̄, then T is semisimple if and only if T is diagonalizable. At this point we need to
distinguish between two very similar concepts: semisimplicity and diagonalizability. In this context
we extend the notion of diagonalizability to include operators that are diagonalizable after a possible
field extension.

Definition 3.7 (Potential Diagonalizability). Let V be a vector space over a field k and T : V → V

be a linear operator. We call T potentially diagonalizable if the following equivalent conditions hold:
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(i) After some finite extension of k, T can be represented by a diagonal matrix.

(ii) The minimal polynomial of T is separable (i.e. it splits with distinct roots in some field exten-
sion of k).

We would like to know the extent to which the notions of diagonalizability and semisimplicity coin-
cide. From the definitions it is clear that diagonalizable operators are potentially diagonalizable and
that potentially diagonalizable operators are semisimple. Over an algebraically closed field all three
notions are equivalent. We will see in the following subsections that semisimplicity and potential
diagonalizability are equivalent when k is a perfect field.

3.2.1. Jordan Decomposition over Perfect Fields. Recall that k is said to be perfect if every finite
extension of k is separable. This condition means that every irreducible polynomial over k of degree n
has n distinct roots in k̄. All finite fields and fields of characteristic zerro are perfect. A good example
to keep in mind for what follows is the field C((t)) of formal Laurent series with complex coefficients.
For perfect fields, potential diagonalizability and semisimplicity are equivalent conditions.

Lemma 3.8. Let V be a vector space over a perfect field k and let T : V → V be a linear operator.
Then T is semisimple if and only if T is potentially diagonalizable.

Proof. As we have previously observed, one direction is clear from the definition. For the other
direction, suppose that T is semisimple so that its minimal polynomial is square-free. Since every
extension of k is separable, the minimal polynomial of T must have n distinct roots in k̄. Hence
there is an extension of k for which the minimal polynomial of T splits with distinct roots. Thus T is
potentially diagonalizable. �

Remark 3.9. The proof of Lemma 3.8 also shows that if T acts semisimply on V then it also acts
semisimply on V ⊗k k′ where k′ is a finite extension of k.

The notion of Jordan decomposition can be extended to linear operators T : V → V , where the
underlying field, k, is an arbitrary perfect field (c.f. [HP99, §2]).

Theorem 3.10 (Jordan Decomposition over Perfect Fields). Let V be a vector space over a perfect
field k and let T : V → V be a linear operator. Then there exists a semisimple operator S and a
nilpotent operator N such that:

(i) T = S +N ;

(ii) [S,N ] := SN −NS = 0.

Moreover, (S,N) is the unique pair of operators satisfying (i) and (ii).

Proof. In order to prove Theorem 3.10, we consider the operator T̄ : V ⊗k k̄ → V ⊗k k̄ and denote
by Gal(k̄/k) the Galois group of k̄ over k. By Theorem 3.4, there exists a Jordan decomposition
T̄ = S̄ + N̄ for unique semisimple S̄ and nilpotent N̄ . The issue now is that S̄ and N̄ may only be
defined over k̄. However, choosing a non-trivial element σ ∈ Gal(k̄/k) we have

(3.5) σT̄ = σS̄ + σN̄
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and since T̄ is defined over k, σT̄ = T̄ . This gives us a second Jordan decomposition of T̄ . Unique-
ness of the decomposition then implies that σS̄ = S̄ and σN̄ = N̄ . Hence S̄ and N̄ are, in fact,
defined over k. �

Note that perfectness is a necessary condition here as the above argument fails if we allow non-
separable extensions. In this case, there may be no σ ∈ Gal(k̄/k) that yields a second Jordan decom-
position of T̄ .

3.2.2. Failure over Non-Perfect Fields. If we allow non-perfect fields then the correspondence be-
tween semisimplicity and potential diagonalizability starts to fail. In particular, for k non-perfect:

1. semisimplicity does not behave well under field extensions;

2. semisimplicity does not imply potentially diagonalizable;

3. a Jordan decomposition may not exist for a linear operator.

The following lemma establishes the failures 1 and 2 explicitly for the (non-perfect) field k = Fp(tp)
where t is an indeterminate and not a pth root. We can extend k to the field V = Fp(t) (note that
this extension is not separable). Then V is a vector space over k of dimension p and we can consider
the linear operator, T : V → V , which acts as multiplication by t. Extending scalars of V to
V ′ := V ⊗k V = Fp(t)p and considering the action of T on V ′ will yield the required counter-
example.

Lemma 3.11. Let k = Fp(tp), V = Fp(t) and V ′ = V ⊗k V . The linear operator T acts simply on V
but does not act semisimply on V ′.

Proof. Using the basis {1, t, . . . , tp−1}, the matrix for T is:

T =


0 0 . . . 0 tp

1 0 0 0

0 1
. . . 0 0

...
... . . . ...

...
0 0 . . . 1 0

 .

This has characteristic polynomial Xp − tp which is irreducible over k and hence T acts simply on
V (hence, semisimply). However, if we extend k to V and let T act on V ′ then the characteristic
polynomial of T is Xp − tp = (X − t)p (in characteristic p). Clearly, T − tI 6≡ 0 so the minimal
polynomial of T is not square-free. Hence T does not act semisimply on V ′. �

This establishes the failure 1 above since T acts semisimply on V but not on the extension to V ′ (cf.
Remark 3.9). It is also clear from the above that T is not potentially diagonalizable (the minimal
polynomial of T does not have distinct roots in k̄). Hence T acts semisimply on V but T is not
potentially diagonalizable, establishing the failure 2.

Finally we give an example showing that the Jordan decomposition of an operator may not exist when
k is non-perfect.
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Lemma 3.12. Let k = F2(t) and V = k[x]/〈(x2 − t)2〉. The linear operator T : V → V which acts
as multiplication by x does not have a Jordan decomposition.

Proof. The vector space V has a basis {1, x, x2, x3}. In this basis T is represented by the matrix:

T =


0 0 0 t2

1 0 0 0

0 1 0 0

0 0 1 0

 .

This has characteristic and minimal polynomial (X2 − t)2 ∈ k[X]. Since the minimal polynomial
is not square-free, T is not semisimple. It is also clear that T is not nilpotent since the characteristic
polynomial of a nilpotent operator would be X4. Hence we can try to find a Jordan decomposition
T = S + N for S semisimple and N nilpotent with [S,N ] = 0. Suppose that such a decomposition
exists. We will show that N = 0 which contradicts the fact that T is not semisimple.

Let N ∈ M4(F2(t)). Since S and N commute, they both commute with T = S + N and so
TN = NT . Computing NT and TN shows that N must be of the form:

N =


a t2d t2c t2b

b a t2d t2c

c b a t2d

d c b a

 , a, b, c, d ∈ F2(t).

Now N has characteristic polynomial x4 + a4 + b4t2 + c4t4 + d4t6 but since N is nilpotent, its
characteristic polynomial should be just x4. Hence:

a4 + b4t2 + c4t4 + d4t6 = 0

⇐⇒ a4 = (b4 + c4t2 + d4t4)t2

and so a ∈ F2(
√
t) (but not in F2(t)×) which implies that a = 0. Then we have b4 = (c4 + d4t2)t2

and so now b = 0 by the same argument. Finally, c4 = d4t2 and so c = d = 0 and hence N = 0. Thus
T = S is semisimple which is a contradiction. Hence no such decomposition exists. �

4. JORDAN-CHEVALLEY DECOMPOSITION

4.1. Semisimple and Reductive Lie Algebras. Theorem 3.10 provides a Jordan decomposition for
elements of the Lie algebra End(V ) = gl(V ). It is possible to extend the notion of Jordan decomposi-
tion to other Lie algebras. In particular, the next section will show that this can be done for reductive
Lie algebras. We first discuss semisimple Lie algebras. We refer the reader to Humphreys and Borel
[Hum78, Bor91] for the basic facts of Lie algebras and linear algebraic groups.

The adjoint representation of a Lie algebra g is the linear map φ : g→ End(g) that sends x ∈ g to the
endomorphism adx : g→ g defined by adx(y) = [x, y] for all y ∈ g.

Recall that the radical of a Lie algebra is its maximal solvable ideal. We will denote this by rad(g).
The following theorem characterizes semisimple Lie algebras.

Theorem 4.1 (Semisimple Lie Algebras). Let g be a Lie algebra. We call g semisimple if it satisfies
any of the following equivalent conditions.
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i) rad(g) = 0.

ii) The Killing form κg : g× g→ C defined by κg(x, y) = Tr(adx · ady) is non-degenerate.

iii) g is a finite direct sum of non-abelian simple Lie algebras

The content of Theorem 4.1 is the equivalence of the three conditions. We refer the reader to [Hum78,
Sec. 5.1] for the equivalence of (i) and (ii). The equivalence of (i) and (iii) follows from Weyl’s
theorem:

Theorem 4.2 (Weyl’s Theorem). Let g be a complex semisimple Lie algebra and φ : g → gl(V ) a
finite-dimensional representation. Then φ is completely reducible.

For a proof see for instance [Hum78, FH91].

Let x ∈ g ⊂ gl(V ) and x = s+n be the Jordan decomposition of x (in gl(V )). A priori, it is not clear
that s, n ∈ g. The following lemma shows that we at least have [s, g] ⊂ [g, g] and [n, g] ⊂ [g, g].

Lemma 4.3. Let x ∈ g ⊂ gl(V ) and x = s + n be the Jordan decomposition of x. Then ads(g) ⊂ g

and adn(g) ⊂ g.

Proof. First observe that adx = ads + adn is the Jordan decomposition of adx. This follows from the
fact that if x is semisimple (respectively, nilpotent) then adx is semisimple (respectively, nilpotent).
The fact that ads and adn commute follows from the fact that s and n commute:

[ads, adn] = ad[s,n] = 0.

Now a result from linear algebra (see [Hum78, Sec. 4.2] for instance) tells us that ads and adn can
be expressed as polynomials in adx. Since adx(g) ⊂ g we must therefore have ads(g) ⊂ g and
adn(g) ⊂ g. �

Remark 4.4. Note that the proof of Lemma 4.3 implies that if x(W ) ⊂ W for some g-submodule W
of V , then s(W ) ⊂ W and n(W ) ⊂ W .

Weyl’s theorem has the following important consequence:

Theorem 4.5. Let g ⊂ gl(V ) be a semisimple Lie algebra and x ∈ g. Then g contains the semisimple
and nilpotent parts of x.

Proof. Let x = s+n be the Jordan decomposition of x in gl(V ). The idea of the proof is to construct
g in a way that makes it clear that it contains s and n. There are two subalgebras we need to consider.

Firstly, set Ngl(V )(g) = {x ∈ gl(V )|[x, g] ⊂ g}. This is the normalizer of g in gl(V ). By Lemma 4.3,
s, n ∈ Ngl(V )(g). It is clear that g ⊂ Ngl(V )(g) however g 6= Ngl(V )(g) as Ngl(V )(g) contains the scalar
matrices, for example.

Secondly, we consider the subalgebras gW = {y ∈ gl(V )|y(W ) ⊂ W and Tr(y|W ) = 0} for a g-
submodule W of V . Since g is semisimple, g ⊂ sl(V ) and since W is a g-submodule, every element
of g stabilizes W . Thus g ⊂ gW . Remark 4.4 shows that s(W ) ⊂ W and n(W ) ⊂ W so s, n ∈ gW

for all submodules W .
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We have now constructed a family of subalgebras of gl(V ) each of which contains s, n and g. We
now show that

g∗ := Ngl(V )(g)
⋂(⋂

W

gW

)
,

is in fact equal to g. By our discussion above, s and n lie in the intersection so this will prove the
result. Clearly g is an ideal of g∗ and since g∗ is a finite-dimensional g-module, Weyl’s Theorem
allows us to write

g∗ = g⊕M
for some complementary g-submodule M . Since g∗ ⊂ Ngl(V )(g) we have [g, g∗] = g which implies
that [g,M ] = 0. IfW is an irreducible g-submodule of V then Schur’s lemma implies that any y ∈M
acts as a scalar on W . In fact, y acts as 0 on W since we have Tr(y|W ) = 0. Writing V as a direct
sum of irreducible g-submodules (which is possible by Weyl’s Theorem) we find that y acts as 0 on
V and so y = 0. Since y was arbitrary in M this shows that M = 0. Hence g∗ = g. �

The importance of Theorem 4.5 is that it will allow us to unambiguously define semisimple and
nilpotent elements of any reductive Lie algebra. The following corollary is the key to doing this:

Corollary 4.6. Let g ⊂ gl(V ) be a semisimple Lie algebra. Then x ∈ g is semisimple (respectively,
nilpotent) if, and only if, adx is semisimple (respectively, nilpotent).

Proof. One direction of this proof is easy and we have already used it in Lemma 4.3 (see [Hum78, Sec.
3.2] for details). For the other direction, suppose adx = ads + adn is the Jordan decomposition of
adx. We know by Lemma 4.3 and Theorem 4.5 that x = s+ n is the Jordan decomposition of x in g.
If adx is semisimple then adn = 0 and since ad is a faithful representation, this implies that n = 0.
Hence x is semisimple. Similarly, if adx is nilpotent then s = 0 and so x is also nilpotent. �

Definition 4.7 (Reductive Lie Algebra). A Lie algebra, g, is called reductive if rad(g) = z where z is
the center of g.

A reductive Lie algebra, g, can always be decomposed as:

g = z⊕ s

where s is a semisimple subalgebra of g.

4.2. Jordan-Chevalley Decomposition for Reductive Lie Algebras. We now explain how to ex-
tend the Jordan decomposition to elements of an arbitrary reductive Lie algebra by using the adjoint
representation. We assume throughout that k is perfect.

We use the adjoint representation to define semisimple and nilpotent elements of g:

Definition 4.8 (Semisimple and Nilpotent Elements). Let g be a Lie algebra over k. We call x ∈ g

semisimple (respectively, nilpotent) if adx is semisimple (respectively, nilpotent).

Remark 4.9. Note that a priori, this definition may not be consistent with Definitions 3.2 and 3.6 in the
special case that g ⊂ gl(V ). In this case we rely on Corollary 4.6 which tells us that these definitions
are consistent.
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One can also show that x ∈ g is semisimple if it is conjugate to an element of h ⊗k k̄ where h is a
Cartan subalgebra of g.

In order to extend the Jordan decomposition to arbitrary reductive Lie algebras we first need to discuss
derivations of a Lie algebra.

Definition 4.10 (Derivation). A map δ ∈ End(g) is a derivation if it satisfies the Leibniz rule:

δ([a, b]) = [a, δ(b)] + [δ(a), b], ∀a, b ∈ g.

The set of all derivations on g is denoted Der(g) and is a Lie subalgebra of gl(g).

Thanks to the Jacobi identity we have the following lemma:

Lemma 4.11. Let g be a Lie algebra and x ∈ g. The map adx ∈ End(g) is a derivation.

Proof. Let y, z ∈ g. The Jacobi identity and skew-symmetry give us:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

=⇒ [x, [y, z]] = [[x, y], z] + [y, [x, z]]

=⇒ adx([y, z]) = [adx(y), z] + [y, adx(z)].

Hence adx is a derivation. �

We call a derivation of the form adx, for some x ∈ g, an inner derivation and denote by ad(g) the set
of all inner derivations. The above lemma shows that ad(g) ⊆ Der(g). In the case of semisimple Lie
algebras, ad(g) = Der(g).

Lemma 4.12. Let g be a semisimple Lie algebra. Every δ ∈ Der(g) is of the form adx for some x ∈ g.

Proof. Since g is semisimple, the map g → ad(g) is a Lie algebra isomorphism. This implies that
ad(g) is semisimple and so it has non-degenerate Killing form by (ii) of Definition 4.8. By Lemma
4.11, ad(g) ⊆ Der(g). In fact, ad(g) is an ideal of Der(g). This can be seen as follows. Let
δ ∈ Der(g) and adx ∈ ad(g). Then for y ∈ g,

[δ, adx](y)

=(δ ◦ adx)(y)− (adx ◦δ)(y)

=δ([x, y])− [x, δ(y)]

=[δ(x), y] + [x, δ(y)]− [x, δ(y)]

=[δ(x), y]

= adδ(x)(y).

So [δ, adx] = adδ(x) ∈ ad(g).

Since ad(g) is an ideal of Der(g), the Killing form on ad(g) is just the restriction of the Killing form
on Der(g). Hence we can consider the orthogonal subspace ad(g)⊥ in Der(g). Note ad(g)⊥ consists



14

of those δ ∈ Der(g) satisfying κ(δ, adx) = 0 for all adx ∈ ad(g). Since the Killing form is non-
degenerate on ad(g), we have ad(g) ∩ ad(g)⊥ = 0 and since both ad(g) and ad(g)⊥ are ideals of
Der(g), [ad(g), ad(g)⊥] = 0. Now given any derivation δ ∈ ad(g)⊥ we have for all x ∈ g:

0 = [δ, adx] = adδ(x) .

Since g → ad(g) is an isomorphism, this implies that δ(x) = 0 for all x ∈ g, so δ = 0. Thus
ad(g)⊥ = 0 and so ad(g) = Der(g). �

Theorem 4.13 (Jordan-Chevalley Decomposition). Let g be a reductive Lie algebra over k. Then for
any x ∈ g there exists a semisimple element s ∈ g and a nilpotent element n ∈ g such that

(i) x = s+ n;

(ii) [s, n] = 0.

Moreover, (s, n) is the unique pair of elements in g satisfying (i) and (ii).

Proof. Using Theorem 3.10, we can write adx = S + N where S,N ∈ gl(g), S is semisimple and
N is nilpotent. The key problem is to show that S = ads and N = adn for some elements s, n ∈ g.
Given that adx is a derivation, it is enough to show that the set Der(g) contains the semisimple and
nilpotent parts of its elements (in End(g)). This will imply that S,N ∈ Der(g) = ad(g) (by Lemma
4.12) so that S = ads and N = adn for some s, n ∈ g.

Given adx = S + N as above, we will show that S ∈ Der(g). Firstly, note that adx and S have the
same eigenvalues. Hence the generalized eigenspaces gλ = {y ∈ g|(adx−λ)n)y = 0, n ∈ Z} of
adx coincide with the generalized eigenspaces of S. We can write g as a direct sum of generalized
eigenspaces:

g =
⊕
λ∈k̄

gλ.

Given two generalized eigenspaces gα, gβ we have

gαgβ ⊆ gα+β,

which follows from the formula (adx−(α + β))n(yz) =
∑n

i=0

(
n
i

)
((adx−a)n−iy) · ((adx−b)iz) for

y, z ∈ g (this formula is proved in the following Lemma 4.14). Since S acts on gλ by multiplication
by λ, we have for x ∈ gα, y ∈ gβ

S(xy) = (α + β)xy.

However we also have:

S(x)y + xS(y) = αxy + xβy

= (α + β)xy.

Hence S(xy) = S(x)y + xS(y). Since g = ⊕gλ this shows that S is a derivation on g. Hence
S ∈ Der(g) and therefore N ∈ Der(g).

Since g is semisimple, Lemma 4.12 implies that S = ads and N = adn for some s, n ∈ g. Moreover,
these must be unique since ad is a faithful representation when g is semisimple. �
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Lemma 4.14. Let g be a semisimple Lie algebra over a perfect field k. Given α, β ∈ k, x, y ∈ g and
δ ∈ Der(g) we have:

(
δ − (α + β)

)n
(xy) =

n∑
i=0

(
n

i

)(
(δ − a)n−ix

)
·
(
(δ − b)iy

)
.

Proof. This formula is essentially an equivalent of the binomial theorem for derivations. We prove it
by induction on n. It is easy to verify that the formula holds in the cases n = 0, 1. Suppose that the
formula holds for all 0 ≤ k ≤ n. Then for n+ 1 we have:

(
δ − (α + β)

)(
δ − (α + β)

)n
(xy)

=
(
δ − (α + β)

)( n∑
i=0

(
n

i

)(
(δ − α)n−ix

)(
(δ − β)iy

))

= δ

(
n∑
i=0

(
n

i

)(
(δ − α)n−ix

)(
(δ − β)iy

))
− (α + β)

(
n∑
i=0

(
n

i

)(
(δ − α)n−ix

)(
(δ − β)iy

))

=
n∑
i=0

(
n

i

)
δ
(
(δ − α)n−ix

)(
(δ − β)iy

)
+

n∑
i=0

(
n

i

)(
(δ − α)n−ix

)
δ
(
(δ − β)iy

)
− (α + β)

(
n∑
i=0

(
n

i

)(
(δ − α)n−ix

)(
(δ − β)iy

))

=
n∑
i=0

(
n

i

)
(δ − α)

(
(δ − α)n−ix

)(
(δ − β)iy

)
+

n∑
i=0

(
n

i

)(
(δ − α)n−ix

)
(δ − β)

(
(δ − β)iy

)
=

n∑
i=0

(
n

i

)(
(δ − α)n+1−ix

)(
(δ − β)iy

)
+

n∑
i=0

(
n

i

)(
(δ − α)n−ix

)(
(δ − β)i+1y

)
= (δ − α)n+1(x)y +

n∑
i=1

(
n

i

)(
(δ − α)n+1−ix

)(
(δ − β)iy

)
+

n−1∑
i=0

(
n

i

)(
(δ − α)n−ix

)(
(δ − β)i+1y

)
+ x(δ − β)n+1y

= (δ − α)n+1(x)y + x(δ − β)n+1(y)

+
n∑
i=1

(
n

i

)(
(δ − α)n+1−ix

)(
(δ − β)iy

)
+

n∑
i=1

(
n

i− 1

)(
(δ − α)n+1−ix

)(
(δ − β)iy

)
= (δ − α)n+1(x)y + x(δ − β)n+1(y) +

n∑
i=1

[(
n

i

)
+

(
n

i− 1

)] (
(δ − α)n+1−ix

)(
(δ − β)iy

)
= (δ − α)n+1(x)y + x(δ − β)n+1(y) +

n∑
i=1

(
n+ 1

i

)(
(δ − α)n+1−ix

)(
(δ − β)iy

)
=

n+1∑
i=0

(
n+ 1

i

)(
(δ − α)n+1−ix

)(
(δ − β)iy

)
�



16

5. FACTORISATION OF COMMUTATIVE POLYNOMIALS

The proof of Theorem 3.1 relies on the fact that polynomials in k̄[x] can be completely factorized
into linear factors. The extension of this to the differential setting requires a differential analogue of
Hensel’s lemma. In this section we discuss Hensel’s lemma in the commutative polynomial ring with
coefficients in the field C((t)).

5.1. Hensel’s Lemma. The field C((t)) is the field of formal Laurent series in t with coefficients in
C. That is, for non-zero f ∈ C((t)) we can write:

(5.6) f(t) =
∞∑

i=−m

ait
i, m ∈ Z, ai ∈ C, a−m 6= 0.

We can equip C((t)) with the t-adic valuation vt. This is a function vt : C((t))→ Z ∪ {∞} which for
f given by (5.6) is defined by:

vt(f) = −m,

and

vt(0) :=∞.

With respect to this valuation, C((t)) is complete. We define the valuation ring of C((t)) as:

C[[t]] := {f ∈ C((t))|vt(f) ≥ 0}.

The ring C[[t]] consists of formal power series in t with coefficients in C. This ring is a local ring
which means that it has a unique maximal ideal:

tC[[t]] := {f ∈ C((t))|vt(f) ≥ 1}.

Since tC[[t]] is a maximal ideal, the quotient:

C[[t]]/tC[[t]] ∼= C

is a field. This is the residue field of C((t)). The above discussion establishes that C((t)) is a local
field. That is,

1. The field C((t)) is complete with respect to a discrete valuation.

2. The residue field of C((t)) is perfect.

We now introduce the classical version of Hensel’s lemma:

Lemma 5.1 (Hensel’s Lemma). Let f ∈ C[[t]][x] and f̄ ∈ C[x] be the reduction of f mod tC[[t]]. If
there exists a factorization:

f̄ = ḡh̄, ḡ, h̄ ∈ C[x],

such that gcd(ḡ, h̄) = 1, then this lifts to a factorization:

f = gh, g, h ∈ C[[t]][x],

with deg(g) = deg(ḡ) and

g ≡ ḡ (mod tC[[t]]), h ≡ h̄ (mod tC[[t]]).
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Proof. We follow the proof given in Neukirch [Neu99, Sec. 4]. Let g0 = ḡ and h0 = h̄. We would
like to build a sequence of functions:

gn = g0 + p1t+ p2t
2 + · · ·+ pn−1t

n−1 + pnt
n, pi ∈ C[[t]][x](5.7)

hn = h0 + q1t+ q2t
2 + · · ·+ qn−1t

n−1 + qnt
n, qi ∈ C[[t]][x](5.8)

for all n ≥ 0, which satisfy:

f ≡ gnhn (mod tn+1).

If we can do this, then by letting n→∞ we will obtain functions g, h ∈ C[[t]][x] such that f = gh.

Suppose that we know the pi and qi for 1 ≤ i ≤ n−1 (i.e. we have gn−1, hn−1 such that f ≡ gn−1hn−1

(mod tn)), we will give a procedure for finding pn and qn. Firstly, observe from (5.7) and (5.8) that:

(5.9) gn = gn−1 + pnt
n, hn = hn−1 + qnt

n.

Requiring that f ≡ gnhn (mod tn+1) then gives us the following condition:

f ≡ gnhn (mod tn+1)

=⇒ f ≡ (gn−1 + pnt
n)(hn−1 + qnt

n) (mod tn+1)

=⇒ f ≡ gn−1hn−1 + gn−1qnt
n + hn−1pnt

n + pnqnt
2n (mod tn+1)

=⇒ f ≡ gn−1hn−1 + gn−1qnt
n + hn−1pnt

n (mod tn+1).

Rearranging we see that:

f − gn−1hn−1 ≡ (gn−1qn + hn−1pn)tn (mod tn+1)

=⇒ f − gn−1hn−1

tn
≡ gn−1qn + hn−1pn (mod t).

For notational convenience, we set:

fn =
f − gn−1hn−1

tn
.

Now from (5.7) and (5.8) we have gn−1 ≡ g0 (mod t) and hn−1 ≡ h0 (mod t) so the condition on
pn and qn becomes:

fn ≡ g0qn + h0pn.

Since gcd(g0, h0) = 1, there are unique pn and qn satisfying this with deg(pn) < deg(g0) and
deg(qn) < deg(h0). To show this explicitly let:

ag0 + bh0 ≡ 1 (mod t)

for a, b ∈ C[[t]][x]. Then we have:

(5.10) g0(afn) + h0(bfn) ≡ fn (mod t).

At this point it would be nice if we could set qn = afn, pn = bfn but we require deg(pn) < deg(g0)

and deg(qn) < deg(h0). In order to meet these conditions, we use the division algorithm to write:

bfn ≡ Qg0 +R (mod t)

with deg(R) < deg(g0). Equation (5.10) then becomes:

g0(afn +Qh0) + h0R ≡ fn (mod t).
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Setting

pn ≡ R (mod t),

qn ≡ afn +Qh0 (mod t)

then gives us the required gn and hn. �

5.2. Newton-Puiseux Theorem. We can use Hensel’s lemma to prove the following result about
finite extensions of C((t)).

Theorem 5.2. Every finite extension of C((t)) is a field of the form C((t1/m)) for some m ∈ N.

Proof. The proof follows [vdPS03, Sec. 3.1]. We first remark that the extension C((t1/m)) is a Galois
extension of C((t)). This is because C((t)) is perfect and C((t1/m)) is a splitting field for the polynomial
xn − t. This implies that if a polynomial in C((t))[x] has a root in C((t1/m)) then it has all its roots in
C((t1/m)). Thus, in order to prove Theorem 5.2, it suffices to show that any polynomial:

xd + a1x
d−1 + · · ·+ ad−1x+ ad ∈ C((t))[x]

has a root in C((t1/m)) for some m ∈ N.

In order to apply Hensel’s lemma, we first need to clear the coefficients, ai, of any negative powers of
t. Making the substitution

x = t−λX

where

λ := min

{
v(ai)

i

∣∣∣∣ 1 ≤ i ≤ d

}
achieves this. We obtain a polynomial whose coefficients are now formal power series in t1/m, where
m is the denominator of λ:

f(X) = Xd + b1X
d−1 + · · ·+ bd−1X + bd ∈ C[[t1/m]][X].

Let f̄ be the reduction of f (mod t1/m). We are now able to apply Hensel’s lemma to find a root of
f . We use induction on the degree d.

If f̄ has two distinct roots in C then we have a factorization f̄ = ḡh̄ with deg(ḡ), deg(h̄) < d. This
lifts to a factorization f = gh with deg(g), deg(h) < d and we can apply the inductive hypothesis to
g, h to conclude that f has a root in C((t1/m)).

If f̄ does not have two distinct roots then we have f̄ = (X − c0)d for some c0 ∈ C. By our choice
of λ, we have min{v(bi)} = 0 (i.e. at least one bi has non-zero constant term). Hence f̄ 6= Xd so
c0 6= 0. But now f̄ has d + 1 non-zero terms and so each of the bi has non-zero constant term. In
particular, v(b1) = 0 which implies that v(a1) = λ and so λ is an integer and m = 1 (so we have not
actually extended our field). In this case, we write

(5.11) f = (X − c0)d + e1(X − c0)d−1 + · · ·+ ed−1(X − c0) + ed.

Now since f̄ = (X − c0)d we must have v(ei) > 0 for 1 ≤ i ≤ d. Let λ1 = min
{
v(ei)
i

∣∣∣ 1 ≤ i ≤ d
}

,
m1 be the denominator of λ1, and make the substitution

X = c0 + tλ1X1.
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This yields a polynomial

f(X1) = (tλ1X1)d + e1(tλ1X1)d−1 + · · ·+ ed−1(tλ1X1) + ed.

As above, there are two cases: either f (mod t1/m1) has two distinct roots in C or λ1 is an integer and
m1 = 1. In the first case we are finished by induction. In the second case we make the substitution:

X1 = c1 + tλ2X2.

This is equivalent to the substitution:

X = c0 + c1t
λ1 + tλ1+λ2X2

in (5.11). Continuing in this fashion we will either find some substitution for which f̄ has two distinct
roots or we will generate an infinite expression:

c0 + c1t
λ1 + c2t

λ1+λ2 + · · ·

with λi ∈ Z such that
f = (X − (c0 + c1t

λ1 + c2t
λ1+λ2 + · · · ))d.

In either case, f has a root in C((t1/m)) for some m ∈ N. �

6. THE DIFFERENTIAL SETTING

We now turn to the main topic of this thesis which is differential operators and differential modules.
The pinnacle of this section will be a new proof of the Hukuhara-Levelt-Turrittin theorem. This theo-
rem gives a Jordan decomposition for differential operators and should be considered an analogue of
Theorem 3.10. Despite the strong resemblance in the statement of the theorems, the current methods
of proof are vastly different. The goal of this section is to rectify this by providing a new proof anal-
ogous to the proof of Jordan decomposition in the linear setting. Along the way we will introduce
differential operators, differential modules, and differential polynomials and point out the similarities
and differences to the linear setting.

6.1. Differential Fields. Our discussion of Jordan decomposition in the linear setting began by
studying linear operators on vector spaces. In this new setting, the role of linear operators will be
played by differential operators on a vector space. In order to define differential operators, the vector
space itself must have an underlying differential structure. This differential structure is provided by
the field over which the vector space is defined.

Definition 6.1 (Differential Field). A differential field, k, is a field equipped with a derivation, i.e. an
additive map d : k → k satisfying the Leibniz rule:

d(ab) = ad(b) + d(a)b, ∀a, b ∈ k.

One can generalize this to define a differential ring (see [vdPS03, §1.1]) however we will not need this
level of generality here. Before we provide some interesting examples of differential fields, it is worth
noting that every field can be trivially made a differential field by letting d be the zero map.

Example 6.2. We can take the field of rational functions C(t) or the field of formal Laurent series
C((t)) with derivation d = p d

dt
for some polynomial p ∈ C[t]. In what follows, we generally work

over the field K = C((t)) with derivation d = t d
dt

.
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The kernel of d forms a special subfield of k.

Definition 6.3 (Constants). The set C := {c ∈ k : d(c) = 0} is a subfield of k called the field of
constants of k.

It is easy to verify that C is a subfield. If k has characteristic 0, then the next lemma shows that any
element algebraic over C is also a constant.

Lemma 6.4. Let k be a differential field of characteristic 0. If c is algebraic over C, then d(c) = 0.

Proof. Since c is algebraic over C, there exists a minimal polynomial P :

P (x) = xn + a1x
n−1 + · · ·+ an−1x+ an, ai ∈ C,

such that P (c) = 0. Applying the derivation to both sides we see that:

ncn−1d(c) + d(a1)cn−1 + (n− 1)a1c
n−2d(c) + · · ·+ d(an−1)c+ an−1d(c) + d(an) = 0.

Since ai ∈ C, d(ai) = 0 for 1 ≤ i ≤ n. So we have:

d(c)
(
ncn−1 + (n− 1)a1c

n−2 + · · ·+ an−1

)
= 0.

So either d(c) = 0 or ncn−1 + (n−1)a1c
n−2 + · · ·+an−1 = 0. In the latter case, P is not the minimal

polynomial of c over C (note that this is true because we are in characteristic 0: in characteristic
p > 0, it may be possible that the second factor is 0). Hence we must have d(c) = 0. �

Corollary 6.5. If d 6≡ 0 on k, then k is infinite-dimensional over C.

Proof. If k was algebraic over C then, by the previous lemma, we would have d(a) = 0 for all a ∈ k.
Hence, if k 6= C, then k contains at least one element which is transcendental over C. �

In what follows, we will frequently make use of field extensions. Luckily, derivations behave nicely
under field extensions.

Lemma 6.6. Let (k, d) be a differential field and k(t) be a transcendental extension of k. Then, given
a ∈ k(t), there is a unique extension, d′, of d to k(t) such that d′(t) = a.

Proof. Once a choice has been made for d′(t), the value of d′ for every other element of k(t) is
uniquely determined by the additive property and the Leibniz rule. �

Example 6.7. Consider the complex numbers as a (trivial) differential field (C, d
dt

). When we extend
to the field, C(t), of rational functions in t, the derivation can be extended so that it maps t to any
rational function a ∈ C(t). This is just extending the derivation d

dt
to the derivation a d

dt
for some

a ∈ C(t).

In the case of finite field extensions, there is no longer any choice for the new derivation.

Lemma 6.8. Let (k, d) be a differential field and k(a) be a finite extension of k. Then there is a unique
extension, d′, of d to k(a).
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Proof. The proof is almost identical to Lemma 6.4. Since a is algebraic over k, it satisfies some
minimal polynomial:

0 = an + c1a
n−1 + · · ·+ cn, ci ∈ k.

Applying d′ to both sides of this we have

0 = nan−1d′(a) + d(c1)an−1 + (n− 1)c1a
n−2d′(a) + · · ·+ d(cn)

which implies that

d′(a)
(
nan−1 + (n− 1)c1a

n−2 + · · ·+ cn−1

)
= d(c1)an−1 + · · ·+ d(cn),

and thus

d′(a) =
d(c1)an−1 + · · ·+ d(cn)

nan−1 + (n− 1)c1an−2 + · · ·+ cn−1

.

Hence there is only one possible value for d′(a) and all other values of d′ are determined by the
additive property and the Leibniz rule. �

Example 6.9. Consider the differential field (K, t d
dt

). We have seen that the finite extensions of K are
all of the form Kb = C((t1/b)) for some positive integer b. If we let s = t1/b then the derivation t d

dt

extends uniquely to the derivation

t
d

dt
= sb

ds

dt
· d
ds

=
1

b
s
d

ds
.

6.2. Differential Operators. We now introduce the objects that will play the role of linear operators
in the differential setting.

Definition 6.10 (Differential Operator). Let V be a vector space defined over a differential field,
(k, d). A differential operator is an additive map D : V → V , satisfying

D(av) = aD(v) + d(a)v

for all a ∈ k, v ∈ V .

Note that in the case d is trivial, the above definition reduces to that of a k-linear operator. In this sense,
differential operators are a generalization of linear operators. We call the pair (V,D) a differential
module over k.

Example 6.11. Let (k, d) be a differential field with field of constants k0. Let V0 be an n-dimensional
k0-vector space and V := k ⊗k0 V0. Given a k-linear operator T : V → V , the operator D = T + d

is a differential operator. Here d : V → V is defined by d(a⊗ v0) = d(a)⊗ v0 for v0 ∈ V0 and a ∈ k
(this is well-defined since the tensor product is over k0). Since T is additive, D is also additive. For
a ∈ k, v ∈ V we have

D(av) = T (av) + d(av) = aT (v) + ad(v) + d(a)v = aD(v) + d(a)v.

As in the linear setting, a choice of basis for V allows us to represent a differential operator by a
matrix. Let {e1, . . . , en} be a basis for V . The action of a differential operator, D : V → V , on some
y = y1e1 + · · ·+ ynen ∈ V is:

D(yiei) = yiD(ei) + d(yi)ei.
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This can be put into matrix form:

(6.12) Dy = Ay + d(y).

We will generally write D = A+ d for the differential operator.

Now suppose {e′1, . . . , e′n} is a second basis of V and let U be the change of basis matrix, i.e.e1

...
en

 = U

e
′
1
...
e′n

 .

In this new basis, the action of D on v ∈ V is given by:

U−1DU(v) = U−1
(
AUv+d(Uv)

)
= U−1

(
AUv+d(U)v+Ud(v)

)
= U−1AU(v)+U−1d(U)v+d(v),

where d(U) is the matrix obtained by applying d element-wise to U . Thus, the change of basis gives a
new matrix of actionA 7→ U−1AU+U−1d(U). Later we will think of this transformation as an action
of the group GL(V ) on the Lie algebra gl(V ). In this context, the group action is usually called gauge
action and one refers to the transformationA 7→ U−1AU+U−1d(U) as a gauge transformation.

6.3. Differential Polynomials. The relationship between linear operators and modules over the poly-
nomial ring k[x] is an extremely useful tool in the linear setting. Fortunately, there exists a similar
relationship in the differential setting, however the polynomial ring is no longer commutative.

Notation 6.12. Given a differential field (k, d), we will denote by k{x} (or by k{x, d} if we wish to
emphasise the derivation) the ring of differential polynomials.

As an abelian group, k{x} = k[x], however, multiplication in k{x} is subject to the relation

xa = ax+ d(a), ∀a ∈ k.

For non-trivial d, this means that k{x} is non-commutative. The ring k{x} is a special example of
the non-commutative rings studied by Ore4 [Ore33]. The following lemma shows that k{x} retains
some of the nice properties of the usual (commutative) polynomial ring.

Lemma 6.13. The ring k{x} is both a left and right Euclidean domain.

The proof of this is a simple adaptation of the usual proof for commutative polynomials. An easy way
to exchange left and right multiplication is given by the involution sending x to −x, i.e.∑

i

aix
i 7→

∑
i

(−x)iai, ai ∈ k.

This involution will become important when we discuss differential modules. The new polynomial is
called the formal adjoint5 of the original.

As usual, Lemma 6.13 implies that k{x} is both a left and right principal ideal domain. One can also
construct a left and right least common multiple and greatest common divisor (see [Ore33, §3] —
note that Ore uses the terminology union and cross-cut respectively). Due to the non-commutativity

4The generalization studied by Ore allows one to treat differential operators and difference operators simultaneously.
5See [Ked10a, §5.5.4] and [vdPS03, §2.1] for more detailed discussions of this involution.
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of k{x}, it is not obvious how one can do this (simply multiplying two polynomials together will not
work). The following example illustrates this difficulty for the differential field (K, t d

dt
).

Example 6.14. Note that for x + t, x − t, their product (x + t)(x − t) = x2 − t − t2 is not a right
common multiple because it is not right divisible by x+ t. Instead, following [Ore33], we obtain the
“union”

2t(x+ t)
1

2
t−1(x− t) = t(xt−1 + 1)(x− t)

= t(t−1x− t−1 + 1)(x− t)

= (x− 1 + t)(x− t)

= x2 − x− t2.

Right division by x + t shows that (x − 1 + t)(x − t) = (x − 1 − t)(x + t) is divisible on the right
by both x− t and x+ t.

Remark 6.15. In analogy to the case of linear operators, a differential module (V,D) is equivalent
to a finite-dimensional left k{x}-module. That is, k{x} acts on V by letting x act as D. The cyclic
vector theorem guarantees the existence of a vector v ∈ V such that v,D(v), . . . , Dn−1(v) form
a basis of V . This implies that Dn(v) + a1D

n−1(v) + · · · + a0v = 0 for some ai ∈ k. In this
basis, we can write D = d + A where A is the companion matrix of the differential polynomial
P = xn + a1x

n−1 + · · ·+ a0 ∈ k{x}. This gives us an isomorphism V ∼= k{x}/Pk{x}.

6.4. Semisimple Differential Operators. We can now introduce the notions of simplicity and semisim-
plicity for differential operators, as defined in [Lev75] (c.f. Definitions 3.5 and 3.6).

Definition 6.16 (Simple Differential Operator). Let V be a k-vector space and let D : V → V be a
differential operator. Then D is called simple if the following equivalent conditions hold:

(i) The corresponding k{x}-module is simple (i.e. it contains no non-zero proper submodules);

(ii) V contains no non-trivial D-invariant subspaces.

Definition 6.17 (Semisimple Differential Operator). Let V be a vector space over k and let D : V →
V be a differential operator. Then D is called semisimple if the following equivalent conditions hold:

(i) The corresponding k{x}-module is a direct sum of simple modules;

(ii) Every D-invariant subspace of V has a D-invariant complement.

There is also a notion of a diagonalizable differential operator:

Definition 6.18 (Diagonalizable Differential Operator). Let D : V → V be a differential operator
and write D = d+ A. Then D is diagonalizable over k if the following equivalent conditions hold:

(i) A is gauge equivalent to a diagonal matrix;

(ii) V is a direct sum of one-dimensional k{x}-modules.

We now specialise to the differential field K := C((t)) with d = t d
dt

and its finite extensions Kb :=

C((t1/b)). We have seen that both the t-adic valuation and the derivation d extend uniquely to Kb.
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Given a K-vector space V and a finite extension K ⊂ Kb we can extend scalars to form the vector
space Vb := Kb ⊗K V . A differential operator D : V → V then extends to Db : Vb → Vb via:

Db : a⊗ v 7→ d̄(a)⊗ v + a⊗Dv,

where d̄ is the unique extension of d to Kb.

In this setting, semisimplicity behaves well with respect to taking extensions:

Lemma 6.19 (Levelt). Let V be a vector space over K and D : V → V a differential operator. Then
D is semisimple if, and only if, DKm : VKm → VKm is semisimple for any finite field extension Km of
K.

Proof. See [Lev75, §1(e)]. �

There is also a nice relationship between semisimple operators and diagonalizability. A one-dimensional
K{x}-module is simple; thus diagonalizable differential operators are semisimple. In Section 8.1 we
give a new proof of a converse to this (after a possible finite extension of K). Thus a differential
operator is semisimple if and only if, after an appropriate finite extension, it is diagonalisable. Note
that this is an analogue of Lemma 3.8 in the linear setting.

6.4.1. Nilpotent Differential Operators. We make one brief remark about the solutions of systems of
linear differential equations. Given a system d(v) = Av of differential equations, there will be, in
general, a vector space of solutions:

V = {v ∈ kn |d(v) = A(v)}.

This solution space is the kernel of the differential operator D = A − d. The following lemma says
that this vector space is relatively small:

Lemma 6.20. Let k be a differential field of characteristic 0 and C its field of constants. Let d(v) =

Av be a system of differential equations with v ∈ kn, A ∈ Mn(k) and let V be the solution space of
the system. Then V is a finite-dimensional vector space over C with dimension at most n.

Proof. The proof follows Singer and van der Put [vdPS03, §1.2]. It is easy to verify that V is a C-
vector space. We will show that linear dependence over k implies linear dependence over C. Since
any n+ 1 vectors in V ⊂ kn must be linearly dependent over k, this will imply that V has dimension
at most n over C.

Suppose that v1, . . . , vm ∈ V are linearly dependent over k but that any proper subset is linearly
independent. Then we can write

v1 =
m∑
i=2

aivi, ai ∈ k.
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Since vi ∈ V we have:

0 = v′1 − Av1 =

(
m∑
i=2

aivi

)′
− A

(
m∑
i=2

aivi

)

=
m∑
i=2

a′ivi +
m∑
i=2

aiv
′
i −

m∑
i=2

aiAvi

=
m∑
i=2

a′ivi +
m∑
i=2

ai(v
′
i − Avi)︸ ︷︷ ︸

=0

=
m∑
i=2

a′ivi.

Since v2, . . . , vm are linearly independent over k we must have a′i = 0 for all i = 2, . . . ,m. Hence
ai ∈ C and so v1, . . . , vm are linearly dependent over C. �

One implication of Lemma 6.20 is that there are no non-trivial nilpotent differential operators:

Lemma 6.21. Let V be a vector space over the differential field (k, d) and D : V → V be a differen-
tial operator. If there exists an integer, n, such that:

Dnv = 0

for all v ∈ V , then d = 0, and D is a nilpotent k-linear operator.

Proof. Suppose Dnv = 0 for some n ∈ Z and d 6= 0. Then we have the system:

(A+ d)nv = 0.

Expanding the left hand side will yield a system of m differential equations of order n where m =

dim(A). This is equivalent to a system of mn first-order equations by creating new variables for
d(v), d2(v), . . . , dn(v). Thus the system is equivalent to a matrix differential equation:

y′ = By,

where y ∈ knm, dim(B) = mn. By Lemma 6.20, the solution space of this system is finite-
dimensional over the field of constants. Since k itself is infinite-dimensional over its field of constants
(see Corollary 6.5) it certainly can not be the case that Dnv = 0 for all v ∈ kn. Hence d must be
trivial. �

6.5. The Category of Differential Modules. In this section we denote by DiffK the category of
finite-dimensional differential modules over K := C((t)). The objects of this category are differential
modules (i.e. pairs (V,D), with V a finite-dimensional K-vector space and D : V → V a differential
operator) and the morphisms are the K-linear maps that commute with the differential operators. If
(V1, D1), (V2, D2) are two objects of DiffK, then we will usually write

HomK{x}(V1, V2) := {f ∈ HomK(V1, V2) : f ◦D1 = D2 ◦ f}

for the set of morphisms from (V1, D1) to (V2, D2). Note that HomK{x}(V1, V2) is an abelian group
but not a differential module.
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Most of the usual constructions from linear algebra (e.g. duals, tensor products, direct sums, etc.)
have analogues in DiffK. We will now define these formally and give some results that we will need
in later sections.

Definition 6.22 (Direct Sum). Let (V1, D1), (V2, D2) be differential modules over K. The direct sum
V1 ⊕ V2 is a differential module with differential operator D := D1 ⊕D2 given by

D(v1 ⊕ v2) := D1(v1)⊕D2(v2).

With the direct sum as both the (categorical) product and coproduct, DiffK becomes an abelian cate-
gory.

Definition 6.23 (Tensor Product of Modules). Let (V1, D1) and (V2, D2) be differential modules over
K. The tensor product V1 ⊗K V2 is a differential module with differential operator D := D1 ⊗ D2

given by:
(D1 ⊗K D2)(v1 ⊗K v2) := D1(v1)⊗K v2 + v1 ⊗K D2(v2).

We will generally write ⊗ for ⊗K where there is no confusion. It is straight-forward to verify that
D1 ⊗D2 is C-linear and

(D1 ⊗D2)(av1 ⊗ v2) = D1(av1)⊗ v2 + av1 ⊗D2(v2) = aD1(v1)⊗ v2 + d(a)v1 ⊗ v2 + av1 ⊗D2(v2)

= a(D1 ⊗D2)(v1 ⊗ v2) + d(a)v1 ⊗ v2,

shows that the Leibniz rule is satisfied for all a ∈ K.

We have already noted that HomK{x}(V1, V2) is not a differential module. The set of K-linear maps
from V1 to V2 is, however, a differential module.

Definition 6.24 (Internal Homs). Let (V1, D1) and (V2, D2) be differential modules over K. The set
HomK(V1, V2) is a differential module with differential operator D, given by:

D(f) := D2 ◦ f − f ◦D1.

Again, we verify the Leibniz rule. For a ∈ K we have

D(af) = D2 ◦ (af)− af ◦D1 = aD2 ◦ f + d(a)f − af ◦D1 = a(D2 ◦ f − f ◦D1) + d(a)f.

In the category of R-modules, the two functors − ⊗ X and Hom(X,−) are adjoint functors (see
[Rot09, Theorem 2.75]). There is an analogue of this result in DiffK:

Proposition 6.25. Let (T,DT ), (X,DX), and (Y,DY ) be differential modules over K. We have the
following isomorphism of abelian groups:

HomK{x}(T ⊗X, Y ) ∼= HomK{x}(T,HomK(X, Y )).

Proof. The construction of the isomorphism here is motivated by the corresponding construction for
the category of R-modules. Define

τ : HomK{x}(T ⊗X, Y )→ HomK{x}(T,HomK(X, Y ))

by f 7→ τ(f) where τ(f) : T → HomK(X, Y ) is defined by

τ(f)t : x 7→ f(t⊗ x).
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It is easy to check that τ is an isomorphism of abelian groups. Note that the map τ(f)t is K-linear but
in general does not commute with the differential operators; i.e.

τ(f)t(DX(x)) = f(t⊗DX(x)),

but

DY (τ(f)t(x)) = DY (f(t⊗ x))

= f(DT⊗X(t⊗ x))

= f(DT (t)⊗ x) + f(t⊗DX(x)). �

Remark 6.26. Proposition 6.25 shows that the functor F : DiffK → Set given by

F(T ) = HomK{x}(T ⊗X, Y ), X, Y ∈ obj(DiffK),

is representable and represented by HomK(X, Y ). Thus, in the language of Tannakian categories (see
[DM82, §1]) the differential modules HomK(X, Y ) are the internal homs.

Definition 6.27 (Dual Module). Let V ∗ := HomK(V,K) denote the vector space dual to V . We can
define a differential operator D∗ : V ∗ → V ∗ by

D∗ : V ∗ → V ∗, D∗(f) = d ◦ f − f ◦D, f ∈ V ∗.

The differential module (V ∗, D∗) is called the dual of (V,D).

Note that the dual differential module is really just HomK(V,1) where 1 is the trivial differential
module (K, d).

Remark 6.28. It is clear that 1 is a unit object for the tensor product defined above. Note that any
K-linear map f : K → K is completely determined by f(1) and thus the only such maps are the
“multiplication by a” maps for some a ∈ K. In order for f to be a K{x}-map, we also require
d(a) = 0, i.e. we need a ∈ C. Thus HomK{x}(1,1) ∼= C. These facts, together with the constructions
defined in this section are almost enough to show that DiffK is a neutral Tannakian category. We
only require the existence of a fibre functor ω : DiffK → VectC. Interestingly, the Hukuhara-Levelt-
Turritin decomposition implies the existence of such a fibre functor (see [Kat87, §2.4]) and hence
DiffK is a neutral Tannakian category.

7. FACTORISATION OF DIFFERENTIAL POLYNOMIALS

In this section we prove a differential analogue of the Newton-Puiseux theorem (see Section 5.2).
Most of the proofs given in this section have the same structure as those given in Section 5. As
before, we fix K := C((t)) and O := C[[t]].

7.1. Newton Polygon of a Differential Polynomial. We now introduce an object which will be
an extremely useful tool for factorising differential polynomials: the Newton polygon. There is an
analogous object in the linear setting which we introduce first.
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Definition 7.1 (The Newton Polygon of a Commutative Polynomial). Let f ∈ K[x] and write

f(x) =
n∑
i=0

aix
n−i, ai ∈ K.

The Newton polygon of f , denoted NP(f), is the lower boundary of the convex hull of the points

{(n− i), vt(ai) : 0 ≤ i ≤ n} ⊂ R2.

The easiest way to understand the above definition is by an example.

Example 7.2. To construct the Newton polygon for f = x4 + t−1x3 − (t−3 + 1 + t2)x2 + t−4x− t−2,
first plot the points whose x-coordinate is given by the power of x and whose y-coordinate is given
by the valuation of the corresponding coefficient:

y

x
−1 1 2 3 4

−4

−3

−2

−1

1

The Newton polygon is then the lower boundary of the convex hull of these points:

y

x
−1 1 2 3 4

−4

−3

−2

−1

1

NP(f )

Newton originally introduced these polygons in order to factorise polynomials in the commutative
ring K[x] (see [BK86, §8.3] for an excellent account of the applications and history of Newton poly-
gons in this setting).
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In the differential setting, one must modify the above construction so that the polygon is gauge invari-
ant. The required modification will depend on the derivation. We follow the definition in [Ked10b].
Firstly, recall the operator norm:

Definition 7.3 (Operator Norm). Let T be a bounded linear operator on a normed vector space V .
The operator norm, |T |, of T is

|T | := sup
v∈V

{
|T (v)|
|v|

}
.

In our situation, we will take T to be a derivation, d, on V = K viewed as a vector space over C. The
norm on K is the norm coming from the t-adic valuation: | · | = exp(−vt(·)). In order to define a
gauge invariant Newton polygon we introduce the quantity

r0 := log(|d|).

Our main examples will be the following.

Example 7.4. Let v =
∑∞

i≥n ait
i ∈ K and δm = tm d

dt
. We have δm(v) =

∑∞
i≥n aiit

i+m−1 and so

|δm| = sup
v∈K

{
|δm(v)|
|v|

}
= sup

v∈K

{
exp(1− n−m)

exp(−n)

}
= exp(1−m).

In this case we have r0 = 1−m.

Example 7.5. We can generalise the above calculation to an arbitrary derivation d = a d
dt

, for some
a ∈ K. Again, set v =

∑∞
i≥n ait

i ∈ K. Then:

|d| = sup
v∈K

{
|d(v)|
|v|

}
= sup

v∈K

{
exp

(
−vt(

∑∞
i≥n aiait

i−1)
)

exp(−n)

}
= sup

v∈K

{
exp(vt(a)− n+ 1)

exp(−n)

}
= exp(1−vt(a)),

and so r0 = 1− vt(a).

Now, given a polynomial f ∈ K{x, d}, one first constructs the corresponding commutative Newton
polygon and then replaces all slopes less than r0 with a single slope of exactly r0. To make this more
precise, define a partial order on R2 by (x1, y1) ≥ (x2, y2) if x1 ≤ x2 and y1 ≥ y2. Using this partial
order we have the following definition:

Definition 7.6. Let f ∈ K{x, d} and set r0 = log(|d|), as above. The Newton polygon of f is the
lower boundary of the convex hull of the set

{(a, b) ∈ R2 : f has a monomial tmxn with (a, b) ≥ (n,m+ (x− n)r0)}.

Note that the condition on the y-coordinate in Definition 7.6 defines a line above which the points
(a, b) must lie. Again, an example is the most efficient way to understand this definition.

Example 7.7. As in Example 7.2, we take f = x4 + t−1x3 − (t−3 + 1 + t2)x2 + t−4x− t−2 but now
view f as a polynomial in K{x, t d

dt
}. In this case r0 = 0 and so we must replace any negative slopes

appearing in the commutative Newton polygon with a single slope of 0. This yields the following
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differential Newton polgyon:

y

x
−1 1 2 3 4

−4

−3

−2

−1

1

NP(f )

7.2. Irregularity. The most important characteristic of the differential Newton polygon is its set of
slopes. In fact, one can reformulate most of the following factorisation results in terms of the slopes
of a differential polynomials Newton polygon. In this section, we give a characterisation of regular
singularity using the slopes of the differential Newton polygon. This notion will coincide with the
one introduced in Section 2.2. We first define the irregularity of a differential polynomial.

Definition 7.8 (Irregularity). Let f ∈ K{x, d} be a differential polynomial and let s1, . . . , sn be the
slopes of its Newton polygon. The irregularity of f is defined as

Irr(f) :=
n∑
i=1

(si + r0).

We now make the following obvious definition.

Definition 7.9 (Regular Singular Differential Polynomial). Let f ∈ K{x, d} be a differential polyno-
mial. We say that f is regular singular if Irr(f) = 0. Equivalently, f is regular singular if its Newton
polygon has a single slope of r0.

For the derivation δ1, the regular singular differential polynomials are precisely those in O{x, δ1}
(since, for the irregularity to be 0, the Newton polygon must have a single slope of 0). Note also that
in this case, the irregularity is exactly the sum of the slopes of the corresponding Newton polygon.
We now show that Definition 7.9 coincides with the one given in Section 2.2.

Proposition 7.10. Let (V,D) be a differential module and suppose that V ∼= K{x}/fK{x} for some
differential polynomial f ∈ K{x, δ1}. Then V is a regular singular differential module if and only if
Irr(f) = 0.

Proof. By Remark 6.15, the isomorphism V ∼= K{x}/fK{x} allows us to write D = d + A where
A is the companion matrix of f . It is now clear that the coefficients of f are in O if and only if the
entries of A are in O. Thus both definitions of regular singular are equivalent. �
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7.3. Hensel’s Lemma for Differential Polynomials. In this section we restrict our attention to the
differential field K = C((t)) and its finite extensions, Kb = C((t1/b)), b a positive integer (see Section
5). Our derivations will be of the form δm := tm d

dt
. Since we will need to emphasise the derivation,

we denote by K{x, δm} the ring of differential polynomials subject to the relation

(7.13) xa = ax+ δm(a), ∀a ∈ K.

As in the linear setting, Hensel’s lemma will allow us to factorize differential polynomials with co-
efficients in O = C[[t]]. In the special case of O{x, δ1} we find a surprising difference between the
differential and linear settings: every polynomial inO{x, δ1} has a linear factorization (i.e. we do not
require a field extension in order to obtain a linear factorization). Unfortunately, this result does not
hold for the other δm.

SinceO{x, δm} is a non-commutative ring, we must be careful when reducing coefficients mod t. For
f ∈ O{x, δm}, we will write f (mod tn) for the polynomial obtained by first moving all factors of t
to the left and then reducing the coefficients modulo tn. Formally, what we mean by f (mod tn) is
the image of f in the quotientO{x, δm}/tnO{x, δm}. There is no particular significance in the choice
of left: one can instead move all factors of t to the right and consider the image of f in the quotient
O{x, δm}/O{x, δm}tn. For notational convenience, let f̄ := f (mod t). Note that f̄ ∈ C[x]. In
order to shift factors of t to the left, we will frequently make use of the following identities.

Lemma 7.11. For all h(x) ∈ K{x, δm} and i ∈ Z

(7.14) h(x)ti = tih(x+ itm−1).

Proof. Firstly, taking a = ti in (7.13) yields xti = ti(x + itm−1). An easy induction argument then
yields the identity

xnti = ti(x+ itm−1)n, ∀m ∈ N.

The result now follows by considering each term in h(x). �

Remark 7.12. In order to factor all polynomials in K{x} we will need to allow field extensions to
C((s)) where sq = t, q ∈ N. Under such a field extension, the derivation δm extends uniquely to the
derivation

δ′m = tn
d

dt
= snq

ds

dt
· d
ds

=
1

q
snq−q+1 d

ds
.

Lemma 7.11 now applies to C((s)){x, δ′m} by replacing t with s. This will allow us to deal with
fractional powers of t when they arise.

Lemma 7.13. For the derivation δm

(7.15) (tdx)n =
n−1∑
j=0

ajt
nd+(m−1)jxn−j, ∀d ∈ Z− {0}, n ∈ N

for some constants aj ∈ C with a0 = 1.
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Proof. The proof uses induction on n. The case n = 1 is clear. We have

(tdx)n+1 = (tdx)
n−1∑
j=0

ajt
nd+(m−1)jxn−j =

n−1∑
j=0

ajt
d(xtnd+(m−1)j)xn−j

=
n−1∑
j=0

ajt
d
(
tnd+(m−1)jx+

(
nd+ (m− 1)j

)
tnd+(m−1)(j+1)

)
xn−j

=
n−1∑
j=0

ajt
(n+1)d+(m−1)jxn+1−j + aj

(
nd+ (m− 1)j

)
t(n+1)d+(m−1)(j+1)xn−j

= a0t
(n+1)dxn+1 +

n∑
j=1

(
aj + aj−1

(
nd+ (m− 1)(j − 1)

))
t(n+1)d+(m−1)jxn+1−j

=
n+1∑
j=0

bjt
(n+1)d+(m−1)jxn+1−j, bj ∈ Z,

where b0 = a0 = 1. This proves the identity. �

Now suppose we have a factorization of f̄ :

f̄ = g0h0, g0, h0 ∈ C[x].

As in the linear setting, our goal is to lift this to a factorization of f in K{x, δm}. The following result
should be thought of as a differential analogue of Hensel’s lemma.

Proposition 7.14. Let f ∈ O{x, δm} and f̄ = g0h0 as above. Suppose f̄ 6≡ 0 andgcd
(
g0(x+ n), h0(x)

)
= 1, ∀n ∈ Z>0 if m = 1

gcd
(
g0(x), h0(x)

)
= 1 if m > 1.

Then we have a factorisation f = gh with g, h ∈ O{x, δm} and deg(g) = deg(g0) and ḡ = g0 and
h̄ = h0.

A version of the above result appears in [Pra83, Lemma 1]. The proof has the outline of the proof of
the usual Hensel’s lemma.

Proof. Our goal is to inductively build a sequence of functions

gn(x) = g0 + tp1 + t2p2 + · · ·+ tn−1pn−1 + tnpn, pi ∈ C[x](7.16)

hn(x) = h0 + tq1 + t2q2 + · · ·+ tn−1qn−1 + tnqn, qi ∈ C[x](7.17)

for all n ≥ 0, which satisfy:

f ≡ gn(x)hn(x) (mod tn+1).

If we can do this, then by letting n→∞ we will obtain functions g, h ∈ O{x, δm} such that f = gh.

Suppose that we know the pi and qi for 1 ≤ i ≤ n− 1. In view of (7.16) and (7.17) we have:

gn = gn−1 + tnpn, hn = hn−1 + tnqn.
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Requiring that f ≡ gn(x)hn(x) (mod tn+1) then gives us the following condition:

f ≡ gn(x)hn(x) (mod tn+1)

≡
(
gn−1(x) + tnpn(x)

)(
hn−1(x) + tnqn(x)

)
(mod tn+1)

≡ gn−1(x)hn−1(x) + gn−1(x)tnqn(x) + tnpn(x)hn−1(x) + tnpn(x)tnqn(x) (mod tn+1).

We need to shift the powers of t to the left. By (7.14), gn−1(x)tn = tngn−1 (x+ ntm−1), so we have:

f − gn−1(x)hn−1(x) ≡ tngn−1(x+ ntm−1)qn(x) + tnpn(x)hn−1(x) (mod tn+1)

≡ tn(gn−1(x+ ntm−1)qn(x) + pn(x)hn−1(x)) (mod tn+1),

and thus
f − gn−1(x)hn−1(x)

tn
≡ gn−1(x+ ntm−1)qn(x) + pn(x)hn−1(x) (mod t)

≡ g0(x+ ntm−1)qn(x) + pn(x)h0(x) (mod t).

For notational convenience, we set:

fn =
f − gn−1(x)hn−1(x)

tn
.

so that we have

(7.18) fn ≡ g0(x+ ntm−1)qn(x) + pn(x)h0(x) (mod t).

Now if m > 1 then (7.18) reduces to

fn ≡ g0(x)qn(x) + pn(x)h0(x) (mod t).

Since C[x] is a Euclidean domain, we will be able to solve this for pn and qn provided that g0 and h0

are coprime. On the other hand, if m = 1 then (7.18) becomes

fn ≡ g0(x+ n)qn(x) + pn(x)h0(x) (mod t).

In this case, we will only be able to generate the entire sequence if g0(x + n) and h0(x) are coprime
for all n ∈ Z>0.

All that remains to show is that we can control the degree of the gn’s. We will show this in the case
m = 1. The proof in the case m > 1 is similar (replace g0(x + n) with g0(x) everywhere). Since
g0(x+ n) and h0(x) are coprime, we can find a, b ∈ C[x] such that

g0(x+ n)a(x) + h0(x)b(x) = 1.

Multiplying through by fn yields

(7.19) g0(x+ n)a(x)fn(x) + h0(x)b(x)fn(x) = fn(x).

Using the division algorithm we can find unique pn and qn such that deg(pn) < deg(g0). Write:

b(x)fn(x) = Q(x)g0(x) +R(x)

with deg(R) < deg(g0). Equation (7.19) then becomes:

g0(x+ n)
(
a(x)fn(x) +Q(x)h0(x)

)
+ h0(x)R(x) ≡ fn(x) (mod t).

Setting pn = R and qn = afn +Qh0 gives us the required gn and hn. �

In the differential setting, Hensel’s lemma immediately implies the following.
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Corollary 7.15. Let f ∈ O{x, δ1} be a monic differential polynomial. Then f admits a factorisation
of the form

(x− Λ)h,

with Λ ∈ O and h ∈ O{x, δ1}.

Proof. Let f̄ ∈ C[x] be the reduction of f mod t. Since f is monic, f̄ is non-constant and hence
factors over C into linear factors:

f̄ = (x− λ1)(x− λ2) · · · (x− λn), λi ∈ C.

Without loss of generality, we can order these factors so that Re(λ1) ≤ Re(λ2) ≤ · · · ≤ Re(λn).
With this ordering we then have

f̄ = g0h0,

where

g0 = x− λ1, h0 = (x− λ2) · · · (x− λn).

By our choice of ordering, g0(x + n) has no common factor with h0 for all n ∈ Z>0. Hence we can
apply Proposition 7.14 to obtain a factorisation of the form

f = (x− Λ)h, Λ ∈ O, h ∈ O{x, δ1},

as required. �

Remark 7.16. Note that the above result is false for the usual polynomial ringO[x]. Indeed, x2 +t−t2

does not have a linear factorisation over this ring, but if we consider it as an element ofO{x, δ1}, then
x2 + t− t2 = (x− t)(x+ t).

We now give some examples of this algorithm.

Example 7.17. Consider the differential polynomial f = x2− (1− t+ t2)x+(t+ t2− t3) ∈ K{x, δ1}.
We have f̄ = x2− x = x(x− 1) so we set g0 = x, h0 = x− 1. We now look for p1 and q1 satisfying:

f ≡ (g0 + p1t)(h0 + q1t) (mod t2).

This gives us the following condition on p1 and q1:

x2 − (1− t)x+ t ≡ (x+ p1t)(x− 1 + q1t) (mod t2)

=⇒ tx+ t ≡ q1(tx+ t) + p1tx− p1t (mod t2)

=⇒ x+ 1 ≡ (q1 + p1)x+ (q1 − p1) (mod t).

Comparing coefficients, we find p1 = 0, q1 = 1 and so g1 = x and h1 = x− 1 + t. We then look for
p2 and q2 satisfying:

f ≡ (x+ p2t
2)(x− 1 + t+ q2t

2) (mod t3).

Repeating the calculation above, we find that p2 = 1, q2 = 0. At this point, we in fact have a full
factorisation of f = (x+ t2)(x− 1 + t).

Remark 7.18. Example 7.17 is somewhat contrived in that the algorithm terminated in finitely many
steps. In general, this process could continue indefinitely (as in the next example) but it will always
yield a factorisation.
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The second example shows that this algorithm may not always give the “nicest” factorisation of a
polynomial.

Example 7.19. Consider the polynomial f = x2 + tx − 1 ∈ K{x, δ1}. In this case, f̄ = x2 − 1 =

(x−1)(x+1) and so we set g0 = x+1, h0 = x−1. Applying the first two iterations of the algorithm
we find g2 = x+ 1 + 2

3
t+ 1

18
t2 and h2 = x− 1 + 1

3
t− 1

18
t2, i.e.

f ≡
(
x+ 1 +

2

3
t+

1

18
t2
)(
x− 1 +

1

3
t− 1

18
t2
)

(mod t3).

This is still not a perfect factorisation of f . In fact, expanding out we find g2h2 = x2 + tx−1− 1
54
t3−

1
324
t4. We can keep computing terms indefinitely to obtain better factorisations, however we would

need to continue to an infinite number of terms to get the complete factorisation. The polynomial, f ,
does have a simple factorisation however. One can check that f = (x − 1)(x + 1 + t). The reason
we did not find this factorisation is because the ordering of the roots given in Corollary 7.15 does not
match the ordering of the roots in this simple factorisation.

7.4. Change of Variables. In order to factorise a general polynomial in the linear setting we made a
change of variables of the form x = trY . As we are trying to mimic this proof, we would also like to
do this here. There is, however, an important implication of this change of variables in the differential
setting: the derivation changes. To see this, recall that multiplication in the ring K{x, d} is defined by
the relation

xa = ax+ d(a), ∀a ∈ K.

If we make the change of variables x = trY then this relation tells us that

trY a = atrY + d(a) =⇒ Y a = aY + t−rd(a).

Hence making this change of variable will yield a differential polynomial in the ring K{Y, t−rd}.
Much of this section is devoted to technical lemmas which we will use to factorise differential poly-
nomials.

Given a differential polynomial, f =
∑
aix

n−i ∈ K{x, δ1}, set r := min
{v(ai)

i

}
= p

q
, with

gcd(p, q) = 1. The change of variables we would like to make is x = trY (as in the linear setting).
The following lemma shows that despite changing the derivation, this still gives us a polynomial with
power series coefficients.

Lemma 7.20. Consider the differential polynomial f =
∑
aix

n−i ∈ K{x, δ1} with r as above. Let
g(Y ) = s−npf(spY ), where s = t1/q. Then, g(Y ) ∈ C[[s]]

{
Y, 1

q
s1−p d

ds

}
.

Proof. Applying (7.15) to f(spY ) yields f(spY ) = snpg(Y ) where

g(Y ) = s−npan +
n−1∑
k=0

ak

n−1−k∑
j=0

mn−k,js
(−j−k)pY n−1−k−j.

Note that vs(ai) = qvt(ai), vt(ai) ≥ ip
q

implies that vs(ai) ≥ ip. Thus, for 0 ≤ l ≤ n − 1, the
coefficient, bl, of Y n−l in g satisfies

vs(bl) = min
0≤k≤l

{vs(aks−lp)} = min
0≤k≤l

{vs(ak)− lp} ≥ min
0≤k≤l

{kp− lp} = 0,
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where the last equality follows since p < 0. It is clear that vs(bl) will be 0 exactly when vs(al) = lp,
that is, if, and only if, vt(al) = lr. For the “constant” term of g we have

vs(bn) = vs(ans
−np) ≥ np− np = 0

again with equality exactly when vt(an) = nr. Thus

g(Y ) = Y n + b1Y
n−1 + · · ·+ bn, bi ∈ C[[s]]

with min(vs(bi)) = 0. Furthermore, vs(bi) = 0 if, and only if, vt(ai) = ir. �

Lemma 7.20 provides us with a clear direction to complete our factorisation proof. The next logical
step is to try to apply Hensel’s Lemma to g(Y ). Since the derivation may have changed, there is one
case in which we will not be able to apply Proposition 7.14: the case where ḡ(Y ) := g(Y ) (mod s)

has a single repeated root. We now investigate this case specifically. The first point of interest is that
the Newton polygon of f is very special in this case.

Lemma 7.21. Let f(x) and g(Y ) be as in Lemma 7.20 and suppose that ḡ(Y ) = (Y + λ)n for some
λ ∈ C. Then λ is non-zero and the Newton polygon of f has a single integral slope.

Proof. As in Lemma 7.20, write

g = Y n + b1Y
n−1 + · · ·+ bn, bi ∈ C[[s]].

Since min{vs(bi)} = 0, λ 6= 0. Now since, λ 6= 0, expanding (X + λ)n shows that vs(bi) = 0 for
all i and hence vt(ai) = ir. Thus, the Newton polygon of f has a single slope equal to r and since
vt(a1) = r, r is an integer. �

In order to deal with this case completely, we will make a change of variables of the form x 7→ x−λtr.
This has the effect of reducing the slope of the Newton polygon:

Lemma 7.22. Let f and g be as in Lemma 7.20 and suppose that ḡ = (Y + λ)n, λ ∈ C. Then the
Newton polygon of f(x−λtr) has a single slope strictly smaller than the slope of the Newton polygon
of f(x).

Proof. By Lemma 7.21, r is an integer and hence no extension ofK is necessary. Since ḡ = (Y +λ)n,
we can write g as

g = (Y + λ)n + e1(Y + λ)n−1 + · · ·+ en, ei ∈ O,

with vt(ei) > 0 for all i. Now

f(trY ) = tnr
(
(Y + λ)n + e1(Y + λ)n−1 + · · ·+ en

)
=⇒ f(x) = tnr

(
(t−rx+ λ)n + e1(t−rx+ λ)n−1 + · · ·+ en

)
and hence

f(x− λtr) = tnr
(
(t−rx)n + e1(t−rx)n−1 + · · ·+ en

)
.
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Applying (7.15), we have, for ck,l ∈ C,

f(x− λtr) = tnr
(
t−nr

n−1∑
j=0

cn,jx
n−j + e1t

−(n−1)r

n−2∑
j=0

cn−1,jx
n−1−j + · · ·+ en

)

=
n−1∑
j=0

cn,jx
n−j + e1t

r

n−2∑
j=0

cn−1,jx
n−1−j + · · ·+ tnren.

Since v(ei) > 0, the valuation of the coefficient of xn−j in f(x − λtr) is strictly greater than the
corresponding coefficient in f(x). This means that the slope of the Newton polygon for f(x− λtr) is
strictly less than the slope of the Newton polygon for f(x). �

Before leaving this section we mention an interesting aside. Note that even though the change of
variables in Lemma 7.20 gives us a differential polynomial with power series coefficients, it is not
necessarily regular singular since, in general, the derivation is no longer δ1. In fact, the property of
being regular singular is preserved under this change of variables:

Lemma 7.23. Let f ∈ K{x, δm} be a regular singular polynomial. Under the change of variable
x = tpY , p ∈ Z, the resulting polynomial g(Y ) is regular singular for the derivation δm−p.

Proof. Write

f(x) =
n∑
i=0

aix
n−i, ai ∈ K.

Suppose

f(x) = xn + a1x
n−1 + · · ·+ an, ai ∈ K

is regular singular for δm. By definition the Newton polygon of f has single slope 1 −m. Since the
right-most point (n, vt(a0)) is a vertex of the Newton polygon, the valuations of the coefficients ai
must lie above the line y = (1 − m)x + vt(a0) − n(1 − m). Hence for 0 ≤ k ≤ n we must have
vt(ak) ≥ vt(a0)− k(1−m).

By Lemma 7.15, making the change of variable x = tpY yields

g(Y ) = a0(tpY )n + a1(tpY )n−1 + · · ·+ an

= a0

n−1∑
i=0

b0,it
(n−i)p+i(m−1)Y n−i + a1

n−2∑
i=0

b1,it
(n−1−i)p+i(m−1)Y n−1−i + · · ·+ an, bj,i ∈ Z.

For g to be regular singular with respect to δm−p, the corresponding Newton polygon must have single
slope 1 −m + p. Note that the coefficient of the Y n term is a0t

np so that the point (n, np + vt(a0))

is the right-most point of the new Newton polygon of g. In order for the Newton polygon to have a
single slope 1 −m + p, any point arising from a monomial tjY k must lie above the point

(
k, np +

(k−n)(1−m+p)+vt(a0)
)
. We now look at the minimum valuation of the Y k term. The coefficient

of the Y k term is

ck =
n−k∑
j=0

ajbj,n−j−kt
kp+(n−j−k)(m−1), bj,i ∈ Z.
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Now the valuation of ck must be achieved for some 0 ≤ j ≤ m− k. But we have:

vt(aj) + vt
(
tkp+(n−j−k)(m−1)

)
≥ vt(a0)− j(1−m) + kp+ (n− j − k)(m− 1)

= kp+ (n− k)(m− 1)

= np+ (k − n)(1−m+ p).

Hence v(ck) ≥ np+ (k−n)(1−m+p) and so all the points (a, b) corresponding to monomials tbY a

of g(Y ) lie above the line of slope 1 −m + p. Thus the Newton polygon of g with respect to δm−p
has single slope 1−m+ p and so g is regular singular with respect to δm−p. �

Remark 7.24. Firstly, in light of Remark 7.12 we do not lose generality by only considering changes
of the form x = tpY . If the change made involves a rational power of t then one simply extends
the field K and relabels variables. Secondly, if we consider f ∈ K{x, d} for an arbitrary derivation
d = a d

dt
, a ∈ K, then the only term of a that will affect the valuation of the coefficients of g(Y ) is the

term involving the lowest power of t. Hence it is enough to consider only derivations of the form δm.
That is, Lemma 7.23 shows that the property of being regular singular is preserved under a change of
variables x = tpY for all derivations.

7.5. Factorisation of Differential Polynomials. We are now in a position to generalise our factori-
sation result to the full ring K{x, δ1}.

Proposition 7.25. Every f ∈ K{x, δ1} has a linear factorisation.

Proof. We use induction on the degree, n, of the polynomial. The case n = 1 is obvious, so let
f1 =

∑
i aix

i ∈ K{x, δ1} be monic and set r1 := min
{
vt(ai)
i

}
= p

q
with gcd(p, q) = 1. We may

assume that r1 < 0 otherwise we can apply Proposition 7.14 to factor f1. Making the change of
variables x = tr1Y and applying Lemma 7.20 yields a monic polynomial, g1(Y ) ∈ Kq

{
Y, 1

q
s1−p d

ds

}
,

with power series coefficients. Hence, we can reduce the coefficients of g1(Y ) to obtain a polynomial,
ḡ1(Y ) ∈ C[x]. If ḡ1(Y ) has at least two distinct roots, then we may apply Proposition 7.14 (with the
derivation δ1−p) to obtain a factorisation of g1(Y ) and we are done by induction. If this is not the case,
then ḡ1(Y ) has a single repeated root and thus satisfies the hypotheses of Lemma 7.21. Hence, the
Newton polygon of f1(x) has a single integral slope. By Lemma 7.22, we can apply the change of
variables x 7→ x− λtr to f1 to yield a new polynomial, f2(x) := xn + b1x

n−1 + · · ·+ bn ∈ K{x, δ1}.
The Newton polygon of f2 will have a single slope strictly less than the slope of the Newton polygon
of f1.

Now we start the process with the polynomial f2(x); i.e., we let r2 = min
{v(bi)

i

}
. If r2 ≥ 0 we are

done. Otherwise, we make the change of variable x 7→ tr2y to obtain a new polynomial g2(y). If
ḡ2(y) has distinct roots, then we are done; otherwise, applying Lemma 7.21 again, we conclude that
the Newton polygon of f2 has a single integral slope. Since the slope of f2 is a nonnegative integer
strictly less than slope of f1, this process must stop in finitely many steps at which point we have a
factorisation of our polynomial. �

Remark 7.26. We can extend this result to the case of an arbitrary derivation d = a d
dt

, a ∈ K. Given
a polynomial, f ∈ K{x, d}, the change of variables x = t−1aY will yield a new polynomial in the
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ring K{Y, δ1}. We have shown that this new polynomial has a factorisation (after a possible finite
extension) and hence the original polynomial also has a factorisation.

We now provide a number of examples to illustrate Proposition 7.25.

Example 7.27. The first example requires only a simple change of variables, after which we can
immediately apply Hensel’s lemma. Let f = x2 + (2 − t−1)x − t−1 ∈ K{x, δ1}. We have r =

min
{−1

1
, −1

2

}
= −1 so we make the substitution x = t−1Y . This yields:

f(t−1Y ) = (t−1Y )2 + (2− t−1)t−1Y − t−1

= t−1Y t−1Y + 2t−1Y − t−2Y − t−1

= t−1(t−1Y − 1)Y + 2t−1Y − t−2Y − t−1

= t−2(Y 2 − (1− t)Y − t).

Hence, in this case, g(Y ) = Y 2 − (1 − t)Y − t and ḡ(Y ) = Y 2 − Y = Y (Y − 1) and so we may
apply Proposition 7.14. One iteration yields the full factorisation g(Y ) = (Y + t)(Y − 1). Working
backwards, we obtain a factorisation of f :

f = t−2(Y + t)(Y − 1) = t−2(tx+ t)(tx− 1)

= (t−1x+ t−1)(tx− 1) = (xt−1 + t−1 + t−1)(tx− 1)

= (x+ 2)t−1(tx− 1) = (x+ 2)(x− t−1).

8. JORDAN DECOMPOSITION FOR DIFFERENTIAL OPERATORS

In the previous section we established a differential analogue of the classical Newton-Puiseux theo-
rem. We will now show that this provides a direct proof of Levelt’s corollary (c.f. [Lev75, §1]), i.e.
we show that every differential operator has an eigenvector. In the linear setting, the existence of an
eigenvector does not guarantee an eigenspace decomposition. Instead, one must extend the notion of
eigenspace to that of generalised eigenspaces. The Jordan decomposition theorem follows fairly eas-
ily once the generalised eigenspace decomposition has been established. In this section we provide a
proof of the Hukuhara-Levelt-Turrittin theorem in analogy to the proofs given in Section 4.

8.1. Eigenvalues, Semisimplicity, and Diagonalisability. As in the linear setting, Proposition 7.25
gives us a simple proof that every differential operator has an eigenvector (after a possible finite
extension). Note that this provides a direct proof of Levelt’s corollary (see [Lev75, §1]).

Proposition 8.1. Let D : V → V be a differential operator. There exists a finite extension, Kb, of K
such that Db has an eigenvector.

Proof. The argument proceeds exactly as in the linear setting. Let D : V → V be a differential
operator and v ∈ V be a non-zero vector. Consider the sequence v,D(v), D2(v), · · · . As V has finite
dimension over K, we must have that

Dn(v) + a1D
n−1(v) + · · ·+ an−1D(v) + anv = 0, ai ∈ K,
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where n = dimK(V ). Now consider the polynomial f(x) = xn + a1x
n−1 + · · ·+ an ∈ K{x, δ1}. By

Proposition 7.25, we can, after a finite extension, write

f(x) = (x− Λ1) · · · (x− Λn) ∈ Kb{x, δ′1}, b ∈ Z>0,Λi ∈ Kb.

Thus,

(Db − Λ1) · · · (Db − Λn)v = 0.

Let i ∈ {1, 2, . . . , n} be the largest number such that (Db −Λi) · · · (Db −Λn)v = 0. If i = n , then v
is an eigenvector of Db with eigenvalue Λn. Otherwise (Db − Λi+1) · · · (Db − Λn)v is an eigenvector
of Db with eigenvalue Λi. �

There are two important corollaries of Proposition 8.1 which are analogues of well-known results in
the linear setting. The rest of this section will be devoted to proving these corollaries. Note that the
proof of Corollary 8.5 provides a simple proof of Theorem II in [Lev75, §1].

Corollary 8.2. Let D : V → V be a differential operator. After a possible finite extension to Kb,
there exists a basis of Vb such that the operator Db : Vb → Vb can be represented by a matrix in
upper-triangular form.

Proof. By Proposition 8.1, there exists an extension, Kb, of K and an eigenvector v1 ∈ Vb. We
now induct on dimKb

(Vb). If dim(Vb) = 1 then the result is trivial. Suppose n := dim(Vb) > 1

and the result holds for all differential operators on vector spaces of dimension n − 1. Set W =

spanKb
{v1}. Since W is Db-invariant we can form the quotient differential module Vb/W with the

induced differential operator, D′b, given by

D′b(v +W ) = Db(v) +W.

Clearly this quotient has dimension n − 1 over Kb. By the inductive hypothesis, there exists a Kb
basis {v2 +W, . . . , vn +W} of Vb/W such that D′b has an upper-triangular matrix with respect to this
basis. This implies that

D′b(vj +W ) ∈ span{v2 +W, . . . , vj +W}

for each j = 2, . . . , n. Hence Db(vj) ∈ span{v1, . . . , vj} for each j = 1, . . . , n and so Db has an
upper-triangular matrix with respect to the basis {v1, . . . , vn}. �

As one would expect, given a differential operator in upper-triangular form, the diagonal entries are
precisely the eigenvalues of the differential operator. This shows that, up to similarity6, a differential
operator has only finitely many eigenvalues. The following lemma and its corollary are valid for
arbitrary derivations on K. Note that a ∈ K being an eigenvalue of D is equivalent to the statement
D − a is not injective.

Lemma 8.3. Let D : V → V be a differential operator and suppose that there exists a basis,
{v1, . . . , vn} of V such that D = d + A where A is upper-triangular. Then D is injective if, and
only if, none of the entries on the diagonal of A are similar to zero.

6Note that there may be infinitely many similar eigenvalues.
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Proof. Firstly, we will prove that if one of the diagonal entries of A is similar to zero, then D is not
injective. Let a1, . . . , an be the diagonal entries of A. If a1 is similar to 0 then a1 = c−1d(c) for
some c ∈ K. We have Dv1 = a1v1 and so D(c−1v1) = (a1 − c−1d(c))(c−1v1) = 0. Hence D is not
injective. Now suppose ak is similar to 0 for some 1 < k ≤ n, i.e. ak = c−1d(c) for some c ∈ K.
Since D(c−1vk) ∈ spanK{v1, . . . , vk−1} we can write:

D(c−1vk) = c1v1 + · · ·+ ck−1vk−1, ci ∈ K.

Now consider the C-vector spaceW1 = spanC{c1v1, . . . , ck−1vk−1}. LetW2 = spanC{c1v1, . . . , c
−1vk}

and consider the C-linear operator:
D|W2 : W2 → W1.

Since dimC(W2) > dimC(W1) this map is not injective. Hence D itself is not injective.

In the other direction, suppose D is not injective. Then there exists v ∈ V such that Dv = 0. Write
v = c1v1 + · · ·+ ckvk with ck 6= 0. Then

0 = Dv = D(c1v1 + · · ·+ ckvk) = c1Dv1 + d(c1)v1 + · · ·+ ckDvk + d(ck)vk.

Hence Dvk + c−1
k d(ck) ∈ spanK{v1, . . . , vk−1} since A is upper-triangular. Noting that c−1

k d(ck)vk 6∈
spanK{v1, . . . , vk−1}, we must have

Dvk = b1v1 + · · ·+ bk−1vk−1 − c−1
k d(ck)vk, bi ∈ K,

and so the matrix for D in the basis {v1, . . . , vn} has value −c−1
k d(ck) as the kth diagonal entry. That

is, ak must be similar to 0. �

Corollary 8.4. Let D : V → V be a differential operator and suppose that there exists a basis,
{v1, . . . , vn} of V such that D = d + A where A is upper-triangular. Then the diagonal entries of A
are precisely the eigenvalues of D (up to similarity).

Proof. Let a ∈ K and consider the matrix of D − a with respect to the basis {v1, . . . , vn}:

D − a = d+


a1 − a ∗ ∗ ∗

a2 − a ∗ ∗
. . . ∗

an − a

 .

By Lemma 8.3, D − a is not injective if, and only if, ak − a is similar to 0 for some 1 ≤ k ≤ n. That
is, a is an eigenvalue if, and only if, a is similar to ak for some 1 ≤ k ≤ n. �

We now prove one of the main results in [Lev75]. We will make use of Lemma 6.19 which appears
in [Lev75, §1(e)].

Corollary 8.5. Let D : V → V be a differential operator. Then D is semisimple if, and only if, for
some finite extension, Db is diagonalisable.

Proof. Suppose D : V → V is a semisimple differential operator. By Proposition 8.1, there exists
a finite extension, Kb, of K such that Db : Vb → Vb has an eigenvetor, v. We prove by induction on
the dimension of Vb that Db can be represented by a diagonal matrix. If dimKb

(Vb) = 1 the result is
obvious. Suppose dimKb

(Vb) > 1 and let U = spanKb
{v}. Then U is a one-dimensional,Db-invariant

subspace of Vb. By Lemma 6.19, Db is also semisimple so there exists a Db-invariant complement,
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W , of U . Now Db : W → W is semisimple so by our induction hypothesis, we can write W as
a direct sum of one-dimensional Db-invariant subspaces. Thus we have a decomposition of Vb into
one-dimensional, Db-invariant subspaces and hence Db is diagonalisable.

Conversely, suppose Db is a diagonalisable operator. Then clearly Db is semisimple. By the previous
proposition, D is also semisimple. �

8.2. Generalised Eigenspace Decomposition. In the linear setting, the existence of an eigenvector
does not guarantee an eigenspace decomposition. Instead, one must extend the notion of eigenspace to
that of generalised eigenspaces. Once a generalised eigenspace decomposition has been established,
proving the existence of a Jordan decomposition reduces to the case that the linear operator is nilpo-
tent. In this section we introduce the notion of generalised eigenspaces for differential operators and
prove an analogue of the generalised eigenspace decomposition. Firstly, we give an analogue of the
rank-nullity theorem for formal differential operators due to Malgrange [Mal74, Theorem 3.3].

Let (V,D) be a differential module over K. Define

H0(V ) := ker(D),

H1(V ) := V/D(V ).

Note that these are vector spaces over C (not over K).

Proposition 8.6. Let D : V → V be a formal differential operator. Then

dimCH
0(V ) = dimCH

1(V ).

The Yoneda extension group Ext1
K{x}(V, V

′) consists of equivalence classes of extensions of K{x}-
modules

0→ V → V ′′ → V ′ → 0

As usual, two extensions are equivalent if there exists a K{x}-linear isomorphism between them
inducing the identity on V and V ′.

Proposition 8.7. Let D : V → V and D′ : V ′ → V ′ be two formal differential operators. Then, we
have

(i) dimC Ext1
K{x}(V, V

′) = dimC H0(V ∗ ⊗ V ′).

(ii) If no eigenvalue of D is similar to an eigenvalue of D′, then Ext1
K{x}(V, V

′) = 0.

Proof. One can show (see [Ked10a, Lemma 5.3.3]) that there is a canonical isomorphism of C-vector
spaces:

Ext1
K{x}(V, V

′) ' H1(V ∗ ⊗ V ′).

This fact together with Proposition 8.6 implies (i).

The eigenvalues of D∗ ⊗ D′ are of the form −a + a′ where a and a′ are eigenvalues of D and D′,
respectively. By assumption, −a + a′ is never similar to zero; thus, kernel of D∗ ⊗D′ is trivial. Part
(ii) now follows from Part (i). �
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Definition 8.8. Let D : V → V be a formal differential operator and let a ∈ K. The generalised
eigenspace V (a) of D is defined as

V (a) := spanK{v ∈ V | (D − a)nv = 0, for some positive integer n.}

Theorem 8.9 (Generalised Eigenspace Decomposition). There exists a finite extension Kb/K such
that we have a canonical decomposition Vb =

⊕
i Vb(ai), ai ∈ Kb. Moreover,

Vb(ai) ∩ Vb(aj) 6= {0} ⇐⇒ ai is similar to aj ⇐⇒ Vb(ai) = Vb(aj).

Proof. We may assume, without the loss of generality, that all eigenvalues of D are already in K
(if not, carry out an appropriate base change). We use induction on dim(V ) to prove the theorem.
If dim(V ) = 1 then the claim is trivial. Suppose dim(V ) > 1. Then by assumption D has an
eigenvector. Hence, we have a one-dimensional invariant subspace U ⊂ V . Let W := V/U . Then D
defines a differential operator on W . Moreover, V ∈ Ext1

K{x}(U,W ). By induction we may assume
that W decomposes as

W =
⊕
i

W (ai), ai ∈ K,

for non-similar ai. Now

V ∈ Ext1
K{x}

(
U,
⊕
i

W (ai)
)
'
⊕
i

Ext1
K{x}

(
U,W (ai)

)
.

If the eigenvalue a of D|U is not similar to any ai then by the above proposition all the extension
groups are zero, and so V = W ⊕ U and the theorem is established. If a is similar to aj , for some
j, then the only non-trivial component in the above direct sum is Ext1

K{x}(U,W (aj)). But it is easy
to see that all differential operators in Ext1

K{x}(U,W (aj)) have only a single eigenvalue aj (up to
similarity). Hence V has the required decomposition. �

8.3. Unipotent Differential Operators. Theorem 8.9 implies that we only need to prove Jordan
decomposition for differential operators with a unique eigenvalue. By translating if necessary, we can
assume this eigenvalue is zero. Thus, we arrive at the following:

Definition 8.10. A differential operator is unipotent if all of its eigenvalues are similar to zero.

We now give a complete description of unipotent differential operators. Let NilpC denote the category
whose objects are pairs (V,N) where V is a C-vector space and N is a nilpotent endomorphism.
The morphisms of NilpC are linear maps which commute with N . Let U be the category of pairs
(V,D) consisting of a K-vector space V and a unipotent differential operator D : V → V . Define a
functor

F : NilpC → U , (V,N) 7→ (K ⊗C V, d+N).

The following result appears (without proof) in [Kat87, §2].

Lemma 8.11. The functor F defines an equivalence of categories with inverse given by

G : U → NilpC, (V,D) 7→
(

ker(DdimK(V )), D
)
.
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Proof. We first show that the composition G ◦ F equals the identity. Let (V,N) ∈ NilpC with
n := dim(V ) and consider F (V,N) = (V ⊗K, d + N). The kernel of the operator (d + N)n acting
on V ⊗ K is the set of all constant vectors. This is an n-dimensional C-vector space. Since d acts as
0 on this space, applying G to (K ⊗ V, d+N) recovers the pair (V,N).

Next, let D : V → V be a unipotent differential operator and let n := dimK(V ). We first show
by induction that ker(Dn) contains n K-linearly independent vectors. If n = 1 this is obvious. If
n > 1, then there exists v ∈ V such that Dv = 0. Set U := spanK{v} and consider the differential
module V/U . This has dimension n−1 so we may assume there exist a set {v1, . . . , vn} ofK-linearly
independent vectors in ker(Dn−1). For each vi we have Dn−1vi + U = U and hence Dn−1vi = aiv

for some ai ∈ K. Now observe that we can choose bi such that dn−1(bi) = ai − ai,0 where ai,0 is the
constant term of ai; since we can always “integrate” elements with no constant term. Now we have

Dn−1(vi−biv) = Dn−1vi−Dn−1(biv) = aiv−
n−1∑
j=0

(
n− 1

j

)
dj(bi)D

n−1−j(v) = aiv−dn−1(bi)v = ai,0v.

Hence Dn(vi − biv) = D(ai,0v) = 0 so {v, v1 − b1v, . . . , vn−1 − bn−1v} is a set of K-linearly
independent vectors in ker(Dn).

Note the functor G sends V to the C-vector space W := ker(Dn) = spanC{v, v1 − b1v, . . . , vn−1 −
bn−1v}. Moreover, D induces a C-linear operator N on W . By construction, this operator is nilpotent
and for this basis, the matrix of N is constant (i.e., its entries belong to C). Applying the functor F to
(W,N) now recovers the differential module (V,D). �

Remark 8.12. A formal differential operator D is said to be regular singular if it has a matrix repre-
sentation of the form

A0 + A1t+ · · · , Ai ∈ gln(C).

It is known that, in this case, D can actually be represented by a constant matrix; i.e., by a matrix
A ∈ gln(C). The conjugacy class of A is uniquely determined by D and is called the monodromy
[BV83, §3]. The above lemma implies that a unipotent differential operator is the same as a regular
singular differential operator with unipotent monodromy.

8.4. Jordan Decomposition. We are now in a position to prove the Hukuhara-Levelt-Turrittin theo-
rem. The uniqueness part of the theorem is relatively easy. Since we do not have anything new to add
to Levelt’s original proof, we refer the reader to [Lev75] for the details. It remains to prove existence.
For convenience, we first restate the theorem.

Theorem 8.13 (Hukuhara-Levelt-Turrittin). Let D : V → V be a differential operator on a K-vector
space V . Then D can be written as a sum D = S + N of a semisimple differential operator S and a
nilpotent K-linear operator N such that S and N commute. Moreover, the pair (S,N) is unique.

Proof. Let D : V → V be a formal differential operator. By Theorem 8.9, there exists a positive
integer b such that Db : Vb → Vb admits a generalised eigenspace decomposition. Thus, Db can be
represented by a block diagonal matrix where each block is upper triangular with a unique (up to
similarity) eigenvalue. Thus, we may assume, without loss of generality, that Db has a unique (up to
similarity) eigenvalue a. Replacing Db by Db − a, we may assume that Db is unipotent in which case
the result follows from Lemma 8.11. This proves the existence of a Jordan decomposition for Db.
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We now show that the Jordan decomposition of Db descends to a decomposition of D. The proof is
similar to the linear setting. Picking a K-basis of V and extending it to a basis of Vb allows us to write
Db = d+A where A is a matrix with entries in K. Let Sb = d+B and Nb = C for matrices B and C
with respect to this basis. Then, for any σ ∈ Gal(Kb/K), it is clear that d+A = d+ σ(B) + σ(C) is
a second Jordan decomposition of Db. Thus, we must have C = σ(C) and σ(B) = B. Hence, d+B

and C are defined over K. �

9. JORDAN DECOMPOSITION FOR G-CONNECTIONS

9.1. G-Connections. In this section we consider differential operators in a Lie-theoretic framework.
The starting point is to define an analogue of the gauge action for reductive algebraic groups. As in
Section 6.2, gauge equivalence classes will then be what we call differential operators. In this context,
however, differential operators are usually called connections.

For simplicity, we work over the field K := C((t)). Let G be a connected, reductive algebraic group
over C and g = Lie(G). The Maurer-Cartan one-form allows us to define the gauge action of G(K)

(the K-points of G) on gK := g⊗C K.

Lemma 9.1. Given g ∈ G(K) there exists a unique element δG(g) ∈ gK such that for all rational
representations ρ : G→ GL(V ),

dρ(δG(g)) = (ρ(g))−1d(ρ(g)),

where d(ρ(g)) is the matrix obtained by applying the derivation element-wise to the matrix ρ(g).

Remark 9.2. There are a number of ways one can make sense of the element δG(g) (see [BV83, §1.6],
[Fre07, §1.2.4], [Ras15, §1.12])

Note that Lemma 9.1 has two important consequences:

1. Taking ρ = Ad : G→ GL(g) we have ad(δG(g)) = (Adg)
−1d(Adg);

2. Taking ρ to be the identity morphism we see that δGL(V )(g) = g−1d(g).

Hence we have:

ad(δG(g)) = δGL(g)(Adg), ∀g ∈ G .

We now define an action of G(K) on its Lie algebra gK:

Lemma 9.3 (Gauge Action). There exists an action of G(K) on gK, called the gauge action, given
by:

g · A = Adg(A) + δG(g), A ∈ gK, g ∈ G(K).

The gauge action induces an equivalence relation on gK. This gives us the following definition:

Definition 9.4 (G-Connection). A G-connection is a gauge equivalence class of elements of gK.

We will denote the gauge equivalence class containing A by both [A] and d + A. As a consequence
of Lemma 9.3 we can define an adjoint connection:
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Lemma 9.5 (Adjoint Connection). Let A ∈ gK and let [A] be the corresponding G-connection. The
map:

(9.20) [A] 7→ [adA]

is a well-defined map from G-connections to GL(gK)-connections.

Proof. Note that g · A ∈ gK so we can consider the adjoint representation of g · A:

ad(g · A) = AdAdg(ad(A)) + ad(δG(g))

= (Adg)
−1 ad(A) Adg +δGL(g)(Adg)

= (Adg)
−1 ad(A) Adg +(Adg)−1d(Adg).

It is clear that ad(g · A) is gauge equivalent to ad(A) so the adjoint representation respects gauge
equivalence. Thus the map

d+ A 7→ d+ ad(A)

is a well-defined map from G-connections to GL(g)-connections. �

9.2. Semisimple G-Connections. Lemma 9.5 will allow us to define semisimple G-connections in
analogy to the definition of semisimple elements of a Lie algebra in the linear setting. Unfortunately,
we will have to deal with the same problem that arose in the linear setting: when gK ⊂ gl(V ), we will
have two possibly different definitions of semisimplicity. The results of this section will allow us to
show that both definitions are equivalent.

Definition 9.6 (Semisimple G-Connection). Let d+A be a G-connection. We call d+A semisimple
if d+ ad(A) : gK → gK is a semisimple differential operator.

We now show that this definition coincides with the usual definition of semisimplicity in the case
G ⊆ GL(V ).

Lemma 9.7. Let d + A : V → V be a differential operator, where A ∈ gl(V ) and V is a K-vector
space. Then d+ adAS + adAN is the Jordan decomposition of d+ adA.

Proof. Note that adA is aK-linear operator on gl(V ). Thus, d+adA : gl(V )→ gl(V ) is a differential
operator. We claim that d+adAS+adAN is its Jordan decomposition. To see this, we pick a basis for
V to put d + A in Jordan normal form (after a possible finite extension). In this case, AS is diagonal
and AN is constant nilpotent matrix with 1’s on the sub-diagonal, and AS and AN commute. Thus,
d + ad(AS) is a semisimple differential operator on gl(V ⊗K Kb). We claim that it commutes with
ad(AN). Indeed,

[d+ ad(AS), ad(AN)] = [d, ad(AN)] + [ad(AS), ad(AN)].

Now ad(AN) is constant, so the first bracket is zero. Since AS and AN commute, the second bracket
is also zero. As in the proof of Theorem 8.13, this decomposition descends to a decomposition over
K. �

Corollary 9.8. Let d+A be as above. Then d+A is semisimple if and only if d+ adA is semisimple.



47

Proof. If d + A is semisimple, then we have seen that so is d + ad(AS). If d + A is not semisimple,
then suppose d + AS + AN is its Jordan decomposition. By assumption, AN 6= 0. This implies that
adN is not trivial. Thus, d+ adA is not semisimple. �

Note that Corollary 9.8 guarantees that both definitions of semisimple are equivalent in the case
G ⊆ GL(V ).

We give one further characterisation of semisimplicity for G-connections. This should be viewed as a
generalisation of Corollary 8.5. In the setting of G-connections an elementA ∈ gK is “diagonalisable”
if it lies in a Cartan subalgebra h⊗K ⊂ g⊗K. A semisimple G-connection will be “diagonalisable”
after a possible finite extension of K. That is:

Lemma 9.9. Let d + A be a G-connection. Then d + A is semisimple if, and only if, A is gauge
equivalent to an element of h⊗K Kb for some finite extension Kb ⊃ K.

In order to prove this result, we require some properties of differential Galois groups. We briefly
define and state these properties now. For a proper treatment of this topic see [vdPS03, §1.4] and
[Kat87, §2].

Definition 9.10. Let ω : DiffK → VectC be a fibre functor7. The local differential Galois group, I , is
defined to be the tensor automorphisms of this fibre functor, i.e.

I := Aut⊗(ω).

In the language of Tannakian categories, I is the affine group scheme such that the category DiffK is
equivalent to the category of representations of I . Thus, given a non-zero differential module (V,D)

over K, we obtain a representation

ρV : I → GL(ω(V )).

We claim that the image ρV (I), is potentially diagonalisable.

Lemma 9.11. Let (V,D) be a differential module. Then D is semisimple if and only if there exists a
finite extension Kb of K such that ρV (IKb

) is diagonalisable.

Proof. We have already shown that D is semisimple if and only if its Jordan form is diagonalisable
after some finite extension of K. Hence, we need only show that having diagonalisable Jordan form
is equivalent to ρ(IKb

) being diagonalisable.

One direction follows from a basic fact about differential Galois groups: if H ⊂ GL(n,C) is a closed
subgroup and D = d+ A with A ∈ h (where h = Lie(H)), then ρ(IK) is contained in a conjugate of
H (see [vdPS03, Prop. 1.31]). If the Jordan form ofD is diagonalisable, then we can writeD = d+A

with A diagonal (i.e. A is contained in Lie(T ) for a maximal torus T ⊂ GL(n,C)). Hence ρ(IKb
) is

conjugate to a maximal torus in GL(n,C) and is therefore diagonalisable.

For the other direction, suppose that the Jordan form of D is given by

D = d+ (D−rt
−r + · · ·+D−1t

−1 +D0 +N), N 6= 0.

7See the discussion in Remark 6.28 or [Kat87, §2.5]
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In this case, exp(D0 + N) ∈ ρ(IKb
)8 (see [vdPS03, §3.2]). Since D0 and N commute, we have the

(multiplicative) Jordan form of exp(D0 +N) given by exp(D0) exp(N). Since N 6= 0, exp(N) 6= Id

and so exp(D0 +N) is not diagonalisable. Hence ρ(IKb
) is not diagonalisable. �

We are now able to prove Lemma 9.9.

Proof of Lemma 9.9. The ‘if’ direction being obvious we consider the opposite implication. Let ρ :

IK → G denote the corresponding homomorphism. By assumption d + A is semisimple; that is to
say, d + ad(A) is semisimple. By Lemma 9.9, there exists a finite extension Kb of K such that the
image of the composition

IKb
G GL(gK)

ρ Ad

is diagonalisable. This implies that the image ρ(IKb
) is contained in a maximal torus H ⊂ G. It

follows that d + A is gauge equivalent, under G(Kb), to a connection of the form d + X where
X ∈ h⊗K Kb. �

9.3. Invariant Properties of Differential Operators. We would like to show that, given a dif-
ferential operator D : V → V , any D-invariant subspace, W ⊂ V , is also S-invariant, where
D = S +N is the Jordan decomposition of D. We have already seen that V decomposes into gener-
alised eigenspaces and that these generalised eigenspaces are D, S and N invariant. Hence we need
only consider the case where V itself is a generalised eigenspace. In this case, there exists a finite
extension of K such that S = λI + d.

We first prove the result in the case of unipotent differential operators (i.e., the case λ = 0 — see
Section 8.3). We denote by U the category of unipotent differential operators. The objects of this
category are pairs (V,D) with D : V → V unipotent. There is an equivalence of categories between
U and Nilp given by the functor

F : U → Nilp, (V,D) 7→ (ker(Dn), D),

and its inverse
G : Nilp→ U , (V,N) 7→ (V ⊗C K, N ⊗C d).

Proposition 9.12. Let D : V → V be a unipotent differential operator and suppose that W ⊂ V is a
D-invariant subspace. Then W is also S-invariant.

Proof. The restrictionD|W : W → W gives us an inclusion in the category U . Under the equivalence
F we obtain an inclusion in Nilp:

(W,D|W ) (V,D)

(W0, N
′) (V0, N)

Hence, there is a basis of V for which we can write D = d + N . Since (W0, N
′) ↪→ (V0, N), in this

basis we have dW = W . That is, W is S-invariant. �

This result clearly extends to differential operators with a unique (up to similarity) eigenvalue.

8In fact, this element topologically generates the formal monodromy part of the differential Galois group.
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Proposition 9.13. Let D : V → V be a differential operator and suppose that W ⊂ V is a D-
invariant subspace. Then W is also S-invariant.

Proof. After a finite extension to Kb, we can write D = S + N where S is diagonalisable. Now Wb

is a Db-invariant subspace of Vb and so by Proposition 9.12, Wb is also Sb-invariant. If W were not
S-invariant, then Wb would not be Sb-invariant, hence W must be S-invariant. �

The results of this section allow us to prove the following important fact:

Lemma 9.14. Let g ⊂ gl(V ). Let d+A : V → V be a differential operator withA ∈ gK and suppose
that d+ AS + AN is its Jordan decomposition (in gl(V )⊗C K). Then AS ∈ g.

Proof. Note that gK ⊂ gl(V ) ⊗C K is a d + adA-invariant subspace of gl(V ) ⊗C K and hence, by
Proposition 9.13, it is also d + adAS-invariant. By definition, gK is d invariant. Thus, gK is adAS-
invariant. This implies that adAS : gK → gK is a K-linear derivation on gK and hence AS ∈ gK. �

9.4. Jordan Decomposition for G-Connections. As in the case of differential operators, there is a
notion of a Jordan decomposition for G-connections.

Theorem 9.15. Every operator d+A, A ∈ gK can be written as d+AS +AN , where AS, AN ∈ gK,
d + AS is semisimple, AN is nilpotent, and d + AS and AN commute (in the extended loop algebra
ĝ). Moreover, this decomposition is unique.

Proof of Theorem 9.15. Note that the adjoint action gives an embedding gK ⊂ gl(gK). Using this
embedding we get a Jordan decomposition d+A = d+AS +AN of d+A as an operator on gK. By
Lemma 9.14, AS ∈ gK and it follows that AN ∈ gK also. Hence we have a Jordan decomposition of
d+ A in gK. It is clear that this decomposition is unique. �

10. OUTLOOK

It is hoped that the material in this thesis gives the reader a more intuitive understanding of the
Hukuhara-Levelt-Turrittin theorem and of differential operators in general. This theorem has al-
ready found many applications most notably in the geometric Langlands correspondence (see [Ras15,
KS16]). We now briefly discuss some possible extensions of the work presented here. As usual, we
fix K = C((t)) and Kb = C((t1/b)).

The first, and perhaps most obvious, direction for further research is the question of rationality: given
a differential operator D = d+A over Kb in Jordan form, does there exist a differential operator over
K whose Jordan form is d+A? This question has been answered in [BV83, §7] however it would be
desirable to have a characterisation similar to the one available in the linear setting. For example, in
the linear setting, we have the following equivalences:

Proposition 10.1. Let A ∈ gln(K′) with K ⊂ K′ a finite extension. The following are equivalent:

(i) A is similar to an element of gln(K).

(ii) The orbit GLn(K′) · A is fixed by Gal(K′/K).
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Babbitt and Varadarajan have given a proof of this result using their reduction theory (see [BV83]).
It would be interesting to obtain an analogue of Proposition 10.1 in the differential setting using the
same proof techniques as in the linear setting.

A second direction of interest is to extend the work here to the setting of p-adic differential operators.
In this setting, we replace the field C((t)) by Qp((t)). There are many subtleties that then arise due
to the positive characteristic, however one can still define notions such as a Newton polygon in this
setting (c.f. [Ked10a, §8.2]). There are also decomposition theorems for p-adic differential modules
similar to the Hukuhara-Levelt-Turrittin decomposition. We hope that the work presented here might
lead to a more unified approach to proving these decomposition theorems.
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