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Abstract 

Schistosomiasis is a chronic disease, caused by Schistosoma species, affecting 200 

million people worldwide and causing at least 300,000 deaths annually. Currently, no 

vaccines are available and Praziquantel is the standard anti-schistosomiasis drug. 

Praziquantel disrupts the tegument of adult worms, but not juvenile parasites and it does 

not prevent reinfection.  Praziquantel resistance is rare, but repeated treatment in the field 

and laboratory manipulation has increased parasitic resistance. Therefore, it is necessary 

to develop a vaccine that induces long-term immunity to schistosomiasis with the final goal 

of complete elimination. Driven by the need to improve disease treatment and prevention, 

the genomes of three human Schistosoma species have recently become publicly 

available (S. mansoni, S. japonicum Chinese strain and S. haematobium). The principal 

goal of the PhD research project is to employ machine learning and Bioinformatics 

methods to identify novel vaccine and drug targets against the human-infecting 

Schistosoma parasites from genome sequence information. 

In the first study, schistosome specific machine learning classifiers were developed for 

surface proteins and secretory peptides. Schistosome surface proteins, especially those 

expressed in tegument, represents the interface between host and parasite and its 

molecules are responsible for essential functions to parasite survival. Also, large number 

of proteins secreted by schistosomes are important for their survival in their hosts and 

infection. Knowledge of schistosome surface and secreted proteins is essential for 

understanding parasite host interaction and finding new candidate targets for vaccines and 

drugs or developing novel diagnostic methods. The web application SchistoProt has been 

developed, a schistosome specific classifier, for identifying schistosome specific surface 

proteins and secretory peptides that might be potential drug and vaccine targets.  

In the second study, a machine learning prediction tool is developed to predict 

schistosome specific immunoreactive peptides. The sequence properties of 

immunoreactive Schistosoma proteins have been determined and compared the 

significant sequence features of immunoreactive proteins and non-immunoreactive 

proteins of Schistosoma species. The SchistoTarget web application, for the in silico 

identification of Schistosoma immunoreactive proteins has been developed. SchistoTarget 

uses supervised machine learning methods and significant differential features distribution 

between immunoreactive and non-immunoreactive peptides. 

In the third study, a comparative analysis of the publicly available Schistosoma genomes 

S. mansoni, S. Japonicum, S. haematobium, the newly sequenced Schistosoma bovis 
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genome and the non-parasitic, free-living flatworm Schmidtea mediterranea reveals the 

interesting candidate genes for vaccine targets.  Selected genes from this study have been 

annotated as surface or secretory proteins using the developed web applications from 

previous two studies. Further, using Gene Ontology and Swiss-Prot annotations, 20 

putative vaccine and drug targets have been identified to be biologically validated by wet 

laboratory experiments in animals and then clinically. 

The in silico comparative genomics analysis approach for identifying new drug and vaccine 

candidates represents a valuable resource for the Schistosoma research community. The 

protocol developed in this PhD research project can be used as a blueprint for other 

important parasitic diseases including malaria.   
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Chapter 1 Introduction 

 

1.1 Schistosomiasis 

Infections by blood flukes (schistosomes) cause highly significant human diseases and are 

a major health concern in the Asia Pacific Region and Africa. Schistosomiasis is a chronic 

disease caused by Schistosoma species. It is considered by the World Health 

Organization as the second most socioeconomically devastating and second most 

common parasitic disease affecting 200 million people worldwide1,2 and causing at least 

300,000 deaths annually3. No vaccines are available and treatment relies mainly on one 

drug, praziquantel2. Eight Schistosoma species infect humans: S. mansoni, S. 

haematobium, S. japonicum, S. mekongi, S. malayensis, S. mattheei, S. guineeensis, and 

S. intercalatum4 (Figure 1.1). Recent applications of next-generation sequencing 

technologies and bioinformatic tools for large-scale investigations explore the systems 

biology of the organisms5. The genome sequences provide a unique resource for studying 

the evolution of schistosomes, to identify genes important for host-parasite interactions 

and to discover novel drug and vaccine targets. 

 

 

Figure 1.1 Phylogeny of Schistosoma. 

(Figure adapted4,6) 
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This chapter will first introduce background knowledge of the schistosome lifecycle, 

schistosomiasis treatment, infection and resistance, available schistosome genome data 

and potential vaccine targets. 

 

1.2 Schistosome Structure and Lifecycle 

Adult schistosomes are white or greyish worms with a cylindrical body of 7–20 mm in 

length. The body has two terminal suckers, a blind digestive tract, reproductive organs and 

a complex tegument. The tegument consists of a single, contiguous, double-bilayered 

membrane, which covers the entire worm7. Schistosomes are exposed to diverse 

environmental conditions during their life cycle. Unlike other trematodes, schistosomes 

have separate sexes. They change from an asexual form in the intermediate hosts such as 

snails. Then they change to a sexual form in the vascular system of the definitive host 

such as human8. 

The male’s body holds the longer and thinner female by forming a groove or 

gynaecophoric channel (Figure 1.2). The adult schistosomes live within the perivesical 

(Schistosoma haematobium) or mesenteric (other species) venous plexus as permanently 

embraced couples. Schistosomes feed on blood and globulins through anaerobic 

glycolysis, and the debris released in the host’s blood9. 

 

 

Figure 1.2 Paired adult S. mansoni worms. 

The darker female lying within the gynacophoric canal of the larger male worm. 

(From Schistosomiasis Research Group, http://www.path.cam.ac.uk/~schisto) 

 

Schistosomes require an intermediate aquatic snail host in their complex life cycle (Figure 

1.3). The sporocyst (snail stage) reproduces asexually, producing cercariae that are 
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constantly shed into the aquatic environment. These cercariae find the definite host 

(human or animal) in contact with the water and penetrate the skin. The larva transforms 

into a schistosomulum in the skin, that adapts its surface membrane, the tegument, for 

parasitism. The schistosomulum passes from the skin, through the lymphatic system and 

blood into the lungs and via the blood to the liver. Within the liver the parasites form sexual 

pairs and develop into adult worms. The adult worm pairs live and lay eggs in the vessels 

surrounding the intestine or urinary system. Mature eggs can penetrate host membranes 

such as rectal veins or the intestinal wall. Eggs are released from the host body and all 

eggs that come into contact with water hatch into miracidia and the cycle starts again10. 

 

 

Figure 1.3 The schistosome life-cycle. 

(From Schistosomiasis Image Library, www.dpd.cdc.gov) 

 

1.3 Schistosomiasis Treatment 

Currently, Praziquantel (PZQ) is the standard anti-schistosomiasis drug11. Praziquantel 

disrupts the tegument of adult worms, but not juvenile parasites9 and it does not prevent 

reinfection12. Praziquantel resistance is rare, but repeated treatment in the field and 

laboratory manipulation has increased parasitic resistance11,13,14. Therefore, it is necessary 

http://www.dpd.cdc.gov/


Chapter 1 

4 

 

to develop a vaccine that induces long-term immunity to schistosomiasis with the final goal 

of complete elimination15. 

One vaccine candidate is the rSh28GST antigen from S. haematobium, currently in phase 

I clinical trial and shown to be safe and immunogenic16. Other vaccine candidates are the 

Sm14, Sm29, Sm-TSP1 and Sm-TSP2 antigens from S. mansoni, currently in pre-clinical 

and clinical development17-19. 

  

1.4 Available Schistosoma Genomes 

Driven by the need to improve disease treatment and prevention, the genomes of three 

human Schistosoma species have recently become publicly available (S. mansoni20, S. 

japonicum Chinese strain21 and S. haematobium22). Comparison of these three genomes 

shows similar genome size, number of proteins and similar GC content and percentage of 

repetitive elements (Table 1.1). 

 

Table 1.1 Comparison of three publicly available Schistosoma genomes. 

Genomic features Schistosoma mansoni Schistosoma 

japonicum 

Schistosoma 

haematobium 

Estimate of genome size (Mb) 381 403 385 

Chromosome number (2n) 8 8 8 

Total number of base pairs within 

assembled contigs 

374,944,597 369,039,322 361,903,089 

N50 contig (length (bp); total number 

>500 bp) 

16,320; n = 50,292 6,121; n = 95,265 21,744; n = 36,826 

Total number of base pairs within 

assembled scaffolds 

381,096,674 402,705,545 385,110,549 

N50 scaffold (length (bp); total number 

>1,000 bp in length) 

832,5415; n = 19,022 176,869; n = 25,048 306,738; n = 7,475 

Proportion of genome that is coding (%) 4.72 4.32 4.43 

Number of putative coding genes 13,184 13,469 13,073 

Total GC content (%) 34.7 33.5 34.3 

Repeat rate (%) 45 40.1 47.2 

(Source
22

) 
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1.5 Schistosoma Surface Proteins and Secretory Peptides 

The body of the adult worm is covered by a complex multilaminate surface, the tegument, 

which enables schistosomes to survive in the hostile host environment for decades. 

Schistosomes also display effective strategies to evade the host immune responses23,24. A 

large number of proteins are excreted or secreted by schistosomas from their surface. 

These excretory proteins are important for their survival in their hosts. These proteins can 

stimulate the innate immune system and modulate various host immune responses when 

exposed to host tissues. Thus, schistosomas evade the host immune defense and become 

resistance to antibody-dependent cellular cytotoxicity and oxidative stress25,26. 

Identification of surface proteins and secreted peptides is important for both understanding 

parasite host interaction and finding new candidate vaccines targets27.  

 

1.6 Host-Parasite Interaction 

Significantly acclimated to parasitic life, schistosomes can live for a long time or decades 

even in a hostile environment as the circulatory system from vertebrate host28. The 

parasite has a close contact with circulating elements of the immune system29. In this 

effective host-parasite relationship, the host immune system plays an important role in 

both parasite development and elimination. CD4+ cells, hormones, and cytokines as TNF-

α, TGF-β, and IL-7 produced by the host, appear to aid the parasite development (Figure 

1.4), suggesting that schistosomes could accept host hormone signals for cell proliferation, 

development, mating, and reproduction while CD4+ cells, B cells, IFN-γ, and TNF-α have 

been implicated in parasite elimination in the irradiated cercariae vaccine model30,31. 
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Figure 1.4 A theoretical model of the impact of a few hormones and development elements 

from a mammalian host on certain developmental stages of schistosomes. 

 (Source30) 

 

1.7 Antigens for Vaccine Development 

The majority of the studies that planned to recognise membrane proteins in parasite 

tegument were performed in adult worms23,32. Schistosomula is the significant focus for 

host immunity. Protective antigens are found in S. mansoni schistosomula tegument 

(Smteg) since mice inoculation with Smteg formulated with Freunds' adjuvant33. The 

characterization of these defensive antigens is being performed utilising immune-

proteomics analysis and genome databases to distinguish candidates to be utilised in a 

vaccine formulation against schistosomiasis31,34. The results observed in these preclinical 

trials using tegument proteins are summarised in Table 1.2. 

 

Table 1.2 Schistosome tegument protein evaluated as vaccine candidates in preclinical 

studies. 

(Table adapted31,35) 

Protein Vaccine type 
Protection 

level 
Egg reduction 

Bioinformatic tool used in 

antigen selection 

Sm 21.7 
Recombinant 

protein 
41%–70% Not determined 

Not determined 
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Sm 21.7 DNA vaccine 41.5% 
62% (liver) 

67% (intestine) 

Not determined 

Cu/Zn 

superoxide 

dismutase 

DNA vaccine 44%–60% Not determined 

Not determined 

Sm TSP2 
Recombinant 

protein 
57% 

64% (liver) 

65% (feces) 
BLAST 

Sm29 
Recombinant 

protein 
51% 60% (intestine) 

InterProScan, SignalIP 3.0, 

Signal IP Neural, NetNGlyc 1.0, 

BLAST, WolfpSORT, SOSUI, 

Compute pI/Mw tool 

ECL (200 kDa 

protein) 
DNA vaccine 38.1% 

Not determined Not determined 

Sm 22.6 
Recombinant 

protein 
34.5% Not determined BLAST 

Sm TSP 1 
Recombinant 

protein 
34% 

52% (liver) 

69% (intestine) 
BLAST 

Sm 21.7 
Recombinant 

protein 
41%–70% 

Not determined Not determined 

Sm p80 
DNA vaccine 

Not 

determined 

Not determined Not determined 

Sm14e Recombinant 

protein 

Not 

determined 

Not determined Not determined 

CT-SOD DNA vaccine Not 

determined 

Not determined Not determined 

 

The immunomic screening of pathogens using protein microarrays for antigen discovery 

has progressed rapidly. The first protein microarray for schistosomes has been 

constructed for identification of valuable immunogens that could be developed as 

marketable vaccines15. Recently, another proteome microarray of S. mansoni proteins was 

produced36.  
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1.8 Hypothesis 

During the past decade, Schistosoma researchers targeted surface and secretory proteins 

for vaccine development. But, a very limited number of surface and secretory antigens 

were explored23,24,37-39. Recently, three human-infecting Schistosoma genomes become 

publicly available. Also, immunomics approach using schistosome protein microarray 

provide useful resource on antibody responses of the antigens. The genomics and 

immunomics datasets provide a unique foundation for an innovative approach to identify 

novel drug and vaccine targets but it has not been obvious how to identify the important 

protective schistosome antigens from genomic-based information.  

The hypothesis is that bioinformatics approach leads to identifying putative drug and 

vaccine targets against schistosomiasis using Schistosoma genomic-based information. In 

this PhD project, I have developed an integrative bioinformatics pipeline to identify putative 

drug and vaccine targets against schistosomiasis from protein sequences information.  

 

1.9 Research Aims  

The principal goals of the proposed project are to employ Bioinformatics methods to 

identify novel vaccine and drug targets against the human parasites Schistosoma spp.   

 

1.9.1 Aim 1: Identify schistosome-specific Surface Proteins and Secreted Peptides 

Develop schistosome-specific machine-learning classifier for the identification of surface 

proteins and secreted peptides. Apply newly developed classifier to in all in-house and 

publicly available schistosome genomes. 

 

1.9.2 Aim 2: Identify Schistosoma immunoreactive proteins 

Develop schistosome-specific machine-learning classifier for the identification of 

immunoreactive proteins using Scistosoma protein microarray data. 

 

1.9.3 Aim 3: Identify putative vaccine targets against schistosomiasis 

Develop an integrative bioinformatics pipeline to identify putative vaccine targets against 

schistosomiasis by comparative analysis of available genomic-based information. 
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1.10  Thesis outline 

In chapter 1, literatures are reviewed to extract background information required for 

schistosome proteins characteristics to select the potential antigens as drug and vaccine 

targets. The development of methods and associated tool, SchistoProt, to identify 

schistosome-specific surface proteins and secretory peptides are described in chapter 2. 

Chapter 3 describes a machine learning approach, the SchistoTarget web server, to 

identify Shistosoma proteins immunoreactivity using protein microarray data. A 

comparative analysis of Schistosoma genomes and an integrative bioinformatics pipeline 

to identify putative vaccine targets against schistosomiasis has been described in Chapter 

4. In this chapter, I have shown how potential antigens can be selected by comparing 

several parasite genomes and using the tools developed in chapters 2 and 3 and other 

available annotations. A general discussion on the research outcomes from the PhD 

project and future direction are provided in chapter 5. 
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Chapter 2 Identifying Schistosome-Specific Surface 

Proteins and Secretory Peptides 

 

2.1 Foreword 

This chapter describes a supervised machine learning based approach used for identifying 

Schistosoma-specific surface proteins and secreted peptides. A machine learning based 

web server, SchistoProt, has been developed to classify Schistosoma protein sequences 

into surface/non-surface proteins and secretory/non-secretory peptides. The methods, 

prediction accuracy, usage and architecture of SchistoProt have been depicted in this 

chapter. 

 

2.2 Abstract 

Schistosomiasis is a debilitating chronic disease caused by Schistosoma parasitic worms. 

It is considered by the World Health Organization as the second most devastating parasitic 

disease, with a strong need for vaccine development. Knowledge of schistosome surface 

and secreted proteins is essential for understanding parasite-host interactions, for studying 

anti-Schistosoma protective immunity, for finding new candidate vaccine targets, and for 

developing novel diagnostic methods. 

SchistoProt, a web-based classifier for the in silico identification of schistosome surface 

proteins and secreted peptides, have been inroduced. The classifier is highly accurate and 

fast, and allows the analysis of large whole-proteome datasets. Positive training sets 

(known surface and non-secretory proteins) were extracted from the literature and the 

NCBI non-redundant protein database. A negative training set was compiled from nuclear 

and histone related proteins. SchistoProt provides a user-friendly web-interface and results 

are presented in interactive tables and figures. On an independent test-set of 400 

Schistosoma proteins, SchistoProt achieved a sensitivity of 85% and specificity of 81% for 

surface proteins and a sensitivity of 92% and specificity of 93% for secretory peptides. The 

software showed significantly increased prediction accuracy compared with existing tools. 

SchistoProt is implemented in Python and the web-server is freely accessible at 

http://schistoprot.bioapps.org. Source code and documentation are available from 

https://github.com/shihabhasan/schistoprot. 
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SchistoProt is an easy-to-use, highly accurate and fast web-server for the in silico 

identification of Schistosoma surface proteins and secreted peptides. The software has 

been optimized for large datasets and enables whole-proteome analysis. SchistoProt can 

assist rational vaccine design by facilitating the rapid prioritization of candidate vaccine 

targets. The software also identifies proteins potentially important for parasite-host 

interaction and therefore enables researchers to gain new insights into the molecular 

mechanisms of Schistosoma infection.  

 

2.3 Introduction  

Schistosomiasis is an infectious disease caused by parasitic Schistosoma worms1,2. More 

than 700 million individuals are at risk of acquiring schistosomiasis in more than 70 

countries. It is considered by the World Health Organization as the second most 

socioeconomically devastating and second most common parasitic disease after malaria3. 

Chemotherapy via praziquantel is an effective treatment, but mass treatment does not 

prevent reinfection and there is an increasing concern of the development of drug 

resistance. The development of vaccines that induce long-term immunity therefore remain 

the most potentially effective means for controlling schistosomiasis. However, despite the 

poor containment of the disease and devastating medical and economic impact, no 

Schistosoma vaccines are available and we are just starting to understand the molecular 

mechanisms of host infection, host-parasite interaction and anti-schistosome protective 

immunity.  

Driven by the need to improve disease treatment and prevention, the genomes of three 

human Schistosoma species have recently become publicly available20-22. The surface of 

larval and adult schistosomes, the tegument, represents the host-parasite interface and 

proteins expressed in the tegument are responsible for essential functions for parasite 

survival in the host23. The tegument includes a single multinucleated cytoplasmic layer, 

which is linked to underlying nucleated cell bodies by cytoplasmic connections, that covers 

the entire worm40. Proteomic analysis of S. mansoni surface proteins showed the presence 

of enolase, an enzyme involved in energy metabolism, and structural molecules such as 

calcium ATPase which can inhibit platelet activation37,41. The leukocyte marker CD44, host 

complement proteins C3 and C4, and the membrane protease calpain have also been 

identified in S. mansoni surface proteins42.  

Proteins secreted by schistosomes are also essential for infection, e.g. by modulating host 

immune responses43. A number of endo- and exo-peptidases, trypsin-type serine 
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peptidase(s), and metallo-peptidases, have been revealed in the secretory proteins of S. 

mansoni44. These secretory proteins can stimulate the innate immune system and 

modulate various host immune responses which help the parasite evade immune defence 

mechanism when exposed to the host environment25. Knowledge of Schistosoma surface 

proteins and secreted peptides is therefore essential for improving our understanding of 

host-parasite interaction and for rational vaccine design.  

Existing approaches for the in silico prediction of surface and secretory proteins use 

hidden Markov models (HMMs), Bayesian networks, neural networks or position weight 

matrices (PSSMs)45-49. Two of the first and most widely used tools for the prediction of 

transmembrane proteins and signal peptides are TMHMM and SignalP, respectively. 

TMHMM employs a HMM to represent the different sequence regions of transmembrane 

helices47. SignalP relies on a combination of several artificial neural networks to predict the 

presence and location of signal peptide cleavage sites48. The recently developed 

combined classifier Phobius uses a HMM to model the sequence properties of both signal 

peptides and transmembrane proteins45. Philius predicts transmembrane topology and 

signal peptides using dynamic Bayesian networks46. PrediSi is based on position weight 

matrices to identify signal peptides and their cleavage positions and has been developed 

for the rapid analysis of whole-proteome datasets49. All of these approaches are general 

classifiers which perform well for a wide range of bacterial and eukaryotic species, but 

show a modest prediction accuracy for Schistosoma species27.  Liao et al. have recently 

demonstrated that a Schistosoma-specific classifier can significantly increase the 

prediction accuracy for identifying secreted proteins27. However, at present, no genus-

specific classifier is available for predicting Schistosoma secretory peptides and surface 

proteins, which would be invaluable for improving our knowledge of Schistosoma host-

parasite interactions, parasite pathogenesis and anti-schistosomiasis protective immunity. 

Such a tool will further assist researchers in discovering urgently needed anti-schistosomal 

vaccines. 

To address this need, the SchistoProt web server, a genus-specific, highly accurate 

machine learning classifier for identifying Schistosoma surface proteins and secretory 

peptides, have been developed. The server relies on 3 supervised machine learning 

techniques, evaluates a wide range of different sequence properties for classification, and 

is freely available at http://schistoprot.bioapps.org. 

 



Chapter 2 

13 

 

2.4 Methods  

2.4.1 Supervised machine learning classification  

Machine learning is learning is a field of computer science that provides systems 

(computers) the ability to automatically learn and improve from experience without being 

explicitly programmed. Supervised machine learning classification is the machine learning 

task of identifying to which of a set of classes a new observation belongs from labelled 

training data which consists of a set of training samples whose classes are known50.  

 

2.4.2 Training set 

To classify Schistosoma proteins into surface/non-surface and secreted/non-secreted 

classes SchistoProt uses 3 different supervised machine learning techniques. First, the 3 

classifiers had to be trained on a so called positive and negative training set to learn the 

specific properties of each class. The positive training set of tegument/surface proteins 

consisted of 414 sequences, which have been extracted from the published 

literature7,15,24,36,39,51,52 and from experimentally validated (not computationally predicted) 

protein sequences from the NCBI non-redundant protein database. For the negative 

training set (non-surface proteins), 435 nuclear, histone and mitochondrial related proteins 

were collected from the literature24,27 and from validated sequences from the NCBI non-

redundant protein database. As a positive training set for secreted proteins, a total of 375 

proteins were collected from the literature27,38,43,51 and from validated sequences from the 

NCBI non-redundant protein database. For the negative training set (non-secretory 

proteins) 746 nuclear and histone related proteins were collected from the literature24,27 

and from validated sequences from the NCBI non-redundant protein database. Only 

experimentally validated proteins were included in both datasets to obtain high-quality and 

reliable training sets. PISCES53 was applied to remove proteins with sequence identity 

over 20% to reduce biases towards overrepresented proteins. A total of 249 surface 

proteins, 277 non-surface proteins, 205 secreted proteins and 258 non-secreted proteins 

remained in the final training sets. Seven proteins were present in both the surface and 

secretory positive training datasets. 

 

2.4.3 Independent test set T400 

To evaluate the classification accuracy of SchistoProt, an independent test set (named 

T400) comprising 400 Schistosoma proteins has been compiled. 100 surface proteins, 100 



Chapter 2 

14 

 

secreted proteins, 100 non-surface and 100 non-secreted proteins from the NCBI non-

redundant proteins database were randomly selected. Using sequence similarity 

comparisons, it is ensured that none of the 400 selected proteins was present in the 

training sets.  

 

2.4.4 Features used for SchistoProt classification 

Initially, 481 features from each protein were extracted. Out of these 481 features, 81 

features represent sequence characteristics and structural and biochemical attributes (  
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Supplementary Table 2.1). The remaining 400 features are k-mers of 2 amino acid 

residues (2-mers) for 20 amino acids (Supplementary Table 2.2). 2-mers refer to all the 

possible subsequences of length 2 from a protein sequence. Features are extracted from 

each protein sequence using different available bioinformatics tools and newly developed 

Python scripts (Table 2.1). The features were approximately normally distributed which 

was tested based on the comparisons of mean and median values, and the shape of the 

data (Supplementary Table 2.3). The distribution of features between surface/non-surface 

proteins and between secreted/non-secreted peptides in the training set were compared 

by t-test. Only features that were significantly associated with one class (p<0.01, 

FDR<0.05) are used in SchistoProt (More Conservative mode) for the identification of 

surface proteins and secreted peptides, respectively.  

 

Table 2.1 Tools used to extract protein features. 

Tool Purpose URL 

Pepstats 
Calculation of statistics for proteins such as 

molecular weight, isoelectric point etc. 
http://www.ebi.ac.uk/Tools/seqstats/emboss_pepstats/ 

Protparam 
Computation of various physical and chemical 

parameters 
http://web.expasy.org/protparam/ 

Garnier Prediction of protein secondary structure 
http://emboss.sourceforge.net/apps/release/6.2/emboss/

apps/garnier.html 

NetCGlyc C-mannosylation sites http://www.cbs.dtu.dk/services/NetCGlyc/ 

NetChop Proteasomal cleavages (MHC ligands) http://www.cbs.dtu.dk/services/NetChop/ 

NetNGlyc N-linked glycosylation sites http://www.cbs.dtu.dk/services/NetNGlyc/ 

ANCHOR 
Prediction of Protein Binding Regions in 

Disordered Proteins 
http://anchor.enzim.hu/ 

ProP Arginine and lysine propeptide cleavage sites http://www.cbs.dtu.dk/services/ProP/ 

TargetP 
Prediction of the subcellular location of 

eukaryotic proteins 
http://www.cbs.dtu.dk/services/TargetP/ 

BepiPred 
Prediction of the location of linear B-cell 

epitopes 
http://www.cbs.dtu.dk/services/BepiPred/ 

Class I Immunogenecity Prediction of MHC Class I immunogenicity http://tools.iedb.org/immunogenicity/ 

2.4.5 Feature scaling  

The range of values of the different features included in SchistoProt varies widely. To 

ensure that each feature contributes approximately proportionately and, therefore, avoid 

biases introduced by features with greater numeric ranges54, all features are scaled into 

the range of 0 to 1.  
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2.4.6 Selection of best performing machine-learning technique 

Initially, 16 different machine learning techniques for all training sets were applied. 

Classifiers were run using the Scikit-learn (Version 0.18.1) library in Python55 with 

optimized parameters (Supplementary Text 2.1). The following classifiers were used: (i) 

Gradient Boosting Machine (GBM); (ii) Support Vector Machine (SVM) with radial basis 

function (RBF SVM) kernel with C=16, gamma=0.01; (iii) K-Neighbors; (iv) Decision tree 

with max_depth=13; (v) Random forest with max_depth=13, n_estimators=13 for surface 

classifier and max_depth=15, n_estimators=15 for secretory classifier, and 

max_features=481; (vi) Ada boost; (vii) Gaussian Naive Bayes (GNB); (viii) Linear 

Discriminant Analysis (LDA); (ix) Quadratic Discriminant Analysis (QDA); (x) Ridge 

regression; (xi) Stochastic gradient descent (SGD); (xii) Perceptron; (xiii) Passive 

aggressive; (xiv) Bernoulli Naive Bayes (BNB); (xv) Nearest Centroid; and (xvi) Multi-layer 

Perceptron (MLP).  

Each training sequence was represented by the corresponding feature vectors. The 16 

classifiers were then evaluated by stratified k-fold (10-fold) cross-validation. Using 

stratified k-fold cross-validation, the folds were selected such that the mean response 

value was approximately equal in all folds56.  In 10-fold cross-validation, 90% of the data 

were used for training and the remaining 10% for testing. The cross-validation process 

was repeated 10 times and the average predication accuracy calculated. 

SchistoProt relies on the 3 supervised machine learning techniques which achieved the 

highest prediction accuracies in the 10-fold cross-validation. Gradient Boosting Machine 

(GBM), Random Forest and Bernoulli Naive Bayes (BNB) classifiers were selected for the 

classification of surface proteins. GBM, Ada Boost and BNB were selected for the 

classification of secretory proteins. The 3 machine-learning techniques are combined into 

a single classifier using a majority rule. A protein is assigned to positive class if it is 

predicted by at least 2 of the 3 classifiers as positive, otherwise, SchistoProt assigns the 

protein as negative class i.e., only one or no classifiers predict the protein as positive. 

 

2.4.7 Performance evaluation 

The classification accuracy of SchistoProt was evaluated by sensitivity, specificity and 

overall accuracy57. These measures are defined as: sensitivity = TP/(TP+FN), specificity = 

TN/(TN+FP), overall accuracy = (TP + TN) / (TP + TN + FP + FN), where TP (True 

Positive) and TN (True Negative) are the number of correctly predicted positive and 

negative proteins, respectively, and FP (False Positive) and FN (False Negative) are the 
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number of incorrectly predicted positive and negative proteins, respectively. Additionally, 

the discriminatory power of classifiers was evaluated by the Area Under the Receiver 

Operating Characteristic (ROC) curve (AUC). 

 

2.5 Results 

2.5.1 SchistoProt overview 

SchistoProt uses 3 supervised machine-learning classifiers to discriminate between 

surface and non-surface proteins and between secreted and non-secreted peptides. 

Generated predictions are stored in a database which facilitates rapid reuse of results 

without rerunning the time-consuming classifiers. This saves considerable runtime if the 

same sequences are uploaded multiple times, e.g. by different users.  

SchistoProt takes FASTA formatted sequence files or pasted protein sequences as input. 

If the proteins are already present in the database, the pre-computed results are returned. 

Otherwise SchistoProt extracts corresponding features from each query sequence using 

several available bioinformatics tools and newly developed Python scripts (Table 2.1). 

Features include sequence characteristics, biochemical attributes and structural properties 

(Supplementary Table 2.1). These features are scaled and used to discriminate between 

surface and non-surface proteins and between secreted and non-secreted peptides.  

SchistoProt combines 3 supervised machine learning techniques and classifies proteins 

based on a majority rule. The results of the classification are returned to the user and 

stored in the database for future reuse (Figure 2.1). Results are presented as interactive 

tables, charts and figures. 
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Figure 2.1 SchistoProt workflow. 

Query sequences submitted by a user are compared to a database of pre-computed results. If a 

query sequence is present in the database, SchistoProt reports the pre-computed predictions; 

otherwise, a machine-learning classification is performed and the results are stored in the 

database for future reuse. Results are presented online as interactive tables, charts and figures.  

 

2.5.2 Features significantly associated with surface proteins and secreted peptides 

Associations between 81 biochemical and structural sequence features and surface 

proteins and secreted peptides have been examined using a t-test. Fifty-four features were 

significantly differentially distributed between surface and non-surface proteins (p<0.01, 

FDR<0.05) (Figure 2.2; Table 2.2). Surface proteins showed a higher frequency of lysine, 

isoleucines, secondary pathway signal peptides, and secondary helices. Surface proteins 

were also found to be more stable, aromatic and Class I immunogenic than non-surface 

proteins. Arginine and proline were underrepresented in surface proteins. 

Fifty-seven features showed differential distribution between secretory and non-secretory 

proteins (p<0.01, FDR<0.05) (Figure 2.3; Table 2.3). Secretory proteins showed a higher 

frequency of grand average of hydropathy (GRAVY), non-polar moles, lysine and the 

hydrophobic amino acids glycine, valine, isoleucine, phenylalanine, methionine, and 

tryptophan. Secretory proteins were also more stable than non-secretory proteins. 

Secondary turns, polar moles and serines were higher in non-secretory proteins. 

129 of 2-mers were significantly differentially distributed between surface and non-surface 

proteins (p<0.01, FDR<0.05) (Supplementary Table 2.4). 122 of 2-mers were significantly 
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differentially distributed between secretory and non-secretory proteins (p<0.01, FDR<0.05) 

(Supplementary Table 2.5). 

 

 

Figure 2.2 Features associated with surface proteins. 

Means in the surface positive and surface negative training sets were compared by t-test. Shown 

are all features with p<0.01. (A) Heatmap of features significantly differentially distributed between 

surface and non-surface proteins. Columns represent each protein of the training set, rows 

represent features. (B) Quantiles distribution of significantly different features for surface and non-

surface proteins. Values are depicted in color code, ranging from green (low) to red (high).  
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Figure 2.3 Features associated with secreted peptides. 

Means in the secretory positive and secretory negative training sets were compared by t-test. 

Shown are all features with p<0.01. (A) Heatmap of features significantly differentially distributed 

between secreted and non-secreted peptides. Columns represent each protein of the training set, 

rows represent features. (B) Quantiles distribution of significantly different features for secreted 

and non-secreted peptides. Values are depicted in color code, ranging from green (low) to red 

(high).  

 

Table 2.2 Features differentially distributed between surface and non-surface proteins. 

Means between positive and negative training sets were compared by t-test. Shown are all 

features with p<0.01. P-values were corrected for multiple testing using Bonferroni correction and 

False Discovery Rate (FDR). 

Features 

Mean 

surface 

proteins 

Mean non-

surface 

proteins 

P-value 

Bonferroni 

corrected 

P-value 

FDR 
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Dayhoff statistic of serine 0.9535 1.4182 6.76E-44 5.48E-42 2.77E-42 

Percentage of serine 6.6747 9.9273 6.85E-44 5.55E-42 2.77E-42 

Secondary turn fraction 0.2081 0.2614 1.69E-42 1.37E-40 4.57E-41 

Instability Index 35.4030 47.1189 1.40E-33 1.13E-31 2.84E-32 

Proteasomal cleavages (MHC 

ligands) 82.6185 167.0181 5.58E-30 4.52E-28 9.03E-29 

Molecular Weight 

29115.753

5 57811.0814 5.66E-29 4.59E-27 7.65E-28 

Count of linear B-cell epitopes 76.3253 187.0397 8.47E-28 6.86E-26 9.80E-27 

Dayhoff statistic of proline 0.6589 0.9940 3.59E-23 2.91E-21 3.63E-22 

Percentage of proline 3.4262 5.1686 2.00E-19 1.62E-17 1.80E-18 

Probability of Expression 

Inclusion Bodies 0.6906 0.7873 5.49E-17 4.45E-15 4.45E-16 

N-linked glycosylation sites 1.1566 3.5957 3.29E-16 2.67E-14 2.42E-15 

Secretory pathway signal peptide 

(SP) 0.3167 0.1128 5.06E-16 4.10E-14 3.42E-15 

Dayhoff statistic of lysine 1.1220 0.8335 1.14E-14 9.23E-13 7.10E-14 

Molar Extinction Coefficient A280 

29577.269

1 57284.1516 1.24E-14 1.00E-12 7.17E-14 

Percentage of lysine 7.4053 5.5013 1.77E-13 1.43E-11 9.54E-13 

Mitochondrial targeting peptide 

(mTP) 0.1514 0.2827 3.26E-13 2.64E-11 1.65E-12 

Binding Regions in Disordered 

Proteins 0.6426 3.0361 7.32E-13 5.93E-11 3.49E-12 

Dayhoff statistic of asparagine 1.0742 1.3795 1.14E-12 9.19E-11 5.11E-12 

Arginine and lysine propeptide 

cleavage sites 0.0683 0.4188 1.27E-11 1.03E-09 5.43E-11 

Percentage of polar mole 46.2646 50.2015 2.59E-11 2.10E-09 1.05E-10 

Dayhoff statistic of histidine 1.0947 1.4063 2.77E-11 2.24E-09 1.07E-10 

Percentage of non polar mole 53.7354 49.7985 3.06E-11 2.48E-09 1.13E-10 

Average hydrogen sparing 9.9920 9.8428 1.12E-10 9.09E-09 3.79E-10 

Percentage of histidine 2.1894 2.8127 1.12E-10 9.10E-09 3.79E-10 

Percentage of asparagine 4.6189 5.9321 1.52E-10 1.23E-08 4.84E-10 



Chapter 2 

22 

 

Dayhoff statistic of methionine 1.5714 1.1603 1.55E-10 1.26E-08 4.84E-10 

Percentage of secondary helix 41.9157 30.2960 2.22E-10 1.80E-08 6.67E-10 

Percentage of small mole 47.3355 50.2022 2.45E-10 1.98E-08 7.08E-10 

Percentage of methionine 2.6714 1.9725 1.04E-09 8.40E-08 2.90E-09 

Average oxygen sparing 2.4703 2.5076 1.17E-08 9.48E-07 3.16E-08 

Average nitrogen sparing 1.3538 1.3879 2.96E-08 2.39E-06 7.73E-08 

Percentage of arginine 4.7430 5.5201 9.81E-08 7.95E-06 2.42E-07 

Dayhoff statistic of arginine 0.9680 1.1265 9.85E-08 7.98E-06 2.42E-07 

Average sulphur sparing 0.0500 0.0405 1.06E-07 8.62E-06 2.54E-07 

Percentage of isoleucine 7.2918 5.9486 2.28E-07 1.85E-05 5.17E-07 

Dayhoff statistic of isoleucine 1.6204 1.3219 2.30E-07 1.86E-05 5.17E-07 

Secondary helix fraction 0.3279 0.3015 6.44E-07 5.22E-05 1.41E-06 

Percentage of aliphatic mole 23.5608 21.5818 3.17E-06 0.0003 6.76E-06 

Secondary sheet fraction 0.2465 0.2278 4.79E-06 0.0004 9.95E-06 

Dayhoff statistic of valine 1.0390 0.8925 5.81E-06 0.0005 1.15E-05 

Percentage of valine 6.8571 5.8904 5.83E-06 0.0005 1.15E-05 

Grand average of hydropathy 

(GRAVY) -0.1669 -0.3786 2.46E-05 0.0020 4.75E-05 

Percentage of alanine 6.4305 5.3151 0.0001 0.0087 0.0002 

Dayhoff statistic of alanine 0.7477 0.6180 0.0001 0.0088 0.0002 

Percentage of glycine 6.0926 5.1145 0.0004 0.0302 0.0007 

Dayhoff statistic of glycine 0.7253 0.6089 0.0004 0.0304 0.0007 

Average carbon sparing 5.0559 4.9950 0.0006 0.0499 0.0011 

Class I Immunogenicity score 0.1592 -2.6561 0.0007 0.0530 0.0011 

C-mannosylation sites 0.0281 0.1047 0.0010 0.0840 0.0017 

Dayhoff statistic of glutamine 0.9200 1.0214 0.0022 0.1771 0.0035 

Percentage of tryptophan 1.1583 1.1895 0.0034 0.2773 0.0054 

Percentage of glutamine 3.5879 3.9833 0.0038 0.3038 0.0058 

Other subcellular location 0.5970 0.6544 0.0048 0.3925 0.0074 

Dayhoff statistic of tryptophan 0.8910 0.9150 0.0049 0.4001 0.0074 
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Table 2.3 Features differentially distributed between secretory and non-secretory proteins. 

Means between positive and negative training sets were compared by t-test and p-values were 

adjusted for multiple testing using Bonferroni correction and False Discovery Rate (FDR). 

Features 

Mean 

secretory 

proteins 

Mean non-

secretory 

proteins 

P-value 

Bonferroni 

corrected 

P-value 

FDR  

Dayhoff statistic of serine 0.9223 1.5033 1.24E-37 1.00E-35 1.00E-35 

Percentage of serine 6.4565 10.5232 5.45E-31 4.41E-29 2.21E-29 

Binding Regions in Disordered 

Proteins 0.6829 6.7519 8.56E-31 6.93E-29 2.31E-29 

Instability Index 37.3205 49.4272 3.61E-30 2.92E-28 7.31E-29 

Secretory pathway signal peptide 

(SP) 0.4327 0.0876 9.31E-30 7.54E-28 1.51E-28 

Percentage of non polar mole 52.4495 46.9683 6.92E-26 5.61E-24 9.35E-25 

Other subcellular location 0.4646 0.7877 1.30E-24 1.05E-22 1.50E-23 

Secondary helix fraction 0.3092 0.2698 4.20E-24 3.40E-22 4.25E-23 

Percentage of polar mole 47.5505 53.0317 8.95E-24 7.25E-22 8.06E-23 

Secondary turn fraction 0.2240 0.2662 1.13E-21 9.12E-20 9.12E-21 

Aromaticity 0.0953 0.0718 7.79E-19 6.31E-17 5.74E-18 

Count of linear B-cell epitopes 105.2098 285.0078 5.03E-17 4.07E-15 3.39E-16 

Average carbon sparing 5.0469 4.8997 1.55E-16 1.25E-14 9.65E-16 

Arginine and lysine propeptide 

cleavage sites 0.0976 0.6822 8.64E-14 7.00E-12 5.00E-13 

Dayhoff statistic of arginine 0.9398 1.2147 3.20E-13 2.59E-11 1.64E-12 

Percentage of arginine 4.6052 5.9521 3.24E-13 2.62E-11 1.64E-12 

Percentage of aromatic mole 12.0057 9.9595 6.48E-13 5.25E-11 3.09E-12 

Grand average of hydropathy 

(GRAVY) -0.3258 -0.5314 6.24E-12 5.06E-10 2.81E-11 

Percentage of small mole 48.4774 51.8143 2.22E-11 1.80E-09 9.47E-11 

Average oxygen sparing 2.4879 2.5318 8.16E-11 6.61E-09 3.30E-10 

Absorbance A280 1.1818 0.8254 1.84E-10 1.49E-08 7.08E-10 
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Proteasomal cleavages (MHC 

ligands) 102.4829 196.5853 1.23E-09 9.97E-08 4.53E-09 

Dayhoff statistic of phenylalanine 1.1884 0.9220 1.86E-09 1.51E-07 6.57E-09 

Probability of Expression 

Inclusion Bodies 0.7104 0.7896 1.96E-09 1.59E-07 6.62E-09 

Percentage of phenylalanine 4.2782 3.3190 4.52E-09 3.66E-07 1.46E-08 

Molecular Weight 

36616.529

5 70164.3000 1.21E-08 9.80E-07 3.77E-08 

Mitochondrial targeting peptide 

(mTP) 0.1489 0.1938 1.29E-08 1.05E-06 3.88E-08 

Average sulphur sparing 0.0549 0.0427 1.74E-08 1.41E-06 5.03E-08 

Percentage of proline 4.1500 5.1613 2.17E-08 1.76E-06 5.89E-08 

Dayhoff statistic of proline 0.7981 0.9925 2.18E-08 1.77E-06 5.89E-08 

Average hydrogen sparing 9.8966 9.7668 3.51E-08 2.84E-06 9.16E-08 

Average nitrogen sparing 1.3686 1.4017 7.82E-08 6.33E-06 1.98E-07 

Percentage of lysine 7.2160 6.0889 8.52E-08 6.90E-06 2.03E-07 

Dayhoff statistic of lysine 1.0933 0.9226 8.52E-08 6.90E-06 2.03E-07 

Percentage of isoleucine 6.2476 5.4087 1.01E-07 8.17E-06 2.28E-07 

Dayhoff statistic of isoleucine 1.3883 1.2019 1.01E-07 8.20E-06 2.28E-07 

Dayhoff statistic of tryptophan 1.0873 0.6816 1.04E-07 8.45E-06 2.28E-07 

Percentage of tryptophan 1.4135 0.8861 2.03E-07 1.65E-05 4.34E-07 

Percentage of glycine 6.1741 5.0614 5.31E-07 4.30E-05 1.08E-06 

Dayhoff statistic of glycine 0.7350 0.6026 5.33E-07 4.31E-05 1.08E-06 

Percentage of aliphatic mole 21.3916 19.8003 8.75E-07 7.09E-05 1.73E-06 

Percentage of tiny mole 27.0767 29.3396 1.00E-06 8.11E-05 1.93E-06 

Class I Immunogenicity score -0.2818 -5.8851 8.77E-06 

0.0007101

5 1.65E-05 

Dayhoff statistic of tyrosine 1.1290 0.8749 9.47E-06 

0.0007672

3 1.74E-05 

Percentage of secondary helix 37.4439 31.8217 1.42E-05 

0.0011477

8 2.55E-05 

Dayhoff statistic of methionine 1.4054 1.1315 6.38E-05 0.0051643 0.0001 
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Percentage of tyrosine 3.8388 2.9748 7.93E-05 

0.0064232

2 0.0001 

Average Residue Weight 113.3850 112.2477 9.44E-05 

0.0076490

6 0.0002 

Percentage of methionine 2.3891 1.9236 0.0001 

0.0115401

4 0.0002 

Percentage of valine 6.3702 5.6791 0.0003 

0.0229345

6 0.0004 

Dayhoff statistic of valine 0.9652 0.8605 0.0003 

0.0229452

4 0.0004 

N-linked glycosylation sites 1.8878 4.5969 0.0006 

0.0518811

8 0.0010 

C-mannosylation sites 0.0244 0.0930 0.0018 

0.1477108

7 0.0028 

Percentage of cysteine 3.0994 2.3482 0.0024 0.1953022 0.0036 

Dayhoff statistic of cysteine 1.0687 0.8097 0.0029 

0.2386676

5 0.0043 

Dayhoff statistic of aspartic acid 0.9571 1.0481 0.0073 0.5944364 0.0105 

Percentage of aspartic acid 5.2637 5.7646 0.0074 

0.5966487

1 0.0105 

 

 

2.5.3 Performance evaluation of 16 machine-learning techniques 

The classification accuracy of 16-different supervised machine learning techniques has 

been evaluated. Classification performance was assessed on a training set of known 

Schistosoma surface proteins and secreted peptides using stratified k-fold (10-fold) cross-

validation (Supplementary Table 2.6;  
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Supplementary Table 2.7). The 3 top performing methods achieved individual classification 

accuracies in the range of 0.65 - 0.78 for surface proteins and 0.71 - 0.80 for secreted 

peptides (Figure 2.4; Table 2.4).  The combination of these 3 techniques achieved a 

superior accuracy of 87 for surface/non-surface and 94 for secretory/non-secretory 

classifiers (Figure 2.4; Table 2.4) and is used in the SchistoProt webserver.  
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Figure 2.4 Comparison of different supervised machine learning techniques for the 

identification of Schistosoma surface proteins and secreted peptides. 

(A) Prediction accuracy for surface proteins. (B) Prediction accuracy for secreted peptides. 

Classifiers were trained on the training set of known Schistosoma surface proteins and secreted 

peptides and evaluated by stratified k-fold (10-fold) cross-validation. 

 

Table 2.4 Comparison of prediction accuracy of 16 supervised machine learning 

techniques. 

Classifiers were evaluated on the training set of known surface (n=249), non-surface (n=277) and 

known secreted (n=205), non-secreted (n=258) proteins by stratified k-fold (10-fold) cross-

validation. Additionally, the classification accuracy of the SchistoProt classifier was evaluated, 

which is based on the combination of the high performing 3 machine learning techniques. AUC: 

Area Under the Roc Curve. 

Machine Learning Technique 

Surface 

Classification 

Overall Accuracy 

Surface 

Classification 

AUC 

Secretory 

Classification 

Overall Accuracy 

Secretory 

Classification 

AUC 

Gradient Boosting Machine (GBM) 0.6581 0.6474 0.8015 0.8027 

RBF SVM 0.5266 0.5000 0.5573 0.5000 

k-Nearest Neighbors 0.4734 0.5000 0.5118 0.5000 

Decision Tree 0.6366 0.6330 0.5077 0.4923 

Random Forest 0.6670 0.6583 0.5460 0.5176 

Ada Boost 0.5889 0.6082 0.7107 0.7301 

Gaussian Naive Bayes (GNB) 0.4734 0.5000 0.4534 0.5000 

Linear Discriminant Analysis (LDA) 0.4791 0.5000 0.4449 0.5005 

Quadratic Discriminant Analysis (QDA) 0.4791 0.5000 0.5573 0.5000 

Ridge Regression 0.5266 0.5000 0.4427 0.5000 

Stochastic Gradient Descent (SGD) 0.4848 0.5108 0.4427 0.5000 

Perceptron 0.4753 0.5018 0.4671 0.5219 

Passive Aggressive  0.4753 0.5018 0.5967 0.6299 

Bernoulli Naive Bayes (BNB) 0.7809 0.7837 0.7128 0.7173 

Nearest Centroid 0.4734 0.5000 0.4427 0.5000 

Multi-layer Perceptron (MLP) 0.4809 0.5011 0.4844 0.5106 

Combined 3 techniques (SchistoProt) 0.8715 0.8647 0.9425 0.9721 

 

2.5.4 Prediction accuracy of SchistoProt evaluated on independent test set 

The performance of SchistoProt was first evaluated on the training set by stratified 10-fold 

cross-validation (Figure 2.4; Table 4). The final classifier (trained on the entire training set) 
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was then evaluated on an independent test set of 400 Schistosoma proteins (T400). The 

classification accuracy for surface proteins was compared with Phobius45 and TMHMM47, 

two general hidden Markov model based tools for the identification of surface proteins. 

Classification accuracy for secretory peptides was compared with SignalP48, Phobius45 

and PrediSi49. For surface proteins, SchistoProt achieved a sensitivity, specificity and 

overall accuracy of 0.85, 0.81 and 0.83, respectively (Table 2.5). For secretory proteins 

sensitivity, specificity and overall accuracy were 0.92, 0.93 and 0.93, respectively (Table 

2.5). SchistoProt showed a significantly higher prediction accuracy compared to the 

existing tools Phobius, TMHMM, PrediSi and SignalP. 

 

Table 2.5 Performance comparison with existing prediction tools. 

Prediction accuracy of existing tools and SchistoProt was evaluated on the training set of 249 

surface proteins, 277 non-surface proteins, 205 secreted and 258 non-secreted peptides. 

Additionally, the classification accuracy was evaluated on the independent test set of 100 surface 

proteins, 100 non-surface proteins, 100 secreted and 100 non-secreted peptides (T400). 

Surface Proteins 

Tool Dataset True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Sensitivity Specificity Overall 

Accuracy 

Phobius Training set 75 236 41 174 0.30 0.85 0.59 

Test set  27 82 18 73 0.27 0.82 0.55 

Philius Training set 67 236 41 182 0.27 0.85 0.58 

Test set  23 85 15 77 0.23 0.85 0.54 

TMHMM Training set 72 244 33 177 0.29 0.88 0.60 

Test set  24 86 14 76 0.24 0.86 0.51 

SchistoProt Training set 249 277 0 0 1 1 1 

Test set  85 81 19 15 0.85 0.81 0.83 

Secreted Peptides 

Tool Dataset True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Sensitivity Specificity Overall 

Accuracy 

Phobius Training set 66 255 3 139 0.32 0.99 0.69 

Test set  24 99 1 76 0.24 0.99 0.62 

SignalP Training set 61 256 2 144 0.30 0.99 0.68 

Test set 19 99 1 81 0.19 0.99 0.59 

PrediSi Training set 60 255 3 145 0.29 0.99 0.68 
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Test set  24 100 0 76 0.24 1 0.62 

SchistoProt Training set 205 258 0 0 1 1 1 

Test set  92 93 7 8 0.92 0.93 0.93 

 

2.5.5 User-interface 

SchistoProt provides an easy-to-use graphical user interface (GUI), an extensive help 

page and user forum page. As input, multiple protein sequences can be uploaded or 

pasted in fasta format. By default, SchistoProt includes 183 selected features (54 of 

biochemical and structural features and 129 of 2-mers) for surface proteins prediction and 

179 selected features (57 of biochemical and structural features and 122 of 2-mers) for 

secretory peptides prediction (More Conservative mode).  However, optional all available 

481 features can be used (Less Conservative mode). An interactive results page is 

generated. A table lists the sequence ID of each query sequence, the prediction 

(surface/non-surface or secreted/non-secreted) and classification score (number of 

positive classifiers). A second table lists the individual predictions obtained for each of the 

3 classifiers. Additionally, the decision score and probability are shown. The distribution of 

sequence features in each query protein are presented in a table and in interactive charts 

and plots (strip chart, heatmap and bar chart) (Figure 2.5 and Figure 2.6). 
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Figure 2.5 SchistoProt graphical user interface (GUI). 

(A) Input forms for upload query protein sequences; (B) SchistoProt predictions are presented as 

table with protein ID, prediction class and score. Additionally, the decision score and probability are 

presented (not shown in screenshot). (C) Individual predictions obtained for each of the 3 used 

machine-learning techniques. Shown are the ID of each query sequence, prediction class, decision 

score and probability; (D) Feature table presenting the frequencies of the features in each query 

protein.  
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Figure 2.6 Graphical presentation of SchistoProt predictions. 

SchistoProt presents results as (A) Strip Chart and (B) Stacked Bar. For each feature and each 

selected query protein the figures show the mean frequency of the feature in the positive and 

negative training sets and the frequency of the feature in the selected protein.  

 

2.5.6 Architecture and run-time performance 

The SchistoProt server is developed in Python using the Django web framework (Figure 

2.7). The server can handle whole-proteome datasets and there is no limit for the number 

of uploaded query sequences. The server performs background task processing and can 

process multiple user sessions in parallel. After data submission a link is provided, which 

gives access to the predictions if the users browser window has been closed.  
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Figure 2.7 ShistoProt web server architecture. 

SchistoProt has been designed following a 3 tiers framework: i) The client interface, ii) The web 

server and iii) Data storage and background processing. The client interface has been realized 

using HTML web-pages, cascading style sheets (CSS) and JavaScript. The web server relies on 

the Django Python web framework and the NginX high-performance HTTP-server. Gunicorn and 

Supervisor are used for managing and running multiple workers. Background processing has been 

realized via Celery and Redis. Data is persistently stored in a SQLite database.  

 

Computed results are stored in a SQLite database for later re-use. This saves 

considerable runtime if the same sequences are uploaded multiple times, e.g. by different 

users. SchistoProt requires 227.84 seconds for processing 100 query sequences if the 

sequences are not found in the database, whereas it takes only 1.16 seconds if all 100 

sequences are present in the database.  
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2.6 Conclusion 

SchistoProt is an easy-to-use, accurate and fast classifier for the in silico identification of 

Schistosoma surface proteins and secreted peptides. The software has been optimized for 

large datasets and allows rapid whole-proteome analysis. The obtained results 

demonstrate that a genus-specific classifier is superior to general tools for the in silico 

prediction of Schistosoma surface proteins. Furthermore, as others have also found27, a 

genus-specific classifier is also superior for the identification of secreted proteins. 

SchistoProt assists researchers in identifying genes important for host-parasite interaction, 

studying anti-schistosome protective immunity, and identifying candidate vaccine targets. It 

therefore represents a valuable tool for improving our understanding of Schistosoma 

pathogenicity and host-parasite interaction, and for informing the rational design of much-

needed Schistosoma vaccines.  

 

Supporting information 

Supplementary Text 2.1 16 different supervised machine learning classifiers and 

their parameter settings used to select optimum classifiers in SchistoProt. 

Classifiers are run using the Scikit-learn (Version 0.18.1) library in Python with default parameters. 

 

Gradient Boosting Machine (GBM). Gradient Boosting Method (GBM) is an additive 

model in a forward stage-wise fashion; it allows for the optimization of arbitrary 

differentiable loss functions.an additive model in a forward stage-wise fashion; it allows for 

the optimization of arbitrary differentiable loss functions. The parameters settings were 

loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, 

criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, 

min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_split=1e-07, init=None, 

random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, 

warm_start=False, presort='auto'. 

 

RBF SVM. Support Vector Machine (SVM) is a classifier which learns by finding the 

separating hyperplane that maximizes the margin between two classes of a training set. 

RBF SVM is Support Vector Machine with radial bias function (RBF) kernel. The 

parameters settings were C=12, cache_size=200, class_weight=None, coef0=0.0, 

decision_function_shape=None, degree=3, gamma=2, kernel='rbf', max_iter=-1, 

probability=False, random_state=None, shrinking=True, tol=0.001 and verbose=False. 
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k-Nearest Neighbors. The principle behind k-nearest neighbor methods is to find a 

predefined number of training samples closest in distance to the new point, and predict the 

label from these. The parameters settings were algorithm='auto', leaf_size=30, 

metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=12, p=2 and 

weights='uniform'. 

 

Decision Tree. Decision Trees are a non-parametric supervised learning method used for 

classification. The goal is to create a model that predicts the value of a target variable by 

learning simple decision rules inferred from the data features. The parameters settings 

were class_weight=None, criterion='gini', max_depth=12, max_features=None, 

max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, 

min_weight_fraction_leaf=0.0, presort=False, random_state=None and splitter='best'. 

 

Random Forest. A random forest is a meta estimator that fits a number of decision tree 

classifiers on various sub-samples of the dataset and use averaging to improve the 

predictive accuracy and control over-fitting. The parameters settings were bootstrap=True, 

class_weight=None, criterion='gini', max_depth=12, max_features=80, 

max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, 

min_weight_fraction_leaf=0.0, n_estimators=12, n_jobs=1, oob_score=False, 

random_state=None, verbose=0 and warm_start=False. 

 

Ada Boost. An Ada Boost classifier is a meta-estimator that begins by fitting a classifier 

on the original dataset and then fits additional copies of the classifier on the same dataset 

but where the weights of incorrectly classified instances are adjusted such that subsequent 

classifiers focus more on difficult cases. The parameters settings were 

algorithm='SAMME.R', base_estimator=None, learning_rate=1.0, n_estimators=50 and 

random_state=None. 

 

Naive Bayes. Naive Bayes methods are a set of supervised learning algorithms based on 

applying Bayes’ theorem with the “naive” assumption of independence between every pair 

of features. The parameters settings were the default parameters of GaussianNB() in 

Scikit-learn. 
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Linear Discriminant Analysis (LDA). Linear Discriminant Analysis (LDA) tries to identify 

attributes that account for the most variance between classes by a linear surface. The 

parameters settings were n_components=None, priors=None, shrinkage=None, 

solver='svd', store_covariance=False and tol=0.0001. 

 

Quadratic Discriminant Analysis (QDA). Quadratic Discriminant Analysis (QDA) is used 

in machine learning classification to separate measurements of two or more classes of 

objects or events by a quadric surface. The parameters settings were priors=None, 

reg_param=0.0, store_covariances=False and tol=0.0001. 

 

Ridge Regression. Ridge Regression is a technique for analyzing multiple regression 

data that suffer from multicollinearity. The parameters settings were alpha=1.0, 

class_weight=None, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, 

random_state=None, solver='auto' and tol=0.001. 

 

Stochastic Gradient Descent (SGD). Stochastic Gradient Descent (SGD) is a simple yet 

very efficient approach to discriminative learning of linear classifiers under convex loss 

functions such as (linear) Support Vector Machines and Logistic Regression. The 

parameters settings were alpha=0.0001, average=False, class_weight=None, epsilon=0.1, 

eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, 

n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0 and 

warm_start=False. 

 

Perceptron. Perceptron is a type of linear classifier that makes its predictions based on a 

linear predictor function combining a set of weights with the feature vector. It does not 

require a learning rate and it is not regularized (penalized). The parameters settings were 

alpha=0.0001, class_weight=None, eta0=1.0, fit_intercept=True, n_iter=5, n_jobs=1, 

penalty=None, random_state=0, shuffle=True, verbose=0 and warm_start=False. 

 

Passive Aggressive. The passive aggressive algorithms are a family of algorithms for 

large-scale learning. They are similar to the Perceptron in that they do not require a 

learning rate. However, contrary to the Perceptron, they include a regularization parameter 

C. The parameters settings were C=1.0, class_weight=None, fit_intercept=True, 
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loss='hinge', n_iter=5, n_jobs=1, random_state=None, shuffle=True, verbose=0 and 

warm_start=False. 

 

Bernoulli Naive Bayes. Naive Bayes methods are a set of supervised learning algorithms 

based on applying Bayes’ theorem with the “naive” assumption of independence between 

every pair of features. Bernoulli Naive Bayes implements the naive Bayes training and 

classification algorithms for data that is distributed according to multivariate Bernoulli 

distributions; i.e., there may be multiple features but each one is assumed to be a binary-

valued (Bernoulli, boolean) variable. Therefore, this class requires samples to be 

represented as binary-valued feature vectors; if handed any other kind of data, a Bernoulli 

Naive Bayes instance may binarize its input (depending on the binarize parameter). The 

parameters settings were alpha=1.0, binarize=0.0, class_prior=None and fit_prior=True. 

 

Nearest Centroid. Nearest Centroid classifier is a classification model that assigns to 

observations the label of the class of training samples whose mean (centroid) is closest to 

the observation. The parameters settings were metric='euclidean' and 

shrink_threshold=None. 

 

Multi-layer Perceptron (MLP). A multilayer perceptron (MLP) is a network of simple 

neurons called perceptrons. The perceptron computes a single output from multiple real-

valued inputs by forming a linear combination according to its input weights and then 

possibly putting the output through some nonlinear activation function. The parameters 

settings were hidden_layer_sizes=(100, ), activation='relu', solver='adam', alpha=0.0001, 

batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, 

max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, 

warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, 

validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08. 
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Supplementary Table 2.1 List of 81 features used in SchistoProt for protein classification. 

SchistoProt uses 481 features for protein classification. 

Of these 481 features, 81 features represent biochemical and structural properties (shown in this 

table). The remaining 400 features represent 2-mers of the 20 amino acids (Supplementary 

Table 2.2). 

Percentage of alanine Secondary sheet fraction DayhoffStat of threonine 

Percentage of cysteine Average Residue Weight DayhoffStat of valine 

Percentage of aspartic acid Average carbon sparing DayhoffStat of tryptophan 

Percentage of glutamic acid Average nitrogen sparing DayhoffStat of tyrosine 

Percentage of phenylalanine Average sulphur sparing Percentage of tiny mole 

Percentage of glycine Average oxygen sparing Percentage of small mole 

Percentage of histidine Average hydrogen sparing Percentage of aliphatic mole 

Percentage of isoleucine Charge Percentage of aromatic mole  

Percentage of lysine 

Molar Extinction Coefficient 

A280 Percentage of polar mole 

Percentage of leucine Absobance A280 Percentage of non polar mole 

Percentage of methionine 

Probability of Expression 

Inclusion Bodies Percentage of charged mole 

Percentage of asparagine DayhoffStat of alanine Percentage of acidic mole 

Percentage of proline DayhoffStat of cysteine Percentage of basic mole 

Percentage of glutamine DayhoffStat of aspartic acid Percentage of secondary helix 

Percentage of arginine DayhoffStat of glutamic acid Percentage of secondary sheet 

Percentage of serine DayhoffStat of phenylalanine Percentage of secondary turns 

Percentage of threonine DayhoffStat of glycine Percentage of secondary coil 

Percentage of valine DayhoffStat of histidine C-mannosylation sites 

Percentage of tryptophan DayhoffStat of isoleucine 

Proteasomal cleavages (MHC 

ligands) 

Percentage of tyrosine DayhoffStat of lysine N-linked glycosylation sites 

Molecular Weight DayhoffStat of leucine 

Arginine and lysine propeptide 

cleavage sites 

Aromaticity DayhoffStat of methionine 

Binding Regions in Disordered 

Proteins 
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Instability Index DayhoffStat of asparagine 

Mitochondrial targeting peptide 

(mTP) 

Isoelectric Point DayhoffStat of proline 

Secretory pathway signal 

peptide (SP) 

Grand average of hydropathy 

(GRAVY) DayhoffStat of glutamine Other subcellular location 

Secondary helix fraction DayhoffStat of arginine Linear B-cell epitopes 

Secondary turn fraction DayhoffStat of serine Class I Immunogenicity Score 

 

 

Supplementary Table 2.2 List of 400 2-mers used in SchistoProt for protein classification. 

SchistoProt uses 400 2-mers of the 20 amino acids for protein classification. 

AA DA FA HA KA MA PA RA TA WA 

AC DC FC HC KC MC PC RC TC WC 

AD DD FD HD KD MD PD RD TD WD 

AE DE FE HE KE ME PE RE TE WE 

AF DF FF HF KF MF PF RF TF WF 

AG DG FG HG KG MG PG RG TG WG 

AH DH FH HH KH MH PH RH TH WH 

AI DI FI HI KI MI PI RI TI WI 

AK DK FK HK KK MK PK RK TK WK 

AL DL FL HL KL ML PL RL TL WL 

AM DM FM HM KM MM PM RM TM WM 

AN DN FN HN KN MN PN RN TN WN 

AP DP FP HP KP MP PP RP TP WP 

AQ DQ FQ HQ KQ MQ PQ RQ TQ WQ 

AR DR FR HR KR MR PR RR TR WR 

AS DS FS HS KS MS PS RS TS WS 

AT DT FT HT KT MT PT RT TT WT 

AV DV FV HV KV MV PV RV TV WV 

AW DW FW HW KW MW PW RW TW WW 

AY DY FY HY KY MY PY RY TY WY 
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CA EA GA IA LA NA QA SA VA YA 

CC EC GC IC LC NC QC SC VC YC 

CD ED GD ID LD ND QD SD VD YD 

CE EE GE IE LE NE QE SE VE YE 

CF EF GF IF LF NF QF SF VF YF 

CG EG GG IG LG NG QG SG VG YG 

CH EH GH IH LH NH QH SH VH YH 

CI EI GI II LI NI QI SI VI YI 

CK EK GK IK LK NK QK SK VK YK 

CL EL GL IL LL NL QL SL VL YL 

CM EM GM IM LM NM QM SM VM YM 

CN EN GN IN LN NN QN SN VN YN 

CP EP GP IP LP NP QP SP VP YP 

CQ EQ GQ IQ LQ NQ QQ SQ VQ YQ 

CR ER GR IR LR NR QR SR VR YR 

CS ES GS IS LS NS QS SS VS YS 

CT ET GT IT LT NT QT ST VT YT 

CV EV GV IV LV NV QV SV VV YV 

CW EW GW IW LW NW QW SW VW YW 

CY EY GY IY LY NY QY SY VY YY 

 

 

Supplementary Table 2.3 Test for normality of extracted features. 

Extracted features were reasonably normally distributed and evaluated by mean, median and 

shape of the data. 

Features 

Surface Positive Surface Negative Secretory Positive Surface Negative 

Mean  Median Mean  Median Mean  Median Mean  Median 

Percentage of alanine 6.4305 6.3830 5.3151 5.2811 5.7148 5.3055 5.494 5.235 

Percentage of cysteine 2.3275 1.9048 2.0747 2.0356 3.0994 2.1739 2.348 2.141 

Percentage of aspartic 

acid 5.3793 5.4968 5.3024 5.2910 5.2637 5.2910 5.765 5.788 

Percentage of glutamic 

acid 6.1375 6.0150 5.7452 5.5215 6.4329 6.0748 6.226 5.649 

Percentage of 4.4845 4.2254 4.0333 3.8095 4.2782 4.0426 3.319 3.103 
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phenylalanine 

Percentage of glycine 6.0926 5.9211 5.1145 4.7619 6.1741 5.7971 5.061 4.594 

Percentage of histidine 2.1894 1.9737 2.8127 2.7907 2.4751 2.3936 2.780 2.853 

Percentage of isoleucine 7.2918 7.0270 5.9486 5.8824 6.2476 6.2500 5.409 5.323 

Percentage of lysine 7.4053 7.1560 5.5013 5.3299 7.2160 7.1713 6.089 5.649 

Percentage of leucine 9.4119 9.3750 9.7429 9.6741 8.7737 8.8106 8.713 8.751 

Percentage of 

methionine 2.6714 2.5210 1.9725 1.8433 2.3891 2.3256 1.924 1.754 

Percentage of 

asparagine 4.6189 4.4728 5.9321 5.6561 5.6168 5.2632 5.870 5.651 

Percentage of proline 3.4262 3.3210 5.1686 4.8507 4.1500 4.1026 5.161 5.039 

Percentage of glutamine 3.5879 3.3613 3.9833 3.8462 3.8524 3.7634 3.914 3.650 

Percentage of arginine 4.7430 4.5249 5.5201 5.3719 4.6052 4.5564 5.952 5.718 

Percentage of serine 6.6747 6.5476 9.9273 9.6927 6.4565 6.1404 10.523 10.598 

Percentage of threonine 5.5285 5.3903 5.4771 5.3456 5.6319 5.4054 5.913 5.944 

Percentage of valine 6.8571 7.1038 5.8904 5.8932 6.3702 5.9908 5.679 5.601 

Percentage of 

tryptophan 1.1583 1.0204 1.1895 1.0309 1.4135 1.3575 0.886 0.826 

Percentage of tyrosine 3.5834 3.5714 3.3484 3.3175 3.8388 3.7415 2.975 2.797 

Molecular Weight 

29115.753

5 

23245.070

0 

57811.081

4 

46478.210

0 

36616.529

5 

28121.050

0 

70164.30

0 

39179.14

0 

Aromaticity 0.0923 0.0946 0.0857 0.0859 0.0953 0.0961 0.072 0.069 

Instability Index 35.4030 35.4633 47.1189 47.1017 37.3205 36.8936 49.427 50.182 

Isoelectric Point 7.3051 7.0162 7.3483 7.1319 7.1757 7.0069 7.280 7.214 

Grand average of 

hydropathy (GRAVY) -0.1669 -0.2414 -0.3786 -0.3954 -0.3258 -0.3435 -0.531 -0.504 

Secondary helix fraction 0.3279 0.3146 0.3015 0.3077 0.3092 0.3077 0.270 0.267 

Secondary turn fraction 0.2081 0.2069 0.2614 0.2580 0.2240 0.2234 0.266 0.267 

Secondary sheet fraction 0.2465 0.2444 0.2278 0.2283 0.2331 0.2296 0.224 0.222 

Average Residue Weight 112.9585 112.7301 112.8086 113.1947 113.3850 113.9302 112.248 112.230 

Average carbon sparing 5.0502 5.0287 4.9950 5.0138 5.0465 5.0537 4.893 4.895 

Average nitrogen 

sparing 1.3523 1.3500 1.3879 1.3846 1.3685 1.3630 1.400 1.404 

Average sulphur sparing 0.0500 0.0469 0.0405 0.0387 0.0549 0.0484 0.043 0.040 

Average oxygen sparing 2.4674 2.4684 2.5076 2.5086 2.4877 2.4820 2.528 2.535 

Average hydrogen 

sparing 9.9805 9.9663 9.8428 9.8665 9.8956 9.9000 9.753 9.748 

Charge 2.8715 2.5000 5.6444 6.0000 2.6122 3.0000 6.990 4.000 

Molar Extinction 

Coefficient A280 

29577.269

1 

22920.000

0 

57284.151

6 

45840.000

0 

42351.707

3 

35870.000

0 

58138.10

1 

33635.00

0 

Absobance A280 1.0292 0.9830 1.0176 0.9710 1.1818 1.1370 0.825 0.831 

Probability of Expression 

Inclusion Bodies 0.6906 0.6820 0.7873 0.8100 0.7104 0.7160 0.790 0.812 

DayhoffStat of alanine 0.7477 0.7420 0.6180 0.6140 0.6645 0.6170 0.639 0.609 

DayhoffStat of cysteine 0.8026 0.6570 0.7154 0.7020 1.0687 0.7500 0.810 0.739 

DayhoffStat of aspartic 

acid 0.9780 0.9990 0.9641 0.9620 0.9571 0.9620 1.048 1.053 
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DayhoffStat of glutamic 

acid 1.0229 1.0030 0.9575 0.9200 1.0721 1.0120 1.038 0.942 

DayhoffStat of 

phenylalanine 1.2457 1.1740 1.1204 1.0580 1.1884 1.1230 0.922 0.862 

DayhoffStat of glycine 0.7253 0.7050 0.6089 0.5670 0.7350 0.6900 0.603 0.547 

DayhoffStat of histidine 1.0947 0.9870 1.4063 1.3950 1.2376 1.1970 1.390 1.427 

DayhoffStat of isoleucine 1.6204 1.5620 1.3219 1.3070 1.3883 1.3890 1.202 1.183 

DayhoffStat of lysine 1.1220 1.0840 0.8335 0.8080 1.0933 1.0870 0.923 0.856 

DayhoffStat of leucine 1.2719 1.2670 1.3166 1.3070 1.1857 1.1910 1.177 1.183 

DayhoffStat of 

methionine 1.5714 1.4830 1.1603 1.0840 1.4054 1.3680 1.132 1.032 

DayhoffStat of 

asparagine 1.0742 1.0400 1.3795 1.3150 1.3062 1.2240 1.365 1.314 

DayhoffStat of proline 0.6589 0.6390 0.9940 0.9330 0.7981 0.7890 0.993 0.969 

DayhoffStat of glutamine 0.9200 0.8620 1.0214 0.9860 0.9878 0.9650 1.004 0.936 

DayhoffStat of arginine 0.9680 0.9230 1.1265 1.0960 0.9398 0.9300 1.215 1.167 

DayhoffStat of serine 0.9535 0.9350 1.4182 1.3850 0.9223 0.8770 1.503 1.514 

DayhoffStat of threonine 0.9063 0.8840 0.8979 0.8760 0.9233 0.8860 0.969 0.975 

DayhoffStat of valine 1.0390 1.0760 0.8925 0.8930 0.9652 0.9080 0.860 0.849 

DayhoffStat of 

tryptophan 0.8910 0.7850 0.9150 0.7930 1.0873 1.0440 0.682 0.636 

DayhoffStat of tyrosine 1.0539 1.0500 0.9848 0.9760 1.1290 1.1000 0.875 0.823 

Percentage of tiny mole 27.0538 27.4850 27.9087 27.5860 27.0767 26.9770 29.340 28.991 

Percentage of small 

mole 47.3354 47.9670 50.2023 49.8570 48.4774 48.0920 51.814 51.828 

Percentage of aliphatic 

mole 23.5608 23.2290 21.5818 21.7070 21.3916 21.4180 19.800 20.223 

Percentage of aromatic 

mole  11.4157 11.3640 11.3840 11.1940 12.0057 12.0620 9.959 9.770 

Percentage of polar 

mole 46.2646 46.9270 50.2014 49.9660 47.5505 47.4890 53.032 53.403 

Percentage of non polar 

mole 53.7354 53.0730 49.7986 50.0340 52.4495 52.5110 46.968 46.598 

Percentage of charged 

mole 25.8545 26.3160 24.8817 25.0860 25.9929 25.6100 26.811 26.244 

Percentage of acidic 

mole 11.5168 11.6880 11.0476 11.0220 11.6966 11.4940 11.991 11.558 

Percentage of basic 

mole 14.3378 14.2080 13.8341 13.6530 14.2963 14.2860 14.821 14.224 

Percentage of secondary 

helix 42.3711 41.6000 30.7578 30.5000 37.8907 35.9000 32.271 29.600 

Percentage of secondary 

sheet 27.9847 26.2000 26.3910 25.9000 24.7020 24.3000 24.460 24.900 

Percentage of secondary 

turns 21.7229 20.7000 25.4444 25.2000 27.2054 23.9000 26.657 26.450 

Percentage of secondary 

coil 17.0791 17.1000 22.5426 21.7000 17.6337 18.0000 22.703 22.400 
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C-mannosylation sites 0.0281 0.0000 0.1047 0.0000 0.0244 0.0000 0.093 0.000 

Proteasomal cleavages 

(MHC ligands) 82.6185 66.0000 167.0181 130.0000 102.4829 81.0000 196.585 110.500 

N-linked glycosylation 

sites 1.1566 1.0000 3.5957 2.0000 1.8878 2.0000 4.609 2.000 

Arginine and lysine 

propeptide cleavage 

sites 0.0683 0.0000 0.4188 0.0000 0.0976 0.0000 0.682 0.000 

Binding Regions in 

Disordered Proteins 0.6426 0.0000 3.0361 1.0000 0.6829 0.0000 6.752 3.000 

Mitochondrial targeting 

peptide (mTP) 0.1514 0.0880 0.2827 0.1560 0.1489 0.0740 0.194 0.116 

Secretory pathway 

signal peptide (SP) 0.3167 0.1060 0.1128 0.0650 0.4327 0.1650 0.088 0.065 

Other subcellular 

location 0.5970 0.7610 0.6544 0.7660 0.4646 0.4770 0.788 0.866 

Linear B-cell epitopes 76.3253 58.0000 187.0397 136.0000 105.2098 82.0000 285.008 149.000 

Class I Immunogenicity 

Score 0.1592 0.1060 -2.6561 -1.6475 -0.2818 -0.1848 -5.885 -2.556 

 

 

Supplementary Table 2.4  List of 129 2-mers differentially distributed between surface and 

non-surface proteins. 

Means between positive and negative training sets were compared by t-test. Shown are all 

features with p<0.01. P-values were corrected for multiple testing using False Discovery Rate 

(FDR). 

Features 
Mean surface 

proteins 

Mean non-surface 

proteins 
P-value FDR 

SS 0.0048 0.0122 2.94E-28 1.18E-25 

SN 0.0027 0.0060 2.23E-20 4.45E-18 

PS 0.0022 0.0052 2.69E-19 3.58E-17 

NS 0.0027 0.0058 3.32E-16 3.32E-14 

LS 0.0062 0.0102 1.88E-14 1.49E-12 

PL 0.0023 0.0048 2.23E-14 1.49E-12 

SQ 0.0019 0.0040 1.11E-13 6.34E-12 

SR 0.0028 0.0053 3.78E-12 1.82E-10 

SP 0.0021 0.0043 4.10E-12 1.82E-10 

ST 0.0037 0.0066 1.23E-11 4.92E-10 

QP 0.0008 0.0023 3.34E-11 1.22E-09 

LN 0.0037 0.0061 1.91E-10 6.35E-09 

DS 0.0030 0.0052 3.46E-10 1.06E-08 

HS 0.0015 0.0031 5.14E-10 1.47E-08 
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KV 0.0054 0.0027 5.86E-10 1.56E-08 

GK 0.0051 0.0025 1.22E-09 3.05E-08 

RR 0.0023 0.0043 1.62E-09 3.82E-08 

PR 0.0011 0.0026 4.14E-09 9.19E-08 

PP 0.0016 0.0039 6.93E-09 1.46E-07 

SD 0.0033 0.0053 9.47E-09 1.89E-07 

QS 0.0023 0.0040 2.80E-08 5.34E-07 

IV 0.0052 0.0029 3.36E-08 6.11E-07 

RS 0.0027 0.0046 3.78E-08 6.54E-07 

II 0.0065 0.0033 4.06E-08 6.54E-07 

KA 0.0055 0.0031 4.09E-08 6.54E-07 

NN 0.0024 0.0045 1.06E-07 1.63E-06 

GA 0.0045 0.0023 1.53E-07 2.27E-06 

SE 0.0036 0.0055 2.71E-07 3.87E-06 

EK 0.0054 0.0032 3.60E-07 4.97E-06 

ME 0.0022 0.0009 4.51E-07 6.01E-06 

LP 0.0034 0.0053 5.47E-07 7.06E-06 

AM 0.0017 0.0007 1.11E-06 1.39E-05 

SL 0.0066 0.0091 2.84E-06 3.43E-05 

MK 0.0024 0.0012 2.92E-06 3.43E-05 

VI 0.0051 0.0033 3.46E-06 3.79E-05 

NP 0.0018 0.0030 3.48E-06 3.79E-05 

DK 0.0046 0.0027 3.51E-06 3.79E-05 

PG 0.0016 0.0028 4.49E-06 4.73E-05 

KK 0.0059 0.0032 4.91E-06 5.04E-05 

IA 0.0047 0.0031 5.49E-06 5.49E-05 

AK 0.0045 0.0027 5.96E-06 5.82E-05 

AI 0.0049 0.0031 6.79E-06 6.47E-05 

SV 0.0045 0.0064 7.12E-06 6.63E-05 

VP 0.0021 0.0037 8.33E-06 7.57E-05 

KL 0.0076 0.0053 1.03E-05 9.16E-05 

KT 0.0044 0.0027 2.60E-05 0.0002 

SA 0.0035 0.0050 2.77E-05 0.0002 

LG 0.0060 0.0042 3.86E-05 0.0003 

PI 0.0020 0.0033 4.23E-05 0.0003 

RP 0.0015 0.0025 4.33E-05 0.0003 

EN 0.0026 0.0039 5.22E-05 0.0004 

HL 0.0020 0.0030 5.31E-05 0.0004 

PV 0.0023 0.0037 6.51E-05 0.0005 
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YH 0.0006 0.0013 6.55E-05 0.0005 

IK 0.0053 0.0037 7.09E-05 0.0005 

RL 0.0048 0.0064 7.75E-05 0.0006 

YI 0.0029 0.0016 8.82E-05 0.0006 

VV 0.0057 0.0039 9.21E-05 0.0006 

WC 0.0000 0.0003 9.29E-05 0.0006 

NH 0.0009 0.0016 9.57E-05 0.0006 

TF 0.0030 0.0018 0.0001 0.0007 

HN 0.0008 0.0016 0.0001 0.0007 

IE 0.0045 0.0031 0.0001 0.0009 

IG 0.0046 0.0030 0.0001 0.0009 

AS 0.0036 0.0049 0.0002 0.0010 

GI 0.0047 0.0032 0.0002 0.0012 

PE 0.0021 0.0031 0.0002 0.0012 

AV 0.0050 0.0034 0.0002 0.0012 

VK 0.0048 0.0033 0.0002 0.0012 

FI 0.0044 0.0028 0.0002 0.0013 

LR 0.0042 0.0055 0.0003 0.0015 

YM 0.0011 0.0005 0.0004 0.0020 

TR 0.0020 0.0030 0.0005 0.0025 

GD 0.0037 0.0025 0.0005 0.0025 

KN 0.0040 0.0028 0.0005 0.0026 

NR 0.0020 0.0028 0.0005 0.0028 

TS 0.0041 0.0055 0.0005 0.0028 

IF 0.0031 0.0020 0.0007 0.0036 

AD 0.0032 0.0022 0.0007 0.0037 

FP 0.0012 0.0022 0.0008 0.0038 

YP 0.0011 0.0019 0.0010 0.0048 

IY 0.0027 0.0017 0.0010 0.0049 

RF 0.0015 0.0023 0.0011 0.0051 

VT 0.0045 0.0032 0.0012 0.0057 

MA 0.0021 0.0013 0.0013 0.0061 

CC 0.0012 0.0006 0.0013 0.0061 

NL 0.0043 0.0054 0.0013 0.0062 

DF 0.0018 0.0026 0.0014 0.0062 

IP 0.0025 0.0035 0.0014 0.0062 

KF 0.0029 0.0020 0.0014 0.0064 

PH 0.0007 0.0013 0.0015 0.0065 

DH 0.0008 0.0014 0.0015 0.0067 
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HY 0.0007 0.0011 0.0016 0.0068 

CV 0.0018 0.0010 0.0017 0.0071 

RH 0.0011 0.0018 0.0017 0.0072 

DM 0.0017 0.0010 0.0020 0.0083 

DG 0.0038 0.0026 0.0026 0.0105 

HQ 0.0007 0.0011 0.0027 0.0111 

GH 0.0011 0.0017 0.0027 0.0111 

PN 0.0020 0.0028 0.0032 0.0126 

PQ 0.0013 0.0020 0.0032 0.0127 

EP 0.0018 0.0026 0.0033 0.0131 

FH 0.0007 0.0012 0.0034 0.0131 

KG 0.0030 0.0021 0.0035 0.0133 

HF 0.0009 0.0015 0.0036 0.0138 

FG 0.0031 0.0022 0.0037 0.0140 

WR 0.0010 0.0006 0.0038 0.0141 

GV 0.0042 0.0031 0.0038 0.0141 

KD 0.0039 0.0029 0.0043 0.0157 

CP 0.0008 0.0013 0.0044 0.0160 

IS 0.0051 0.0061 0.0045 0.0163 

WS 0.0006 0.0010 0.0046 0.0163 

FS 0.0031 0.0040 0.0050 0.0178 

CK 0.0017 0.0010 0.0051 0.0179 

DA 0.0033 0.0025 0.0063 0.0217 

KC 0.0019 0.0011 0.0063 0.0217 

MG 0.0015 0.0009 0.0072 0.0245 

MQ 0.0011 0.0006 0.0072 0.0245 

KM 0.0015 0.0010 0.0074 0.0249 

QA 0.0028 0.0020 0.0075 0.0251 

MD 0.0016 0.0010 0.0076 0.0252 

AF 0.0032 0.0023 0.0083 0.0271 

TI 0.0041 0.0031 0.0084 0.0272 

NE 0.0032 0.0040 0.0085 0.0273 

EM 0.0014 0.0009 0.0088 0.0281 

SH 0.0016 0.0022 0.0089 0.0281 

FL 0.0051 0.0039 0.0090 0.0281 

VG 0.0042 0.0032 0.0090 0.0281 

LV 0.0065 0.0051 0.0091 0.0284 
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Supplementary Table 2.5 List of 122 2-mers differentially distributed between secretory and 

non-secretory proteins. 

Means between positive and negative training sets were compared by t-test. Shown are all 

features with p<0.01. P-values were corrected for multiple testing using False Discovery Rate 

(FDR). 

Features 
Mean secretory 

proteins 

Mean non-

secretory proteins 
P-value FDR 

SS 0.0048 0.0151 1.19E-31 4.75E-29 

TS 0.0031 0.0071 4.04E-18 8.08E-16 

PS 0.0026 0.0057 3.16E-17 3.32E-15 

SN 0.0031 0.0068 3.32E-17 3.32E-15 

SR 0.0026 0.0056 1.56E-15 1.25E-13 

ST 0.0041 0.0077 3.75E-13 2.50E-11 

RR 0.0023 0.0052 8.57E-13 4.90E-11 

SP 0.0026 0.0051 1.30E-11 6.50E-10 

RS 0.0028 0.0053 6.73E-11 2.99E-09 

HS 0.0015 0.0033 2.75E-10 1.10E-08 

SA 0.0028 0.0052 3.49E-10 1.27E-08 

DS 0.0031 0.0055 5.41E-10 1.80E-08 

SD 0.0035 0.0058 2.32E-09 7.15E-08 

SQ 0.0020 0.0038 8.95E-09 2.56E-07 

RL 0.0038 0.0062 1.18E-08 3.15E-07 

GQ 0.0036 0.0015 1.76E-08 4.40E-07 

IS 0.0037 0.0058 2.34E-08 5.51E-07 

LS 0.0065 0.0096 2.50E-08 5.56E-07 

NS 0.0036 0.0062 3.31E-08 6.96E-07 

NN 0.0026 0.0053 3.90E-08 7.79E-07 

YG 0.0035 0.0015 1.15E-07 2.20E-06 

TP 0.0021 0.0036 1.30E-07 2.36E-06 

SF 0.0020 0.0035 2.78E-07 4.84E-06 

IG 0.0044 0.0025 6.69E-07 1.11E-05 

CG 0.0028 0.0012 7.29E-07 1.17E-05 

SL 0.0058 0.0082 1.71E-06 2.64E-05 

PV 0.0022 0.0037 1.87E-06 2.77E-05 

IK 0.0046 0.0028 2.32E-06 3.32E-05 

KN 0.0045 0.0026 2.48E-06 3.43E-05 

VF 0.0030 0.0015 3.02E-06 4.00E-05 

ES 0.0034 0.0051 3.10E-06 4.00E-05 
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HT 0.0009 0.0018 3.80E-06 4.75E-05 

KM 0.0015 0.0007 4.21E-06 5.10E-05 

PR 0.0017 0.0029 5.45E-06 6.24E-05 

YK 0.0029 0.0016 5.46E-06 6.24E-05 

DD 0.0030 0.0050 5.97E-06 6.64E-05 

KW 0.0016 0.0006 7.32E-06 7.91E-05 

WN 0.0012 0.0004 9.14E-06 9.62E-05 

FD 0.0034 0.0020 1.17E-05 0.0001 

PY 0.0026 0.0013 1.48E-05 0.0001 

KY 0.0033 0.0019 2.30E-05 0.0002 

CK 0.0025 0.0012 2.46E-05 0.0002 

ND 0.0024 0.0037 2.67E-05 0.0002 

NF 0.0028 0.0016 2.91E-05 0.0003 

GC 0.0022 0.0012 3.45E-05 0.0003 

FI 0.0034 0.0020 3.73E-05 0.0003 

VG 0.0048 0.0031 4.20E-05 0.0004 

GK 0.0048 0.0029 4.74E-05 0.0004 

SV 0.0042 0.0059 6.71E-05 0.0005 

SG 0.0042 0.0060 6.75E-05 0.0005 

KF 0.0031 0.0018 7.10E-05 0.0006 

MK 0.0024 0.0013 8.06E-05 0.0006 

GS 0.0036 0.0052 8.42E-05 0.0006 

HH 0.0005 0.0012 9.42E-05 0.0007 

VS 0.0040 0.0056 0.0001 0.0008 

AY 0.0025 0.0014 0.0001 0.0009 

AR 0.0023 0.0036 0.0002 0.0011 

WA 0.0011 0.0004 0.0002 0.0012 

PP 0.0021 0.0037 0.0002 0.0012 

YW 0.0006 0.0002 0.0002 0.0013 

NY 0.0034 0.0018 0.0002 0.0014 

MP 0.0007 0.0014 0.0002 0.0014 

KC 0.0027 0.0013 0.0002 0.0014 

TC 0.0022 0.0013 0.0002 0.0014 

KV 0.0045 0.0029 0.0002 0.0015 

FN 0.0028 0.0018 0.0002 0.0015 

LK 0.0066 0.0049 0.0003 0.0016 

QS 0.0028 0.0041 0.0003 0.0017 

FG 0.0027 0.0016 0.0003 0.0018 

CC 0.0019 0.0006 0.0004 0.0020 
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EP 0.0017 0.0027 0.0004 0.0023 

TR 0.0019 0.0029 0.0004 0.0024 

EW 0.0011 0.0004 0.0005 0.0025 

RP 0.0017 0.0026 0.0006 0.0031 

LP 0.0037 0.0050 0.0006 0.0031 

PD 0.0020 0.0030 0.0006 0.0032 

AW 0.0009 0.0004 0.0009 0.0046 

KL 0.0072 0.0057 0.0010 0.0050 

AS 0.0037 0.0050 0.0010 0.0050 

IV 0.0038 0.0026 0.0010 0.0051 

HE 0.0019 0.0011 0.0011 0.0054 

ML 0.0025 0.0014 0.0013 0.0065 

VV 0.0047 0.0033 0.0015 0.0073 

HG 0.0024 0.0015 0.0016 0.0074 

NW 0.0010 0.0004 0.0016 0.0074 

MV 0.0015 0.0009 0.0016 0.0076 

PN 0.0022 0.0031 0.0017 0.0077 

KR 0.0035 0.0047 0.0017 0.0077 

VC 0.0025 0.0015 0.0018 0.0082 

GY 0.0026 0.0016 0.0019 0.0086 

KD 0.0038 0.0026 0.0020 0.0087 

VW 0.0011 0.0007 0.0020 0.0089 

CN 0.0023 0.0013 0.0021 0.0089 

NP 0.0021 0.0030 0.0021 0.0089 

FK 0.0030 0.0019 0.0023 0.0098 

HL 0.0019 0.0028 0.0026 0.0107 

IF 0.0026 0.0017 0.0028 0.0117 

FT 0.0028 0.0020 0.0032 0.0130 

VP 0.0024 0.0034 0.0035 0.0143 

DK 0.0043 0.0030 0.0036 0.0143 

ET 0.0042 0.0027 0.0039 0.0156 

VD 0.0041 0.0030 0.0046 0.0179 

IC 0.0017 0.0010 0.0047 0.0183 

MY 0.0007 0.0004 0.0049 0.0189 

NR 0.0022 0.0029 0.0051 0.0194 

FW 0.0005 0.0002 0.0054 0.0205 

SH 0.0019 0.0026 0.0055 0.0206 

HP 0.0011 0.0016 0.0057 0.0209 

WV 0.0007 0.0003 0.0059 0.0215 
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LR 0.0039 0.0048 0.0060 0.0215 

II 0.0045 0.0032 0.0060 0.0215 

YI 0.0019 0.0012 0.0063 0.0227 

IW 0.0010 0.0005 0.0065 0.0229 

AT 0.0027 0.0035 0.0068 0.0237 

DH 0.0010 0.0015 0.0068 0.0238 

WM 0.0004 0.0001 0.0069 0.0238 

YV 0.0024 0.0017 0.0076 0.0259 

WP 0.0009 0.0004 0.0076 0.0259 

LF 0.0036 0.0026 0.0079 0.0264 

PI 0.0020 0.0026 0.0084 0.0279 

LI 0.0054 0.0043 0.0098 0.0323 

LD 0.0043 0.0053 0.0099 0.0323 

 

Supplementary Table 2.6 Evaluation of 16 classifiers by stratified 10-fold cross-validation 

on positive training set of Schistosoma surface proteins. 

Red colour represents higher accuracy and green colour represents lower accuracy.  

Machine Learning Technique 

    

Accuracy rounds for 10-fold cross-validation 

 

Overall 

Accuracy 

 

1 2 3 4 5 6 7 8 9 10 

 Gradient Boosting Machine (GBM) 0.6604 0.7547 0.6981 0.5849 0.6415 0.7547 0.6038 0.6315 0.7115 0.5394 0.6581 

RBF SVM 0.5283 0.5283 0.5283 0.5283 0.5283 0.5283 0.5283 0.5192 0.5192 0.5294 0.5266 

k-Nearest Neighbors 0.4717 0.4717 0.4717 0.4717 0.4717 0.4717 0.4717 0.4808 0.4808 0.4706 0.4734 

Decision Tree 0.6226 0.6981 0.5472 0.6038 0.6038 0.8113 0.5849 0.6923 0.6923 0.5098 0.6366 

Random Forest 0.6604 0.7547 0.6981 0.7547 0.6226 0.7170 0.6038 0.5192 0.6731 0.6667 0.6670 

Ada Boost 0.5660 0.5094 0.4528 0.7170 0.8113 0.7170 0.5094 0.5385 0.5577 0.5098 0.5889 

Gaussian Naive Bayes (GNB) 0.4717 0.4717 0.4717 0.4717 0.4717 0.4717 0.4717 0.4808 0.4808 0.4706 0.4734 

Linear Discriminant Analysis (LDA) 0.5283 0.4717 0.4717 0.4717 0.4717 0.4717 0.4717 0.4808 0.4808 0.4706 0.4791 

Quadratic Discriminant Analysis 

(QDA) 0.4717 0.4717 0.4717 0.5283 0.4717 0.4717 0.4717 0.4808 0.4808 0.4706 0.4791 

Ridge Regression 0.5283 0.5283 0.5283 0.5283 0.5283 0.5283 0.5283 0.5192 0.5192 0.5294 0.5266 

Stochastic Gradient Descent (SGD) 0.4717 0.5094 0.4717 0.4717 0.4717 0.5094 0.4717 0.5192 0.4808 0.4706 0.4848 

Perceptron 0.4717 0.4717 0.4717 0.4717 0.4717 0.4906 0.4717 0.4808 0.4808 0.4706 0.4753 

Passive Aggressive 0.4717 0.4717 0.4717 0.4717 0.4717 0.4906 0.4717 0.4808 0.4808 0.4706 0.4753 

Bernoulli Naive Bayes (BNB) 0.7547 0.8113 0.8302 0.8302 0.7736 0.8679 0.7170 0.8654 0.7308 0.6275 0.7809 

Nearest Centroid 0.4717 0.4717 0.4717 0.4717 0.4717 0.4717 0.4717 0.4808 0.4808 0.4706 0.4734 

Multi-layer Perceptron (MLP) 0.4717 0.4717 0.4906 0.4717 0.4717 0.4717 0.5283 0.4808 0.4808 0.4706 0.4809 
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Supplementary Table 2.7 Evaluation of 16 classifiers by stratified 10-fold cross-validation 

on negative training set of Schistosoma non-surface proteins. 

Red colour represents higher accuracy and green colour represents lower accuracy.  

Machine Learning Technique 
    

Accuracy rounds for 10-fold cross-validation 
 

Overall 

Accuracy 

 
1 2 3 4 5 6 7 8 9 10 

 
Gradient Boosting Machine (GBM) 0.8936 0.7447 0.7447 0.8085 0.7872 0.8043 0.8043 0.7391 0.8000 0.8889 0.8015 

RBF SVM 0.5532 0.5532 0.5532 0.5532 0.5532 0.5652 0.5652 0.5652 0.5556 0.5556 0.5573 

k-Nearest Neighbors 0.5532 0.5532 0.4468 0.4468 0.5532 0.5652 0.4348 0.5652 0.5556 0.4444 0.5118 

Decision Tree 0.5106 0.5532 0.5319 0.4894 0.4894 0.3913 0.4565 0.5435 0.5333 0.5778 0.5077 

Random Forest 0.6383 0.5106 0.5106 0.5745 0.5957 0.6522 0.5217 0.4783 0.5111 0.4667 0.5460 

Ada Boost 0.7660 0.7872 0.6809 0.7234 0.5532 0.6739 0.8261 0.6739 0.6000 0.8222 0.7107 

Gaussian Naive Bayes (GNB) 0.4468 0.4468 0.4468 0.5532 0.4468 0.4348 0.4348 0.4348 0.4444 0.4444 0.4534 

Linear Discriminant Analysis (LDA) 0.4468 0.4468 0.4468 0.4468 0.4681 0.4348 0.4348 0.4348 0.4444 0.4444 0.4449 

Quadratic Discriminant Analysis 

(QDA) 
0.5532 0.5532 0.5532 0.5532 0.5532 0.5652 0.5652 0.5652 0.5556 0.5556 0.5573 

Ridge Regression 0.4468 0.4468 0.4468 0.4468 0.4468 0.4348 0.4348 0.4348 0.4444 0.4444 0.4427 

Stochastic Gradient Descent 

(SGD) 
0.4468 0.4468 0.4468 0.4468 0.4468 0.4348 0.4348 0.4348 0.4444 0.4444 0.4427 

Perceptron 0.4468 0.4468 0.4468 0.4468 0.4681 0.4348 0.4348 0.4348 0.6000 0.5111 0.4671 

Passive Aggressive 0.4468 0.4468 0.5319 0.5745 0.8298 0.7174 0.6087 0.4783 0.6889 0.6444 0.5967 

Bernoulli Naive Bayes (BNB) 0.6809 0.6383 0.7021 0.7872 0.7872 0.6957 0.6739 0.6739 0.7556 0.7333 0.7128 

Nearest Centroid 0.4468 0.4468 0.4468 0.4468 0.4468 0.4348 0.4348 0.4348 0.4444 0.4444 0.4427 

Multi-layer Perceptron (MLP) 0.4468 0.4468 0.4468 0.4468 0.4468 0.5652 0.5652 0.4348 0.5778 0.4667 0.4844 
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Chapter 3  Identifying Schistosome-Specific Proteins 

Immunoreactivity 

 

3.1 Foreword 

The following chapter explores a machine learning approach to classify Schistosoma 

protein immunoreactivity. A modified approach of the method described in chapter 2 used 

on Schistosoma protein microarray data to classify proteins between immunoreactive and 

non-immunoreactive. SchistoTarget, a machine learning based classifier, have been 

developed to identify Schistosoma proteins immunoreactivity. This chapter describes the 

method, usage and prediction accuracy of SchistoTarget. 

 

3.2 Abstract 

Schistosomiasis is considered by the World Health Organization as the second most 

socioeconomically devastating and second most common parasitic disease, affecting 200 

million people worldwide and causing at least 300,000 deaths annually. No vaccines are 

available and novel vaccine candidates against schistosomiasis are required. Recently 

several Schistosoma immunomics studies employing protein microarrays have provided 

essential information for vaccine target identification.  

In this project, it is showed that Schistosoma proteins recognised by the host immune 

system have specific sequence properties that can be used to discriminate between 

immunoreactive and non-reactive proteins.  This project results demonstrate that 

computational predictive methods can likely provide valuable information for the discovery 

of effective novel vaccine targets. To help prioritizing candidate vaccine targets, the 

SchistoTarget webserver have been developed, which uses machine learning methods for 

the identification of Schistosoma proteins recognised by the host immune system. The 

server achieves a sensitivity of 65% and specificity of 72% and provides a user-friendly 

web-interface. Results are presented in interactive tables and figures. SchistoTarget is 

publicly available at http://schistotarget.bioapps.org. Source code and documentation are 

available from https://github.com/shihabhasan/schistotarget. 

 

 

http://schistotarget.bioapps.org/
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3.3 Introduction 

Schistosomiasis is one of the major neglected tropical diseases (NTDs) causing significant 

morbidity and mortality of humans residing in tropical countries58. Human treatment with 

praziquantel (PZQ) is used to control schistosomiasis59 but mass treatment does not 

prevent reinfection60. For a long term disease control there is an urgent need for vaccines,  

which are not yet available2. Recent advances have utilized immunomics approaches in 

efforts to discover novel vaccine antigens15,36. Immunomics provides an invaluable  

resource for obtaining antibody signatures15. Antibody signatures reflect different disease 

pathologies61. The IgE response has been shown to correlate with both allergic reactions 

and immunity to Schistosoma. IgG4 responses are prevalent against allergen-like IgE-

binding antigens and IgG1 responses are prevalent against recombinant S. mansoni 

proteins62.  

Schistosoma protein sequence features enable the in silico identification of protein class 

efficiently by using machine learning techniques27. Machine learning based in silico 

antigen discovery strategy can lead to effective identification of potentially novel 

schistosomiasis vaccine antigens. 

 

3.4 Methods 

3.4.1 Data set 

As training set, host immune response to Schistosoma proteins was obtained from a 

recently published immunonomics study using a protein microarray. A total of 217 protein 

sequences have been collected of which 215 were RTS (rapid translation system) proteins 

and 2 are purified recombinant proteins15. After removing the isoform proteins 214 

sequences remained, where 78 proteins were IgE reactive, 43 were IgG1 reactive, 96 

proteins were IgG3 reactive and 21 proteins were IgG4 reactive. Some proteins 

overlapped between different antibody signatures. After merging these sequences to 

immonoreactive (recognized by at least one antibody response) and non-immunoreactive 

(no antibody response recognized) classes, 110 sequences remained as immonoreactive 

class and 90 sequences remained as non-immunoreactive class. This pilot immunonomics 

study15 leads to a relatively small size of the training set. 
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3.4.2 Features selection 

482 features from each protein were extracted. Of these, 82 features represented 

sequence characteristics and structural and biochemical attributes (Supplementary Table 

3.1). The remaining 400 features were 2-mers of amino acids (Supplementary Table 3.2). 

Features were extracted from each protein sequence using different available 

bioinformatics tools and in-house Python scripts (Table 3.1). The data followed 

approximately a normal distribution which was assessed by comparing mean and median 

values and the shape of the data ( 
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Supplementary Table 3.3). The distributions of features across different antibody types 

were compared by t-test with a significance level of 0.05.  

 

Table 3.1 Tools used to extract protein features. 

Tool Purpose URL 

Pepstats Calculation of statistics for proteins such 

as molecular weight, isoelectric point etc. 

http://www.ebi.ac.uk/Tools/seqstats/embos

s_pepstats/ 

Protparam Computation of various physical and 

chemical parameters 

http://web.expasy.org/protparam/ 

Garnier Prediction of protein secondary structure http://emboss.sourceforge.net/apps/releas

e/6.2/emboss/apps/garnier.html 

NetCGlyc C-mannosylation sites http://www.cbs.dtu.dk/services/NetCGlyc/ 

NetChop Proteasomal cleavages (MHC ligands) http://www.cbs.dtu.dk/services/NetChop/ 

NetNGlyc N-linked glycosylation sites http://www.cbs.dtu.dk/services/NetNGlyc/ 

ANCHOR Prediction of Protein Binding Regions in 

Disordered Proteins 

http://anchor.enzim.hu/ 

ProP Arginine and lysine propeptide cleavage 

sites 

http://www.cbs.dtu.dk/services/ProP/ 

TargetP Prediction of the subcellular location of 

eukaryotic proteins 

http://www.cbs.dtu.dk/services/TargetP/ 

BepiPred Prediction of the location of linear B-cell 

epitopes 

http://www.cbs.dtu.dk/services/BepiPred/ 

Class I 

Immunogenecity 

Prediction of MHC Class I immunogenicity http://tools.iedb.org/immunogenicity/ 

TMHMM 
Prediction of transmembrane helices in 

proteins 
http://www.cbs.dtu.dk/services/TMHMM/ 

 

 

3.4.3 Features scaling  

The range of values of the different features included in SchistoTarget varies widely. To 

ensure that each feature contributes approximately proportionately and, therefore, to avoid 

biases introduced by features with greater numeric ranges54, all features are scaled into 

the range of 0 to 1.  

 

3.4.4 Selection of best performing machine-learning technique 

The size of the training set is relatively which may be very challenging for machine 

learning problem. I have applied more machine learning techniques compared to the 
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previous approach described in Chapter 2 and 21 different machine learning techniques 

were evaluated on the training set. Classifiers were run using the Scikit-learn (Version 

0.18.2) library in Python55. Theses 21 classifiers were: (i) Gradient Boosting Machine 

(GBM), (ii) Ada Boost, (iii) Support Vector Machine with Radial Bias Function kernel (RBF 

SVM), (iv) Support Vector Machine with Linear kernel (Linear SVM), (v) k-Nearest 

Neighbors, (vi) Decision Tree, (vii) Random Forest, (viii) Extra Trees Classifier, (ix) 

Gaussian Naive Bayes (GNB), (x) Multinomial Naive Bayes (MNB), (xi) Bernoulli Naive 

Bayes (BNB), (xii) Linear Discriminant Analysis (LDA), (xiii) Quadratic Discriminant 

Analysis (QDA), (xiv) Ridge Regression, (xv) Stochastic Gradient Descent (SGD), (xvi) 

Perceptron, (xvii) Passive Aggressive, (xviii) Nearest Centroid, (xix) Multi-layer Perceptron 

(MLP), (xx) Bagging Classifier, (xxi) Gaussian Process Classifier.  

Each training sequence was represented by a 67-dimensional feature vector (22 of 

biochemical and structural features and 45 of 2-mers). The 21 classifiers were evaluated 

by stratified k-fold (10-fold) cross-validation. In stratified k-fold cross-validation, folds were 

selected such that the mean response values were approximately equal in all folds56. 

Finally, the mean accuracy was computed for all 10 iterations. 

Due to small training data set, a single classifier can provide high false positive prediction 

rate, it is not feasible to select a single classifier. To reduce the false positive prediction 

rate, SchistoTarget combined the 2 supervised machine learning techniques which 

achieved the highest prediction accuracies during the 10-fold cross-validation. The 

classifiers were combined classifier using a majority-voting rule. A protein is assigned to 

positive class only if it is predicted by the 2 classifiers as positive; otherwise, SchistoTarget 

assigns the protein as negative class i.e., only one or no classifiers predict the protein as 

positive.    

 

3.4.5 Performance evaluation 

The classification accuracy of SchistoTarget was evaluated by sensitivity, specificity and 

overall accuracy57. These measures are defined as: sensitivity = TP/(TP+FN), specificity = 

TN/(TN+FP), overall accuracy = (TP + TN) / (TP + TN + FP + FN), where TP (True 

Positive) and TN (True Negative) are the number of correctly predicted positive and 

negative proteins, respectively, and FP (False Positive) and FN (False Negative) are the 

number of incorrectly predicted positive and negative proteins, respectively. Additionally, 

the discriminatory power of classifiers was evaluated by the Area Under the Receiver 

Operating Characteristic (ROC) curve (AUC). Classification performance of SchistoTarget 
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was assessed on the same training set by leave-one-out cross-validation method (Tables 

S6 and S7) as independent test data set is not available. Leave-one-out cross-validation is 

a simple cross-validation method. Each learning set is created by taking all the samples 

except one, the test set being the sample left out. Thus, for n samples, we have n different 

training sets and n different tests set. This cross-validation procedure does not waste 

much data as only one sample is removed from the training set. So, leave-one-out cross-

validation is also a k-fold cross-validation where k is equal to the number of samples in the 

data set55,63. 

 

3.5 Results 

3.5.1 SchistoTarget overview 

SchistoTarget incorporates two machine learning techniques (Gaussian Naive Bayes and 

Bernoulli Naive Bayes) to discriminate between immunoreactive and non-reactive proteins. 

Generated predictions are stored in a database which facilitates rapid reuse of results 

without re-running the time-consuming classifiers. This saves considerable runtime if the 

same sequences are uploaded multiple times, e.g. by different users.  

SchistoTarget takes FASTA formatted sequence files or pasted protein sequences as 

input. If the proteins are already present in the database, the pre-computed results are 

returned. Otherwise SchistoTarget extracts features from each query sequence using 

several available bioinformatics tools and newly developed Python scripts. Features 

include sequence characteristics, biochemical attributes, structural properties and 2-mers. 

These features are then scaled and used to discriminate between immunoreactive and 

non-reactive proteins using a majority-voting rule of 2 supervised machine learning 

techniques (Gaussian Naive Bayes and Bernoulli Naive Bayes). The results of the 

classification are returned to the user and stored in the database for future reuse. Results 

are presented as interactive tables, charts and figures. No installation, configuration, 

registration or login is required. Data are kept privately and automatically deleted and 

processing has completed. 
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3.5.2 Discriminating features of Schistosoma proteins recognized by different host 

antibody types system  

Associations between 82 biochemical and structural protein features and antibody 

responses were examined using a t-test. Only a small number of features were 

significantly differentially distributed (p<0.05) (Figure 3.1; Table 3.2) among 4 antibody 

responses (IgE, IgG1, IgG3 and IgG4). IgE reactive antigens showed a higher frequency 

of basic mole, and nitrogen sparing than IgG1 reactive antigens. Glutamine frequency was 

higher in IgG4 than IgE reactive antigens. The percentage of basic mole and arginine and 

lysine propeptide cleavage sites were less in IgG1 antigens than IgG3 antigens, whereas a 

higher frequency of grand average of hydropathy (GRAVY) was found in IgG1 antigens. 

IgG4 antigens had a higher isoelectric point than IgG1 antigens. IgG3 antigens showed a 

higher frequency of acidic moles, glutamic acid, oxygen sparing, grand average of 

hydropathy (GRAVY) than IgG4 antigens. Isoelectric point, isoleucine and glutamine 

frequencies were higher in IgG4 antigen than IgG3 antigens. 

 

Figure 3.1 The distribution of features among different schistosome antibody signature 

response proteins. 

Means between different antibody signatures were compared by t-test. Only features with p<0.05 

are shown.  
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Table 3.2 Features differentially distributed between schistosome antibody signatures. 

Means between positive and negative training sets were compared by t-test.  All features with 

p<0.05 are shown.  

Antibody 

Signature 

Comparison 

Features 
  

P-value 

IgE vs IgG1 

 Mean IgE Mean IgG1  

Percentage of basic mole 14.3755 12.8767 0.0266 

Average nitrogen sparing 1.3734 1.3428 0.0297 

IgE vs IgG4 
 Mean IgE Mean IgG4  

Percentage of glutamine 3.7129 2.7942 0.0438 

IgG1 vs IgG3 

 Mean IgG1 Mean IgG3  

Percentage of basic mole 12.8767 14.1125 0.0293 

Grand average of hydropathy 

(GRAVY) 
-0.0984 -0.2279 0.0351 

Arginine and lysine propeptide 

cleavage sites 
0.0465 0.1789 0.0479 

IgG1 vs IgG4 
 Mean IgG1 Mean IgG4  

Isoelectric Point 7.7028 8.6851 0.0302 

IgG3 vs IgG4 

 Mean IgG3 Mean IgG4  

Average oxygen sparing 2.4759 2.4258 0.0159 

Isoelectric Point 7.8824 8.6851 0.0249 

Percentage of glutamic acid 5.0762 3.7709 0.0308 

Grand average of hydropathy 

(GRAVY) 
-0.2279 -0.0359 0.0314 

Percentage of acidic mole 9.8632 7.9474 0.0316 

Percentage of isoleucine 7.4746 8.7245 0.0317 

Percentage of glutamine 3.7011 2.7942 0.0431 

 

 

Further, 82 biochemical and structural sequence features for immunoreactive (combined 

IgE, IgG1, IgG3 and IgG4) and non-immunoreactive schistosome proteins were extracted. 

Twenty-two features were significantly differentially distributed between immunoreactive 

and non-immunoreactive proteins (p<0.05) (Figure 3.2; Table 3.3). Immunoreactive 

proteins showed a higher frequency of cysteine, isoleucine, asparagine, secondary turns, 

and transmembrane helices. Immunoreactive proteins were also found to be more 

aromatic and less acidic than non-immunoreactive proteins. Glutamic acid, alanine and 

secondary helix and were underrepresented in immunoreactive proteins. 45 of 2-mers 
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were significantly differentially distributed between immunoreactive and non-

immunoreactive proteins (p<0.05) ( 

Supplementary Table 3.4). 

 

 

Figure 3.2 Features associated with schistosome immunoreactive proteins. 

Means in the immunoreactivity positive and immunoreactivity negative training sets were compared 

by t-test. All features with p<0.05 are shown. (A) Heatmap of features significantly differentially 

distributed between immunoreactive and non-immunoreactive proteins. Columns represent each 

protein of the training set; rows represent features. (B) Quantiles distribution of significantly 

different features for immunoreactive and non-immunoreactive proteins. Values are depicted in 

color code, ranging from green (low) to red (high).  

 

Table 3.3 Features differentially distributed between immunoreactive and non- 

immunoreactive schistosome proteins. 

Means between positive and negative training sets were compared by t-test. All features with 

p<0.05 are shown.  

Features 

Mean 

immunoreactive 

antigens 

Mean non- 

immunoreactive 

antigens 

P-value 

False 

Discovery 

Rate (FDR) 

Dayhoff statistic of glutamic acid 0.8332 1.0177 0.0006 0.0231 

Isoelectric Point 7.8531 7.0421 0.0007 0.0231 

Percentage of glutamic acid 4.9990 6.1063 0.0008 0.0231 

Secondary sheet fraction 0.2156 0.2395 0.0013 0.0262 
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Percentage of secondary turns 28.1055 23.9200 0.0024 0.0367 

Percentage of acidic mole 10.0226 11.4822 0.0027 0.0367 

Dayhoff statistic of cysteine 1.0421 0.7919 0.0063 0.0740 

Percentage of cysteine 3.0220 2.2966 0.0077 0.0792 

Percentage of secondary helix 31.5573 38.3267 0.0089 0.0810 

Other subcellular location than 

mitochondrial or secretory 

pathway 0.4914 0.6185 

0.0145 

0.1191 

Percentage of secondary sheet 30.5209 26.7700 0.0187 0.1199 

Dayhoff statistic of alanine 0.5751 0.6732 0.0215 0.1199 

Percentage of alanine 4.9460 5.7901 0.0216 0.1199 

Percentage of isoleucine 7.3791 6.4514 0.0219 0.1199 

Dayhoff statistic of isoleucine 1.6397 1.4336 0.0219 0.1199 

Probability of Expression 

Inclusion Bodies 0.7549 0.7154 
0.0278 

0.1427 

Count of transmembrane helices 1.1364 0.7556 0.0363 0.1614 

Percentage of phenylalanine 4.5930 4.2025 0.0370 0.1614 

Dayhoff statistic of phenylalanine 1.2759 1.1673 0.0386 0.1614 

Dayhoff statistic of asparagine 1.3330 1.2128 0.0394 0.1614 

Percentage of asparagine 5.7317 5.2146 0.0415 0.1621 

Percentage of aromatic mole 12.1507 11.3922 0.0464 0.1728 

 

 

3.5.3 Performance evaluation of 21 machine-learning techniques 

The classification accuracy of 21 supervised machine learning techniques was evaluated. 

Classification performance was assessed on a training set of known Schistosoma surface 

proteins and secreted peptides using stratified k-fold (10-fold) cross-validation 

(Supplementary Table 3.5). The 21 classifiers achieved classification accuracies in the 

range of 0.45 - 0.73 (Fig. 3). The combination of the 2 top performing techniques 

(Gaussian Naive Bayes and Bernoulli Naive Bayes) reduced the false positive prediction 

rate, achieving a classification accuracy of 0.71 (Figure 3.3;   
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Table 3.4). The top 2 performing classifiers were therefore incorporated in the 

SchistoTarget webserver.  

 

 

Figure 3.3 Comparison of different supervised machine learning techniques for the 

identification of Schistosoma immunoreactive and non-immunoreactive proteins. 

Classifiers were trained on the training set of known Schistosoma immunoreactive and non- 

immunoreactive proteins and evaluated by stratified k-fold (10-fold) cross-validation. 
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Table 3.4 Comparison of prediction accuracy of 21 supervised machine learning techniques 

for Schistosoma immunoreactive proteins. 

Classifiers were evaluated on the training set of known immunoreactive (n=110) and non-

immunoreactive (n=90) schistosome proteins by stratified k-fold (10-fold) cross-validation. 

Additionally, the classification accuracy of the SchistoTarget classifier was evaluated, which is 

based on the combination of the high performing 2 machine learning techniques. AUC: Area Under 

the Roc Curve. 

Machine Learning Technique 

Immunoreactivity 

Classification Overall 

Accuracy 

Surface 

Classification AUC 

Gradient Boosting Machine (GBM) 0.5650 0.5904 

Ada Boost 0.5550 0.5510 

RBF SVM 0.5200 0.5000 

Linear SVM 0.4500 0.5000 

k-Nearest Neighbors 0.4500 0.5000 

Decision Tree 0.5150 0.5379 

Random Forest 0.5050 0.5308 

Extra Trees Classifier 0.5200 0.5414 

Gaussian Naive Bayes (GNB) 0.7350 0.7187 

Multinomial Naive Bayes (MNB) 0.4850 0.5288 

Bernoulli Naive Bayes (BNB) 0.6900 0.6859 

Linear Discriminant Analysis (LDA) 0.5350 0.5207 

Quadratic Discriminant Analysis (QDA) 0.5700 0.5384 

Ridge Regression 0.4500 0.5000 

Stochastic Gradient Descent (SGD) 0.5850 0.5692 

Perceptron 0.5500 0.5556 

Passive Aggressive 0.5500 0.5576 

Nearest Centroid 0.5400 0.5020 

Multi-layer Perceptron (MLP) 0.5150 0.5217 

Bagging Classifier 0.4850 0.5126 

Gaussian Process Classifier 0.4500 0.5000 

SchistoTarget Voting Classifier (GNB & BNB) 0.7100 0.7131 
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3.5.4 Prediction accuracy of SchistoTarget 

SchistoTarget combines 2 supervised machine learning techniques (Gaussian Naive 

Bayes and Bernoulli Naive Bayes) and classifies proteins based on a majority-voting rule. 

The performance of SchistoTarget was first evaluated on the training set by stratified 10-

fold cross-validation. The final classifier was then evaluated by leave-one-out cross-

validation method on the entire data set. SchistoTarget achieved a sensitivity, specificity 

and overall accuracy of 0.65, 0.72 and 0.69 respectively (Table 3.5;  

Supplementary Table 3.6).  

 

Table 3.5 Comparison of prediction accuracy for immunoreactive schistosome proteins. 

Prediction accuracy was evaluated on the training set of 110 immunoreactive proteins and 90 non-

immunoreactive proteins using the leave-one-out cross-validation method. 

Classifier 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 
Sensitivity Specificity 

Overall 

Accuracy 

Gaussian Naive 

Bayes (GNB) 
98 51 39 12 0.89 0.57 0.75 

Bernoulli Naive 

Bayes (BNB) 
76 56 35 34 0.69 0.62 0.66 

SchistoTarget 

Majority-voting 

Classifier (GNB 

& BNB) 

72 65 25 38 0.65 0.72 0.69 

 

 

3.5.5 User-interface and architecture  

SchistoTarget provides an easy-to-use graphical user interface (GUI), an extensive help 

page and user forum. As input, multiple protein sequences can be uploaded or pasted in 

fasta format. Results are presented in an interactive results page. A table lists the 

sequence ID of each query sequence, the prediction (immunoreactive/non-

immunoreactive) and classification score (number of positive classifiers). A second table 

lists the individual predictions obtained for each of the 2 classifiers. Additionally, the 

classification probabilities are shown. The distribution of sequence features in each query 

protein is presented in a table and in interactive charts and plots (strip chart, heatmap and 

bar chart).  
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SchistoTarget is developed in Python using the Django web framework. The server can 

handle whole-proteome data sets and there is no limit for the number of uploaded query 

sequences. The server performs background task processing and can process multiple 

user sessions in parallel. After data submission, a link is provided which gives access to 

the predictions.  

 

3.6 Conclusion 

SchistoTarget is an easy-to-use and fast classifier for the in silico identification of 

Schistosoma immunoreactive proteins and their features. However, the size of the training 

set, which is relatively small with regards to the different antibody responses, could be 

criticized. This is, however, owed to the currently insufficient data situation. If more data 

are available in future, it is possible to increase sensitivity, specificity and overall accuracy 

of SchistoTarget. The software has been optimized for large data sets and allows rapid 

whole-proteome analysis. SchistoTarget assists researchers in identifying genes important 

for host-parasite interaction, studying anti-schistosome protective immunity, and identifying 

candidate vaccine targets. It therefore represents a valuable tool for improving our 

understanding of Schistosoma pathogenicity and host-parasite interaction, and for 

informing the rational design of much-needed schistosomiasis vaccines. 

 

Supporting information 

Supplementary Table 3.1 List of 82 features used in SchistoTarget for protein classification. 

SchistoProt uses 482 features for protein classification. Of these 482 features, 82 features 

represent biochemical and structural properties (shown in this table). The remaining 400 features 

represent bi-mers of the 20 amino acids (Supplementary Table 3.2). 

Percentage of alanine  Secondary sheet fraction  DayhoffStat of threonine 

 Percentage of cysteine  Average Residue Weight  DayhoffStat of valine 

 Percentage of aspartic acid  Average carbon sparing  DayhoffStat of tryptophan 

 Percentage of glutamic acid  Average nitrogen sparing  DayhoffStat of tyrosine 

 Percentage of phenylalanine  Average sulphur sparing  Percentage of tiny mole 

 Percentage of glycine  Average oxygen sparing  Percentage of small mole 

 Percentage of histidine  Average hydrogen sparing  Percentage of aliphatic mole 

 Percentage of isoleucine  Charge  Percentage of aromatic mole  

 Percentage of lysine 

 Molar Extinction Coefficient 

A280  Percentage of polar mole 

 Percentage of leucine  Absobance A280  Percentage of non polar mole 
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 Percentage of methionine 

 Probability of Expression 

Inclusion Bodies  Percentage of charged mole 

 Percentage of asparagine  DayhoffStat of alanine  Percentage of acidic mole 

 Percentage of proline  DayhoffStat of cysteine  Percentage of basic mole 

 Percentage of glutamine  DayhoffStat of aspartic acid  Percentage of secondary helix 

 Percentage of arginine  DayhoffStat of glutamic acid  Percentage of secondary sheet 

 Percentage of serine  DayhoffStat of phenylalanine  Percentage of secondary turns 

 Percentage of threonine  DayhoffStat of glycine  Percentage of secondary coil 

 Percentage of valine  DayhoffStat of histidine  C-mannosylation sites 

 Percentage of tryptophan  DayhoffStat of isoleucine 

 Proteasomal cleavages (MHC 

ligands) 

 Percentage of tyrosine  DayhoffStat of lysine  N-linked glycosylation sites 

 Molecular Weight  DayhoffStat of leucine 

 Arginine and lysine propeptide 

cleavage sites 

 Aromaticity  DayhoffStat of methionine 

 Binding Regions in Disordered 

Proteins 

 Instability Index  DayhoffStat of asparagine 

 Mitochondrial targeting peptide 

(mTP) 

 Isoelectric Point  DayhoffStat of proline 

 Secretory pathway signal 

peptide (SP) 

 Grand average of hydropathy 

(GRAVY)  DayhoffStat of glutamine  Other subcellular location 

 Secondary helix fraction  DayhoffStat of arginine  Linear B-cell epitopes 

 Secondary turn fraction  DayhoffStat of serine  Class I Immunogenicity Score 

Count of transmembrane helices   

 

 

Supplementary Table 3.2 List of 400 2-mers used in SchistoTarget for protein classification. 

SchistoTarget uses 400 bi-mers of the 20 amino acids for protein classification. 

AA DA FA HA KA MA PA RA TA WA 

AC DC FC HC KC MC PC RC TC WC 

AD DD FD HD KD MD PD RD TD WD 

AE DE FE HE KE ME PE RE TE WE 

AF DF FF HF KF MF PF RF TF WF 

AG DG FG HG KG MG PG RG TG WG 

AH DH FH HH KH MH PH RH TH WH 

AI DI FI HI KI MI PI RI TI WI 

AK DK FK HK KK MK PK RK TK WK 

AL DL FL HL KL ML PL RL TL WL 
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AM DM FM HM KM MM PM RM TM WM 

AN DN FN HN KN MN PN RN TN WN 

AP DP FP HP KP MP PP RP TP WP 

AQ DQ FQ HQ KQ MQ PQ RQ TQ WQ 

AR DR FR HR KR MR PR RR TR WR 

AS DS FS HS KS MS PS RS TS WS 

AT DT FT HT KT MT PT RT TT WT 

AV DV FV HV KV MV PV RV TV WV 

AW DW FW HW KW MW PW RW TW WW 

AY DY FY HY KY MY PY RY TY WY 

CA EA GA IA LA NA QA SA VA YA 

CC EC GC IC LC NC QC SC VC YC 

CD ED GD ID LD ND QD SD VD YD 

CE EE GE IE LE NE QE SE VE YE 

CF EF GF IF LF NF QF SF VF YF 

CG EG GG IG LG NG QG SG VG YG 

CH EH GH IH LH NH QH SH VH YH 

CI EI GI II LI NI QI SI VI YI 

CK EK GK IK LK NK QK SK VK YK 

CL EL GL IL LL NL QL SL VL YL 

CM EM GM IM LM NM QM SM VM YM 

CN EN GN IN LN NN QN SN VN YN 

CP EP GP IP LP NP QP SP VP YP 

CQ EQ GQ IQ LQ NQ QQ SQ VQ YQ 

CR ER GR IR LR NR QR SR VR YR 

CS ES GS IS LS NS QS SS VS YS 

CT ET GT IT LT NT QT ST VT YT 

CV EV GV IV LV NV QV SV VV YV 

CW EW GW IW LW NW QW SW VW YW 

CY EY GY IY LY NY QY SY VY YY 
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Supplementary Table 3.3 Normality distribution checking for the extracted data. 

Data are almost normally distributed and evaluated by mean, median and shape of the data. 

Mean and median have almost similar values for a feature with approximately normal shape of the 

data. 

Feature 

Immuno Positive Immuno Negative 

Mean Median 
Standard 

Deviation 
Kurtosis 

Skewnes

s 
Mean Median 

Standard 

Deviation 
Kurtosis 

Skewnes

s 

 Percentage of alanine 4.9460 4.4956 2.3568 0.2901 0.8463 5.7901 5.2642 2.5102 0.2602 0.6220 

 Percentage of cysteine 3.0220 2.4306 2.1133 2.8361 1.6600 2.2966 1.8299 1.6574 2.6131 1.4920 

 Percentage of aspartic acid 5.0236 4.9948 2.0623 1.8743 0.7225 5.3758 5.4338 1.8780 0.8794 0.1791 

 Percentage of glutamic acid 4.9990 4.9823 2.7380 2.6950 1.2204 6.1063 5.8917 2.6067 3.9283 1.2635 

 Percentage of phenylalanine 4.5930 4.1259 2.0381 0.4035 0.8782 4.2025 4.0025 2.0705 0.3701 0.4769 

 Percentage of glycine 5.4447 5.0862 3.1032 8.0763 2.0363 5.4479 5.0910 2.4012 0.0792 0.3163 

 Percentage of histidine 2.6242 2.6089 1.4432 0.4540 0.6047 2.6124 2.3285 1.5831 0.9920 0.9871 

 Percentage of isoleucine 7.3791 6.7308 2.7637 -0.4327 0.5126 6.4514 6.2926 2.4350 2.2771 1.0099 

 Percentage of lysine 6.5663 6.2163 2.8988 2.0140 1.1418 6.3987 6.3794 2.5442 -0.3862 0.1364 

 Percentage of leucine 9.4004 9.2548 2.8875 -0.3224 0.3897 9.3486 9.4222 2.7692 0.1017 -0.0001 

 Percentage of methionine 2.2153 1.9231 1.2054 5.0717 1.4361 2.7059 2.5063 1.4801 2.5599 1.0468 

 Percentage of asparagine 5.7317 5.4054 2.3095 0.6017 0.8131 5.2146 4.9925 2.2694 -0.5089 0.1316 

 Percentage of proline 4.2063 3.9270 2.0887 2.0587 0.9692 4.2217 4.1538 2.0758 0.5447 0.5708 

 Percentage of glutamine 3.6698 3.4583 1.8007 1.4821 0.9847 3.5941 3.3181 1.6891 1.4598 0.9514 

 Percentage of arginine 4.9328 4.7234 2.2366 0.6487 0.7228 4.8926 5.0618 1.9721 0.4596 0.2966 

 Percentage of serine 8.4559 8.2968 2.9268 0.3450 0.5354 8.3761 7.8780 3.0811 2.7190 1.1497 

 Percentage of threonine 5.6593 5.3818 2.3014 5.9142 1.4271 6.0851 5.9140 2.9220 5.4414 1.8769 

 Percentage of valine 6.1972 6.0142 2.2328 -0.2809 0.4527 6.3023 6.0983 2.0770 0.3521 0.4318 

 Percentage of tryptophan 1.0581 0.8386 0.8933 0.7123 0.9957 1.0812 0.9653 0.9016 0.4217 0.8970 

 Percentage of tyrosine 3.8754 3.5099 2.0150 0.3557 0.7145 3.4962 3.3177 1.9057 -0.4719 0.3314 

 Molecular Weight 

30352.3

545 

24990.2

536 

24641.2

583 
28.7604 4.8485 

34698.0

430 

23858.4

935 

35868.0

100 
20.7509 4.0724 

 Aromaticity 0.0953 0.0950 0.0345 0.0331 0.4103 0.0878 0.0926 0.0353 -0.4870 -0.3911 

 Instability Index 42.0484 41.8757 11.9973 0.3417 0.2284 40.8218 39.3156 12.3232 3.9877 1.2130 

 Isoelectric Point 7.8531 8.2767 1.6127 -0.9500 -0.5434 7.0421 6.8187 1.5540 -1.1323 0.2454 

 Grand average of hydropathy 

(GRAVY) 
-0.2133 -0.2887 0.5217 -0.5459 0.4188 -0.2766 -0.3215 0.4265 0.8844 0.7603 

 Secondary helix fraction 0.3250 0.3134 0.0725 0.7785 0.8200 0.3088 0.3088 0.0603 -0.3885 0.1177 

 Secondary turn fraction 0.2384 0.2373 0.0456 2.3530 0.7045 0.2326 0.2371 0.0528 1.1719 0.2957 

 Secondary sheet fraction 0.2156 0.2190 0.0427 0.3213 -0.0785 0.2395 0.2381 0.0532 0.9198 0.3453 

 Average Residue Weight 

113.284

1 

113.710

4 
3.3662 1.1479 -0.6265 

112.862

5 

112.786

3 
3.1426 0.2051 0.3896 

 Average carbon sparing 5.0553 5.0430 0.2215 0.6251 0.0071 5.0102 5.0192 0.2123 -0.2067 0.1783 

 Average nitrogen sparing 1.3707 1.3738 0.0866 -0.4734 0.2081 1.3619 1.3678 0.0810 0.7657 0.2418 

 Average sulphur sparing 0.0524 0.0476 0.0255 2.6940 1.4091 0.0500 0.0447 0.0222 1.2956 0.9765 

 Average oxygen sparing 2.4744 2.4806 0.0938 -0.5299 0.0163 2.4972 2.4955 0.0745 -0.0476 -0.3603 

 Average hydrogen sparing 9.9481 9.9653 0.2899 2.0631 -0.3977 9.8919 9.8751 0.2795 1.0549 0.0112 

 Charge 6.5364 5.7500 10.4574 5.7992 1.2321 1.9111 2.5000 9.5953 10.3497 -1.8698 

 Molar Extinction Coefficient A280 

30297.0

000 

25440.0

000 

27181.7

115 
22.4812 3.8429 

33264.2

222 

20455.0

000 

34010.2

804 
6.7368 2.3425 

 Absobance A280 1.0174 1.0490 0.5002 -0.3825 0.3096 0.9809 0.8675 0.5428 -0.0794 0.5694 

 Probability of Expression Inclusion 0.7549 0.7690 0.1236 -0.7942 -0.3205 0.7154 0.7055 0.1306 -0.8351 0.2821 
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Bodies 

 DayhoffStat of alanine 0.5751 0.5225 0.2741 0.2908 0.8468 0.6732 0.6120 0.2919 0.2604 0.6226 

 DayhoffStat of cysteine 1.0421 0.8380 0.7287 2.8371 1.6602 0.7919 0.6310 0.5715 2.6121 1.4920 

 DayhoffStat of aspartic acid 0.9134 0.9080 0.3750 1.8756 0.7229 0.9774 0.9880 0.3415 0.8802 0.1794 

 DayhoffStat of glutamic acid 0.8332 0.8300 0.4564 2.6964 1.2207 1.0177 0.9820 0.4345 3.9230 1.2628 

 DayhoffStat of phenylalanine 1.2759 1.1460 0.5662 0.4041 0.8783 1.1673 1.1115 0.5752 0.3696 0.4770 

 DayhoffStat of glycine 0.6482 0.6055 0.3694 8.0837 2.0369 0.6485 0.6060 0.2859 0.0787 0.3166 

 DayhoffStat of histidine 1.3120 1.3045 0.7216 0.4543 0.6048 1.3062 1.1640 0.7916 0.9914 0.9870 

 DayhoffStat of isoleucine 1.6397 1.4960 0.6142 -0.4327 0.5125 1.4336 1.3985 0.5411 2.2771 1.0102 

 DayhoffStat of lysine 0.9948 0.9415 0.4392 2.0135 1.1418 0.9695 0.9665 0.3855 -0.3872 0.1355 

 DayhoffStat of leucine 1.2704 1.2505 0.3902 -0.3218 0.3900 1.2633 1.2735 0.3742 0.1007 -0.0001 

 DayhoffStat of methionine 1.3031 1.1310 0.7090 5.0732 1.4366 1.5918 1.4745 0.8707 2.5606 1.0470 

 DayhoffStat of asparagine 1.3330 1.2570 0.5371 0.6024 0.8136 1.2128 1.1610 0.5278 -0.5088 0.1313 

 DayhoffStat of proline 0.8089 0.7555 0.4017 2.0562 0.9686 0.8119 0.7990 0.3992 0.5449 0.5705 

 DayhoffStat of glutamine 0.9409 0.8865 0.4617 1.4829 0.9849 0.9216 0.8510 0.4331 1.4590 0.9514 

 DayhoffStat of arginine 1.0067 0.9640 0.4565 0.6491 0.7230 0.9985 1.0330 0.4025 0.4589 0.2966 

 DayhoffStat of serine 1.2080 1.1850 0.4181 0.3457 0.5356 1.1966 1.1255 0.4402 2.7188 1.1500 

 DayhoffStat of threonine 0.9278 0.8820 0.3773 5.9195 1.4278 0.9975 0.9700 0.4790 5.4437 1.8772 

 DayhoffStat of valine 0.9390 0.9110 0.3383 -0.2808 0.4527 0.9549 0.9240 0.3147 0.3525 0.4319 

 DayhoffStat of tryptophan 0.8139 0.6450 0.6872 0.7118 0.9956 0.8317 0.7425 0.6935 0.4212 0.8969 

 DayhoffStat of tyrosine 1.1398 1.0320 0.5927 0.3560 0.7147 1.0283 0.9760 0.5605 -0.4725 0.3312 

 Percentage of tiny mole 27.5279 27.9580 4.8215 -0.0968 0.2073 27.9957 28.2925 5.0673 3.3005 0.4420 

 Percentage of small mole 48.6866 48.4270 5.5506 0.7401 0.0657 49.1102 49.3975 5.9865 1.6542 0.0798 

 Percentage of aliphatic mole 22.9766 21.7800 5.2906 0.5344 0.6711 22.1023 22.0165 4.7267 1.2252 0.3727 

 Percentage of aromatic mole  12.1507 12.0480 3.5985 -0.2282 0.2444 11.3922 11.0735 4.1381 -0.6118 -0.1578 

 Percentage of polar mole 47.6625 48.5210 8.9475 -0.8078 -0.2007 48.6557 49.1500 7.4530 0.5382 -0.2236 

 Percentage of non polar mole 52.3375 51.4790 8.9475 -0.8078 0.2007 51.3443 50.8500 7.4530 0.5382 0.2236 

 Percentage of charged mole 24.1459 23.8320 6.7123 0.0048 0.3699 25.3858 25.4105 6.1156 -0.0890 -0.0567 

 Percentage of acidic mole 10.0227 9.6410 3.8062 0.1813 0.5373 11.4822 11.4960 3.5580 0.2016 0.2888 

 Percentage of basic mole 14.1234 13.8280 4.1306 0.9507 0.7495 13.9037 13.4670 3.5688 -0.1384 0.1823 

 Percentage of secondary helix 31.5573 31.5500 14.7100 1.1188 0.6554 38.3267 35.9500 18.3979 0.6728 0.7992 

 Percentage of secondary sheet 30.5209 29.2500 10.7518 -0.4100 0.2397 26.7700 25.5000 10.7425 1.4639 0.8489 

 Percentage of secondary turns 28.1055 26.2500 10.1855 0.6029 0.7428 23.9200 22.5000 9.0675 0.5007 0.4316 

 Percentage of secondary coil 18.4218 18.9500 5.9684 -0.5868 -0.0558 20.3978 20.8000 7.8305 4.2234 1.0398 

 C-mannosylation sites 0.0818 0.0000 0.3354 20.3746 4.4394 0.0222 0.0000 0.1482 42.4083 6.5929 

 Proteasomal cleavages (MHC 

ligands) 
86.3727 70.5000 74.8790 29.3441 4.9212 

100.177

8 
68.5000 

105.044

8 
20.7688 4.0528 

 N-linked glycosylation sites 1.6818 1.0000 1.6861 2.4337 1.4043 1.7889 1.0000 2.3726 10.7747 2.7148 

 Arginine and lysine propeptide 

cleavage sites 
0.1545 0.0000 0.5450 15.4349 3.9018 0.2222 0.0000 0.5359 4.7371 2.3880 

 Binding Regions in Disordered 

Proteins 
1.5000 0.0000 2.7319 5.4284 2.3414 1.8333 0.0000 3.4649 26.1005 4.2541 

 Mitochondrial targeting peptide 

(mTP) 
0.1895 0.1300 0.2077 3.6552 1.9481 0.1475 0.0875 0.1587 5.7522 2.2332 

 Secretory pathway signal peptide 

(SP) 
0.3705 0.1125 0.3949 -1.4161 0.6660 0.2987 0.1075 0.3438 -0.2866 1.1940 

 Other subcellular location 0.4914 0.5385 0.3361 -1.6682 -0.0716 0.6185 0.7530 0.3110 -0.8473 -0.8272 

 Linear B-cell epitopes 
90.6182 71.5000 99.7642 28.4428 4.5888 

114.455

6 
76.0000 

163.394

3 
39.0369 5.5912 

 Class I Immunogenicity Score -0.8027 -0.6406 2.7047 0.7151 -0.3906 -0.4581 -0.7095 3.4638 8.9492 1.4390 

 Count of transmembrane helices 1.1364 0.0000 1.8939 2.3316 1.7894 0.7556 0.0000 1.8861 16.1960 3.6811 
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Supplementary Table 3.4 List of 2-mers differentially distributed between immunoreactive 

and non- immunoreactive schistosome proteins. 

Means between positive and negative training sets were compared by t-test. All features with 

p<0.05 are shown.  

Features 
Mean immunoreactive 

antigens 

Mean non- 

immunoreactive 

antigens 

P-value 

EA 0.0019 0.0045 0.0001 

QW 0.0007 0.0001 0.0004 

GE 0.0019 0.0036 0.0015 

IF 0.0037 0.0018 0.0022 

CI 0.0025 0.0012 0.0033 

FI 0.0052 0.0030 0.0040 

ML 0.0012 0.0025 0.0043 

EV 0.0028 0.0044 0.0045 

VC 0.0023 0.0011 0.0055 

DA 0.0022 0.0037 0.0067 

LN 0.0051 0.0035 0.0095 

SI 0.0066 0.0049 0.0110 

CN 0.0022 0.0010 0.0123 

ES 0.0035 0.0053 0.0134 

TM 0.0006 0.0018 0.0137 

LD 0.0052 0.0033 0.0143 

PV 0.0030 0.0019 0.0188 

RP 0.0024 0.0014 0.0194 

AR 0.0019 0.0031 0.0206 

CK 0.0020 0.0011 0.0209 

YN 0.0022 0.0014 0.0214 

NA 0.0030 0.0021 0.0229 

IP 0.0037 0.0025 0.0231 

AE 0.0024 0.0039 0.0246 

LE 0.0035 0.0048 0.0292 

DT 0.0020 0.0031 0.0298 

NN 0.0040 0.0027 0.0311 

VY 0.0027 0.0017 0.0331 

CV 0.0021 0.0012 0.0341 
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HD 0.0014 0.0008 0.0356 

TL 0.0041 0.0058 0.0386 

MH 0.0011 0.0005 0.0391 

TF 0.0022 0.0034 0.0410 

HM 0.0003 0.0008 0.0411 

RE 0.0019 0.0030 0.0419 

DN 0.0031 0.0022 0.0427 

WT 0.0008 0.0003 0.0430 

GD 0.0024 0.0037 0.0440 

EE 0.0031 0.0045 0.0447 

KQ 0.0038 0.0029 0.0450 

KH 0.0019 0.0011 0.0465 

VE 0.0025 0.0036 0.0473 

EG 0.0017 0.0027 0.0478 

IY 0.0032 0.0021 0.0481 

FD 0.0022 0.0032 0.0484 

 

Supplementary Table 3.5 Comparison of prediction accuracy of 21 supervised machine 

learning techniques for immunoreactive proteins. 

Classifiers were evaluated on the training set of known immunoreactive (n=110) and non-

immunoreactive (n=90) proteins by stratified k-fold (10-fold) cross-validation. 

Machine Learning Technique 

    

Accuracy rounds for 10-fold 

cross-validation 

 

Overall 

Accuracy 

 

1 2 3 4 5 6 7 8 9 10 

 Gradient Boosting Machine (GBM) 0.5 0.5 0.8 0.65 0.55 0.45 0.65 0.5 0.6 0.45 0.5650 

Ada Boost 0.5 0.6 0.6 0.5 0.55 0.45 0.55 0.55 0.7 0.55 0.5550 

RBF SVM 0.55 0.55 0.45 0.55 0.55 0.45 0.45 0.55 0.55 0.55 0.5200 

Linear SVM 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4500 

k-Nearest Neighbors 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4500 

Decision Tree 0.4 0.5 0.6 0.4 0.55 0.6 0.4 0.45 0.6 0.65 0.5150 

Random Forest 0.4 0.5 0.55 0.4 0.45 0.7 0.4 0.5 0.7 0.45 0.5050 

Extra Trees Classifier 0.45 0.5 0.55 0.65 0.5 0.55 0.45 0.5 0.6 0.45 0.5200 

Gaussian Naive Bayes (GNB) 0.5 0.65 0.7 0.7 0.7 0.9 0.8 0.75 0.95 0.7 0.7350 

Multinomial Naive Bayes (MNB) 0.55 0.45 0.55 0.5 0.4 0.5 0.45 0.45 0.5 0.5 0.4850 

Bernoulli Naive Bayes (BNB) 0.55 0.7 0.65 0.85 0.65 0.65 0.95 0.55 0.65 0.7 0.6900 

Linear Discriminant Analysis (LDA) 0.45 0.8 0.55 0.5 0.5 0.5 0.45 0.5 0.5 0.6 0.5350 

Quadratic Discriminant Analysis (QDA) 0.55 0.55 0.6 0.45 0.55 0.7 0.55 0.65 0.55 0.55 0.5700 

Ridge Regression 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4500 

Stochastic Gradient Descent (SGD) 0.45 0.6 0.45 0.6 0.65 0.45 0.75 0.5 0.65 0.75 0.5850 

Perceptron 0.35 0.6 0.5 0.6 0.55 0.5 0.55 0.45 0.75 0.65 0.5500 

Passive Aggressive 0.5 0.55 0.6 0.45 0.5 0.55 0.7 0.4 0.6 0.65 0.5500 



Chapter 3 

72 

 

Nearest Centroid 0.55 0.45 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5400 

Multi-layer Perceptron (MLP) 0.55 0.5 0.5 0.45 0.45 0.75 0.5 0.6 0.35 0.5 0.5150 

Bagging Classifier 0.4 0.35 0.55 0.65 0.6 0.6 0.5 0.4 0.4 0.4 0.4850 

Gaussian Process Classifier 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4500 

Voting Classifier (GNB & BNB) 0.55 0.65 0.75 0.85 0.65 0.7 0.95 0.6 0.7 0.7 0.7100 

 

 

Supplementary Table 3.6 Comparison of prediction accuracy for immunoreactive proteins. 

Prediction accuracy was evaluated on the training set of 110 immunoreactive proteins and 90 non-

immunoreactive proteins using leave-one-out cross-validation method. 

Immunoreactive Proteins Non-immunoreactive Proteins 

Round  Sequence ID 

 

Expected 

label  

 

Predicted 

GNB 

 

Predicted 

BNB 

Majority-

Voting Round  Sequence ID 

 

Expected 

label  

 

Predicted 

GNB 

 

Predicted 

BNB 

Majority-

Voting 

1 Sj_AY815690 1 0 0 0 111 Sj_AY808749 0 1 1 2 

2 Sj_AY811988 1 0 1 1 112 Sj_AY808751 0 1 1 2 

3 Sj_AY813185 1 0 0 0 113 Sj_AY222874 0 1 1 2 

4 Sj_AY811797 1 0 0 0 114 Smp_046290 0 0 1 1 

5 Sj_AY812161 1 1 1 2 115 Sj_AY813118 0 1 1 2 

6 Sj_AY815838 1 1 1 2 116 Sj_AY811628 0 0 0 0 

7 Sj_AY809620 1 1 1 2 117 Sj_AY809406 0 1 1 2 

8 Sj_AY813602 1 1 1 2 118 Sj_AY915861 0 0 0 0 

9 Sj_AY222951 1 1 1 2 119 Sj_AY813275 0 1 0 1 

10 Sj_AY810792 1 1 1 2 120 Sj_AY915571 0 1 1 2 

11 Sj_EF553319 1 1 1 2 121 Sj_AY809115 0 1 1 2 

12 Sj_AY816000 1 1 1 2 122 Sj_AY915907 0 0 0 0 

13 Sj_AY810537 1 1 0 1 123 Sj_AY815649 0 0 1 1 

14 Sj_AY814261 1 1 1 2 124 Sj_AY813876 0 0 0 0 

15 Sj_AY814497 1 1 0 1 125 Smp_012440 0 1 1 2 

16 Sj_AY815303 1 1 1 2 126 Sj_AY915878 0 0 0 0 

17 Sj_AY222868 1 1 1 2 127 Smp_131910 0 1 1 2 

18 Sj_AY809911 1 1 0 1 128 Sj_AY812720 0 0 0 0 

19 Sj_AY815056 1 0 1 1 129 Sj_AY915721 0 0 0 0 

20 Sj_AY810700 1 1 1 2 130 Sj_AY811479 0 1 1 2 

21 Sj_AY812195 1 0 0 0 131 Smp_141680 0 1 0 1 

22 Sj_AY815945 1 1 1 2 132 Sj_AY811014 0 0 1 1 

23 Sj_AY814817 1 1 1 2 133 Sj_AY809555 0 1 1 2 

24 Sj_AY814738 1 1 1 2 134 Sj_AY814007 0 1 1 2 

25 Sm29 1 1 1 2 135 Sj_AY815489 0 1 1 2 

26 SmTSP2 1 1 1 2 136 Sj_AY815616 0 0 1 1 

27 Smp_139970 1 1 1 2 137 Smp_130300 0 0 0 0 

28 Sj_AY812458 1 1 1 2 138 Sj_AY915793 0 0 1 1 

29 Smp_124240 1 1 1 2 139 Smp_145290 0 1 0 1 

30 Smp_056970.1 1 0 0 0 140 Sj_AY223001 0 1 0 1 
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31 Sj_AY814116 1 1 1 2 141 Smp_077720 0 0 0 0 

32 Sj_AY809550 1 1 1 2 142 Sj_AY808756 0 0 0 0 

33 Sj_AY813467 1 1 0 1 143 Sj_AY814468 0 1 0 1 

34 Sj_AY814537 1 1 1 2 144 Sj_AY816005 0 1 1 2 

35 Sj_AY808785 1 1 0 1 145 Smp_045500 0 1 0 1 

36 Sj_AY808827 1 1 1 2 146 Sj_AY812565 0 0 0 0 

37 Sj_AY812976 1 0 1 1 147 Sj_AY814600 0 0 0 0 

38 Sj_AY809019 1 1 1 2 148 Sj_AY809244 0 1 1 2 

39 Smp_156590 1 1 0 1 149 Smp_121950 0 1 0 1 

40 Smp_050270 1 1 1 2 150 Smp_030920 0 0 0 0 

41 Sj_AY812470 1 1 1 2 151 Sj_AY810132 0 1 1 2 

42 Sj_AY815442 1 1 1 2 152 Sj_AY813942 0 1 1 2 

43 Smp_136640 1 1 1 2 153 Sj_AY809972 0 0 0 0 

44 Sj_AY814430 1 1 1 2 154 Sj_AY813221 0 0 1 1 

45 Sj_AY808953 1 1 1 2 155 Sj_AY226984 0 1 1 2 

46 Smp_008310 1 1 1 2 156 Sj_AY814115 0 0 0 0 

47 Sj_AF036955 1 1 1 2 157 Sj_AY809388 0 0 0 0 

48 Sj_AY813455 1 1 1 2 158 Sj_AY811902 0 0 0 0 

49 Sj_AY815815 1 0 1 1 159 Smp_042020 0 0 1 1 

50 Smp_147140 1 1 1 2 160 Smp_000100 0 0 0 0 

51 Smp_003990 1 1 0 1 161 Sj_L23322 0 0 0 0 

52 Smp_008660.1 1 1 0 1 162 Sj_AY814882 0 0 0 0 

53 Sj_AY813641 1 1 1 2 163 Sj_AY815177 0 0 0 0 

54 Sj_AY812951 1 1 1 2 164 Smp_151490 0 0 0 0 

55 Sj_AY809028 1 1 1 2 165 Sj_AY814107 0 0 0 0 

56 Smp_096760 1 1 0 1 166 Smp_101970 0 0 0 0 

57 Sj_AY812977 1 1 1 2 167 Sj_AY223437 0 1 0 1 

58 Sj_AY812972 1 1 0 1 168 Sj_AY915388 0 1 0 1 

59 Smp_002880.1 1 0 0 0 169 Sj_AF048759 0 0 0 0 

60 Sj_AY814534 1 1 1 2 170 Sj_AY812897 0 0 0 0 

61 Sj_AY815248 1 1 0 1 171 Sj_M63706 0 1 0 1 

62 Sj_AY816003 1 1 1 2 172 Smp_037540.2 0 1 0 1 

63 Sj_AY811126 1 1 1 2 173 Sj_L08198 0 1 0 1 

64 Sj_AY810129 1 1 0 1 174 Sj_AF380366 0 0 0 0 

65 Sj_AY815196 1 1 1 2 175 Sj_AY815038 0 1 1 2 

66 Sj_AY809768 1 1 0 1 176 Sj_AY808393 0 0 0 0 

67 Sj_AY816125 1 1 1 2 177 Sj_AY813732 0 1 1 2 

68 Sj_AY808893 1 1 1 2 178 Smp_095360.3 0 0 0 0 

69 Sj_AY808459 1 1 1 2 179 Smp_153390.2 0 1 1 2 

70 Sj_AY533028 1 1 1 2 180 Sj_AY812989 0 0 0 0 

71 Sj_AF072327.1 1 1 1 2 181 Smp_017430 0 1 1 2 

72 Sj_AY815419 1 1 1 2 182 Sj_AY810680 0 0 1 1 

73 Smp_045200 1 1 0 1 183 Sj_AY808379 0 1 1 2 

74 Sj_AY808903 1 1 1 2 184 Sj_AY812658 0 0 0 0 

75 Smp_075420 1 1 1 2 185 Sj_AY813104 0 0 0 0 

76 Sj_AY810692 1 1 1 2 186 Sj_AY816048 0 0 0 0 
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77 Sj_AY812591 1 1 1 2 187 Smp_137410 0 0 0 0 

78 Sj_AY808650 1 1 1 2 188 Sj_AY813229 0 0 0 0 

79 Sj_AY814158 1 1 0 1 189 Smp_137170 0 0 0 0 

80 Smp_124050.4 1 1 1 2 190 Sj_AY810377 0 0 1 1 

81 Sj_AY815101 1 1 1 2 191 Sj_AY813612 0 0 0 0 

82 Sj_AY223099 1 1 0 1 192 Sj_AY813810 0 0 0 0 

83 Sj_AY810722 1 1 1 2 193 Sj_M14654 0 0 0 0 

84 Sj_AY813439 1 1 1 2 194 Sj_AY809239 0 0 0 0 

85 Sj_AY815834 1 1 0 1 195 Sj_AY815164 0 1 0 1 

86 Sj_AY223465 1 0 0 0 196 Sj_AY808531 0 0 0 0 

87 Sj_AY816044 1 1 1 2 197 Smp_059480 0 1 1 2 

88 Sj_AY814977 1 1 1 2 198 Sj_AY814401 0 0 0 0 

89 Smp_176200.2 1 1 1 2 199 Sj_AY813596 0 1 0 1 

90 Sj_AY808899 1 1 0 1 200 Sj_AY815791 0 1 1 2 

91 Sj_AY222926 1 1 0 1 

      92 Sj_AY812444 1 1 1 2 

      93 Sj_AY808494 1 1 0 1 

      94 Sj_AY814201 1 1 1 2 

      95 Sj_AY810705 1 1 0 1 

      96 Sj_AY809338 1 1 1 2 

      97 Sj_AY814549 1 1 0 1 

      98 Smp_140000 1 1 1 2 

      99 Sj_AY814773 1 1 1 2 

      100 Sj_AY808797 1 1 0 1 

      101 Sj_AY811460 1 0 0 0 

      102 Smp_194970 1 1 0 1 

      103 Sj_AY809286 1 1 1 2 

      104 Sj_AY814310 1 1 1 2 

      105 Sj_AY808337 1 1 1 2 

      106 Smp_004470.2 1 1 0 1 

      107 Smp_005740 1 1 1 2 

      108 Sj_AY809526 1 1 1 2 

      109 Smp_040680 1 1 1 2 

      110 Smp_151480 1 1 0 1 
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Chapter 4 Identifying Putative Drug and Vaccine Targets 

Against Schistosomiasis 

 

4.1 Foreword 

This chapter describes a comparative analysis of Schistosoma genomes and an 

integrative bioinformatics pipeline to identify putative vaccine targets against 

schistosomiasis. A set of genes were selected by comparative analysis of several parasite 

genomes, then these genes were annotated using the developed tools described in 

chapters 2 and 3. Potential antigens as drug and vaccine targets were selected using 

Gene Ontology and Swiss-Prot annotations. Finally, protein-protein and protein-chemical 

interactions were explored using STRING and STICH. 

 

4.2 Abstract 

In addition to providing a unique resource for studying evolutionary processes, 

Schistosoma genomes can be used to identify genes important for host-parasite 

interactions and to discover novel vaccine and drug targets. Conventional approaches for 

anti-schistosomiasis vaccine development have focused on a limited number of antigens. 

Recently whole genome sequence data for the three main schistosome species infecting 

humans (S. mansoni, S. haematobium and S. japonicum) became available. These 

datasets provide a unique foundation for a novel approach to anti-schistosomiasis vaccine 

development. Here in this project, putatively important protective schistosome antigens 

have been identified from genomic-based information using novel Bioinformatics methods 

in comparative analysis of the genomes of the three schistosomes infecting humans, 

Schistosoma bovis, which infects ruminants, and the related, but free-living flatworm, 

Schmidtea mediterranea. 345 core genes were identified which are present in all three 

human-infecting schistosome genomes but absent in S. bovis and S. mediterranea. 

Further, targeting immunogenic surface and secretory proteins 20 proteins as potential 

vaccine targets have been selected. These potential vaccine targets were then in silico 

characterized using Bioinformatics methods to indicate their biological relevance. These 

putative vaccine targets can be biologically validated by wet laboratory experiments in 

animals. The Python scripts, used for the analysis, are available from 

https://github.com/shihabhasan/schistocomp. 



Chapter 4 

76 

 

 

4.3 Introduction 

Blood flukes of the genus Schistosoma (phylum Platyhelminthes) are the cause of 

schistosomiasis, a chronic disease and a major health concern in Africa and the Asia 

Pacific Region and Africa.  It is considered by the World Health Organization as the 

second most socioeconomically devastating and second most common parasitic 

disease1,2,  causing at least 300,000 deaths annually3. Treatment relies mainly on a single  

drug, praziquantel, which  does not prevent re-infection and there is a constant concern 

that drug resistance might develop2. Three main Schistosoma species infect humans: S. 

mansoni and S. japonicum, cause intestinal/hepatic schistosomiasis whereas S. 

haematobium results in urinogenital disease59. Conventional approaches, focusing on a 

very limited number of antigens for anti-schistosomiasis vaccine development, have thus 

far failed59. Driven by the need to improve treatment and prevent infection, the genomes of 

these three schistosomes have recently become publicly available20-22. These genomic-

based datasets provide a unique resource for a novel approach to schistosomiasis vaccine 

development but it has not been clear how this information can be used to identify key 

antigens as vaccine targets.  

Schistosome tegumental surface  proteins are responsible for essential functions crucial 

for parasite survival23 and secretory peptides modulate host immune responses40. During 

the past decade, schistosome surface and secretory proteins have been considered 

sources of putative vaccine antigens. Recently, immunomics approaches have been 

utilized successfully for vaccine antigen discovery15,36. 

I hypothesise that protein-encoding  genes present in S. mansoni, S. haematobium and S. 

japonicum but absent in the genomes of Schistosoma bovis, which infects ruminants,   and 

Schmidtea mediterranea, a free-living flatworm  phylogenetically related to schistosomes64, 

might provide new insight on suitable candidates as schistosomiasis vaccine targets 

(Figure 4.1).  
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Figure 4.1 Hypothesis to identify putative vaccine targets. 

Genes present in human-infecting genomes but absent animal and non-parasitic free-living 

flatworm might be potential antigens for vaccine targets. S. mansoni, S. haematobium and S. 

japonicum infect human. Schistosoma bovis infects ruminants and Schmidtea mediterranea is a 

non-parasitic, free-living flatworm.   

 

4.4 Methods 

4.4.1 Data 

Protein sequences for the three human infecting schistosomes were collected from the 

SchistoDB65 database. The S. mansoni proteome contains 11,774 proteins, the S. 

haematobium (Egyptian strain) proteome has 11,140 proteins and the S. japonicum (Anhui 

strain) proteome comprises 12,657 proteins. The S. bovis genome has been sequenced 

and predicted 12,924 proteins for a project at QIMR Berghofer Medical Research Institute, 

Australia. The Schmidtea mediterranea proteome sequences were  collected from the 

WormBase ParaSite66 database which contains 29,850 proteins. The Gene Ontology67 

(GO) annotations for S. mansoni, extracted (on July 05, 2017) from the GO Consortium 

annotation68 using AmiGO69 ,  contains 25,959 annotations. 13,517 S.mansoni protein 

annotations were extracted from Swiss-Prot70.  
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4.4.2 Orthologous/core genes prediction 

I used the Reciprocal Best Hits (RBH) method incorporating NCBI BLAST71,72 to identify 

orthologous proteins among the three human infecting Schistosoma species. RBH is found 

when proteins from different organisms that are each other's top BLAST hit, each in a 

different genome, when the proteomes from those organisms are compared to each other 

genomes73.  

The steps for RBH are: i) Take two FASTA files (species A and species B), ii) Build a 

BLAST database for each, iii) Run reciprocal BLAST searches (A vs B, and B vs A), iv) 

Filter the High-scoring Segment Pairs (HSPs), and v) Then compile a list of the reciprocal 

best hits (RBH). The filter E-value of 1e-5, minimum percentage identity for BLAST 

matches of 70% and minimum percentage query coverage for BLAST matches of 70% as 

the best scoring match for BLAST searching were used (Figure 4.2). The RBH was 

performed for two species at a time among all the Schistosoma species and the core 

genes were identified. The human-infecting Schistosoma core genes present in S. bovis 

and Schmidtea mediterranea by the RBH method were identified and excluded them as 

genes of interest.  

 

  

 

Figure 4.2 RBH method to select orthologous proteins from two different genomes. 
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RBH runs reciprocal BLAST searches against the proteomes of two species (species A vs species, 

and species B vs species A). The best scoring match is selected if the High-scoring Segment Pairs 

(HSPs) have at least 70% identity, 70% alignment length and 1e-5 E-value. 

 

4.4.3 Protein annotation 

Surface and secretory proteins were predicted and selected using SchistoProt74. Then, 

Schistotarget75 was used to predict which of the surface or secretory molecules were 

immunoreactive proteins. The immunoreactive proteins were further annotated using the 

GO68 and Swiss-Prot70 data available for S. mansoni. GO Enrichment Analysis for the 

selected proteins was performed using PANTHER (protein annotation through evolutionary 

relationship) Classification System76,77. The protein-protein direct (physical) interactions, as 

well as indirect (functional) interactions were predicted using STRING78. Interactions 

between proteins and chemicals were predicted using STITCH79. 

 

4.5 Results 

4.5.1 Vaccine Target Identification 

An integrative bioinformatics pipeline was employed to identify schistosome vaccine 

targets (Figure 4.3).  
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Figure 4.3 Bioinformatics pipeline used to characterize and curate putative schistosome 

vaccine targets. 

In step1, core genes in the human-infecting S. mansoni, S. haematobium and S. japonicum 

genomes were predicted. In steps 2–3, orthologs from the free-living flatworm Schmidtea 

mediterranea and S. bovis were removed from the core genes from the three human-infecting 

schistosomes. In steps 4 and 5, surface and secretory proteins were predicted using SchistoProt; 

protein immunoreactivity was predicted using SchiatoTarget. In step 6, all possible vaccine targets 

were functionally annotated using GO, SwissProt, STRING and STICH. 

 

 

First, 6,016 orthologous proteins between S. mansoni and S. haematobium, 4,209 

orthologous proteins between S. mansoni and S. japonicum and 4,305 orthologous 

proteins between S. haematobium and S. japonicum we identified by BLAST RBH. We 

identified 2,701 core proteins in these three genomes. Then, 177 orthologous proteins 

were identified between the genomes of these three schistosome species and Schmidtea 

mediterranea. After removing these 177 orthologs from the core proteins, 2,524 proteins 

remained. 2,179 of the 2,524 proteins were also present in the S. bovis proteome. Finally, 

345 proteins (Figure 4.4; Supplementary Table 4.1), which remained after removing these 

orthologs from the 2,524 proteins selected in the previous step, were explored further. 
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Figure 4.4 Steps involved in the selection of potential vaccine targets using proteomes from 

different flatworm species. 

Step-1 uses RBH against the proteomes from the three human-infecting Schistosoma spp.to 

predict core genes. S. mediterranea orthologs were excluded from the core genes in step-2. In 

step-3, S. bovis orthologs were excluded from the genes obtained in step-2. 

 

4.5.2 Prediction of surface, secretory and immunoreactive proteins 

83 surface proteins and 106 secretory proteins were predicted from the 345 identified 

proteins. After merging both surface and secretory proteins, 135 proteins (Supplementary 

Table 4.2) remained, of which 45 were predicted to be immunreactive (Supplementary 

Table 4.3). 
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4.5.3 Protein annotation 

44 proteins were mapped to the GO database. 20 proteins (Table 4.1; Supplementary 

Table 4.4) were selected using GO annotation with biological processes and molecular 

functions, which are important for host-parasite interactions such as catalytic activity, 

transmembrane transporter activity, lipid transporter activity, serine-type peptidase activity, 

serine protease inhibitory activity, G-protein coupled receptor activity and oxidoreductase 

activity80-86. These 20 proteins were further annotated using Swiss-Prot (Table 4.1). 

 

Table 4.1 20 protein antigens, and their annotation, identified as potential schistosomiasis 

vaccine targets. 

Proteins were selected based on comparative genomics and GO annotation. 

S. mansoni 

gene ID 

S. mansoni 

UniProt Gene 

Symbols 

S. japonicum 

ortholog 

S. 

haematobium 

ortholog Annotation 

Smp_002870 G4VLJ1 Sjp_0089930 MS3_07466 G-protein modulator 

Smp_017620 G4VGX8 Sjp_0007190 MS3_05025 Amine oxidase 

Smp_018990 G4VG38 Sjp_0075950 MS3_04781 60s ribosomal protein L9 

Smp_048540 G4VSB9 Sjp_0060110 MS3_05665 Dolichol kinase 

Smp_054010 G4VHR0 Sjp_0079140 MS3_03571 Cationic amino acid transporter 

Smp_083990 G4LVW7 Sjp_0048940 MS3_02574 Cationic amino acid transporter 

Smp_124020 G4V6N7 Sjp_0094660 MS3_09149 

Heparan sulfate 6-o-

sulfotransferase 

Smp_132080 G4VP00 Sjp_0063250 MS3_07393 Sugar transporter  

Smp_132730 G4LUC7 Sjp_0108420 MS3_06574 G-protein coupled receptor 

Smp_143800 G4VSR1 Sjp_0005570 MS3_01189 Cation transporter 

Smp_145900 G4VMQ4 Sjp_0061450 MS3_00627 Dihydroceramide desaturase 

Smp_147070 G4VKU1 Sjp_0067720 MS3_02401 

Sodium-coupled neutral amino 

acid transporter 

Smp_149450 G4VKS3 Sjp_0026610 MS3_03222 trna-dihydrouridine synthase 

Smp_150380 G4VAL8 Sjp_0099280 MS3_07308 

Spingomyelin synthetase-

related 

Smp_155050 G4LY67 Sjp_0002300 MS3_00517 

Agrin, Serine protease inhibitor 

Kazal-type 5-related 

Smp_163970 G4VL47 Sjp_0023750 MS3_04617 Carboxypeptidase 

Smp_167190 G4V7D5 Sjp_0133070 MS3_05670 Calcium ion binding 

Smp_178490 G4LZX3 Sjp_0089300 MS3_08753 Solute carrier family 35 
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member d1, UDP-sugar 

transporter 

Smp_180500 G4M0E1 Sjp_0010790 MS3_08237 

Phospholipid scramblase-

related transfer protein 

Smp_199690 G4M1Z7 Sjp_0052970 MS3_09387 G-protein coupled receptor 

 

 

4.5.4 Protein-protein and protein-chemical interactions  

I next examined protein-protein and protein-chemical interactions. Smp_007900.1_mRNA 

and Smp_050940.1_mRNA, which are 60S ribosomal proteins, effective centre of the 

network (hub), had most interactions with the 20 antigens (Figure 4.5) and these might 

have potential as mRNA vaccines. Magnesium Adenosine 5'-triphosphate (MgATP), an 

adenine nucleotide containing three phosphate groups esterified to the sugar moiety, 

effective centre of the network (hub), had most interactions with the 20 antigens (Figure 

4.6) and might be a potential anti-schistosome drug target. 
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Figure 4.5 Protein-protein interactions for the 20 antigens with other proteins using 

STRING. 

Stronger associations are represented by thicker lines.  
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Figure 4.6 Protein-chemical interactions for the 20 antigens using STICH. 

Stronger associations are represented by thicker lines. Protein-protein interactions are shown in 

grey and protein-chemical interactions in green. 

 

4.6 Conclusion 

This innovative study provides novel insights into human schistosome genomes and 

identified gene functions for host-parasite interaction. By using comparative genomics 

analysis combined with an integrative bioinformatics pipeline I identified putative vaccine 

antigen candidates and drug targets by assessing their surface and secretory properties, 

immunogenicity, biological process and molecular function. These novel targets should 

now be biologically validated by wet laboratory experiments in animals and then clinically. 

It is particularly noteworthy that many of these molecules have not previously been 

identified as anti-schistosome intervention targets. The comparative genomics analysis 

approach for identifying new drug and vaccine candidates represents a valuable resource 

not only for the Schistosoma research community but the protocol I developed can be 

used as a blueprint for other important parasitic diseases including malaria.   
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Supporting information 

Supplementary Table 4.1 345 core genes of the 3 major schistosome spp. infecting humans 

which are absent in S. bovis and Schmidtea mediterranea. 

Orthologs were predicted by the RBH method. RBH runs reciprocal BLAST searches against the 

proteomes of two species (species A vs species and species B vs species A).   

The best scoring matches were selected if the High-scoring Segment Pairs (HSPs) had at least 

70% identity, 70% alignment length and an E-value of 1e-5.  

S. mansoni 

Ortholog 

S. 

japonicum 

ortholog 

S. 

haematobium 

ortholog 

Description 

Smp_165440.1 Sjp_0098730 MS3_06713 Putative netrin receptor unc5  

Smp_158970.1 Sjp_0023040 MS3_06013 DEAD box ATP-dependent RNA helicase, putative  

Smp_124030.1 Sjp_0000430 MS3_09150 Putative uncharacterized protein  

Smp_070680.1 Sjp_0059570 MS3_10545 Putative uncharacterized protein  

Smp_203970.1 Sjp_0003090 MS3_08850 Putative uncharacterized protein Smp_203970  

Smp_126350.1 Sjp_0018830 MS3_00804 Putative glutamate receptor, NMDA  

Smp_038080.1 Sjp_0004060 MS3_03297 Putative importin beta-1  

Smp_149640.1 Sjp_0027740 MS3_07138 Putative uncharacterized protein  

Smp_149450.1 Sjp_0026610 MS3_03222 Putative trna-dihydrouridine synthase  

Smp_147320.1 Sjp_0041890 MS3_06838 Putative camp-dependent protein kinase regulatory chain  

Smp_159140.1 Sjp_0034750 MS3_02005 Putative organic anion transporter  

Smp_030350.1 Sjp_0012180 MS3_05723 Subfamily S1A unassigned peptidase (S01 family)  

Smp_152790.1 Sjp_0053520 MS3_10206 Ras-related GTP binding rag A,B/gtr1  

Smp_003250.1 Sjp_0023500 MS3_01004 Putative uncharacterized protein  

Smp_069380.1 Sjp_0002050 MS3_03702 Putative histone deacetylase 4, 5  

Smp_137580.1 Sjp_0009150 MS3_07623 Helicase, putative  

Smp_125590.1 Sjp_0076780 MS3_09275 Putative uncharacterized protein  

Smp_179320.1 Sjp_0045200 MS3_08447 Eukaryotic translation initiation factor 2c,putative  

Smp_131090.1 Sjp_0115150 MS3_08947 Putative cornichon  

Smp_121640.1 Sjp_0113410 MS3_05851 Transcription initiation factor iif (Tfiif),beta subunit-related  

Smp_101310.1 Sjp_0068750 MS3_10554 Mizf protein, putative  

Smp_046980.1 Sjp_0079920 MS3_02903 Putative uncharacterized protein  

Smp_074010.1 Sjp_0080960 MS3_00563 Putative 8-oxoguanine DNA glycosylase  

Smp_025130.1 Sjp_0028480 MS3_03667 Putative rna binding motif protein  

Smp_159370.1 Sjp_0102090 MS3_01393 Family M13 unassigned peptidase (M13 family)  

Smp_033930.1 Sjp_0091400 MS3_10169 Phosphatidylcholine transfer protein, putative  

Smp_037900.1 Sjp_0006630 MS3_07488 Family S12 unassigned peptidase (S12 family)  

Smp_155330.1 Sjp_0010750 MS3_05152 Serine/threonine kinase  

Smp_085680.1 Sjp_0082080 MS3_01929 Guanylate cyclase  

Smp_175460.1 Sjp_0003880 MS3_06648 Putative uncharacterized protein  

Smp_020220.1 Sjp_0043790 MS3_00034 Putative zeta-coat protein  
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Smp_145840.1 Sjp_0018790 MS3_01354 Putative wd-repeat protein  

Smp_079700.1 Sjp_0074890 MS3_10779 Putative ga binding protein beta chain (Transcription factor 

e4tf1-47)  

Smp_067540.1 Sjp_0064510 MS3_04788 Putative uncharacterized protein  

Smp_150470.1 Sjp_0047780 MS3_04903 Putative uncharacterized protein  

Smp_044820.1 Sjp_0019750 MS3_06948 Putative uncharacterized protein  

Smp_171440.1 Sjp_0115540 MS3_05306 Putative mind bomb  

Smp_178850.1 Sjp_0073870 MS3_10823 Poly(A) polymerase, putative  

Smp_155610.1 Sjp_0006350 MS3_05713 Calmodulin-5/6/7/8 (CaM-5/6/7/8), putative  

Smp_024900.1 Sjp_0034000 MS3_05116 Putative retinoblastoma-like protein  

Smp_168130.1 Sjp_0113240 MS3_09956 Phosphatase and actin regulator, putative  

Smp_199420.1 Sjp_0088760 MS3_03989 Serine/threonine kinase  

Smp_194520.1 Sjp_0006470 MS3_02110 Putative myst histone acetyltransferase  

Smp_147920.1 Sjp_0070430 MS3_03684 Ubiquitinyl hydrolase-BAP1 (C12 family)  

Smp_136360.1 Sjp_0029860 MS3_10757 Putative dna cross-link repair protein pso2/snm1  

Smp_000170.1 Sjp_0004460 MS3_03331 Neurocalcin, putative  

Smp_125640.1 Sjp_0066360 MS3_05209 Syntaxin-12, putative  

Smp_133040.1 Sjp_0051760 MS3_09170 Putative uncharacterized protein  

Smp_012470.1 Sjp_0050140 MS3_11234 Putative 26s protease regulatory subunit  

Smp_178490.1 Sjp_0089300 MS3_08753 Solute carrier family 35 member d1, putative  

Smp_140530.1 Sjp_0060970 MS3_11377 Putative replication factor C / DNA polymerase III gamma-tau 

subunit  

Smp_150380.1 Sjp_0099280 MS3_07308 Spingomyelin synthetase-related  

Smp_017620.1 Sjp_0007190 MS3_05025 Putative uncharacterized protein  

Smp_181380.1 Sjp_0101990 MS3_10416 Putative 26s proteasome non-ATPase regulatory subunit  

Smp_141860.1 Sjp_0075110 MS3_00212 Putative heat containing protein  

Smp_086210.1 Sjp_0002580 MS3_05501 Dihydropteridine reductase  

Smp_141470.1 Sjp_0014940 MS3_00828 Putative cytochrome C oxidase assembly protein cox11  

Smp_162960.1 Sjp_0037410 MS3_10042 Putative uncharacterized protein  

Smp_146830.1 Sjp_0101190 MS3_05591 Putative uncharacterized protein  

Smp_006000.1 Sjp_0015700 MS3_01248 Putative eukaryotictranslation initiation factor 3 subunit  

Smp_048650.1 Sjp_0114570 MS3_09473 Putative histidine triad (Hit) protein  

Smp_148010.1 Sjp_0021030 MS3_06956 Putative snf2 histone linker phd ring helicase  

Smp_158920.1 Sjp_0113430 MS3_00867 Putative uracil-DNA glycosylase  

Smp_078240.1 Sjp_0110520 MS3_01456 Putative uncharacterized protein  

Smp_124310.1 Sjp_0028700 MS3_07274 Putative 5-AMP-activated protein kinase , beta subunit  

Smp_002160.1 Sjp_0000610 MS3_04916 Putative uncharacterized protein  

Smp_133450.1 Sjp_0001360 MS3_03118 Jnk stimulatory phosphatase-related  

Smp_016840.1 Sjp_0040340 MS3_00910 Putative uncharacterized protein  

Smp_106930.1 Sjp_0044680 MS3_11411 Heat shock 70 kDa protein homolog  

Smp_018640.1 Sjp_0095380 MS3_07841 Putative uncharacterized protein  

Smp_026230.1 Sjp_0029800 MS3_07822 Putative uncharacterized protein  

Smp_162940.1 Sjp_0055590 MS3_08868 Putative amine oxidase  

Smp_136470.1 Sjp_0027350 MS3_08612 Putative rho/rac guanine nucleotide exchange factor  
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Smp_020200.1 Sjp_0043800 MS3_00007 Putative dead box ATP-dependent RNA helicase  

Smp_127180.1 Sjp_0024150 MS3_08448 Putative uncharacterized protein  

Smp_166400.1 Sjp_0008030 MS3_09530 Putative dead box ATP-dependent RNA helicase  

Smp_054820.1 Sjp_0048190 MS3_03639 Putative uncharacterized protein  

Smp_071390.1 Sjp_0065450 MS3_01650 Adenylate kinase  

Smp_144950.1 Sjp_0000840 MS3_00778 Putative centrosomal protein of 41 kDa (Cep41 protein) (Testis-

specificprotein A14 protein)  

Smp_142130.1 Sjp_0134030 MS3_06448 Putative uncharacterized protein  

Smp_050130.1 Sjp_0045030 MS3_03863 Putative uncharacterized protein  

Smp_132260.1 Sjp_0026310 MS3_00944 Serine/threonine kinase  

Smp_094810.1 Sjp_0059010 MS3_04021 Peptidyl-prolyl cis-trans isomerase E  

Smp_210570.1 Sjp_0053260 MS3_05559 Mername-AA168 protein (M67 family)  

Smp_149000.1 Sjp_0045080 MS3_03862 Protein phosphatase 2C, putative  

Smp_139400.1 Sjp_0072070 MS3_01763 Putative tensin  

Smp_168670.1 Sjp_0046560 MS3_02488 cGMP-dependent protein kinase,putative  

Smp_181350.1 Sjp_0041470 MS3_04867 Huntingtin interacting protein-related  

Smp_049890.1 Sjp_0012860 MS3_07669 WD-repeat protein, putative  

Smp_153520.1 Sjp_0121100 MS3_08383 Putative uncharacterized protein  

Smp_153430.1 Sjp_0085650 MS3_10500 Putative arginyl-tRNA synthetase  

Smp_159110.1 Sjp_0067770 MS3_06941 Putative bullous pemphigoid antigen 1, isoform 5 (BPA) 

(Hemidesmosomal plaque protein) (Dystonia musculorum 

protein) (Dystonin)  

Smp_157820.1 Sjp_0065320 MS3_03496 Putative ataxia telangiectasia mutated (Atm)  

Smp_193050.1 Sjp_0029990 MS3_09933 Putative uncharacterized protein  

Smp_018890.1 Sjp_0031010 MS3_04778 Phosphoglycerate kinase  

Smp_015710.1 Sjp_0076750 MS3_05869 Putative 6-phosphofructo-2-kinase/fructose-2,6-bisphosph at 

ase  

Smp_211290.1 Sjp_0013170 MS3_03109 Putative uncharacterized protein  

Smp_130900.1 Sjp_0000570 MS3_01046 Putative alpha catenin  

Smp_029310.1 Sjp_0043510 MS3_03741 Phosphatidylinositol transfer protein  

Smp_123080.1 Sjp_0044580 MS3_05150 Putative sarcoplasmic calcium-binding protein (SCP)  

Smp_133510.1 Sjp_0116270 MS3_00213 Putative aldehyde dehydrogenase  

Smp_038300.1 Sjp_0009750 MS3_04095 Putative uncharacterized protein  

Smp_132930.1 Sjp_0111900 MS3_06787 Putative uncharacterized protein  

Smp_139430.1 Sjp_0078500 MS3_07596 Phosphoinositol 4-phosphate adaptor protein,putative  

Smp_196150.1 Sjp_0019390 MS3_10464 Selenoprotein O-like  

Smp_105760.1 Sjp_0073210 MS3_00750 Putative innexin  

Smp_086460.1 Sjp_0056170 MS3_08022 Tho2 protein, putative  

Smp_132550.1 Sjp_0071480 MS3_04780 Putative rhoptry protein  

Smp_091770.1 Sjp_0120990 MS3_09612 Protein farnesyltransferase alpha subunit,putative  

Smp_210090.1 Sjp_0082760 MS3_02097 Adapter-related protein complex 3, beta subunit  

Smp_066250.1 Sjp_0046730 MS3_01279 Putative uncharacterized protein  

Smp_155050.1 Sjp_0002300 MS3_00517 Agrin, putative  

Smp_152060.1 Sjp_0015940 MS3_05287 Putative uncharacterized protein  
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Smp_151960.1 Sjp_0085640 MS3_03306 Putative rho gtpase activating protein  

Smp_169360.1 Sjp_0045420 MS3_06492 Putative kinesin  

Smp_156160.1 Sjp_0067370 MS3_01436 Putative uncharacterized protein  

Smp_160700.1 Sjp_0060210 MS3_10140 Putative set domain protein  

Smp_035460.1 Sjp_0117330 MS3_07339 Putative nicotinate phosphoribosyltransferase  

Smp_079310.1 Sjp_0025150 MS3_03393 Transmembrane protein tmp21-related  

Smp_151060.1 Sjp_0018270 MS3_07863 Family S60 non-peptidase homologue (S60 family)  

Smp_124500.1 Sjp_0011910 MS3_05903 ADAMTS peptidase (M12 family)  

Smp_088660.1 Sjp_0008180 MS3_03445 Putative uncharacterized protein  

Smp_024000.1 Sjp_0062010 MS3_07663 Putative vacuolar protein sorting (Vps33)  

Smp_159400.1 Sjp_0022690 MS3_01380 Phospholipid transport protein  

Smp_092770.1 Sjp_0074500 MS3_10406 Coatomer subunit gamma  

Smp_141040.1 Sjp_0133750 MS3_00029 Putative striatin  

Smp_136510.1 Sjp_0022020 MS3_05045 Putative uncharacterized protein  

Smp_139530.1 Sjp_0071360 MS3_05420 Cellular tumor antigen P53, putative  

Smp_150550.1 Sjp_0104790 MS3_02206 Putative titin  

Smp_178780.1 Sjp_0106170 MS3_02166 Meso-ectoderm gene expression control protein  

Smp_129010.1 Sjp_0057760 MS3_10636 Putative uncharacterized protein  

Smp_159890.1 Sjp_0013530 MS3_09839 Metallocarboxypeptidase D peptidase unit 2 (M14 family)  

Smp_071840.1 Sjp_0030250 MS3_06507 6-phosphogluconate dehydrogenase, decarboxylating  

Smp_158300.1 Sjp_0067840 MS3_01315 Putative uncharacterized protein  

Smp_041770.1 Sjp_0000700 MS3_00771 Serine/threonine kinase  

Smp_173100.1 Sjp_0024780 MS3_03383 Axon guidance protein  

Smp_139070.1 Sjp_0099920 MS3_00607 3bp-1 related rhogap  

Smp_132090.1 Sjp_0063260 MS3_07392 Putative wd40 protein  

Smp_048540.1 Sjp_0060110 MS3_05665 Putative uncharacterized protein  

Smp_147070.1 Sjp_0067720 MS3_02401 Putative amino acid transporter  

Smp_131770.1 Sjp_0010590 MS3_03196 DEAD box ATP-dependent RNA helicase, putative  

Smp_136750.1 Sjp_0048140 MS3_09438 Putative e3 ubiquitin-protein ligase Bre1  (DBre1)  

Smp_055130.1 Sjp_0089630 MS3_09372 Putative zinc finger protein  

Smp_167650.1 Sjp_0004330 MS3_01750 Putative uncharacterized protein  

Smp_163970.1 Sjp_0023750 MS3_04617 Family S10 non-peptidase homologue (S10 family)  

Smp_037200.1 Sjp_0092900 MS3_11285 Putative uncharacterized protein  

Smp_012580.1 Sjp_0065880 MS3_10812 Putative guanine-nucleotide-exchange-factor  

Smp_134510.1 Sjp_0050230 MS3_01983 Putative uncharacterized protein  

Smp_163780.1 Sjp_0051780 MS3_06333 Putative wd-repeat protein  

Smp_042030.1 Sjp_0000940 MS3_00766 Putative vesicle transport protein SEC20  

Smp_042340.1 Sjp_0003360 MS3_06198 Catenin and plakophilin, putative  

Smp_153410.1 Sjp_0029580 MS3_05700 Putative serine/threonine protein phosphatase 2a regulatory 

subunit A  

Smp_154880.1 Sjp_0019670 MS3_10659 Putative tubulin delta chain  

Smp_123050.1 Sjp_0044540 MS3_05149 Putative regulator of G protein signaling 17, 19, 20 (Rgs17, 19, 

20)  

Smp_000510.1 Sjp_0091930 MS3_07584 Gdp-mannose pyrophosphorylase b, isoform 2  
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Smp_073470.1 Sjp_0002360 MS3_07371 Retinoid-x-receptor (RXR)  

Smp_181140.1 Sjp_0087070 MS3_02542 Putative uncharacterized protein  

Smp_164340.1 Sjp_0064280 MS3_02998 Afadin (Af-6 protein), putative  

Smp_074080.1 Sjp_0035070 MS3_00555 Serine/threonine kinase  

Smp_132080.1 Sjp_0063250 MS3_07393 Putative sugar transporter  

Smp_120140.1 Sjp_0133110 MS3_08001 Putative uncharacterized protein  

Smp_052290.1 Sjp_0089370 MS3_00113 Putative uncharacterized protein  

Smp_132500.1 Sjp_0067020 MS3_05998 Putative rab  

Smp_054410.1 Sjp_0031570 MS3_09305 Putative adenine phosphoribosyltransferase  

Smp_135530.1 Sjp_0071820 MS3_00263 Leishmanolysin-2 (M08 family)  

Smp_181240.1 Sjp_0048040 MS3_02816 Glutamyl-tRNA(Gln) amidotransferase subunit B (Mitochondrial 

and prokaryotic) pet112-related  

Smp_179050.1 Sjp_0121200 MS3_09384 Putative kinesin  

Smp_142410.1 Sjp_0077070 MS3_03946 Putative uncharacterized protein  

Smp_209040.1 Sjp_0053110 MS3_09914 Long-chain-fatty-acid--CoA ligase  

Smp_124830.1 Sjp_0069880 MS3_06673 Family C54 unassigned peptidase (C54 family)  

Smp_156060.1 Sjp_0053360 MS3_00860 Putative uncharacterized protein  

Smp_180500.1 Sjp_0010790 MS3_08237 Phospholipid scramblase-related  

Smp_123660.1 Sjp_0049060 MS3_09172 Putative peroxidasin  

Smp_084650.1 Sjp_0078000 MS3_09389 Putative uncharacterized protein  

Smp_090820.1 Sjp_0027940 MS3_05018 CDP-diacylglycerol--glycerol-3-phosphate 3-

phosphatidyltransferase  

Smp_016600.1 Sjp_0037260 MS3_00207 Putative solute carrier family 1 (Glial high affinity glutamate 

transporter)  

Smp_048380.1 Sjp_0021110 MS3_06253 Putative uncharacterized protein  

Smp_083990.1 Sjp_0048940 MS3_02574 Cationic amino acid transporter, putative  

Smp_062560.1 Sjp_0106810 MS3_08312 Putative wnt inhibitor frzb2  

Smp_155420.1 Sjp_0118290 MS3_03045 Putative uncharacterized protein  

Smp_069600.1 Sjp_0010070 MS3_02274 Putative uncharacterized protein  

Smp_061950.1 Sjp_0052690 MS3_09288 Putative u3 small nucleolar ribonucleoprotein  

Smp_162450.1 Sjp_0135150 MS3_03335 Cation efflux family protein  

Smp_137430.1 Sjp_0025810 MS3_11049 Splicing factor 3B subunit 3, 5'  

Smp_198010.1 Sjp_0085760 MS3_02502 Centaurin/arf-related  

Smp_136030.1 Sjp_0093940 MS3_07958 Putative anion exchange protein  

Smp_174710.1 Sjp_0076400 MS3_05923 Putative spindle assembly checkpoint component MAD1 

(Mitotic arrest deficient protein 1)  

Smp_194580.1 Sjp_0028000 MS3_05854 Edp1-related  

Smp_012030.1 Sjp_0129030 MS3_05333 Putative zinc finger protein  

Smp_048240.1 Sjp_0020950 MS3_09733 Putative mannose-1-phosphate guanyltransferase  

Smp_001030.1 Sjp_0031410 MS3_01351 5'-amp-activated protein kinase gamma-2 non-catalytic subunit 

transcript variant 2  

Smp_001500.1 Sjp_0071720 MS3_05483 Putative eukaryotic translation initiation factor 4e  

Smp_021160.1 Sjp_0043890 MS3_02639 Putative peptidyl-prolyl cis-trans isomerase  

Smp_160680.1 Sjp_0053900 MS3_01472 Putative uncharacterized protein  
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Smp_136320.1 Sjp_0100250 MS3_06428 Putative uncharacterized protein  

Smp_084870.1 Sjp_0027180 MS3_06338 Putative uncharacterized protein  

Smp_061210.1 Sjp_0002250 MS3_00514 Putative uncharacterized protein  

Smp_075470.1 Sjp_0064140 MS3_09296 Cysteine desulfurylase, putative  

Smp_019980.1 Sjp_0051690 MS3_08429 Putative vacuole membrane protein  

Smp_105100.1 Sjp_0057680 MS3_06302 Ribonuclease, putative  

Smp_061940.1 Sjp_0080220 MS3_09286 Putative adenylate kinase 1  

Smp_173240.1 Sjp_0012960 MS3_02209 Putative cement protein 3B variant 3  

Smp_122340.1 Sjp_0120570 MS3_07583 Kelch-like protein  

Smp_036020.1 Sjp_0007850 MS3_07682 Putative uncharacterized protein  

Smp_160470.1 Sjp_0044490 MS3_02022 Putative tbc1 domain family member 2 (Prostate antigen 

recognized and indentified by serex) (Paris-1)  

Smp_150220.1 Sjp_0097720 MS3_10047 Putative receptor protein tyrosine phosphatase n, (Ia2)  

Smp_171620.1 Sjp_0070480 MS3_05520 S-methyl-5'-thioadenosine phosphorylase  

Smp_063110.1 Sjp_0060630 MS3_07840 Putative zinc finger protein  

Smp_054010.1 Sjp_0079140 MS3_03571 Putative cationic amino acid transporter  

Smp_212140.1 Sjp_0116730 MS3_02920 Vam6/vps39 related  

Smp_130890.1 Sjp_0106650 MS3_01037 Putative transient receptor potential cation channel,subfamily 

m, member  

Smp_152500.1 Sjp_0003800 MS3_01807 Putative cyclic-nucleotide-gated cation channel  

Smp_203480.1 Sjp_0087200 MS3_09047 Putative uncharacterized protein Smp_203480  

Smp_148720.1 Sjp_0010530 MS3_02287 DNA-directed RNA polymerase  

Smp_136530.1 Sjp_0022010 MS3_05048 Putative ankyrin repeat-containing  

Smp_137370.1 Sjp_0029420 MS3_00329 Serine/threonine kinase  

Smp_032780.1 Sjp_0059720 MS3_07190 Putative dolichyl-phosphate beta-glucosyltransferase (dolp-

glucosyltransferase)  

Smp_163870.1 Sjp_0056320 MS3_03018 Doublesex and mab-3 related transcription factor  

Smp_128490.1 Sjp_0104510 MS3_06120 Putative tomosyn  

Smp_004360.1 Sjp_0011890 MS3_05904 Putative uncharacterized protein  

Smp_176390.1 Sjp_0074340 MS3_04214 Putative cadherin  

Smp_016380.1 Sjp_0057120 MS3_11331 Cytohesin-related guanine nucleotide-exchange protein  

Smp_124640.1 Sjp_0014090 MS3_09395 Putative dna2/nam7 helicase family member  

Smp_073560.1 Sjp_0025130 MS3_07914 G beta-like protein gbl  

Smp_168070.1 Sjp_0098810 MS3_00310 Tumor necrosis factor receptor related  

Smp_082120.1 Sjp_0082240 MS3_09078 ATP synthase delta chain, mitochondrial,putative  

Smp_074710.1 Sjp_0037510 MS3_02415 Putative uncharacterized protein  

Smp_020300.1 Sjp_0046610 MS3_00051 Putative dishevelled  

Smp_128130.1 Sjp_0097580 MS3_06240 Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 

alpha PI3K  

Smp_200110.1 Sjp_0045250 MS3_06589 Putative uncharacterized protein Smp_200110  

Smp_036010.1 Sjp_0007840 MS3_09666 Putative uncharacterized protein  

Smp_107200.1 Sjp_0081060 MS3_08140 Putative uncharacterized protein  

Smp_034550.1 Sjp_0059270 MS3_04427 Putative alpha-actinin  

Smp_176800.1 Sjp_0007380 MS3_03148 Putative uncharacterized protein  
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Smp_151520.1 Sjp_0089670 MS3_02179 Putative dolichyl glycosyltransferase  

Smp_123710.1 Sjp_0081470 MS3_05056 Acetyl-CoA carboxylase  

Smp_162670.1 Sjp_0065560 MS3_06764 Putative uncharacterized protein  

Smp_179560.1 Sjp_0069830 MS3_05089 Multiple inositol polyphosphate phosphatase-related  

Smp_091850.1 Sjp_0096790 MS3_11422 Glucosamine-6-phosphate isomerase, putative  

Smp_092170.1 Sjp_0074640 MS3_06816 Putative uncharacterized protein  

Smp_130040.1 Sjp_0018470 MS3_02806 Pecanex-related protein  

Smp_086690.1 Sjp_0071670 MS3_10235 Kinase  

Smp_130570.1 Sjp_0027670 MS3_02532 Putative receptor tyrosine phosphatase type r2a  

Smp_099930.1 Sjp_0083430 MS3_01056 Putative f-box and wd40 domain protein  

Smp_126720.1 Sjp_0058660 MS3_08990 Putative uncharacterized protein  

Smp_180740.1 Sjp_0079290 MS3_02664 Putative zinc finger protein  

Smp_155590.1 Sjp_0006380 MS3_05716 Putative uncharacterized protein  

Smp_171870.1 Sjp_0105540 MS3_06596 Putative sugar transporter  

Smp_079390.1 Sjp_0071960 MS3_06639 Protein kinase  

Smp_158330.1 Sjp_0037670 MS3_08282 Putative uncharacterized protein  

Smp_009540.1 Sjp_0066030 MS3_10330 Putative ring finger-containing  

Smp_145900.1 Sjp_0061450 MS3_00627 Dihydroceramide desaturase  

Smp_143800.1 Sjp_0005570 MS3_01189 Transporter  

Smp_132730.1 Sjp_0108420 MS3_06574 G-protein coupled receptor, putative  

Smp_196050.1 Sjp_0114820 MS3_06214 Putative uncharacterized protein Smp_196050  

Smp_170010.1 Sjp_0035340 MS3_01416 Putative flagellar radial spoke protein  

Smp_174040.1 Sjp_0064790 MS3_08124 Neurotracting/lsamp/neurotrimin/obcam related cell adhesion 

molecule  

Smp_018280.1 Sjp_0108430 MS3_10334 Putative uncharacterized protein  

Smp_149020.1 Sjp_0045110 MS3_03870 Lim domain binding protein, putative  

Smp_126420.1 Sjp_0070840 MS3_07995 Putative uncharacterized protein  

Smp_082370.1 Sjp_0011150 MS3_03842 Putative nadp transhydrogenase  

Smp_199690.1 Sjp_0052970 MS3_09387 G-protein coupled receptor,putative  

Smp_160940.1 Sjp_0065440 MS3_01661 Putative uncharacterized protein  

Smp_179910.1 Sjp_0089480 MS3_00473 Ras-like protein  

Smp_002870.1 Sjp_0089930 MS3_07466 Putative uncharacterized protein  

Smp_197330.1 Sjp_0081390 MS3_01542 Acetyl-CoA C-acetyltransferase  

Smp_055390.1 Sjp_0059520 MS3_05635 Putative dullard protein  

Smp_127500.1 Sjp_0070050 MS3_10075 Putative uncharacterized protein  

Smp_126800.1 Sjp_0040030 MS3_03936 Putative mkiaa1688 protein  

Smp_133320.1 Sjp_0004950 MS3_07197 Ccr4-not transcription complex, putative  

Smp_175760.1 Sjp_0002640 MS3_07961 Endosomal trafficking protein, putative  

Smp_145670.1 Sjp_0075500 MS3_10068 DNAj-related  

Smp_159560.1 Sjp_0011620 MS3_01604 Putative gata binding factor  

Smp_170540.1 Sjp_0134980 MS3_04670 Putative uncharacterized protein  

Smp_140560.1 Sjp_0030940 MS3_11189 Putative uncharacterized protein  

Smp_211090.1 Sjp_0072690 MS3_07969 Putative peptide chain release factor  

Smp_169190.1 Sjp_0047050 MS3_05954 Putative tegumental protein\x3b Tegumental allergen-like 
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protein  

Smp_123780.1 Sjp_0058010 MS3_06562 Putative glypican  

Smp_155480.1 Sjp_0105530 MS3_03050 Putative heat shock protein 70 (Hsp70)-interacting protein  

Smp_197860.1 Sjp_0066490 MS3_03933 Putative gelsolin  

Smp_069170.1 Sjp_0013440 MS3_03548 Putative cation efflux protein/ zinc transporter  

Smp_046880.1 Sjp_0052190 MS3_06837 Putative glycosyltransferase  

Smp_124570.1 Sjp_0035210 MS3_08722 Leucine zipper protein, putative  

Smp_124020.1 Sjp_0094660 MS3_09149 Putative heparan sulfate 6-o-sulfotransferase  

Smp_135100.1 Sjp_0028560 MS3_02954 Putative dtdp-glucose 4-6-dehydratase  

Smp_093800.1 Sjp_0091070 MS3_03791 Putative uncharacterized protein  

Smp_104110.1 Sjp_0040660 MS3_11394 Putative rho GTPase  

Smp_211320.1 Sjp_0046960 MS3_05177 Putative soluble guanylate cyclase gcy  

Smp_153440.1 Sjp_0029560 MS3_05804 Neuropilin (Nrp) and tolloid (Tll)-like  

Smp_167190.1 Sjp_0133070 MS3_05670 Putative uncharacterized protein Smp_167190  

Smp_129950.1 Sjp_0066250 MS3_05213 Rna-binding protein 12 (Sh3/ww domain anchor protein in the 

nucleus) (Swan), putative  

Smp_171650.1 Sjp_0059410 MS3_04240 Eps-15-related  

Smp_158670.1 Sjp_0031200 MS3_05239 Putative uncharacterized protein  

Smp_168220.1 Sjp_0027270 MS3_06346 Putative uncharacterized protein  

Smp_036590.1 Sjp_0047920 MS3_00233 Putative polypyrimidine tract binding protein  

Smp_166420.1 Sjp_0008060 MS3_06923 Putative uncharacterized protein  

Smp_038640.1 Sjp_0020590 MS3_04345 Cactin-related  

Smp_146400.1 Sjp_0024890 MS3_03372 Syntaxin binding protein-1,2,3, putative  

Smp_141660.1 Sjp_0006720 MS3_06102 Putative high voltage-activated calcium channel beta subunit 2  

Smp_144130.1 Sjp_0037860 MS3_01201 Septate junction protein  

Smp_161510.1 Sjp_0008800 MS3_08477 Putative uncharacterized protein  

Smp_024290.1 Sjp_0088830 MS3_06556 Putative map kinase kinase protein DdMEK1  

Smp_139020.1 Sjp_0029160 MS3_00600 Protein kinase  

Smp_070380.1 Sjp_0055710 MS3_10499 Putative uncharacterized protein  

Smp_148530.1 Sjp_0107970 MS3_03420 Putative heat shock protein hsp16  

Smp_129260.1 Sjp_0086100 MS3_11002 Poly 

Smp_049880.1 Sjp_0100280 MS3_07670 Nuclear pore glycoprotein P62, putative  

Smp_087560.1 Sjp_0032790 MS3_04593 Putative uncharacterized protein  

Smp_053550.1 Sjp_0052010 MS3_06215 Putative uncharacterized protein  

Smp_170530.1 Sjp_0084910 MS3_04667 Upstream transcription factor 1, usf1, putative  

Smp_071950.1 Sjp_0019810 MS3_08816 Tetratricopeptide repeat protein, tpr, putative  

Smp_021170.1 Sjp_0043880 MS3_02636 VPS13C protein, putative  

Smp_168090.1 Sjp_0100660 MS3_10683 Putative uncharacterized protein  

Smp_087620.1 Sjp_0054960 MS3_04595 Putative programmed cell death 6-interacting protein  

Smp_012350.1 Sjp_0070310 MS3_11409 Venom allergen-like (VAL) 11 protein  

Smp_125990.1 Sjp_0085480 MS3_09587 Putative uncharacterized protein  

Smp_142890.1 Sjp_0069480 MS3_04099 Putative hect E3 ubiquitin ligase  

Smp_090070.1 Sjp_0085730 MS3_02507 WD-repeat protein, putative  

Smp_082800.1 Sjp_0030400 MS3_08257 Sly1-related  
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Smp_134230.1 Sjp_0093830 MS3_09190 Putative geranylgeranyl pyrophosphate synthase  

Smp_131970.1 Sjp_0063890 MS3_02420 Putative uncharacterized protein  

Smp_093920.1 Sjp_0129510 MS3_07544 Putative uncharacterized protein  

Smp_154690.1 Sjp_0048310 MS3_04706 Ribosomal protein related  

Smp_030710.1 Sjp_0055890 MS3_06743 Serine/threonine-protein phosphatase  

Smp_134370.1 Sjp_0015320 MS3_07853 Putative rna 3' terminal phosphate cyclase  

Smp_199400.1 Sjp_0069800 MS3_05091 Myosin regulatory light chain 2 smooth muscle,putative  

Smp_016410.1 Sjp_0088510 MS3_08949 Putative ran-binding protein  

Smp_173060.1 Sjp_0018530 MS3_07261 Pak-interacting exchange factor, beta-pix/cool-1, putative  

Smp_036500.1 Sjp_0106460 MS3_00211 CAR\x3b Putative nuclear receptor nhr-48  

Smp_098560.2 Sjp_0052120 MS3_06205 Putative uncharacterized protein  

Smp_168590.1 Sjp_0054800 MS3_02999 Macrophage scavenger receptor-related  

Smp_150210.1 Sjp_0026510 MS3_09307 Putative autocrine motility factor receptor,amfr  

Smp_138670.1 Sjp_0038050 MS3_09404 39S ribosomal protein L19, mitochondrial, putative  

Smp_123470.1 Sjp_0100570 MS3_00446 Nalp (Nacht, leucine rich repeat and pyrin domain containing)-

related  

Smp_175720.1 Sjp_0130370 MS3_03583 Tripartite motif protein trim9, putative  

Smp_040800.1 Sjp_0039430 MS3_08104 Putative glycyl-tRNA synthetase  

Smp_166960.1 Sjp_0042790 MS3_06050 Putative ubiquitin-protein ligase BRE1  

Smp_176420.1 Sjp_0030500 MS3_08694 Ras guanine nucleotide exchange factor ,putative  

Smp_088950.1 Sjp_0060680 MS3_10049 Hypoxia upregulated 1 (Hyou1)-related  

Smp_160710.1 Sjp_0054490 MS3_07504 Putative upstream stimulatory factor  

Smp_018990.1 Sjp_0075950 MS3_04781 Putative 60s ribosomal protein L9  

Smp_128860.1 Sjp_0050160 MS3_10980 Lysyl oxidase-like  

Smp_063000.1 Sjp_0012640 MS3_01088 Smdr1  

Smp_157350.1 Sjp_0049520 MS3_01308 Protein kinase  

Smp_147240.1 Sjp_0031690 MS3_02755 Putative wd40 protein  

 

 

Supplementary Table 4.2 135 proteins were predicted as surface or secretory proteins by 

SchistoProt and SchistoTarget. 

Protein ID Surface Prediction Secretory Prediction 

Smp_000170.1 Surface Protein Secretory Protein 

Smp_001030.1 Surface Protein Secretory Protein 

Smp_003250.1 Surface Protein Secretory Protein 

Smp_004360.1 Surface Protein Secretory Protein 

Smp_006000.1 Surface Protein Secretory Protein 

Smp_015710.1 Surface Protein Secretory Protein 

Smp_016600.1 Surface Protein Secretory Protein 

Smp_018890.1 Surface Protein Secretory Protein 
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Smp_018990.1 Surface Protein Secretory Protein 

Smp_019980.1 Surface Protein Secretory Protein 

Smp_021160.1 Surface Protein Secretory Protein 

Smp_026230.1 Surface Protein Secretory Protein 

Smp_029310.1 Surface Protein Secretory Protein 

Smp_033930.1 Surface Protein Secretory Protein 

Smp_034550.1 Surface Protein Secretory Protein 

Smp_048380.1 Surface Protein Secretory Protein 

Smp_048540.1 Surface Protein Secretory Protein 

Smp_061210.1 Surface Protein Secretory Protein 

Smp_061940.1 Surface Protein Secretory Protein 

Smp_067540.1 Surface Protein Secretory Protein 

Smp_070380.1 Surface Protein Secretory Protein 

Smp_071390.1 Surface Protein Secretory Protein 

Smp_071840.1 Surface Protein Secretory Protein 

Smp_079310.1 Surface Protein Secretory Protein 

Smp_084650.1 Surface Protein Secretory Protein 

Smp_087560.1 Surface Protein Secretory Protein 

Smp_094810.1 Surface Protein Secretory Protein 

Smp_104110.1 Surface Protein Secretory Protein 

Smp_105100.1 Surface Protein Secretory Protein 

Smp_105760.1 Surface Protein Secretory Protein 

Smp_106930.1 Surface Protein Secretory Protein 

Smp_123080.1 Surface Protein Secretory Protein 

Smp_123470.1 Surface Protein Secretory Protein 

Smp_124020.1 Surface Protein Secretory Protein 

Smp_124570.1 Surface Protein Secretory Protein 

Smp_126720.1 Surface Protein Secretory Protein 

Smp_135100.1 Surface Protein Secretory Protein 

Smp_140560.1 Surface Protein Secretory Protein 

Smp_141470.1 Surface Protein Secretory Protein 

Smp_145900.1 Surface Protein Secretory Protein 

Smp_150380.1 Surface Protein Secretory Protein 

Smp_151520.1 Surface Protein Secretory Protein 

Smp_151960.1 Surface Protein Secretory Protein 

Smp_152790.1 Surface Protein Secretory Protein 
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Smp_169190.1 Surface Protein Secretory Protein 

Smp_178490.1 Surface Protein Secretory Protein 

Smp_179910.1 Surface Protein Secretory Protein 

Smp_180500.1 Surface Protein Secretory Protein 

Smp_193050.1 Surface Protein Secretory Protein 

Smp_196050.1 Surface Protein Secretory Protein 

Smp_199400.1 Surface Protein Secretory Protein 

Smp_199420.1 Surface Protein Secretory Protein 

Smp_200110.1 Surface Protein Secretory Protein 

Smp_203970.1 Surface Protein Secretory Protein 

Smp_001500.1 Surface Protein Non-Secretory Protein 

Smp_017620.1 Surface Protein Non-Secretory Protein 

Smp_020220.1 Surface Protein Non-Secretory Protein 

Smp_030710.1 Surface Protein Non-Secretory Protein 

Smp_038300.1 Surface Protein Non-Secretory Protein 

Smp_044820.1 Surface Protein Non-Secretory Protein 

Smp_046980.1 Surface Protein Non-Secretory Protein 

Smp_048650.1 Surface Protein Non-Secretory Protein 

Smp_054410.1 Surface Protein Non-Secretory Protein 

Smp_073560.1 Surface Protein Non-Secretory Protein 

Smp_091770.1 Surface Protein Non-Secretory Protein 

Smp_091850.1 Surface Protein Non-Secretory Protein 

Smp_098560.2 Surface Protein Non-Secretory Protein 

Smp_107200.1 Surface Protein Non-Secretory Protein 

Smp_120140.1 Surface Protein Non-Secretory Protein 

Smp_127500.1 Surface Protein Non-Secretory Protein 

Smp_131970.1 Surface Protein Non-Secretory Protein 

Smp_134510.1 Surface Protein Non-Secretory Protein 

Smp_136320.1 Surface Protein Non-Secretory Protein 

Smp_149450.1 Surface Protein Non-Secretory Protein 

Smp_158330.1 Surface Protein Non-Secretory Protein 

Smp_158970.1 Surface Protein Non-Secretory Protein 

Smp_162960.1 Surface Protein Non-Secretory Protein 

Smp_163870.1 Surface Protein Non-Secretory Protein 

Smp_166400.1 Surface Protein Non-Secretory Protein 

Smp_168220.1 Surface Protein Non-Secretory Protein 
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Smp_170010.1 Surface Protein Non-Secretory Protein 

Smp_171620.1 Surface Protein Non-Secretory Protein 

Smp_209040.1 Surface Protein Non-Secretory Protein 

Smp_000510.1 Non-Surface Protein Secretory Protein 

Smp_002870.1 Non-Surface Protein Secretory Protein 

Smp_012470.1 Non-Surface Protein Secretory Protein 

Smp_018640.1 Non-Surface Protein Secretory Protein 

Smp_030350.1 Non-Surface Protein Secretory Protein 

Smp_035460.1 Non-Surface Protein Secretory Protein 

Smp_036010.1 Non-Surface Protein Secretory Protein 

Smp_037900.1 Non-Surface Protein Secretory Protein 

Smp_048240.1 Non-Surface Protein Secretory Protein 

Smp_050130.1 Non-Surface Protein Secretory Protein 

Smp_054010.1 Non-Surface Protein Secretory Protein 

Smp_061950.1 Non-Surface Protein Secretory Protein 

Smp_069170.1 Non-Surface Protein Secretory Protein 

Smp_074010.1 Non-Surface Protein Secretory Protein 

Smp_075470.1 Non-Surface Protein Secretory Protein 

Smp_083990.1 Non-Surface Protein Secretory Protein 

Smp_085680.1 Non-Surface Protein Secretory Protein 

Smp_086210.1 Non-Surface Protein Secretory Protein 

Smp_088950.1 Non-Surface Protein Secretory Protein 

Smp_093800.1 Non-Surface Protein Secretory Protein 

Smp_125640.1 Non-Surface Protein Secretory Protein 

Smp_125990.1 Non-Surface Protein Secretory Protein 

Smp_126350.1 Non-Surface Protein Secretory Protein 

Smp_128860.1 Non-Surface Protein Secretory Protein 

Smp_130040.1 Non-Surface Protein Secretory Protein 

Smp_132080.1 Non-Surface Protein Secretory Protein 

Smp_132500.1 Non-Surface Protein Secretory Protein 

Smp_132730.1 Non-Surface Protein Secretory Protein 

Smp_132930.1 Non-Surface Protein Secretory Protein 

Smp_136360.1 Non-Surface Protein Secretory Protein 

Smp_138670.1 Non-Surface Protein Secretory Protein 

Smp_143800.1 Non-Surface Protein Secretory Protein 

Smp_144130.1 Non-Surface Protein Secretory Protein 
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Smp_146400.1 Non-Surface Protein Secretory Protein 

Smp_146830.1 Non-Surface Protein Secretory Protein 

Smp_147070.1 Non-Surface Protein Secretory Protein 

Smp_150210.1 Non-Surface Protein Secretory Protein 

Smp_155050.1 Non-Surface Protein Secretory Protein 

Smp_155420.1 Non-Surface Protein Secretory Protein 

Smp_155610.1 Non-Surface Protein Secretory Protein 

Smp_159370.1 Non-Surface Protein Secretory Protein 

Smp_159400.1 Non-Surface Protein Secretory Protein 

Smp_159890.1 Non-Surface Protein Secretory Protein 

Smp_162450.1 Non-Surface Protein Secretory Protein 

Smp_163970.1 Non-Surface Protein Secretory Protein 

Smp_167190.1 Non-Surface Protein Secretory Protein 

Smp_173100.1 Non-Surface Protein Secretory Protein 

Smp_178780.1 Non-Surface Protein Secretory Protein 

Smp_179560.1 Non-Surface Protein Secretory Protein 

Smp_199690.1 Non-Surface Protein Secretory Protein 

Smp_211090.1 Non-Surface Protein Secretory Protein 

Smp_211320.1 Non-Surface Protein Secretory Protein 

  

Supplementary Table 4.3 SchistoTarget predicted 45 proteins have immunoreactivity among 

the 135 proteins. 

Immunoreactive proteins 

Smp_006000.1 Smp_017620.1 Smp_132080.1 

Smp_018990.1 Smp_048650.1 Smp_132730.1 

Smp_048380.1 Smp_120140.1 Smp_132930.1 

Smp_048540.1 Smp_127500.1 Smp_136360.1 

Smp_070380.1 Smp_149450.1 Smp_143800.1 

Smp_105760.1 Smp_162960.1 Smp_147070.1 

Smp_124020.1 Smp_163870.1 Smp_155050.1 

Smp_140560.1 Smp_168220.1 Smp_159400.1 

Smp_145900.1 Smp_002870.1 Smp_163970.1 

Smp_150380.1 Smp_030350.1 Smp_167190.1 

Smp_151520.1 Smp_036010.1 Smp_173100.1 

Smp_178490.1 Smp_054010.1 Smp_178780.1 

Smp_180500.1 Smp_083990.1 Smp_179560.1 
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Smp_196050.1 Smp_125990.1 Smp_199690.1 

Smp_200110.1 Smp_130040.1 Smp_211320.1 

 

 

Supplementary Table 4.4  20 proteins were selected as potential vaccine targets using GO 

annotation.        

Proteins were selected on the basis of biological processes and molecular functions which are 

important for host-parasite interactions such as catalytic activity, transmembrane transporter 

activity, lipid transporter activity, serine-type peptidase activity, serine protease inhibitory actvity, G-

protein coupled receptor and oxidoreductase activity.  

Gene ID PANTHER GO-Slim Molecular Function PANTHER GO-Slim Biological Process 

Smp_002870 

protein binding(GO:0005515); small GTPase 

regulator activity(GO:0005083) cellular process(GO:0009987) 

Smp_017620 

  

Smp_018990 

RNA binding(GO:0003723); structural constituent of 

ribosome(GO:0003735) 

biosynthetic process(GO:0009058); cellular 

process(GO:0009987); translation(GO:0006412) 

Smp_048540 

  

Smp_054010 

amino acid transmembrane transporter 

activity(GO:0015171); transmembrane transporter 

activity(GO:0022857) 

amino acid transport(GO:0006865); anion 

transport(GO:0006820); cellular 

process(GO:0009987) 

Smp_083990 

amino acid transmembrane transporter 

activity(GO:0015171); transmembrane transporter 

activity(GO:0022857) 

amino acid transport(GO:0006865); anion 

transport(GO:0006820); cellular 

process(GO:0009987) 

Smp_124020 transferase activity(GO:0016740) 

biosynthetic process(GO:0009058); cellular 

process(GO:0009987); protein metabolic 

process(GO:0019538); sulfur compound metabolic 

process(GO:0006790) 

Smp_132080 transmembrane transporter activity(GO:0022857) cellular process(GO:0009987) 

Smp_132730 

  Smp_143800 transporter activity(GO:0005215) 

 

Smp_145900 oxidoreductase activity(GO:0016491) 

biosynthetic process(GO:0009058); cellular 

process(GO:0009987); lipid metabolic 

process(GO:0006629); nitrogen compound 

metabolic process(GO:0006807) 

Smp_147070 

amino acid transmembrane transporter 

activity(GO:0015171); transmembrane transporter 

activity(GO:0022857) 

amino acid transport(GO:0006865); anion 

transport(GO:0006820); cellular 

process(GO:0009987) 

Smp_149450 

  Smp_150380 catalytic activity(GO:0003824) lipid metabolic process(GO:0006629) 

Smp_155050 

  

Smp_163970 serine-type peptidase activity(GO:0008236) 

catabolic process(GO:0009056); cellular 

process(GO:0009987); proteolysis(GO:0006508) 

Smp_167190 calcium ion binding(GO:0005509); calcium- cellular process(GO:0009987) 
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dependent phospholipid binding(GO:0005544); 

calmodulin binding(GO:0005516); extracellular 

matrix structural constituent(GO:0005201); receptor 

binding(GO:0005102) 

Smp_178490 transmembrane transporter activity(GO:0022857) 

cellular process(GO:0009987); nucleobase-

containing compound transport(GO:0015931) 

Smp_180500 lipid transporter activity(GO:0005319) 

anion transport(GO:0006820); biological 

regulation(GO:0065007); cellular component 

organization(GO:0016043); cellular 

process(GO:0009987) 

Smp_199690 

G-protein coupled receptor activity(GO:0004930); 

binding(GO:0005488); signal transducer 

activity(GO:0004871) 

regulation of biological process(GO:0050789); 

response to endogenous stimulus(GO:0009719) 
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Chapter 5 General discussion and conclusion 

 

This chapter discussed and summarised the overall PhD research works and findings. 

This PhD thesis covers three individual projects that are building up on each other to 

achieve the three aims of the research. Chapter 1 describes the theoretical background 

that is required to understand the thesis topics and gives a good and comprehensive 

overview of schistosomiasis, its causes, and consequences. Chapters 2 to chapter 4 

describe each one of the three aims of the PhD research. Chapter 2 fulfils the aim-1 which 

is the development of a method for the identification of schistosome-specific surface 

proteins and secreted peptides. Aim 2 is achieved in chapter 3, the development of a 

method for the identification of Schistosoma immunoreactive proteins. The final aim of the 

PhD research is mentioned in chapter 4, the application of the developed methods in an 

integrative bioinformatics pipeline to identify putative vaccine targets against 

schistosomiasis. 

Schistosomiasis is a parasitic disease caused by parasitic Schistosoma. This disease is 

the second most devastating parasitic disease after malaria worms and more than 200 

million people are infected worldwide. Despite of deadly effect on mass population, 

schistosomiasis is considered one of the Neglected Tropical Diseases (NTDs). No 

vaccines are available and treatment relies mainly on one drug, praziquantel. This drug 

effectively disrupts the tegument of adult worms, but not juvenile parasites and even mass 

treatment does not prevent reinfection. Vaccines that induce long-term immunity represent 

an essential component for the future control of schistosomiasis with the final goal of 

complete elimination. Driven by the need to improve disease treatment and prevention, the 

genomes of several Schistosoma species have recently become publicly available. 

Moreover, several whole-genome sequencing projects of additional Schistosoma species 

will soon be completed.  

Surface-associated proteins and secreted peptides play a key role in parasite physiology 

and pathogenesis and are the major targets for vaccine development. The laborious task 

of identifying these important classes of proteins can be highly accelerated using 

computational tools that evaluate the specific sequence properties of surface proteins and 

secreted peptides. However, currently available methods for this task have their limitations 

as they show only modest prediction accuracy for Schistosoma species. SchistoProt, a 

machine-learning classifier for the identification of Schistosoma surface proteins and 
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secreted peptides, have been developed. SchistoProt provides a user-friendly web-

interface and achieves a superior detection accuracy compared to other existing tools. 

Results are presented as interactive tables, charts and figures. This project results 

demonstrate that a genus-specific classifier can excel in the detection of surface proteins 

and secreted peptides compared with general tools for this task. As such, SchistoProt 

assists in studying the molecular mechanisms of host infection, analysing anti-schistosome 

protective immunity and the rapid prioritization of candidate vaccine targets. 

Schistosome protein microarrays allow to compare antibody signatures in different disease 

pathologies as the pilot Schistosoma immunomics study. SchistoTarget enables us to 

identify Schistosoma proteins immunoreactivity using the small size of protein microarray 

data by machine learning based approach. The prediction accuracy of SchistoTarget can 

be further improved by training on future protein microarrays data for antibody responses, 

if available. 

The innovative integrative approach developed with the comparative studies of three 

human-infecting schistosomes, animal-infecting S. bovis and non-parasitic free-living 

flatworm Schmidtea mediterranea reveals the interesting candidate genes for vaccine 

targets. These genes are further filtered using the tools developed in this PhD project, 

SchistoProt and SchistoTarget, to select only surface or secretory proteins. Gene Ontology 

and Swiss-Prot annotations provide the useful information to select potential antigens as 

drug and vaccine targets. Further, applying STRING and STICH, protein-protein and 

protein-chemical interactions are explored which provided putative vaccines and drug 

targets. 

The results of this PhD project are expected to significance advances in schsitosomiasis 

vaccinology. The selected 20 antigens as putative vaccine targets against schistosomiasis 

should now be biologically validated by wet laboratory experiments in animals and then 

clinically. The protocol developed in this PhD project can be used as a blueprint for other 

parasitic diseases such as malaria. 
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