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Abstract

In the present thesis, we study discrete-time indefinite linear quadratic (LQ) optimal
control problems in the presence of constraints on states and inputs. Due to their
high relevance in both theory and practical applications, these problems are under
ongoing research. In the recent literature, a characterization of the optimal trajectories
of LQ-problems was given in terms of strict dissipativity and turnpike properties
at steady-states, provided that the stage cost is positive semidefinite. We extend
these results to periodic dissipativity and turnpike properties in LQ-problems with
indefinite cost functions. The contribution of this thesis is threefold:

First, we state sufficient conditions for periodic dissipativity and turnpike properties
in compactly constrained indefinite LQ-problems. It is shown that the corresponding
optimal periodic orbit can be computed explicitly using a non-strict dissipation
inequality and is, in many cases, located on the boundary of the constraints.

A similar technique is applied to strict dissipativity and turnpike properties at
steady-states, where some of the arguments simplify. Sufficient conditions for strict
dissipativity at steady-states are given in terms of linear matrix inequalities, for which
the compactness assumption made in the periodic case is not required to hold. Two
kinds of conditions are proposed, one of which can handle more general cases while
the other one establishes a direct link between negative cost eigenvalues, the shape of
the constraints, and the exact location of the resulting optimal steady-state. Moreover,
in the absence of state constraints and for ellipsoidal input constraints, necessary
conditions for strict dissipativity with a quadratic storage function are stated.

The third approach does not explicitly take the constraints into account and relies
on the notion of P-step systems, which have been used in the recent economic
model predictive control literature for handling periodic optimality. It is shown
that, if the stage cost accumulated over multiple consecutive time steps satisfies a
certain convexity assumption, then the occurrence of strict dissipativity and turnpike
properties can be characterized by spectral properties of the involved matrices.
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Notation

R set of real numbers
R≥0 set of nonnegative real numbers
I≥0 set of nonnegative integers
I[a,b] set of integers in the interval [a, b] ⊆ R

C set of complex numbers
C=1 set of complex numbers on the unit circle, i.e.,

C=1 B {z ∈ C | |z| = 1}
C (Rn) set of continuous functions f : Rn → R

‖x‖ Euclidean norm of x ∈ Rn

|x|V Euclidean distance of x ∈ Rn to a set V ⊆ Rn, i.e.,
|x|V B infv∈V ‖x − v‖

A> transpose of a matrix A ∈ Rn×m

A � 0 (A � 0) matrix A ∈ Rn×n is positive definite (semidefinite)
A ≺ 0 (A � 0) matrix A ∈ Rn×n is negative definite (semidefinite)
K A function α : R≥0 → R≥0 is a class K function, i.e., α ∈ K ,

if α is continuous, strictly increasing, and α(0) = 0.
K∞ A function α ∈ K is a class K∞ function, i.e., α ∈ K∞,

if, in addition, α is unbounded.
#L cardinality of a set L ⊆ I≥0
int(X) interior of a set X ⊆ Rn

∂X boundary of a set X ⊆ Rn
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1. Introduction

1.1. Motivation

Since the pioneering work of Kalman [13], the theory of linear quadratic (LQ) optimal
control has become a mature research field. Contributions such as the classical paper
by Willems [27] provided not only a characterization of the optimal behavior for
zero or free endpoint constraints, but also relations to relevant system theoretic
properties. A particularly relevant property is dissipativity, which was introduced by
Willems [28, 29] and can be interpreted in the way that a system cannot create energy
by itself. Although powerful and easily applicable, the traditional approaches in LQ
optimal control have an important drawback: They cannot deal with constrained
problems. A more promising tool for this is provided by the so-called turnpike
property. The turnpike property has been introduced in the context of economics in
the 1950’s to describe a particular phenomenon that occurs in dynamic optimization
problems [7]. Loosely speaking, it states that the optimal trajectory of an optimal
control problem stays near an optimal point ”most of the time”. It took several decades
until its significance in economic model predictive control (MPC) was discovered
in [9]. MPC is a control method that solves a finite-horizon optimal control problem
repeatedly and then applies only the first part of the computed optimal input [25].
In economic MPC, as opposed to stabilizing MPC, one is interested in minimizing
a given cost function that might not be positive definite [8]. Under certain further
assumptions, the turnpike property can be used to establish both performance bounds
and convergence of the closed-loop [8,9]. The relation between strict dissipativity and
the turnpike property has been worked out in detail in [11], where it was shown that,
under an additional technical assumption, the two are equivalent. For discrete-time
LQ-problems with convex cost, this connection was analyzed and related to geometric
system properties in the very recent work [10]. The main result of this paper is that,
when the cost satisfies a suitable convexity assumption, then strict dissipativity, the
turnpike property and certain spectral properties involving the system matrices are
equivalent.

Typically, when the control objective involves some kind of maximization, the
corresponding stage cost is non-convex, i.e., (in the linear quadratic case) the cost
matrices are not positive semidefinite. Such indefinite cost functions have been treated
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1. Introduction

extensively in the classical theory of linear quadratic optimal control, cf. e.g. [26, 27]
and [24] for contributions on continuous and discrete time problems, respectively.
As in the convex case, however, these classical results do not apply in the presence
of constraints on states and inputs. Recent research in economic MPC included the
consideration of indefinite cost functions in constrained LQ-problems (cf. [22, 30]),
thereby providing conditions for closed-loop asymptotic stability in the indefinite
case. However, if one is interested in minimizing an economic performance objective
rather than stabilizing the closed-loop, then the optimal trajectory might as well be
periodic. The synthesis of control laws which achieve convergence to an optimal
periodic orbit has been investigated in the recent literature [19,20,30], where periodic
dissipativity and turnpike properties emerged as key ingredients. Nevertheless, for
steady-states as well as for periodic orbits, conditions for strict dissipativity and
turnpike properties in constrained indefinite optimal control problems remain to be
characterized.

1.2. Contributions and outline of the thesis

The goal of the present thesis is to explore the optimal behavior of indefinite discrete-
time LQ-problems subject to constraints on states and inputs. By means of sufficient
and (partly) necessary conditions, we aim at closing the gap mentioned in the above
introduction. We characterize strict dissipativity and turnpike properties w.r.t. steady-
states and periodic orbits. There are two substantially different approaches which are
employed in this thesis: First, we analyze strict dissipativity w.r.t. periodic orbits by
considering a certain non-strict dissipation inequality. We state sufficient conditions
as well as an explicit computational procedure for constructing the corresponding
optimal periodic orbit. Herein, the central idea is that, in the presence of negative
cost eigenvalues, the corresponding modes are in many cases on the boundary of the
constraints and thus the particular shape of the constraints plays an important role.

Since steady-states are periodic orbits with period one, this approach can as well
be applied to steady-states, where, however, the application of the results simplifies.
The second approach is based on P-step systems. We provide sufficient and necessary
conditions for strict dissipativity and turnpike properties w.r.t. steady-states, when
the cost accumulated over several consecutive time steps satisfies a suitable convexity
assumption. This allows us to characterize the above properties when the original
stage cost is non-convex in the state.
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1.2. Contributions and outline of the thesis

The thesis is structured as follows: In Chapter 2, we set the stage by introducing the
considered framework as well as important definitions and existing results. Chapter 3
provides conditions for strict dissipativity w.r.t. periodic orbits which imply the
occurrence of periodic turnpikes as well. Thereafter, in Chapter 4, we explore strict
dissipativity and turnpike properties w.r.t. steady-states by first employing similar
techniques as in the periodic case. Moreover, using the framework of P-step systems,
we obtain further conditions characterizing these properties. We conclude the thesis
in Chapter 5, followed by a short appendix containing two auxiliary Lemmas.
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2. Background

2.1. Setting

In the present thesis, we investigate discrete-time finite-horizon linear quadratic
optimal control problems subject to state and input constraints. The stage cost is of
the form

`(x, u) = x>Qx + 2x>S>u + u>Ru + s>x + v>u + c

with

Q ∈ Rn×n, S ∈ Rm×n, R ∈ Rm×m, s ∈ Rn, v ∈ Rm, c ∈ R.

Note that we do not pose any assumptions on the definiteness of Q, R or(
Q S>

S R

)
.

We consider linear system dynamics x(k+ 1) = Ax(k)+ Bu(k) with initial condition
x(0) = x0, as well as state and input constraints X and U, respectively, where

A ∈ Rn×n, B ∈ Rn×m, x0 ∈ Rn, X ⊆ Rn, U ⊆ Rm.

Throughout this thesis, the constraint sets X and U are assumed to be closed and
convex. For a fixed initial value x0 and an input trajectory u ∈ UN , the solution of
x(k + 1) = Ax(k) + Bu(k) is denoted by xu(·, x0) and the corresponding running
cost is given as

JN(x0, u) =
N−1∑
k=0

` (xu(k, x0), u(k))

for some N ∈N. Moreover, we define the set of feasible input trajectories

UN(x0) =
{
u ∈ UN | xu(k, x0) ∈ X, k ∈ I[1,N]

}

5



2. Background

as well as the feasible state-input pairs

Z =
{
(x, u) ∈ X ×U | Ax + Bu ∈ X

}
.

We set up the following optimization problem which will be of central interest
throughout this thesis:

VN(x0) = minimize
u∈UN (x0)

JN(x0, u). (2.1.1)

The optimal state and input trajectories of (2.1.1) for the initial value x0 are denoted
by x∗(·, x0) and u∗(·, x0), respectively.

Definition 2.1.1. (i) We say that (xe, ue) ∈ X×U is a steady-state or an equilibrium
for the dynamical system x(k + 1) = Ax(k) + Bu(k), if xe = Axe + Bue.

(ii) We say that the set Π =
{
(x1, u1), . . . , (xP, uP)

}
⊂ X ×U is a periodic orbit

for the dynamical system x(k + 1) = Ax(k) + Bu(k), if Axi + Bui = xi+1 for all
i ∈ I[1,P−1] and AxP + BuP = x1. P is called the period or length of the periodic
orbit Π. Π is called a minimal periodic orbit, if xi , x j for all i, j ∈ I[1,P] with i , j.
The average cost on a periodic orbit Π is denoted by `Π B

1
P

∑P
i=1 `(xi, ui).

For technical reasons, we make the standing assumption that there exists a steady-
state in the interior of the constraints, i.e., there exist (x, u) ∈ int (X ×U) such that
x = Ax + Bu.

2.2. Related work

As mentioned in the introduction, strict dissipativity and the turnpike property have
emerged as useful ingredients in the analysis of constrained finite-horizon optimal
control problems. In this section, we state rigorous definitions of the two properties
and review their relationship which has been investigated in the recent economic
MPC literature. The following definitions are adopted from [10].

Definition 2.2.1. (i) We call the LQ-problem strictly cyclo-dissipative 1 at an equi-
librium (xe, ue) ∈ X ×U w.r.t. the supply rate `(x, u) − `(xe, ue), if there exist a
storage function λ : X → R which is bounded on bounded subsets of X, and a
function α ∈ K∞ such that the dissipation inequality

`(x, u) − `(xe, ue) + λ(x) − λ(Ax + Bu) ≥ α(‖x − xe‖) (2.2.1)

1In [10], the authors call the property defined in Definition 2.2.1 (i) strict pre-dissipativity. The name strict
cyclo-dissipativity, which is preferred in the present thesis, originates from the classical paper [12].
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holds for all (x, u) ∈ Z.
(ii) We call the LQ-problem strictly dissipative at an equilibrium (xe, ue) ∈ X×U

w.r.t. the supply rate `(x, u) − `(xe, ue), if it is strictly cyclo-dissipative in the sense
of (i) and λ is bounded from below on X.

Since, throughout this thesis, the only supply rate under consideration is `(x, u) −
`(xe, ue), we do not mention the supply rate appearing in the above dissipation
inequality explicitly. A well-established result in economic MPC (cf. [1]) is that strict
(cyclo-) dissipativity at an equilibrium (xe, ue) implies that this equilibrium is the
optimal steady-state in the sense that

`(xe, ue) = min
x∈X,u∈U
x=Ax+Bu

`(x, u).

Therefore, we will use the notions of optimal steady-states and steady-states at which
strict dissipativity holds interchangeably.

Definition 2.2.2. (i) We say that the optimal control problem (2.1.1) has the turnpike
property at an equilibrium (xe, ue) ∈ X ×U on a set Xtp ⊂ X, if for each compact
set K ⊂ Xtp and for each ε > 0 there exists a constant CK,ε > 0 such that for all
x ∈ K and all N ∈ N the optimal trajectories x∗(·, x) of (2.1.1) with initial value x
satisfy

#
{
k ∈ {0, . . . , N − 1} | ‖x∗(k, x) − xe‖ > ε

}
≤ CK,ε.

(ii) We say that the optimal control problem (2.1.1) has the near equilibrium turnpike
property at an equilibrium (xe, ue) ∈ X ×U, if for each ρ > 0, ε > 0 and δ > 0 there
exists a constant Cρ,ε,δ > 0 such that for all x ∈ X with ‖x − xe‖ ≤ ρ, all N ∈N, and
all trajectories xu(·, x) satisfying JN(x, u) ≤ N`(xe, ue) + δ for some u ∈ UN(x),
the inequality

#
{
k ∈ {0, . . . , N − 1} | ‖xu(k, x) − xe‖ > ε

}
≤ Cρ,ε,δ

holds.

Loosely speaking, the turnpike property (Definition 2.2.2 (i)) at some equilibrium
states that the optimal trajectories stay near this equilibrium for all but a finite number
of time instances which is independent of the horizon N. For the near equilibrium
turnpike property (Definition 2.2.2 (ii)) this needs to hold for trajectories with cost
close to the steady-state cost under consideration.

It is known since the pioneering work of Willems that the behavior of optimal
solutions of unconstrained LQ-problems and dissipativity are closely related [27].
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2. Background

This was extended to the constrained case by the recent developments in the economic
MPC literature (cf. [9,11]), where it was shown that strict dissipativity is sufficient and,
under a mild local controllability assumption, also necessary for the near equilibrium
turnpike property. For LQ-problems with Q � 0 and R � 0, this relationship
was extended by the authors in [10] who established a connection between the
above definitions and spectral properties of the matrix pair (A, Q). In particular, in
the absence of state constraints, they showed that, for steady-states (xe, ue) with
ue ∈ int (U), strict dissipativity, the turnpike property and detectability 2 of the
pair (A, Q) are equivalent (cf. [10, Theorem 8.1]). Again, in view of the classical
literature on linear quadratic optimal control, these results came as no surprise. It
is well-known that, under certain additional assumptions, detectability of the above
matrix pair implies the existence of a unique optimal and stabilizing solution to
the algebraic Riccati equation, which yields an optimal stabilizing feedback law. A
more surprising results is that, for compact state constraints, strict dissipativity, the
near equilibrium turnpike property and observability of the matrix pair (A, Q) for all
eigenvalues on the complex unit circle C=1 are equivalent (cf. [10, Theorem 8.3]).
Thus, unstable unobservable eigenvalues can be "compensated" by boundedness of
the constraints.

In summary, the characterization of steady-state dissipativity and turnpikes in the
interior of the constraints for Q � 0, R � 0 can be considered as fairly complete.
A generalization of the results from [10] is the main goal of the present thesis.
In particular, we characterize strict dissipativity and turnpike properties in linear
quadratic optimal control problems

• for non-convex stage costs,

• w.r.t. steady-states and periodic orbits,

• under explicit consideration of the constraints.

2As can be deduced from Lemma A.1.1, detectability of (A, Q) and (A, C) for some C with C>C = Q are
equivalent. Therefore, we will use the two notions interchangeably throughout this thesis
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3. Strict dissipativity w.r.t. periodic orbits

As discussed in Section 2.2, the connection of strict dissipativity and the turnpike
property to geometric system properties has been thoroughly investigated for lin-
ear quadratic systems under the assumptions that the cost matrices satisfy Q � 0,
R � 0, S = 0 and when the corresponding optimal steady-state lies in the interior of
the constraints. In this section and also in the remainder of the thesis, we generalize
these results into several directions. First of all, we drop the convexity assumptions
on the cost, i.e., the matrices Q, R and(

Q S>

S R

)
do, in general, not need to satisfy any definiteness properties. Moreover, we extend
the notions of strict dissipativity and turnpike properties to sets more general than
steady-states. In [19], it is shown that the sufficiency of strict dissipativity for the near
equilibrium turnpike property can be directly adapted to periodic orbits. Therefore,
we are interested in finding computationally tractable and, if possible, geometric
systems theoretic conditions for strict dissipativity of LQ-problems w.r.t. periodic
orbits. To do this, we assume compact state and input constraints. When considering
optimal periodic orbits, this is not too restrictive. It has been known since the early
days of LQ-control and dissipativity that, when there are no constraints and the
optimal cost stays bounded, the optimal value function is quadratic in the initial
condition and the optimal feedback is linear in the state. Thus, in this case, the
optimal trajectories are solutions of a linear time-invariant difference equation which
cannot exhibit periodic behavior. Nevertheless, the compactness assumption is mainly
due to technical reasons and we conjecture that all subsequent results can be relaxed
to the postulation that only modes which are not positively weighted in the cost
function must be bounded. In Chapter 4, we show that this can, indeed, be done in
the steady-state case

The remainder of this chapter is structured as follows. First, we define the notions
of turnpike properties and strict dissipativity w.r.t. periodic orbits in a slightly different
manner than in the recent economic MPC literature. After discussing the connection
between the different dissipativity properties and their relation to the periodic turnpike
property, we present necessary and sufficient conditions for strict dissipativity w.r.t.

9



3. Strict dissipativity w.r.t. periodic orbits

periodic orbits in the form of an explicit computational procedure. Using the S-
procedure, this in general computationally intractable procedure can be relaxed to a
convex problem, which yields sufficient conditions for finding optimal periodic orbits,
when the state and input constraints are assumed to be of a specific quadratic form. In
this case, the particular shape of the constraints plays an important role in determining
the location of the periodic orbit. We conclude the section by presenting a purely
computational approach for showing strict dissipativity w.r.t. a given periodic orbit
based on sum-of-squares (SOS) programming.

3.1. Preliminaries

The following definition is a straightforward generalization of Definition 2.2.1 (ii) to
periodic orbits.

Definition 3.1.1. We call the LQ-problem strictly dissipative w.r.t. a periodic orbit
Π =

{
(x1, u1), . . . , (xP, uP)

}
⊂ X ×U and the supply rate l(x, u) − lΠ, if there exist

a storage function λ : X → R which is bounded on bounded subsets of X and
bounded from below, and a function α ∈ K∞ such that the dissipation inequality

`(x, u) − `Π + λ(x) − λ(Ax + Bu) ≥ α
(∣∣∣(x, u)

∣∣∣Π)
(3.1.1)

holds for all (x, u) ∈ Z.

As in the steady-state case, Definition 3.1.1 implies that Π is an optimal periodic
orbit, meaning that there is no other periodic orbit with performance superior to
Π [31]. 1 From the strictness of the dissipation inequality (3.1.1), it follows that
strict dissipativity w.r.t. periodic orbits is unique, i.e., whenever the LQ-problem is
strictly dissipative w.r.t. two periodic orbits, then the orbits must coincide.

Note that, although Definition 3.1.1 extends Definition 2.2.1 to more general sets,
the former requires strictness of the inequality w.r.t. both input and state, whereas the
latter only takes the state into account. The reason for choosing strictness in input
and state is twofold: First, Definition 3.1.1 is inspired by the work in [19], where
this stronger assumption is indeed needed for some of the results. Furthermore, strict
dissipativity w.r.t. periodic orbits is certainly more involved than strict dissipativity
w.r.t. steady-states. In particular, given a set of x-coordinates that constitute a periodic
orbit, determining the corresponding inputs that connect these states is not trivial,
even when they are uniquely determined. Therefore, it is desirable to incorporate the
input into the notion of strict dissipativity. This has the advantage that the tools we

1As a matter of fact, it even implies that there is no other trajectory with performance superior to Π [31].
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3.1. Preliminaries

develop in the following allow us to compute both the states and the corresponding
inputs of the periodic orbit w.r.t. which the system is strictly dissipative. Similarly,
we extend the notion of the near equilibrium turnpike property (Definition 2.2.2 (ii))
to periodic orbits.

Definition 3.1.2. We say that the LQ-problem (2.1.1) has the turnpike property w.r.t.
the periodic orbit Π =

{
(x1, u1), . . . , (xP, uP)

}
⊂ X×U, if for each ε > 0 and δ > 0

there exists a constant Cε,δ > 0 such that for all x ∈ X, all N ∈N, and all trajectories
xu(·, x) satisfying JN(x, u) ≤ N`Π + δ for some u ∈ UN(x), the inequality

#
{
k ∈ {0, . . . , N − 1} |

∣∣∣(xu(k, x), u(k))
∣∣∣Π > ε

}
≤ Cε,δ

holds.

In the recent economic MPC literature, the most commonly used turnpike property
is the one from Definition 2.2.2 (ii) and thus it is natural to consider Definition 3.1.2
as an extension of the steady-state case in the sense that trajectories with average
performance close to `Π stay near Π most of the time. Therefore, we do not generalize
the turnpike property in the sense of Definition 2.2.2 (i) and mean in the context of
periodic orbits, if not indicated otherwise, by turnpike property always properties in
the above sense.

Definition 3.1.1 differs from the common definitions of periodic strict dissipa-
tivity in the recent economic MPC literature. In [31], the authors chose to define
strict dissipativity w.r.t. a periodic orbit of length P by demanding that there exist
P (possibly different) storage functions satisfying P dissipation inequalities along
trajectories of length P. A seemingly weaker definition than the one from [31] is
given in [19]. In this work, the authors postulate the existence of a storage function
such that an appropriately defined P-step system 2 is strictly dissipative. Summing
up the dissipation inequality (3.1.1) along any feasible trajectory of length P, it is
readily derived that the definition from [19] is implied by Definition 3.1.1. A more
surprising result is that, for compact constraints, the definition from [19] implies
Definition 3.1.1, i.e., both are equivalent [14]. Moreover, according to [14], they are
equivalent to the one from [31] as well. Since the results of this thesis only require
the fact that Definition 3.1.1 implies the one from [19], we do not discuss the other
results in more detail.

The application of [19, Theorem 12] reveals that strict dissipativity in the sense
of Definition 3.1.1 implies the turnpike property (Definition 3.1.2). This fact serves
as the main motivation for the remainder of this chapter. Since, also in the periodic
case, strict dissipativity is sufficient for the turnpike property, we investigate sufficient

2Cf. Section 4.2 for a rigorous definition of P-step systems
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3. Strict dissipativity w.r.t. periodic orbits

conditions for strict dissipativity w.r.t. periodic orbits and provide tools that allow for
an explicit construction of such orbits.

3.2. Strict dissipativity via non-strict dissipation inequalities

In this section, we state necessary and sufficient conditions for strict dissipativity
w.r.t. periodic orbits as well as an explicit procedure for constructing such orbits
without a priori knowledge of the corresponding period P. For our approach, we
require compactness of state and input constraints, and thus we assume that X and U

are compact for the remainder of this section. We begin with a motivating example
that illustrates the idea of the upcoming results. Clearly, whenever a system is strictly
dissipative w.r.t. some set Π, inequality (3.1.1) implies the non-strict dissipation
inequality

`(x, u) − `Π + λ(x) − λ(Ax + Bu) ≥ 0 (3.2.1)

for all (x, u) ∈ Z. As it turns out, the points for which (3.2.1) holds with equality
constitute the set w.r.t. which the system is strictly dissipative.

Example 3.2.1. Consider the indefinite LQ-problem with

x(k + 1) = x(k) + u(k), `(x, u) = −u2, X = [−1, 1], U = [−2, 2].

It is not difficult to see that the optimal periodic orbit of this system is Π ={
(1,−2), (−1, 2)

}
, i.e., `Π = −4. The non-strict dissipation inequality (3.2.1) with

storage function λ(x) = −x2 reads

−u2 + 4 − x2 + (x + u)2 = 4 − 2xu ≥ 0.

Indeed, this inequality holds on Z, with equality if and only if (x, u) ∈ Π. Hence,
by applying Lemma A.1.2, we conclude that the strict dissipation inequality (3.1.1)
holds. Consequently, the above LQ-problem is strictly dissipative w.r.t. Π.

The observation that we can deduce strict dissipativity from the non-strict dissi-
pation inequality is exploited extensively throughout this section. In particular, the
following algorithm provides a constructive procedure for finding periodic orbits w.r.t.
which the system is strictly dissipative.

12



3.2. Strict dissipativity via non-strict dissipation inequalities

Algorithm 3.2.2. Consider the LQ-problem (2.1.1). Given a set of functions
Λ ⊆ C (Rn), solve the following optimization problem:

maximize
γ∈R, λ∈Λ

γ

s.t. `(x, u) − γ+ λ(x) − λ(Ax + Bu) ≥ 0

for all (x, u) ∈ Z.

(3.2.2)

Denote the optimal quantities by γ∗, λ∗. Define the set of points for which the
constraint in (3.2.2) holds with equality as

M B
{
(x, u) ∈ Z | `(x, u) − γ∗ + λ∗(x) − λ∗(Ax + Bu) = 0

}
.

Return M.

Given a set of functions Λ ⊆ C (Rn), we denote the corresponding output of
Algorithm 3.2.2 by ΠΛ = M. For simplicity, we restrict the search for a storage
function in the above procedure to continuous ones. Since Z is compact, this implies
that the optimization problem (3.2.2) is always feasible. We note that the same
optimization problem appears in the recent publication [6], albeit with a different
motivation and usage. Next, we state the main result of this section. It provides
necessary and sufficient conditions for strict dissipativity w.r.t. periodic orbits.

Theorem 3.2.3. Consider the LQ-problem (2.1.1) with compact state and input
constraints and denote the output of Algorithm 3.2.2, given some Λ ⊆ C (Rn), by
ΠΛ. Then, the following statements hold:

(i) If, for some Λ ⊆ C (Rn), ΠΛ is a periodic orbit, then the LQ-problem is strictly
dissipative and has the turnpike property w.r.t. ΠΛ.

(ii) Suppose that the system is strictly dissipative w.r.t. some periodic orbit Π with
storage function λ. If λ ∈ Λ ⊆ C (Rn), then γ∗ = `Π and Π ⊆ ΠΛ.

Proof. (i): Denote ΠΛ =
{
(x1, u1), . . . , (xP, uP)

}
and define

˜̀∗(x, u) = `(x, u) − γ∗ + λ∗(x) − λ∗(Ax + Bu),

where the asterisks denote the optimal quantities obtained from Algorithm 3.2.2. Due
to the maximization in (3.2.2), ΠΛ is not empty. Summing up ˜̀∗(x, u) = 0 along

13



3. Strict dissipativity w.r.t. periodic orbits

ΠΛ and using that ΠΛ is a periodic orbit, we obtain

P∑
i=1

˜̀∗(xi, ui) = P · (`ΠΛ − γ∗) = 0,

i.e., `ΠΛ = γ∗. Moreover, from the definition of ΠΛ, we have

˜̀∗(x, u) > 0 ∀ (x, u) ∈ Z \ΠΛ,

˜̀∗(x, u) = 0 ∀ (x, u) ∈ ΠΛ.

Thus, by Lemma A.1.2, there exists a class K∞-function α such that

`(x, u) − `ΠΛ + λ∗(x) − λ∗(Ax + Bu) ≥ α (|(x, u)|ΠΛ ) ∀ (x, u) ∈ Z.

Due to compactness of X, the storage function λ is bounded. Hence, the LQ-problem
is strictly dissipative w.r.t. ΠΛ. The statement about the turnpike property follows
from [19, Theorem 12].

(ii): Let Π =
{
(x1, u1), . . . , (xP, uP)

}
. Since λ ∈ Λ, we can use λ as well as the

average cost `Π on Π as candidate solutions for the optimization problem (3.2.2) to
conclude γ∗ ≥ `Π. Define

˜̀(x, u) = `(x, u) − `Π + λ(x) − λ(Ax + Bu),
˜̀∗(x, u) = `(x, u) − γ∗ + λ∗(x) − λ∗(Ax + Bu),

where, again, asterisks denote optimal solutions of (3.2.2). Summing up ˜̀∗(x, u) ≥ 0
along Π and using that Π is a periodic orbit, we obtain

P∑
i=1

˜̀∗(xi, ui) =
P∑

i=1

˜̀(xi, ui) + λ∗(xi) − λ(xi) − λ∗(Axi + Bui)

+ λ(Axi + Bui) − γ∗ + `Π = P · (`Π − γ
∗) ≥ 0,

(3.2.3)

i.e., `Π ≥ γ∗ and hence `Π = γ∗. Consequently, the above inequality (3.2.3)
holds with equality. Since ˜̀∗(x, u) ≥ 0 for any (x, u) ∈ Z, each term in the sum∑P

i=1
˜̀∗(xi, ui) must vanish and hence ˜̀∗(x, u) is zero on Π, i.e., Π ⊆ ΠΛ. �

Remark 3.2.4. The main idea of Algorithm 3.2.2 and thus of Theorem 3.2.3 lies
in the optimization problem (3.2.2). Given a set of functions Λ, the optimal value
γ∗ is the maximum average cost a periodic orbit may have such that the problem
can be strictly dissipative w.r.t. it, using a storage function from Λ. To be more
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3.2. Strict dissipativity via non-strict dissipation inequalities

precise, consider the case where ΠΛ does not contain a periodic orbit. In this case,
by construction, the dissipation inequality w.r.t. ΠΛ still holds, i.e.,

˜̀∗(x, u) > 0 ∀ (x, u) ∈ Z \ΠΛ,

˜̀∗(x, u) = 0 ∀ (x, u) ∈ ΠΛ.

Hence, summing ˜̀∗(x, u) along an arbitrary periodic orbit

Π =
{
(x1, u1), . . . , (xP, uP)

}
* ΠΛ

yields

P∑
i=1

˜̀∗(xi, ui) =
P∑

i=1

`(xi, ui) − γ∗ + λ∗(xi) − λ∗(Axi + Bui)

= P · (`Π − γ
∗) > 0,

i.e., `Π > γ∗ and thus, since γ∗ is optimal for (3.2.2), `Π is not feasible for the
optimization problem. Since this holds for any periodic orbit Π, we conclude that, if
ΠΛ does not contain a periodic orbit, then there is no periodic orbit with sufficiently
low average cost to render the non-strict dissipation inequality feasible.

Theorem 3.2.3 is a powerful tool in that it provides sufficient as well as neces-
sary conditions for the existence of periodic orbits w.r.t. which a system is strictly
dissipative. The application is straightforward: First, one chooses a set of storage
functions, usually parametrized by real parameters. Then, Algorithm 3.2.2 is executed
in order to obtain the corresponding set ΠΛ. If ΠΛ is a periodic orbit, we can directly
conclude that the LQ-problem is strictly dissipative and has the turnpike property
w.r.t. it. On the contrary, if ΠΛ does not contain a periodic orbit with average cost γ∗,
then the system cannot be strictly dissipative w.r.t. any periodic orbit using a storage
function in Λ.

Of course, this view is idealized: Even when we assume that Λ is the set of
quadratic functions and that Z is of some quadratic form, the optimization prob-
lem (3.2.2) is a semi-infinite optimization problem which can, in general, not be
solved efficiently. It is the purpose of the next section to use a standard tool from
convex optimization, the S-procedure, to arrive at computationally tractable sufficient
conditions for strict dissipativity w.r.t. periodic orbits. Nevertheless, for simple
problems, the idea of Theorem 3.2.3 can be applied to give insight into the optimal
behavior of the LQ-problem. This is illustrated by the following two examples.
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3. Strict dissipativity w.r.t. periodic orbits

Example 3.2.5. Consider the indefinite LQ-problem with

x(k + 1) = x(k) + u(k), `(x, u) = x2 − u2, X = [0, 1], U = [−1, 1].

It is readily seen that the optimal periodic orbit is Π =
{
(1,−1), (0, 1)

}
, i.e.,

`Π = − 1
2 . Choosing the storage function λ(x) = − 1

2 x2, the dissipation inequal-
ity takes the form

x2 + xu −
1
2

u2 +
1
2
≥ 0,

which holds on Z, with equality if and only if (x, u) ∈ Π. Hence, due to Lemma A.1.2,
the strict dissipation inequality (3.1.1) holds and thus the LQ-problem is strictly dissi-
pative w.r.t. Π. Note that we could apply the presented approach although, contrary
to Example 3.2.1, the stage cost was not constant along Π.

In the following example, we apply the idea of Theorem 3.2.3 to a different
but related problem, namely to showing strict dissipativity w.r.t. a linear subspace.
Without going into technical details, i.e., defining an average cost and the notion of
strict dissipativity on subspaces, we simply illustrate how such a scenario can be
treated in the presented framework. A systematic extension of our approach to strict
dissipativity w.r.t. subspaces seems promising, but is beyond the scope of this thesis.

Example 3.2.6. Consider the indefinite LQ-problem with(
x1(k + 1)
x2(k + 1)

)
=

(
1 1
0 1

) (
x1(k)
x2(k)

)
+

(
0
1

)
u(k),

`(x, u) = −x2
2, X = R × [0, 1], U = [0, 1].

From a practical point of view, one can think of x1 as the position, of x2 as the
velocity and of u as the acceleration of a rigid body. Then, the above LQ-problem
aims at maximizing the velocity while keeping velocity and acceleration constrained.
The position, however, may be arbitrarily large. It is not difficult to see that the
optimal behavior consists of steering x2 to the boundary x2 = 1 and then applying
u = 0. This implies that the optimal stage cost is −1. Using the storage function
λ(x) = −x2

2, the dissipation inequality reads

1 − x2
2 + 2x2u + u2 ≥ 0. (3.2.4)

It is straightforward to check that this, indeed, holds for all (x, u) ∈ Z. Moreover,
equality holds if and only if (x, u) ∈ V B

{
(a, 1, 0), a ∈ R

}
and, thus, (3.2.4) can be

interpreted as strict dissipativity w.r.t. V , which is indeed a linear subspace of R3.
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3.3. Convex relaxation via the S-procedure

Remark 3.2.7. We conclude the section by noting that Theorem 3.2.3 applies to sets
more general than periodic orbits. First of all, we observe that none of our results
require minimality of the periodic orbit (cf. Definition 2.1.1 (ii)). An example for a
non-minimal periodic orbit w.r.t. which the LQ-problem can be shown to be strictly
dissipative appears in the setting

x(k + 1) = u(k), `(x, u) = −u2, X = U = [−1, 1].

The application of Theorem 3.2.3 reveals that this problem is strictly dissipative w.r.t.
Π =

{
(1, 1), (1,−1), (−1,−1), (−1, 1)

}
. Although Π contains two steady-states, it

fulfills the definition of a periodic orbit. Note, however, that Π is not a minimal
periodic orbit since the state x = 1 appears twice in it. Furthermore, Theorem 3.2.3
applies to any set which is a disjoint union of periodic orbits, e.g., one can show strict
dissipativity of the LQ-problem with

x(k + 1) = x(k) + u(k), `(x, u) = −x2, X = [−1, 1], U = [−1, 1]

w.r.t. Π =
{
(−1, 0), (1, 0)

}
, which consists of two steady-states.

This assumption on Π can be relaxed even further: In general, the developed tools
apply to any set Π which is invariant, i.e., in which we have that for all (x, u) ∈ Π
there exists an input ū such that (Ax + Bu, ū) ∈ Π. In this case, the average cost on
Π would be defined as the average cost of all trajectories that stay in Π. Moreover, as
Example 3.2.6 shows, we can even consider uncountably infinite sets such as linear
subspaces in this framework. Nevertheless, since periodic orbits of length ≥ 2 are,
after steady-states, the most common sets w.r.t. which dissipativity is considered in
the existing literature, we postpone the discussion of strict dissipativity w.r.t. more
general sets to future research.

3.3. Convex relaxation via the S-procedure

As described in the previous section, Theorem 3.2.3 provides powerful conditions for
strict dissipativity, which are, however, in general not computationally tractable. It is
the purpose of this section to adapt Algorithm 3.2.2 such that it can be executed using
tools from convex optimization. First, we present and discuss one of the main results
of this thesis which achieves a convex relaxation to Algorithm 3.2.2. Thereafter,
we focus on the application of this relaxation to the special case of symmetric LQ-
problems.
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3. Strict dissipativity w.r.t. periodic orbits

3.3.1. The main result

Throughout this section, we will make extensive use of the so-called S-procedure.
The S-procedure allows for a reformulation of an inequality on a quadratic set into an
inequality on the whole euclidean space. It can be summarized as follows (cf. [4]):
Given some quadratic functions Fi : Rn → R with

Fi(x) =
(
x
1

)> (
Pi q>i
qi ci

) (
x
1

)
, i ∈ I[0,r],

we have F0(x) ≥ 0.∀x ∈
{
x | Fi(x) ≤ 0, i ∈ I[1,r]

}
if there exist constant multipliers

λi ≥ 0, i ∈ I[1,r] such that

F0(x) +
r∑

i=1

λiFi(x) ≥ 0 (3.3.1)

for all x ∈ Rn. Note that the latter inequality can be checked efficiently using linear
matrix inequality (LMI) techniques. In case that r = 1, the S-procedure is also
necessary in the sense that F0(x) ≥ 0.∀x ∈

{
x | F1(x) ≤ 0

}
implies the existence of

a multiplier λ1 ≥ 0 such that (3.3.1) holds [4]. Before we state the main result of
this section, we make an additional assumption on the constraints which are involved
in the LQ-problem: We assume compact constraints of a specific, quadratic form,
namely

X =
{
x ∈ Rn | gx

i (x) = x>Px
i x + x>qx

i + cx
i ≤ 0, i ∈ I[1,lx]

}
,

U =
{
u ∈ Rm | gu

j (u) = u>Pu
j u + u>qu

j + cu
j ≤ 0, j ∈ I[1,lu]

} (3.3.2)

for some

Px
i ∈ Rn×n, Pu

j ∈ Rm×m, qx
i ∈ Rn, qu

j ∈ Rm, cx
i ∈ R, cu

j ∈ R

with Px
i , Pu

j � 0.

Remark 3.3.1. The particular form of the above constraints will be employed almost
everywhere throughout this thesis. They incorporate the most common choices of
constraint sets, such as ellipsoidal, hyperbox or polytopic sets (and combinations
thereof), by which we mean sets of the form{

x ∈ Rn | x>Px + x>q + c ≤ 0
}

, (3.3.3)
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3.3. Convex relaxation via the S-procedure

[a1, b1] × · · · × [an, bn]

=
{
x ∈ Rn | (x1 − c1)

2 − d1 ≤ 0, . . . , (xn − cn)
2 − dn ≤ 0

}
,

(3.3.4)

and {
x ∈ Rn | Hx ≤ b

}
, (3.3.5)

respectively, for suitably defined P ∈ Rn×n, q ∈ Rn, ai, bi, ci, di, c ∈ R, H ∈ Rl×n,
b ∈ Rl. However, as we will see in the following, the upcoming results mainly take
advantage of the quadratic parts of the functions gx

i , gu
j in (3.3.2). Therefore, for

their application, the above constraints should be parametrized such that the matrices
Px

i , Pu
j do not vanish. Clearly, as it can be seen from (3.3.3) and (3.3.4), this is

possible for any ellipsoidal or hyperbox set and combinations thereof. Moreover,
convex polytopes are defined as the intersection of finitely many half-spaces. Thus,
given that they are compact, they can as well be considered as the intersection of
finitely many rotated hyperboxes, i.e., as the intersection of sets of the form{

x ∈ Rn | (z1 − c̃1)
2 − d̃1 ≤ 0, . . . , (zn − c̃n)

2 − d̃n ≤ 0, z = T x
}

(3.3.6)

for suitably defined c̃i, d̃i ∈ R and an appropriate rotation matrix T ∈ Rn×n. Any set
of the form (3.3.6) can be written in the form (3.3.2) with non-vanishing matrices
Px

i , Pu
j . Thus, since convex compact polytopes are intersections of such sets, they can

be written in the form (3.3.2) with non-zero Px
i , Pu

j as well.

The following algorithm provides an explicit computational procedure for finding
periodic orbits w.r.t. which the LQ-problem is strictly dissipative, similar to Algo-
rithm 3.2.2. The main difference is that we employ the S-procedure to render the
underlying optimization problem computationally tractable.
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3. Strict dissipativity w.r.t. periodic orbits

Algorithm 3.3.2. Consider the LQ-problem (2.1.1) with constraints of the
form (3.3.2). Given a set of functions Λ ⊆ C (Rn), solve the following op-
timization problem:

maximize
λx

i ,λ f
i ,λu

j≥0
γ∈R, λ∈Λ

γ

s.t. `(x, u) − γ+ λ(x) − λ(Ax + Bu)

+
lx∑

i=1

λx
i gx

i (x) + λ
f
i gx

i (Ax + Bu) +
lu∑

j=1

λu
j g

u
j (u) ≥ 0

for all (x, u) ∈ Rn+m.

(3.3.7)

Denote the optimal quantities by λx
i
∗, λ f

i
∗
, λu

j
∗, γ∗, λ∗ and define

˜̀∗
λ(x, u) = `(x, u) − γ∗ + λ∗(x) − λ∗(Ax + Bu)

+
lx∑

i=1

λx
i
∗gx

i (x) + λ
f
i
∗
gx

i (Ax + Bu) +
lu∑

j=1

λu
j
∗gu

j (u).

Further, define the set of points for which the constraint in (3.3.7) holds with
equality as

M B
{
(x, u) ∈ Rn+m | ˜̀∗

λ(x, u) = 0
}

.

Consider all points in M that satisfy the complementary slackness condition:

Mc B
{
(x, u) ∈ M | λx

i
∗gx

i (x) = 0, λ f
i
∗
gx

i (Ax + Bu) = 0, λu
j
∗gu

j (u) = 0

for i ∈ I[1,lx], j ∈ I[1,lu]

}
.

Return Z∩Mc.

Given a set of functions Λ ⊆ C (Rn), we denote the corresponding output of
Algorithm 3.3.2 by ΠΛ = Z∩Mc. The following theorem is the main result of this
section. It is an adaption of Theorem 3.2.3 to Algorithm 3.3.2 with two essential
differences. First, the sufficient conditions for strict dissipativity w.r.t. a periodic
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3.3. Convex relaxation via the S-procedure

orbit are, at least for polynomial storage functions, computationally tractable. The
converse result, however, does not provide necessary conditions for the existence of a
periodic orbit w.r.t. which the LQ-problem is strictly dissipative.

Theorem 3.3.3. Consider the LQ-problem (2.1.1) with compact state and input
constraints of the form (3.3.2) and denote the output of Algorithm 3.3.2, given some
Λ ⊆ C (Rn), by ΠΛ. Then, the following statements hold:

(i) If, for some Λ ⊆ C (Rn), ΠΛ , ∅ is a periodic orbit, then the LQ-problem is
strictly dissipative and has the turnpike property w.r.t. ΠΛ.

(ii) Suppose that the system is strictly dissipative w.r.t. some periodic orbit Π with
storage function λ. If Π{λ} , ∅, 3 then Π = Π{λ}.

Proof. (i): Since ΠΛ , ∅, there are optimal parameters for which the constraint
in (3.3.7) holds. Therefore, by the S-procedure,

˜̀∗(x, u) B `(x, u) − γ∗ + λ∗(x) − λ∗(Ax + Bu) ≥ 0 ∀ (x, u) ∈ Z, (3.3.8)

where the asterisks denote the optimal quantities obtained from Algorithm 3.3.2.
Further, using the complementary slackness conditions in Mc, the non-strict inequal-
ity (3.3.8) is fulfilled with equality exactly on Z∩Mc, i.e.,

˜̀∗(x, u) > 0 ∀ (x, u) ∈ Z \Mc,

˜̀∗(x, u) = 0 ∀ (x, u) ∈ Z∩Mc = ΠΛ.

The remainder of the proof is completely analogous to the proof of Theorem 3.2.3
and therefore omitted.

(ii): First, we note that this statement does not trivially follow from the uniqueness
of strict dissipativity w.r.t. periodic orbits since we have not yet proven that Π{λ}

is a periodic orbit. Let Π =
{
(x1, u1), . . . , (xP, uP)

}
and ˜̀(x, u) B `(x, u) − `Π +

λ(x) − λ(Ax + Bu). Then,

P∑
i=1

˜̀∗(xi, ui) =
P∑

i=1

`(xi, ui) − γ∗ + λ(xi) − λ(Axi + Bui)

= P · (`Π − γ
∗) ≥ 0.

Hence, ˜̀∗(x, u) ≥ ˜̀(x, u) ≥ 0 for any (x, u) ∈ Z. By definition, ˜̀∗(x, u) vanishes
on Π{λ} and therefore the above inequalities hold with equality, i.e., ˜̀∗(x, u) = 0

3Π{λ} = ΠΛ where Λ consists only of the function λ, i.e., the only admissible storage function that we
allow for in Algorithm 3.3.2 is λ.
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3. Strict dissipativity w.r.t. periodic orbits

as well as ˜̀(x, u) = 0 for any (x, u) ∈ Π{λ}. Since ˜̀∗(x, u) and ˜̀(x, u) differ by a
constant, this constant must be zero, i.e., `Π = γ∗, and thus ˜̀∗(x, u) = ˜̀(x, u) for
any (x, u) ∈ Z. Finally, considering the strictness of the dissipation inequalities, one
readily verifies that Π = Π{λ}. �

Remark 3.3.4. If we consider only quadratic storage functions of the form λ(x) =
x>Px + q>x, then the optimization problem (3.3.7) can be solved efficiently by
reformulating the constraint as the LMI

Qλ S>λ
1
2 sλ

S λ Rλ 1
2 vλ

1
2 s>λ

1
2 v>λ cλ

 � 0, (3.3.9)

where

Qλ = P − A>PA + Q +
lx∑

i=1

λx
i Px

i + λ
f
i A>Px

i A,

S λ = S − B>PA +
lx∑

i=1

λ
f
i B>Px

i A,

Rλ = R − B>PB +
lx∑

i=1

λ
f
i B>Px

i B +
lu∑

j=1

λu
j P

u
j ,

sλ = q − A>q + s +
lx∑

i=1

λx
i qx

i + λ
f
i A>qx

i ,

vλ = v − B>q +
lx∑

i=1

λ
f
i B>qx

i +
lu∑

j=1

λu
j q

u
j ,

cλ = c − γ+
lx∑

i=1

λx
i cx

i + λ
f
i cx

i +
lu∑

j=1

λu
j c

u
j .

After maximizing γ subject to the LMI (3.3.9), Algorithm 3.3.2 amounts to determin-
ing M as well as Mc which involves the solution of algebraic equations. Assuming
a polynomial storage function, one could also reformulate the optimization prob-
lem (3.3.7) as an SOS program, thereby keeping the algorithm tractable. In general,
we can restrict the choice of Λ to any set of functions that simplifies the computations.
Of course, one should keep in mind that this introduces conservatism since there
might exist feasible storage functions which are not in the chosen set Λ. Nevertheless,
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3.3. Convex relaxation via the S-procedure

we only need to find a set of parameters that renders the constraint of problem (3.3.7)
feasible and for which Z∩Mc is a non-empty periodic orbit. In this case, due to the
uniqueness of periodic strict dissipativity, Z∩Mc is the periodic orbit w.r.t. which
the system is strictly dissipative. The above LMI (3.3.9) confirms the claim made in
Remark 3.3.1: Since the matrices Px

i , Pu
j � 0 appear mainly on the block-diagonal

terms in (3.3.9), the feasibility of the LMI is enhanced when they are non-zero. Thus,
the constraints (3.3.2) should be parametrized such that they do not vanish.

Remark 3.3.5. Necessary conditions for the LMI (3.3.9) are Qλ � 0 and Rλ � 0.
When the cost is assumed to be indefinite, in most cases some of the multipliers
λx

i , λ f
i , λu

j have to be non-zero in order to render these two LMIs feasible. However,
for showing strict dissipativity w.r.t. a periodic orbit with Theorem 3.3.3, the com-
plementary slackness condition must hold on the orbit resulting from the algorithm.
Hence, for all non-zero multipliers, the corresponding constraint functions must be
zero, i.e., the respective modes lie on the boundary of the constraints. Thus, when we
allow for negative eigenvalues in the cost and consider quadratic storage functions,
then the optimal periodic orbit resulting from Theorem 3.3.3 is on the boundary of
the constraints.

Remark 3.3.6. The assumptions Λ = {λ} and ΠΛ , ∅ in part (ii) of Theorem 3.3.3
are considerably stronger than simply demanding λ ∈ Λ as it was done in The-
orem 3.2.3. In particular, the assumption that Π{λ} is non-empty indicates that
Theorem 3.3.3 (ii) fails to provide truly necessary conditions for strict dissipativ-
ity w.r.t. a periodic orbit. When Π{λ} = ∅, we cannot use Algorithm 3.3.2 to
conclude anything about the existence of a periodic orbit w.r.t. which the LQ-
problem is strictly dissipative. There are multiple situations in which this might
occur: First of all, it might happen due to the failure of the S-procedure to provide
necessary conditions. To see this, suppose that the system is strictly dissipative
w.r.t. some periodic orbit Π. Clearly, Π{λ} = ∅ implies ˜̀∗(x, u) > 0 for all
(x, u) ∈ Z. Summing this up along Π, we conclude that `Π > γ∗. It is readily
seen that `Π > γ∗ is the case if and only if the converse direction of the S-procedure
fails, i.e., when ˜̀(x, u) ≥ 0 for all (x, u) ∈ Z does not imply the existence of multi-
pliers such that ˜̀(x, u) +

∑lx

i=1 λ
x
i gx

i (x) + λ
f
i gx

i (Ax + Bu) +
∑lu

j=1 λ
u
j g

u
j (u) ≥ 0 for

all (x, u) ∈ Rn+m and thus, we cannot use `Π as candidate solution for (3.3.7).
Another reason for the failure of Algorithm 3.3.2 might be due to the complemen-

tary slackness conditions. As discussed in Remark 3.3.5, for indefinite cost functions,
all elements of the optimal periodic orbit must lie on the boundary of the constraints.
Thus, as the following example illustrates, when parts of the periodic orbit are in the
interior of the constraints, then Algorithm 3.3.2 cannot be used to find this orbit.
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3. Strict dissipativity w.r.t. periodic orbits

Example 3.3.7. Consider the indefinite LQ-problem with

x(k + 1) = x(k) + u(k), `(x, u) = −x2 − 4u2, X = [0, 2], U = [−1, 1].

It is straightforward to see that the optimal trajectory of this system is the periodic
orbit Π =

{
(2,−1), (1, 1)

}
. Considering only quadratic storage functions, an applica-

tion of Algorithm 3.3.2 yields three non-zero multipliers. Hence, the states and inputs
in Mc can only consist of boundary points of X and U, respectively. Therefore, it is
impossible to arrive at the periodic orbit Π from above, using Theorem 3.3.3. This is
confirmed by the execution of Algorithm 3.3.2 which reveals Mc = ∅.

To conclude, we cannot expect results on necessity from Algorithm 3.3.2 since,
even if we knew the storage function of a periodic orbit w.r.t. which the LQ-problem
is strictly dissipative, the algorithm might still fail to find this orbit.

The complementary slackness condition in Algorithm 3.3.2, which is well-known
from Lagrange duality theory, indicates a connection between the present approach
and some constrained optimization problem. This connection becomes more trans-
parent when considering strict dissipativity w.r.t. steady-states, since the latter is
basically a procedure for solving an optimal steady-state problem. Therefore, we
discuss the appearance of the complementary slackness condition in Section 4.1
(Remark 4.1.7) and take it, for now, simply as an algebraic condition that ensures
strict dissipativity.

Example 3.3.8. Consider the indefinite LQ-problem with

x(k + 1) = −2x(k) + u(k), `(x, u) = −x2, X = [−10, 10], U = [−1, 1],

i.e., gx
1(x) = x2 − 100, gu

1(u) = u2 − 1.

In order to apply Algorithm 3.3.2, we consider Λ to be the set of quadratic functions,
i.e.,

Λ =
{
λ ∈ C (Rn) | λ(x) = x>Px + q>x, P ∈ Rn×n, q ∈ Rn

}
.

Maximizing γ subject to the LMI (3.3.9) yields γ∗ = −1, λx
1
∗ = λ

f
1
∗
= 0, λu

1
∗ =

1, P = −1, q = 0, and the constraint function of the optimization problem (3.3.7) for
these optimal parameters becomes

`∗λ(x, u) =
(
x
u

)> (
2 −2
−2 2

) (
x
u

)
.
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3.3. Convex relaxation via the S-procedure

Clearly, the corresponding kernel is

M = span
{(

1
1

)}
.

Furthermore, by including the complementary slackness condition, we arrive at

Mc =
{
(x, u) ∈ M | gu

1(u) = u2 − 1 = 0
}
=

{(
1
1

)
,
(
−1
−1

)}
.

Consequently, ΠΛ = Z∩Mc = Mc , ∅ and hence the system is strictly dissipative
w.r.t. the periodic orbit ΠΛ and has the turnpike property w.r.t. ΠΛ. This is confirmed
by a simulation where the optimal control problem was solved numerically using
the MATLAB-solver fmincon, cf. Figure 3.1. One can see that the trajectory first
converges to a neighborhood of the periodic orbit and then leaves the periodic orbit
towards the end of the simulation horizon.

Figure 3.1.: Optimal trajectories for the optimal control problem stated in Exam-
ple 3.3.8 with N = 15, x0 = 0.3.
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3. Strict dissipativity w.r.t. periodic orbits

3.3.2. Symmetric LQ-problems

Example 3.3.8 exhibits an interesting connection between the optimal periodic orbit
and the null-set of the non-strict dissipation inequality. It can be seen that the periodic
orbit spans the set of points for which the modified cost `∗λ(x, u) is equal to zero, i.e.,
it spans the kernel of the matrix (

2 −2
−2 2

)
.

The occurrence of such a case simplifies the application of Algorithm 3.3.2, since
M can be computed by finding the kernel of a matrix, i.e., by solving a system of
linear equations, and Mc is then the intersection of this linear subspace with the
complementary slackness condition. Moreover, the above phenomenon indicates a
relation between strict dissipativity of a constrained LQ-problem w.r.t. a periodic
orbit and strict dissipativity of an unconstrained LQ-problem with modified cost
`∗λ(x, u) w.r.t. the subspace spanned by the periodic orbit. Therefore, it is of interest
to find situations in which this phenomenon appears. Example 3.3.8 shows a certain
symmetry, i.e., `(−x,−u) = `(x, u) and X and U are symmetric w.r.t. zero. In fact,
one sees from the LMI (3.3.9) that, when assuming a quadratic storage function, this
symmetry assumption implies that M is a linear subspace: As already mentioned
in Remark 3.3.1, the matrices Px

i and Pu
j should be chosen preferably non-zero and

therefore we assume that, for symmetric constraints, qx
i = 0, qu

j = 0 (i ∈ I[1,lx],
j ∈ I[1,lu]). Moreover, due to the symmetry in the cost, we have s = 0 as well as
v = 0. Hence, in view of the LMI (3.3.9), there is no use in choosing a storage
function λ(x) = x>Px + q>x with q , 0 since q, A>q and B>q are the only terms
appearing in the (1, 3), (2, 3), (3, 1), (3, 2)-blocks of the LMI. 4 Consequently, all
linear terms in the dissipation inequality vanish. Moreover, due to the maximization
in γ, any optimal solution of (3.3.7) satisfies cλ = 0. To conclude, in the symmetric
case, we can replace the LMI (3.3.9) by

Hλ =

(
Qλ S>λ
S λ Rλ

)
� 0 and cλ = 0 (3.3.10)

with Qλ, S λ, Rλ, cλ as in (3.3.9). Then, given the optimal multipliers λx
i
∗, λ f

i
∗
, λu

j
∗,

the set M is readily computed as the kernel of Hλ, i.e., M = ker (Hλ). Thereafter,

4Block-diagonal entries of a positive semidefinite matrix are positive semidefinite themselves. Therefore,
positive semidefiniteness of the matrix in (3.3.9) for some sλ, vλ implies positive semidefiniteness of the
same matrix with sλ = 0, vλ = 0.
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3.3. Convex relaxation via the S-procedure

it only remains to check whether the complementary slackness conditions reduce
ker (Hλ) to a periodic orbit.

Since ker (Hλ) is a linear subspace of Rn+m and the constraints are assumed to be
symmetric, we have that, whenever (x, u) ∈ Π for some periodic orbit Π resulting
from Algorithm 3.3.2, then −(x, u) ∈ Π, i.e., Π = −Π. 5 This symmetry property of
the periodic orbit holds even in a more general case when we allow for non-quadratic
storage functions. Although the proof involves only simple algebraic arguments, we
consider it important enough to state it as an explicit result.

Proposition 3.3.9. Consider the LQ-problem (2.1.1) with even stage cost `(x, u)
and symmetric constraints X and U of the form (3.3.2), i.e., `(x, u) = `(−x,−u) for
all (x, u) ∈ Z, as well as X = −X and U = −U. Suppose that the system is strictly
dissipative w.r.t. the periodic orbit Π. Then, Π is symmetric, i.e., Π = −Π.

Proof. Using the symmetry assumptions on `, X, U, as well as the fact that ˜̀(x, u) =
`(x, u)− `Π + λ(x)−λ(Ax+ Bu) is zero on Π, summing up ˜̀(x, u) along −Π yields

P∑
i=1

˜̀(−xi,−ui) =
P∑

i=1

`(−xi,−ui) − `Π + λ(−xi) − λ(−Axi − Bui)

=
P∑

i=1

`(xi, ui) − `Π + λ(−xi) − λ(−Axi − Bui)

=
P∑

i=1

˜̀(xi, ui) + λ(−xi) − λ(−Axi − Bui)

− λ(xi) + λ(Axi + Bui)

= 0.

Since ˜̀(−xi,−ui) ≥ 0, we conclude that ˜̀(−xi,−ui) = 0 for any i ∈ I[1,P], i.e.,
˜̀(x, u) vanishes on −Π and thus −Π ⊆ Π. Now, take any (x, u) ∈ Π. Then, due to
the above work, −(x, u) ∈ Π and hence (x, u) ∈ −Π. This implies Π = −Π, which
concludes the proof. �

Remark 3.3.10. First, we note that the result from Proposition 3.3.9 can be extended
to more general constraints than (3.3.2), possibly non-compact, with the only require-
ment that they are symmetric. We can even relax the linearity assumption on the sys-
tem dynamics - the proof works for any dynamical system x(k + 1) = f (x(k), u(k))

5Given a subset L of some euclidean space Ra, we define −L B {l ∈ Ra | −l ∈ L}.
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3. Strict dissipativity w.r.t. periodic orbits

with a vector field f which is odd in both arguments, i.e., f (x, u) = − f (−x,−u).
Although the proof of Proposition 3.3.9 requires only algebraic manipulations of
the dissipation inequality, it gives interesting insights into the nature of optimal
periodic orbits for symmetric LQ-problems. In particular, under the assumptions of
Proposition 3.3.9, the following statements hold true:

• The period P of the optimal periodic orbit Π is even if and only if Π ,
{
(0, 0)

}
.

• If the LQ-problem is strictly dissipative w.r.t. a steady-state, then this steady-
state is (0, 0).

• For P = 2, the stage cost is constant along Π.

3.4. A direct computational approach via sum-of-squares

This section presents an alternative approach for showing strict dissipativity w.r.t.
a given periodic orbit. The main idea lies in the approximation of the point-to-set
distance |(x, u)|Π by a polynomial function. This allows for the verification of the
dissipation inequality using methods from SOS programming. Given a periodic orbit
Π =

{
(x1, u1), . . . , (xP, uP)

}
, we define a distance-like function as

dΠ(x, u) =

∥∥∥∥∥∥
(
x
u

)
−

(
x1

u1

)∥∥∥∥∥∥2

· . . . ·

∥∥∥∥∥∥
(
x
u

)
−

(
xP

uP

)∥∥∥∥∥∥2

.

Obviously, dΠ(x, u) is nonnegative, zero if and only if (x, u) ∈ Π, and radially
unbounded in (x, u). Thus, it qualifies as distance w.r.t. the set Π. Strict dissipativity
w.r.t. Π then amounts to finding a storage function λ which is bounded appropriately,
and a scalar γ > 0 such that the following inequality holds for all (x, u) ∈ Z:

`(x, u) − `Π + λ(x) − λ(Ax + Bu) ≥ γ · dΠ(x, u). (3.4.1)

It follows from Lemma A.1.2 that, for compact constraints, inequality (3.4.1) implies
the existence of a class K∞ function such that the periodic dissipation inequal-
ity (3.1.1) holds. Thus, the approach presented in the following can be seen as a
sufficient condition for periodic dissipativity, when the corresponding periodic orbit is
known in advance. In the following, we assume that the constraints are compact and of
the form (3.3.2). Assuming a polynomial storage function, inequality (3.4.1) can then
be verified computationally using SOS programming. A polynomial p : Rn → R is
called SOS if there exist polynomials qi : Rn → R, i ∈ I[1,r] such that

p(x) =
r∑

i=1

qi(x)2.
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3.4. A direct computational approach via sum-of-squares

Note that, if p is SOS, then p(x) ≥ 0 for all x ∈ Rn. However, as already shown by
Hilbert in the 19th century, the converse is in general not true. As detailed in [16], the
question whether a given polynomial is SOS can be answered using LMI techniques.
The main idea lies in writing p as a, in general non-unique, factorization

p(x) = h(x)>Mh(x)

with h(x) being the vector of monomials up to a certain degree. The problem then
amounts to finding a matrix M which is positive semidefinite. This technique even
allows p to contain decision variables that enter M in an affine fashion. Now, one
can combine this setting with S-procedure-like conditions for checking nonnegativity
of polynomials on a given set of the form P =

{
(x ∈ Rn | gi(x) ≤ 0, i ∈ I[1,l]

}
for

arbitrary polynomial functions gi: A polynomial p is nonnegative on P if there exist
SOS polynomials Λi such that p +

∑l
i=1 Λigi is SOS. For practical purposes, we

restrict the degree of the Λi’s to be less than or equal to the degree of p. Then, a
sufficient condition for inequality (3.4.1) to hold on constraints of the form (3.3.2)
can be given in terms of LMIs. This is illustrated in the following example. All
computations were performed using the sum-of-squares module of the MATLAB
toolbox Yalmip [15, 16] in combination with the solver MOSEK [18].

Example 3.4.1. Consider the indefinite LQ-problem from Example 3.2.1, i.e.,

x(k + 1) = x(k) + u(k), `(x, u) = −u2, X = [−1, 1], U = [−2, 2].

As discussed in Example 3.2.1, the optimal periodic orbit is Π =
{
(−1, 2), (1,−2)

}
with `Π = −4. We confirm this statement by verifying inequality (3.4.1) via SOS
programming. To do so, we define the distance-like function

dΠ(x, u) =

∥∥∥∥∥∥
(
x
u

)
−

(
−1
2

)∥∥∥∥∥∥2

·

∥∥∥∥∥∥
(
x
u

)
−

(
1
−2

)∥∥∥∥∥∥2

=
(
(x + 1)2 + (u − 2)2

)
·
(
(x − 1)2 + (u + 2)2

)
.

Moreover, the constraints are written as

Z =
{
(x, u) ∈ R2 | g1(x, u) = x2 − 1 ≤ 0, g2(x, u) = u2 − 4 ≤ 0,

g3(x, u) = (x + u)2 − 1 ≤ 0
}

.

Finally, to conclude that inequality (3.4.1) holds, we need to find a polynomial storage
function λ : R → R, SOS polynomials Λi : R2 → R, i ∈ I[1,3], as well as some
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3. Strict dissipativity w.r.t. periodic orbits

scalar γ > 0 such that the function

`(x, u) − `Π + λ(x) − λ(Ax + Bu) − γ · dΠ(x, u) +
3∑

i=1

Λi(x, u)gi(x, u)

is SOS. Using Yalmip with the solver MOSEK, we arrive at the following parameters
which render inequality (3.4.1) feasible: γ = 0.12, λ(x) = −0.5x2 and the SOS
polynomials

Λ1(x, u) = 0.261x4 − 0.068x3u + 0.162x2u2 + 0.118xu3 + 0.083u4

+ 0.12x2 − 0.065xu + 0.034u2 + 0.119,

Λ2(x, u) = 0.064x4 + 0.067x3u + 0.113x2u2 + 0.082xu3 + 0.031u4

− 0.129x2 − 0.067xu − 0.001u2 + 0.064,

Λ3(x, u) = 0.188x4 + 0.086x3u + 0.144x2u2 + 0.174xu3 + 0.098u4

+ 0.066x2 + 0.352xu + 0.14u2 + 0.245.

It is straightforward to verify that these polynomials, indeed, render the above-defined
function nonnegative. Hence, we conclude that inequality (3.4.1) holds on Z, i.e.,
the system is strictly dissipative w.r.t. Π in the sense of inequality (3.4.1).

30



4. Strict dissipativity and turnpike properties
w.r.t. steady-states

This chapter is devoted to the analysis of strict dissipativity and turnpike properties
w.r.t. steady-states. As explained in Section 2.2, this problem has been solved
for positive (semi-)definite cost functions and steady-states in the interior of the
constraints in the recent work [10]. We extend these results into several directions
using two different approaches. Both of them do, in general, not require that Q � 0
and R � 0. To some extent, the first method can be viewed as an application of the
framework from Chapter 3 to steady-states. However, since we want to deal with
possibly unbounded constraints, we develop a slightly different framework which is
essentially a combination of the S-procedure and the results from [10]. Nevertheless,
it is in good accordance with the results for periodic orbits, given that the constraints
are compact. The second method which we present in this chapter applies the theory
from [10] to P-step systems, thereby relaxing the condition that Q needs to be positive
semidefinite.

4.1. An S-procedure approach

Any steady-state is a periodic orbit with period one. Therefore, the theory from
Section 3 can as well be applied to steady-states. This theory, however, relied heavily
on Lemma A.1.2 which requires compact constraints. As we will see in the remainder
of this section, we can establish computationally tractable and, partly, geometric
conditions for strict dissipativity w.r.t. steady-states without making this assumption.
To do so, we take a slightly different approach to the problem which is mainly a
combination of the S-procedure and the theory from [10]. Nevertheless, the particular
shape of the quadratic constraints (3.3.2) will play an important role. Furthermore, in
this section, we consider the definitions of strict dissipativity and near equilibrium
turnpikes from Section 2.2 which require strictness only in the state. This is mainly
due to the fact that most of the upcoming results are based on [10], which uses the
latter dissipativity notion. Moreover, one motivation for using strictness w.r.t. the
input and the state in the previous chapter was the fact that, given a set of states that
constitute a periodic orbit, it might not be obvious which inputs are required to patch
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4. Strict dissipativity and turnpike properties w.r.t. steady-states

these together in the correct order. Clearly, this is not an issue in the steady-state case.
Nevertheless, we note that all subsequent results can be easily adapted to dissipativity
with strictness in state and input.

The remainder of the section is structured as follows: First, we provide sufficient
conditions for strict dissipativity based on LMIs and give an explicit convex com-
putational procedure to compute the corresponding optimal steady-state. Herein,
the key observation is that negative eigenvalues can be compensated by the specific
shape of the constraints when the turnpike equilibrium lies on their boundary. In
this case, the relation between negative eigenvalues and the exact location of the
turnpike is even more direct than in the periodic case in Chapter 3. Although the result
stated in Section 4.1.1 allows for an intuitive geometric characterization, we state
an improved version in Section 4.1.2 which allows for showing strict dissipativity
(and thus the near equilibrium turnpike property) for a significantly wider variety of
problems. The section closes with a result on necessary and sufficient conditions for
strict dissipativity with quadratic storage functions in case that there is only one input
constraint.

4.1.1. A geometric characterization

The following theorem is a combination of the S-procedure and the recent work
from [10]. For its statement, we need to assume that the coupling cost matrix S
vanishes. Problems with non-vanishing coupling costs are the subject of Section 4.1.2.
The theorem provides sufficient conditions for the existence of steady-states w.r.t.
which the LQ-problem is strictly dissipative and thus has the near equilibrium turnpike
property.

Theorem 4.1.1. Consider the LQ-problem (2.1.1) with S = 0 and constraints of the
form (3.3.2). Suppose there exist λx

i , λu
j ≥ 0 (i ∈ I[1,lx], j ∈ I[1,lu]) and a symmetric

matrix P such that the LMIs

Q +
lx∑

i=1

λx
i Px

i � 0, R +
lu∑

j=1

λu
j P

u
j � 0,

Q +
lx∑

i=1

λx
i Px

i + P − A>PA � 0

(4.1.1)

hold. Assume further that X is bounded or there exist λc
i ≥ 0 (i ∈ I[1,lx]) such that
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4.1. An S-procedure approach

the LMI

P +
lx∑

i=1

λc
i Px

i � 0 (4.1.2)

holds. Then, for those λx
i , λu

j , the modified LQ-problem with cost `λ(x, u) = `(x, u)+∑lx

i=1 λ
x
i gx

i (x) +
∑lu

j=1 λ
u
j g

u
j (u) is strictly dissipative at the steady-state

(xe, ue) = argmin
x∈X,u∈U
x=Ax+Bu

`λ(x, u). (4.1.3)

Moreover, if the complementary slackness conditions

λx
i gx

i (xe) = 0, λu
j g

u
j (u

e) = 0 (4.1.4)

hold for all i ∈ I[1,lx], j ∈ I[1,lu], then the original system with stage cost `(x, u) is
strictly dissipative at (xe, ue) and has the near equilibrium turnpike property.

Proof. The fact that, given the assumptions, the modified optimal control problem
with stage cost `λ(x, u) is strictly cyclo-dissipative at (xe, ue) from (4.1.3), can be
proven in analogy to the proof of [10, Lemma 4.1], where we employ the definiteness
properties of the modified Q and R matrices. The corresponding storage function is
then quadratic and of the form λ(x) = γ · x>Px + q>x for some q ∈ Rn, γ > 0. By
strict cyclo-dissipativity, there exists α ∈ K∞ such that

`λ(x, u) − `λ(xe, ue) + λ(x) − λ(Ax + Bu) ≥ α (‖x − xe‖)

for all (x, u) ∈ Z. Thus, due to gx
i (x) ≤ 0, gu

j (u) ≤ 0 as well as λx
i gx

i (xe) = 0,
λu

j g
u
j (u

e) = 0 for all i ∈ I[1,lx], j ∈ I[1,lu], we arrive at

`(x, u) − `(xe, ue) + λ(x) − λ(Ax + Bu)

≥

lx∑
i=1

λx
i

(
gx

i (xe) − gx
i (x)

)
+

lu∑
j=1

λu
j

(
gu

j (u
e) − gu

j (u)
)
+ α (‖x − xe‖)

≥

lx∑
i=1

λx
i gx

i (xe) +
lu∑

j=1

λu
j g

u
j (u

e) + α (‖x − xe‖) = α (‖x − xe‖) .

Hence, the original system is strictly cyclo-dissipative at (xe, ue). It remains to show
that the storage function λ is bounded from below on X. In case that X is bounded,
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4. Strict dissipativity and turnpike properties w.r.t. steady-states

this is trivial. Otherwise, we need the additional LMI P +
∑lx

i=1 λ
c
i Px

i � 0 which
implies that the function λ̃(x) = λ(x) + γ

∑lx

i=1 λ
c
i gx

i (x) is bounded from below on
Rn, i.e., there exists some constant C ∈ R such that λ̃(x) ≥ C ∀x ∈ Rn. Applying the
S-procedure, we conclude that λ(x) ≥ C for all x ∈ X, i.e., λ is bounded from below
on X. Combining these results, the LQ-problem is strictly dissipative and therefore
has the near equilibrium turnpike property at (xe, ue) due to [9, Theorem 5.3]. �

Remark 4.1.2. Note that, for unbounded state constraints X, the LMI (4.1.2) is
indeed important in the proof of Theorem 4.1.1 since we need boundedness of
the storage function from below to establish strict dissipativity and thus the near
equilibrium turnpike property. Obviously, feasibility of this LMI does not require
boundedness of X. An intuitive explanation for this fact is that we do not need X to
be bounded in the directions where P is positive definite. This allows us to consider
certain cases where some modes corresponding to negative eigenvalues of Q are
bounded and other (detectable) modes corresponding to nonnegative eigenvalues of
Q are not - in these cases, when Theorem 4.1.1 is applicable, the latter modes span a
subspace on which P is positive definite. It is worth noting that boundedness of X is
not sufficient for the existence of multipliers λc

i such that P +
∑lx

i=1 λ
c
i Px

i � 0, since
we can construct any bounded polytope using only affine terms, i.e., with Px

i = 0 for
all i.

Remark 4.1.3. First we note that, concerning the non-unique representation of
constraints of the form (3.3.2), we arrive at the same conclusion as in Section 3.3:
In view of the LMIs (4.1.1) and (4.1.2), it becomes apparent that the constraint
functions gx

i , gu
j should be chosen such that the matrices Px

i , Pu
j do not vanish. As

discussed in Remark 3.3.1, this is possible for any ellipsoidal, hyperbox or convex
compact polytopic set, as well as intersections thereof. Furthermore, the first two
LMIs in (4.1.1) have the following intuitive geometric interpretation:

• Q +
∑lx

i=1 λ
x
i Px

i � 0:

Suppose Q has an eigenvalue λ < 0 with corresponding eigenvector v, i.e.,
v∗Qv = λ‖v‖2 < 0. Then, in order to render the above LMI feasible, there
must be some constraint with index k such that λx

kv∗Px
kv > 0. Thus, λx

k > 0 as
well as v∗Px

kv > 0. From v∗Px
kv > 0 we conclude that, to fulfill the sufficient

conditions of Theorem 4.1.1, the constraints X must be bounded in direction v.
Moreover, λx

k , 0 implies that the optimal steady-state of (4.1.3) has to satisfy
gx

k(xe) = 0, i.e., xe is located on the boundary of the k-th state constraint.

.
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• R +
∑lu

j=1 λ
u
j P

u
j � 0:

This LMI allows for the same interpretation as Q +
∑lx

i=1 λ
x
i Px

i � 0: If R has
nonpositive eigenvalues and Theorem 4.1.1 can be applied, then the constraints
must be bounded in direction of the corresponding eigenvectors and the optimal
equilibrium input lies on the boundary.

This illustrates the main idea of the presented approach: Negative eigenvalues of
the cost can be compensated by the boundary of the constraints. These interpretations
are in good accordance with the results discussed in Remark 3.3.5, where we observed
similar phenomena when using non-strict dissipation inequalities and complementary
slackness to show strict dissipativity w.r.t. periodic orbits.

Example 4.1.4. Consider the indefinite LQ-problem with

x(k + 1) =
(
2 0
0 1

)
x(k) +

(
1
1

)
u(k), `(x, u) = x2

1 − 2x2
2 + u2,

X =
{
x ∈ R2 | gx

1(x) = x2
1 + (x2 − 1)2 − 1 ≤ 0

}
,

U =
{
u ∈ R | gu

1(u) = u2 − 1 ≤ 0
}

.

It is readily seen that X is bounded and the LMIs (4.1.1) in Theorem 4.1.1 are
fulfilled for P = 0, λx

1 = 3, λu
1 = 0. The optimal steady-state from (4.1.3) can

then be calculated as (xe, ue) = ((0, 2)>, 0). Since gx
1(xe) = 0 and λu

1 = 0, the
complementary slackness conditions (4.1.4) are satisfied and hence the system is
strictly dissipative and has the near equilibrium turnpike property at (xe, ue). This
can also be seen directly: X is a circle with radius 1 around (0, 1), thus 0 ≤ x2 ≤ 2.
Therefore, there is no feasible point with lower cost than x1 = 0, x2 = 2, u = 0. The
location of this optimal steady-state confirms the statement of Remark 4.1.3: Strict
dissipativity occurs on the boundary of the constraints, in the direction corresponding
to negative eigenvalues of Q and R. In principle, we could have chosen any λx

1 > 2 to
fulfill the LMIs (4.1.1). However, if λx

1 is chosen too big (i.e. λx
1 > 4), the optimal

steady-state of (4.1.3) differs from the optimal steady-state of the original problem.
Moreover, the LMIs (4.1.1) are also feasible for any λu

1 > 0. In both cases, we could
not conclude strict dissipativity since the complementary slackness conditions (4.1.4)
would not be satisfied.

From Example 4.1.4, we deduce that there is a need for a systematic procedure of
choosing the multipliers λx

i and λu
j before solving the optimal steady-state problem

(4.1.3). Intuitively, they should be as small as possible (subject to the constraint that
the LMIs (4.1.1) are feasible) to avoid that the modified optimal steady-state differs
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4. Strict dissipativity and turnpike properties w.r.t. steady-states

from the original one. Since the optimal steady-state is not known beforehand, we
cannot decide which multipliers have to be zero in order to fulfill the complementary
slackness conditions (4.1.4). Therefore, we propose an iterative procedure that
solves problem (4.1.3) and then sets λx

i and λu
j to zero for those indices i and j for

which (4.1.4) does not hold. For some real, nonnegative multipliers λx
i , λu

j , λ
c
i , we

introduce the abbreviations Λx =
{
λx

1, . . . , λx
lx

}
, Λu =

{
λu

1, . . . , λu
lu
}
. The algorithm

can then be stated as follows:
.

Algorithm 4.1.5. • Step 0: Set Ix = Iu = ∅.

• Step 1: Choose Λx, Λu via the optimization problem

minimize
λx

i ,λu
j ,λ

c
i≥0

P=P>∈Rn×n

lx∑
i=1

λx
i +

lu∑
j=1

λu
j

s.t. (4.1.1) and (if X unbounded) (4.1.2),

λx
i = λu

j = 0 (i ∈ Ix, j ∈ Iu).

(4.1.5)

– Case 1.1 - (4.1.5) is feasible: Go to Step 2.

– Case 1.2 - (4.1.5) is infeasible: Stop the algorithm.

• Step 2: Solve problem (4.1.3) with Λx, Λu → (xe, ue).

• Step 3: Check conditions (4.1.4) for Λx, Λu and (xe, ue):

– Case 3.1 - They hold: Stop the algorithm.

– Case 3.2 - They do not hold for indices Ix ⊆ I[1,lx], Iu ⊆ I[1,lu]: Set
Ix = Ix ∪ Ix, Iu = Iu ∪ Iu and go back to Step 1.

Since there are only finitely many constraint functions gx
i , gu

j , Algorithm 4.1.5 will
always terminate, either in Case 1.2 or in Case 3.1. Assuming the latter, we have
found a steady-state at which the LQ-problem (2.1.1) is strictly dissipative and has
the near equilibrium turnpike property. Contrary, in Case 1.2, the algorithm cannot
be used to draw conclusions about the properties of interest.
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4.1. An S-procedure approach

Remark 4.1.6. Note that a similar problem as in Example 4.1.4 occurs in the appli-
cation of Theorem 3.3.3, when considering strict dissipativity w.r.t. periodic orbits.
Before solving the optimization problem (3.3.7) in Algorithm 3.3.2, it is not known
which multipliers need to be zero in order to render the complementary slackness con-
dition feasible. Thus, when applying Theorem 3.3.3, one should also use an iterative
procedure in the sense of Algorithm 4.1.5, which incorporates the complementary
slackness conditions into the optimization problem by setting appropriate multipliers
to zero.

Remark 4.1.7. The term complementary slackness is well-known from the standard
literature on convex optimization (cf. e.g. [4]). In Theorem 4.1.1, it implies that the
duality gap between the primal and dual optimal value of the optimal steady-state
problem vanishes. To be more precise, consider the problem of finding the optimal
steady-state of the original LQ-problem (2.1.1), i.e.,

min
x∈X,u∈U
x=Ax+Bu

`(x, u).

It follows directly from weak duality that this value is always greater than or equal to
the optimal value of (4.1.3), i.e.,

min
x∈X,u∈U
x=Ax+Bu

`(x, u) ≥ min
x∈X,u∈U
x=Ax+Bu

`λ(x, u). (4.1.6)

Denote the optimal equilibrium of (4.1.3) by (xe, ue). If the complementary slackness
conditions hold for (xe, ue), then (4.1.6) even holds with equality since then

min
x∈X,u∈U
x=Ax+Bu

`(x, u) ≤ `(xe, ue) = `λ(xe, ue) = min
x∈X,u∈U
x=Ax+Bu

`λ(x, u).

Thus, if complementary slackness holds, we have strong duality. Another connection
of Theorem 4.1.1 to Lagrange duality theory is detailed in the following. Consider an
indefinite quadratically constrained quadratic program (QCQP):

minimize
x∈Rn

(
x
1

)> (
P0 q0
q>0 c0

) (
x
1

)
s.t. gi(x) =

(
x
1

)> (
Pi qi
q>i ci

) (
x
1

)
≤ 0, i ∈ I[1,l],

(4.1.7)
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4. Strict dissipativity and turnpike properties w.r.t. steady-states

where Pi ∈ Rn×n, qi ∈ Rn, ci ∈ R, i ∈ I[0,l], without any assumptions on definiteness
of the Pi’s. 1 Denote the constraints imposed on x in (4.1.7) by X, i.e., X ={
x ∈ Rn | gi(x) ≤ 0, i ∈ I[1,l]

}
. Then, the QCQP can be considered as an optimal

steady-state problem for the LQ-problem

x(k + 1) = x(k), `(x, u) =
(
x
1

)> (
P0 q0
q>0 c0

) (
x
1

)
+ u2, X as above, U = R.

Theorem (4.1.1) delivers the following sufficient conditions for existence and unique-
ness of an optimal steady-state (and therefore for existence and uniqueness of
a solution to (4.1.7)): The LMIs (4.1.1) reduce to the existence of multipliers
λi ≥ 0, i ∈ I[1,l], such that P0 +

∑l
i=1 λiPi � 0. 2 This implies that there is a

unique solution to the modified optimal steady-state problem with cost

`λ(x, u) =
(
x
1

)> (P0 q0
q>0 c0

)
+

l∑
i=1

λi

(
Pi qi
q>i ci

) (x
1

)
+ u2.

Then, as detailed above, the complementary slackness condition ensures that the
solution to the modified optimal steady-state problem is also the optimal steady-state
for the cost `(x, u). From a Lagrange duality point of view, when neglecting the
auxiliary variable u, the modified cost `λ(x, u) is nothing but the Lagrangian of
the original QCQP (4.1.7) and the λi’s are the dual variables. P0 +

∑l
i=1 λiPi � 0

implies strict convexity of `λ(x, u) and thus existence and uniqueness of a dual
optimal solution. Then, it is well-known (cf. [4]) that complementary slackness
guarantees that the duality gap vanishes and the dual optimal solution is also optimal
for the primal problem. Thus, our approach to showing strict dissipativity by solving
a sequence of convex optimization problems in Algorithm 4.1.5 can be seen as a
relaxation for indefinite QCQPs which are, in general, np-hard problems [21].

1 In Theorem 4.1.1, we considered only convex constraints with Pi � 0, i ∈ I[1,l] , because all reasonable
quadratic constraints are of that form (e.g., for scalar x, constraints with Pk = −1, qk = 0, ck = 1 for
some k impose x2 ≥ 1 which yields a non-convex constraint set). Nevertheless, the proof of Theorem 4.1.1
does not fail when we allow for Pi � 0 which is why the presented approach can also cope with problems
of the general form from (4.1.7).

2 For the illustration of the relation between our approach and QCQPs, the main object of interest is the
optimization problem (4.1.3). This is directly related to strict cyclo-dissipativity, thus we are not interested
in the conditions in Theorem 4.1.1 that ensure boundedness of the storage function from below.
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4.1. An S-procedure approach

4.1.2. Towards less conservative conditions

As detailed in Remark 4.1.7, the approach from Theorem 4.1.1 can be seen as
a convex relaxation of the problem of finding the optimal steady-state of the in-
definite LQ-problem. This relaxation is quite conservative since we make no use
of the fact that the dissipation inequality only needs to hold for all (x, u) with
Ax + Bu ∈ X. A straightforward approach to incorporate this constraint lies in
the use of a third set of multipliers λ f

i in the cost functional, i.e., `λ(x, u) =

`(x, u) +
∑lx

i=1

(
λx

i gx
i (x) + λ

f
i gx

i (Ax + Bu)
)
+

∑lu
j=1 λ

u
j g

u
j (u). However, this cost

contains couplings between input and state which is why we cannot apply [10, Lemma
4.1]. Nevertheless, if we demand strict convexity of the modified "rotated" cost
`λ(x, u) + x>Px − (Ax + Bu)>P(Ax + Bu), we arrive at less conservative LMI-
based conditions for strict dissipativity which can be checked efficiently. In this case,
also non-zero coupling costs (i.e. stage costs with S , 0) can be considered. Given
any λx

i , λ f
i , λu

j ≥ 0, (i ∈ I[1,lx], j ∈ I[1,lu]), we define

Qλ = Q +
lx∑

i=1

(
λx

i Px
i + λ

f
i A>Px

i A
)

,

S λ =
lx∑

i=1

λ
f
i B>Px

i A,

Rλ = R +
lx∑

i=1

λ
f
i B>Px

i B +
lu∑

j=1

λu
j P

u
j .

Theorem 4.1.8. Consider the LQ-problem (2.1.1) with constraints of the form (3.3.2).
Suppose there exist λx

i , λ f
i , λc

i , λu
j ≥ 0 (i ∈ I[1,lx], j ∈ I[1,lu]) and a symmetric matrix

P such that the LMI(
Qλ + P − A>PA S> + S>λ − A>PB
S + S λ − B>PA Rλ − B>PB

)
� 0 (4.1.8)

holds. Assume further that X is bounded or there exist λc
i ≥ 0 (i ∈ I[1,lx]) such that

the LMI

P +
lx∑

i=1

λc
i Px

i � 0 (4.1.9)
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4. Strict dissipativity and turnpike properties w.r.t. steady-states

holds. Then, for those λx
i , λ f

i , λu
j , the modified LQ-problem with cost `λ(x, u) =

`(x, u) +
∑lx

i=1

(
λx

i gx
i (x) + λ

f
i gx

i (Ax + Bu)
)
+

∑lu
j=1 λ

u
j g

u
j (u) is strictly dissipative

at the steady-state

(xe, ue) = argmin
x∈X,u∈U
x=Ax+Bu

`λ(x, u). (4.1.10)

Moreover, if the complementary slackness conditions

λx
i gx

i (xe) = 0, λ f
i gx

i (xe) = 0, λu
j g

u
j (u

e) = 0 (4.1.11)

hold for all i ∈ I[1,lx], j ∈ I[1,lu], then the original system with stage cost `(x, u) is
strictly dissipative at (xe, ue) and has the near equilibrium turnpike property.

Proof. The proof is a combination of the proofs of Theorem 4.1.1 and [10, Lemma
4.1] with the only difference that strict convexity of the "rotated" cost `λ(x, u) +
x>Px− (Ax+ Bu)>P(Ax+ Bu) is trivial when (4.1.8) holds. Therefore, it is omitted.

�

Note that Qλ � 0 and Rλ � 0 are not necessary for the LMI (4.1.8). Hence, we
cannot draw the same conclusion on the direct relation between negative eigenvalues
of the cost and occurrence of turnpikes on the boundary of the constraints, as we did
in Remark 4.1.3. The following two examples illustrate that conservatism is indeed
reduced by considering the additional constraint Ax + Bu ∈ X in Theorem 4.1.8.

Example 4.1.9. Consider the indefinite LQ-problem with

x(k + 1) = u(k), `(x, u) = −x2 − u2, X = [0, 1], U = [−2, 2].

Clearly, the optimal steady-state is

(x∗(k, x0), u∗(k, x0)) = (1, 1) ∀ x0 ∈ X, k ≥ 1.

This cannot be shown using Theorem 4.1.1 since, in order to render the LMIs
feasible, both multipliers λx

1 and λu
1 have to be non-zero. However, for equilibria

we have ue = xe and thus the optimal equilibrium input lies in [0, 1], contradicting
the complementary slackness condition for λu

1gu
1(u

e). Theorem 4.1.8 handles this

problem by introducing the additional multiplier λ f
1 which renders the right-lower

block of (4.1.8) feasible, although λu
1 = 0. Since the optimal equilibrium state lies on

∂X, the complementary slackness condition is fulfilled and thus the near equilibrium
turnpike property holds.
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Example 4.1.10. Consider the indefinite LQ-problem (2.1.1) with

x(k + 1) = 2x(k) + u(k), `(x, u) = −x2, X = [−5, 5], U = [0, 1],

i.e., gx
1(x) = x2 − 25, gu

1(u) = u2 − u.

We see that X is bounded and the LMIs from 4.1.8 are feasible for λx
1 = 0, λ f

1 =
0, λu

1 = 2, P = −1. The corresponding optimal steady-state of (4.1.10) can then be
computed as (xe, ue) = (−1, 1) and thus the complementary slackness conditions
hold. Hence, the problem is strictly dissipative and has the near equilibrium turnpike
property at (xe, ue). This is confirmed by simulations where the optimal control
problem was solved numerically for various horizons using the MATLAB-solver
fmincon, cf. Figure 4.1. It can be seen that not only the occurrence of the turnpike
but also the exact location of it is influenced by the shape of the constraints. This
is an interesting insight since such phenomena could not be investigated using the
machinery from [10]. Note that, again, this example cannot be analyzed using
Theorem 4.1.1 since the optimal equilibrium state lies in the interior of X for any
choice of multipliers.

Figure 4.1.: Optimal trajectories for the optimal control problem stated in Exam-
ple 4.1.10 with N = 4, . . . , 20, x0 = −0.5.

The preceding examples show that Theorem 4.1.8 includes cases that could not
be analyzed using Theorem 4.1.1. It is easy to see that, when the coupling cost
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4. Strict dissipativity and turnpike properties w.r.t. steady-states

S is zero, the LMIs in the latter imply the LMIs in the former for λ f
i = 0 and P

sufficiently small (cf. the proof of [10, Lemma 4.1]). Thus, Theorem 4.1.8 is stronger
than Theorem 4.1.1 in the sense that it can handle all cases that could be dealt with
using Theorem 4.1.1 and even some more (cf. Examples 4.1.9 and 4.1.10). The only
drawback is the loss of geometric intuition.

For the application of Theorem 4.1.8 in practice, we need a systematic procedure
to find multipliers such that the LMI (4.1.8) holds. Such a procedure can be formu-
lated in complete analogy to Algorithm 4.1.5 with incorporation of the additional
multipliers λ f

i . Set Λx =
{
λx

1, . . . , λx
lx

}
, Λ f =

{
λ

f
1 , . . . , λ f

lx

}
, Λu =

{
λu

1, . . . , λu
lu
}
.

.

Algorithm 4.1.11. • Step 0: Set Ix = I f = Iu = ∅.

• Step 1: Choose Λx, Λ f , Λu via the optimization problem

minimize
λx

i ,λ f
k ,λu

j ,λ
c
i≥0

P=P>∈Rn×n

lx∑
i=1

λx
i +

lx∑
k=1

λ
f
k +

lu∑
j=1

λu
j

s.t. (4.1.8) and (if X unbounded) (4.1.9),

λx
i = λ

f
k = λu

j = 0 (i ∈ Ix, k ∈ I f , j ∈ Iu).

(4.1.12)

– Case 1.1 - (4.1.12) is feasible: Go to Step 2.

– Case 1.2 - (4.1.12) is infeasible: Stop the algorithm.

• Step 2: Solve problem (4.1.10) with Λx, Λ f , Λu → (xe, ue).

• Step 3: Check conditions (4.1.11) for Λx, Λ f , Λu and (xe, ue):

– Case 3.1 - They hold: Stop the algorithm.

– Case 3.2 - They do not hold for indices Ix ⊆ I[1,lx], I f ⊆ I[1,lx],
Iu ⊆ I[1,lu]: Set Ix = Ix ∪ Ix, I f = I f ∪ I f , Iu = Iu ∪ Iu and go
back to Step 1.

Exactly as Algorithm 4.1.5, the above algorithm will always terminate, either in
Case 1.2 or in Case 3.1. Again, assuming the latter, we have found a steady-state
at which the LQ-problem (2.1.1) is strictly dissipative and has the near equilibrium
turnpike property. Contrary, in Case 1.2, the algorithm cannot be used to draw
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conclusions about the properties of interest. The following example illustrates the
application of Algorithm (4.1.11) to an LQ-problem involving a permanent magnet
synchronous machine (PMSM). The dynamical equations as well as the machine
parameters are adopted from [17].

Example 4.1.12. Consider the following model of the PMSM stator current dynamics
in rotating coordinates:

ẋ(t) =
(
−214.9 69.4
−127.9 −291.7

)
x(t) +

(
17.5 0

0 23.8

)
u(t). (4.1.13)

The state x and the input u are the 2-dimensional current and voltage space vectors,
respectively. Except from the rated speed, which we assume to be 10π rad

s , all
parameters in (4.1.13) as well as the model are adopted from [17, Section 1.8.1] for
the scenario of salient pole machines. Due to the low rated speed, we neglected the
influence of the counter-electromotive force in the above dynamics. The state and
input constraints are given as

X =
{
x ∈ R2 | x>x ≤ 0.12

}
, U =

{
u ∈ R2 | u>u ≤ 52

}
.

The control objective consists of maximizing the generated torque

T = 0.045x1x2 + 0.94x2

while keeping the norm of the input voltage vector small. Thus, we consider a stage
cost of the form

`(x, u) = x>
(

0 −0.0225
−0.0225 0

)
x + x>

(
0
−0.94

)
+ r‖u‖2

for some parameter r > 0 which allows for an additional trade-off between torque
maximization and control effort minimization. Note that the above stage cost is
non-convex in the state. Discretization of (4.1.13) with sampling interval 5ms yields
the following discrete-time system:

x(k + 1) =
(

0.31 0.09
−0.17 0.2

)
x(k) +

(
0.05 0.01
−0.01 0.06

)
u(k).

Now, choosing r = 0.02, Step 1 in Algorithm 4.1.11 reveals that (4.1.12) is feasible
for λx

1 = 0.0225, λu
1 = λ

f
1 = 0. The corresponding optimal steady-state can then be

computed as

(xe, ue) =

((
0

0.1

)
,
(
−0.47
1.19

))
,
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i.e., xe ∈ ∂X and thus the complementary slackness conditions (4.1.11) are satisfied.
Hence, the application of Theorem 4.1.8 allows us to conclude that the above LQ-
problem is strictly dissipative and has the near equilibrium turnpike property at
(xe, ue).

Remark 4.1.13. We conclude the section with a remark on the connection between
this section and Chapter 3 on strict dissipativity w.r.t. periodic orbits, in particular
between Theorem 4.1.8 and Theorem 3.3.3. In case that X and U are compact, the
former is a special case of the latter. To see this, assume that all conditions in Theo-
rem 4.1.8 hold, i.e., the LMI (4.1.8) holds for some multipliers and the corresponding
optimal steady-state (xe, ue) of problem (4.1.10) satisfies the complementary slack-
ness condition. Then, the optimal value `(xe, ue) as well as the storage function and
the multipliers from Theorem 4.1.8 are feasible for the optimization problem (3.3.7)
in Algorithm 3.3.2. Due to the maximization in this latter problem, there is always
a point for which the constraint holds with equality, i.e., the left-hand-side is zero.
Now, from the strictness of (4.1.8), it follows that there can only be one such point
and this point is the optimal steady-state computed in (4.1.10). Since the comple-
mentary slackness conditions hold at (xe, ue), the output of Algorithm 3.3.2 is a set
consisting of only this steady-state. Thus, applying Theorem 3.3.3, we conclude strict
dissipativity w.r.t. (xe, ue). Nevertheless, the theory in this section does not require
compactness of X and U. This allowed us to draw several conclusions about the
connection between bounded modes and corresponding eigenvalues of Q and R (cf.
Remarks 4.1.2 and 4.1.3), which justifies the approach taken in the present chapter.

4.1.3. Necessary and sufficient conditions with single input
constraints

A well-known, non-trivial result is that the S-procedure provides also necessary
conditions in case that there is only one constraint [4]. This fact is exploited in the
following in order to find necessary and sufficient conditions for strict dissipativity
with quadratic storage function and turnpike properties when there is only one ellip-
soidal constraint on the input. Since state constraints always induce two constraints
on the dissipation inequality due to Ax + Bu ∈ X, the approach can only be used for
problems where the input is constrained and X = Rn. Therefore, we consider input
constraints of the form

U =
{
u ∈ Rm | gu(u) = u>Puu + 2u>qu + cu ≤ 0

}
(4.1.14)

for some Pu ∈ Rm×m, qu ∈ Rm, cu ∈ R, with Pu � 0.
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Theorem 4.1.14. Consider the LQ-problem (2.1.1) with S = 0, Q � 0, no state
constraints, i.e., X = Rn, and input constraints of the form (4.1.14). Then, the
following statements hold:

(i) Suppose (A, Q) is detectable and there is some λu ≥ 0 such that R + λuPu � 0
as well as λugu(ue) = 0, where ue is the optimal equilibrium input cor-
responding to the optimal steady-state problem with stage cost `λ(x, u) =
`(x, u) + λugu(u), i.e., to

(xe, ue) = argmin
x∈X,u∈U
x=Ax+Bu

`λ(x, u). (4.1.15)

Then, the problem is strictly dissipative and has the near equilibrium turnpike
property at (xe, ue).

(ii) Conversely, if the problem is strictly dissipative at some equilibrium (xe, ue)
with quadratic storage function, then (A, Q) is detectable and there exists λu ≥ 0
such that R + λuPu � 0 as well as λugu(ue) = 0.

Proof. (i): Since Q � 0, R + λuPu � 0, and (A, Q) is detectable, we can apply [10,
Lemma 5.4] to conclude that there exists a positive definite matrix P such that
Q + P − A>PA � 0. Consequently, all conditions of Theorem 4.1.1, including
complementary slackness, are met and thus the problem is strictly dissipative and has
the near equilibrium turnpike property at (xe, ue).

(ii): Suppose the LQ-problem (2.1.1) is strictly dissipative at some equilibrium
(xe, ue) ∈ X×U with quadratic storage function λ : Rn → R. From Proposition 4.3
in [5], it follows that there is a quadratic classK∞ function α such that the dissipation
inequality (2.2.1) holds for all (x, u) ∈ X ×U. Then, by the converse direction of
the S-procedure (cf. [4] and recall that U has non-empty interior), we conclude that
there exists some λu ≥ 0 such that

`(x, u) + λugu(u) − `(xe, ue) + λ(x) − λ(Ax + Bu) ≥ α (‖x − xe‖)

holds for all (x, u) ∈ Rn+m. By plugging (xe, ue) into this inequality, we deduce
λugu(ue) ≥ 0 and hence, due to λugu(ue) ≤ 0, λugu(ue) = 0. Consequently, the
modified unconstrained LQ-problem with stage cost `λ(x, u) is strictly dissipative at
(xe, ue). Since λ(x) = x>Px + q>x is bounded from below on Rn, it follows that
P � 0. By collecting the quadratic terms in the corresponding dissipation inequality,
we conclude that 0 � R + λuPu − B>PB � R + λuPu. Moreover, by [10, Theorem
6.1], whose proof does not require positive definiteness of the involved R-matrix,
strict dissipativity of the modified LQ-problem with stage cost `λ(x, u) implies that
(A, Q) is detectable. �
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Theorem 4.1.14 provides a powerful tool in the sense that it states not only sufficient
but also necessary conditions for strict dissipativity. Of course, this necessity result
holds only for strict dissipativity with a quadratic storage function due to the quadratic
nature of the S-procedure. The standard result that, for linear quadratic dissipative
systems, there is always a quadratic storage function is well-known to hold in the
unconstrained case or when the cost is convex. In the constrained indefinite case,
however, there are no such results to the author’s knowledge. From the necessity
part (ii) of Theorem 4.1.14, we deduce that, given constraints of the form (4.1.14)
and an indefinite input cost matrix R, a necessary condition for strict dissipativity
at some equilibrium (xe, ue) (with quadratic storage function) is gu(ue) = 0, i.e.,
ue ∈ ∂U. Thus, assuming everything is quadratic, strict dissipativity (and by [10,
Theorem 7.1 (i)] the turnpike property) can only hold when the corresponding optimal
equilibrium input lies on the boundary of U. Note, however, that the near equilibrium
turnpike property might still hold in this case since strict dissipativity is only known
to be necessary for it on interior points of the constraints (cf. [10, Theorem 7.1 (ii)]).

In order to apply the results from [10], we need to assume Q � 0 for both directions
of the proof of Theorem 4.1.14. Furthermore, the existence of some λu ≥ 0 with
R + λuPu � 0 as well as λugu(ue) = 0 is not necessary for the problem to be strictly
dissipative. This is due to the fact that Definition 2.2.1 requires strictness only in
the state, but not in the input. In the following, we investigate an example where we
not only use sufficient conditions to show strict dissipativity, as it was done for the
Theorems 4.1.1 and 4.1.8, but we also use the necessity part of Theorem 4.1.14 to
find situations where strict dissipativity does not hold.

Example 4.1.15. Consider the indefinite LQ-problem with

x(k + 1) = ax(k) + u(k), `(x, u) = −u2, X = R, U = [0, 1]

for some a ∈ R. Obviously, the optimal behavior consists of applying the maximal
input u(k) = 1 at all time instances k ∈N. Then, the occurrence of strict dissipativity
(and thus of turnpikes) depends on the parameter a. Since Q = 0, the system is
detectable if and only if |a| < 1. Consequently, applying Theorem 4.1.14 (ii), we
see that the system is not strictly dissipative (with a quadratic storage function) in
case that |a| ≥ 1. Given that |a| < 1, on the other hand, and choosing λu = 2, the
solution of problem (4.1.15) reveals the optimal steady-state (xe, ue) = ( 1

1−a , 1)
which fulfills λugu(ue) = 0. Hence, the problem is strictly dissipative and thus has
the near equilibrium turnpike property. These facts can also be explained by looking
at the solution of the underlying difference equation x(k + 1) = ax(k) + 1, x(0) = 0,
which can be stated explicitly as x(k) =

∑k−1
i=0 ai = 1−ak

1−a . As is well known from
standard analysis, x(k) converges to 1

1−a for k → ∞ if |a| < 1 and diverges for |a| ≥ 1.
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4.2. A P-step system approach

The approach that we pursue in this section is, in many aspects, fundamentally
different from the rest of this thesis. Instead of employing the S-procedure to verify
turnpikes which occur, for indefinite costs, often on the boundary of the constraints,
we use the framework of P-step systems. A P-step system can be seen as a P-fold
subsequent copy of the original dynamical system and thus, e.g., periodic orbits of
the original system can be considered as steady-states of the P-step system. We show
that the tools from [10] can be applied in the presence of indefinite state weightings
when the stage cost of a suitably defined P-step system is convex. In doing so,
we make the assumption that the coupling cost vanishes, i.e., S = 0. The section
is structured as follows: First, we provide a rigorous definition of P-step systems,
involving the matrices of the original LQ-problem. Then, after performing a technical
transformation on the P-step system, we state the main results on necessity and
sufficiency for strict dissipativity and turnpike properties using P-step systems.

4.2.1. Definition of P-step systems

We define the P-step system corresponding to the LQ-problem (2.1.1) as follows
(cf. [19, 20]): Denote the extended state and input vectors by x̃ = (x̃0, . . . , x̃P−1)
and ũ = (ũ0, . . . , ũP−1), respectively. The dynamics x̃(k + 1) = fP(x̃(k), ũ(k)),
x̃P−1(0) = x0 are defined by repeatedly applying the original vector field f (x, u) =
Ax + Bu to the last state x̃P−1, i.e.,

fP(x̃, ũ) =


xũ(1, x̃P−1)

...
xũ(P, x̃P−1)

 =


f (x̃P−1, ũ0)
f ( f (x̃P−1, ũ0), ũ1)

...

 .

Initial conditions for the components x̃0, . . . , x̃P−2 are irrelevant due to the nature of
the P-step dynamics. Using the linearity of f (x, u), we obtain

fP(x̃, ũ) = AP x̃ + BPũ

with

AP =


0 . . . 0 A
...

...
...

0 . . . 0 AP

 , BP =


B 0 . . . 0

AB B
...

...
. . .

. . . 0
AP−1B . . . AB B


.
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Furthermore, the P-step cost `P(x̃, ũ) =
∑P−1

j=0 `(xũ( j, x̃P−1), u j) can be written in
quadratic form as

`P(x̃, ũ) =

x̃
ũ
1


> 

QP S>P
1
2 sP

S P RP
1
2 vP

1
2 s>P

1
2 v>P cP


x̃
ũ
1

 . (4.2.1)

The involved matrices are computed as follows: Define

Qi, j B

j∑
k=0

(
Ak

)>
QAk+i (4.2.2)

and QB
i, j = B>Qi, jB. Then, we have

QP =


0 . . . 0 0
...

. . .
...

...
0 0 0
0 . . . 0 Q0,P−1

 , S P =


0 . . . 0 B>Q1,P−2
...

...
...

. . . B>QP−1,0
0 0 0

 ,

RP =



R + QB
0,P−2 ∗ . . . . . . ∗

QB
1,P−3 R + QB

0,P−3

...
. . .

. . .
. . .

...

QB
P−2,0 . . . QB

1,0 R + QB
0,0 ∗

0 . . . 0 R



,

sP =


0
...
0∑P−1

k=0(A
k)>s

 , vP =


v +

(∑P−2
k=0(A

kB)>
)

s
v +

(∑P−3
k=0(A

kB)>
)

s
...
v

 , cP = P · c.

Note that QP might be positive semidefinite, even when Q is indefinite. A simple
example for this case is

Q =

(
2 0
0 −1

)
, A =

(
0 1
1 0

)
⇒ Q2 = A + A>QA =

(
1 0
0 1

)
� 0.
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Furthermore, from the above definition of RP, one can see see that R � 0 is necessary
for RP � 0 and the latter holds true when the eigenvalues of R are sufficiently
large. The optimal control problem for the P-step system corresponding to the
LQ-problem (2.1.1) can then be stated as

VP
N(x̃0) = minimize

ũ∈UN·P(x0)

N−1∑
k=0

`P (x̃ũ(k, x0), ũ(k)) , (4.2.3)

where x̃ũ(·, x0) denotes the solution of x̃(k + 1) = AP x̃(k) + BPũ(k) with input
trajectory ũ and initial value x̃P−1(0) = x0.

Remark 4.2.1. The P-step optimal control problem (4.2.3) can be used to analyze
the original problem (2.1.1) since VP

N(x0) = VN·P(x0) and the optimal trajectories
of the problems coincide. In particular, for any k ∈ I[1,N], we have

x̃∗(k, x0) =
[
x∗((k − 1)P + 1, x0)

>, . . . , x∗ (kP, x0)
>
]>

,

ũ∗(k, x0) =
[
u∗(kP, x0)

>, . . . , u∗ ((k + 1)P − 1, x0)
>
]>

,

where x̃∗(·, x0), ũ∗(·, x0) denote optimal state and input trajectories, respectively,
corresponding to VP

N(x0), whereas x∗(·, x0), u∗(·, x0) are the optimal trajectories that
belong to VN·P(x0).

4.2.2. Elimination of coupling terms

In the previous section, we derived an explicit formula for the cost matrices of the
P-step system based on the original cost. It can be seen that, in general, the P-step cost
contains couplings between input and state, i.e., S P , 0, although this was not the
case for the original cost from (2.1.1). In the following, we perform a transformation
on the control input in order to eliminate the coupling matrix S P. This will allow
us to apply the theory from [10], which does not consider such coupling terms.
The transformation is adopted from explicit linear quadratic constrained optimal
control problems (cf. [2]), and widely used in the condensed quadratic programming
formulation of (linear quadratic) model predictive control. The main idea is to define
a new input via z̃ = ũ + R−1

P S P x̃. Note that RP � 0 will be a necessary condition
for the application of the methods from [10], hence its inverse exists. Inserting
ũ = z̃ − R−1

P S P x̃ into the P-step running cost `P(x̃, ũ) defined in (4.2.1) yields a
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modified cost function

˜̀P(x̃, z̃) =

x̃>QP x̃ + 2x̃>S>P
(
z̃ − R−1

P S P x̃
)
+

(
z̃ − R−1

P S P x̃
)>

RP
(
z̃ − R−1

P S P x̃
)

+ s>P x̃ + v>P
(
z̃ − R−1

P S P x̃
)
+ cP

= . . .

= x̃>
(
QP − S>P R−1

P S P
)︸                ︷︷                ︸

Q̃PB

x̃ + z̃>RPz̃ +
(
s>P − v>P R−1

P S P
)︸              ︷︷              ︸

s̃>PB

x̃ + v>P z̃ + cP.

Also, the dynamics change accordingly

x̃(k + 1) = AP x̃(k) + BP
(
z̃(k) − R−1

P S P x̃(k)
)

=
(
AP − BPR−1

P S P
)︸               ︷︷               ︸

ÃPB

x̃(k) + BPz̃(k),

and the constraint ũ ∈ UP translates into z̃ − R−1
P S P x̃ ∈ UP. Thus, the decoupling

of the cost function causes couplings in the constraints. We define the resulting
constraints for the transformed P-step system as

V =
{
(x̃, z̃) ∈

(
X ×RmP

)
| z̃ − R−1

P S P x̃ ∈ UP
}

.

Finally, this yields the following optimal control problem:

ṼP
N(x̃0) = minimize

z̃∈RmNP

N−1∑
k=0

˜̀P (x̃(k), z̃(k))

s.t. x̃(k + 1) = ÃP x̃(k) + BPz̃(k),

x̃(0) = x̃0,

(x̃(k), z̃(k)) ∈ V, k = 0, . . . , N.

(4.2.4)

Remark 4.2.2. Clearly, the optimal trajectories of the problems (4.2.3) and (4.2.4)
coincide. To be more precise, we have VP

N(x̃0) = ṼP
N(x̃0) and also the optimal inputs

are connected via the transformation formula

ũ∗(·, x̃0) = z̃∗(·, x̃0) − R−1
P S P x̃∗(·, x̃0),

where ũ∗(·, x̃0) is the optimal input trajectory for (4.2.3), whereas z̃∗(·, x̃0) denotes
the optimal input of (4.2.4).
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4.2.3. Characterization of strict dissipativity and turnpike
properties

Now, we are in the position to apply the results from [10] to P-step systems. The
following result provides sufficient and necessary conditions for strict dissipativity
and turnpike properties in indefinite LQ-problems with X = Rn, given that there
is a P-step system whose transformed stage cost satisfies appropriate definiteness
assumptions.

Theorem 4.2.3. Consider the LQ-problem (2.1.1) with X = Rn, U ⊆ Rm, and
S = 0. Suppose there exists a P ≥ 1 such that Q̃P � 0 and RP � 0. Then, the
following statements hold:

(i) If (ÃP, Q̃P) is detectable, then the LQ-problem (2.1.1) has the near equilibrium
turnpike property at some equilibrium (xe, ue) ∈ X ×U. If, further, (xe, ue) ∈
int(X ×U) and (A, B) stabilizable, then the LQ-problem (2.1.1) is strictly
dissipative and has the turnpike property at (xe, ue).

(ii) If the LQ-problem (2.1.1) has the turnpike property at an equilibrium (xe, ue) ∈
X ×U, then (ÃP, Q̃P) is detectable.

Proof. First, we note that most of the results used in this proof were developed for
the case that state and input constraints are uncoupled but the respective proofs make
no use of this fact. Hence, they also apply for coupled constraints, which are present
in (4.2.4).

(i): By applying [10, Theorem 6.1] to the transformed P-step LQ-problem (4.2.4),
we conclude that there exists an equilibrium (x̃e, z̃e) ∈ V at which problem (4.2.4) is
strictly dissipative, i.e., there exists a storage function λ̃ and a class K∞ function α
such that

˜̀P(x̃, z̃) − ˜̀P(x̃e, z̃e) + λ̃(x̃) − λ̃(ÃP x̃ + BPz̃) ≥ α (‖x̃ − x̃e‖)

for all (x̃, z̃) ∈ V. Consequently, by re-substituting the original P-step system, we
arrive at

`P(x̃, ũ) − `P(x̃e, ũe) + λ̃(x̃) − λ̃(AP x̃ + BPũ) ≥ α (‖x̃ − x̃e‖) (4.2.5)

for all (x̃, ũ) ∈ XP ×UP, i.e., the P-step problem (4.2.3) is strictly dissipative at
(x̃e, ũe) and thus has the near equilibrium turnpike property at (x̃e, ũe) according
to [9, Theorem 5.3]. Note that an equilibrium of the P-step system is, in general, a
periodic orbit of length P for the original system. From inequality (4.2.5), however,
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4. Strict dissipativity and turnpike properties w.r.t. steady-states

we deduce that the periodic orbit resulting from (x̃e, ũe) is in fact P times the steady-
state (xe, ue), where (xe, ue) is equal to any of the (equal) P components of (x̃e, ũe).
This is due to the fact that, otherwise, for any orbit obtained by phase-shifting
(x̃e, ũe), the left-hand side of (4.2.5) would be zero while its right-hand side would be
greater than zero, contradicting the inequality. The optimal trajectories of the P-step
problem and the original LQ-problem coincide and thus problem (2.1.1) has the near
equilibrium turnpike property at (xe, ue). Moreover, according to [10, Remark 2.2
(iii)], stabilizability of (A, B) as well as (xe, ue) ∈ int(X ×U) imply the turnpike
property, which in turn implies strict dissipativity by [10, Theorem 7.1 (i)].

(ii): Suppose, for the sake of contradiction, that (ÃP, Q̃P) is not detectable. Then,
the transformed P-step problem (4.2.4) is not strictly dissipative due to [10, Theorem
6.1] and thus the same holds true for the P-step problem (4.2.3). Therefore, according
to [10, Theorem 7.1], the latter does not have the turnpike property. Since the optimal
trajectories of the problems (2.1.1) and (4.2.3) coincide, we conclude that the original
LQ-problem (2.1.1) does not have the turnpike property. �

Remark 4.2.4. Note that the condition Q̃P � 0 in Theorem 4.2.3 is more restrictive
than simply demanding QP � 0. Concerning the latter matrix, it is readily verified that,
whenever Q1 � Q2, then Q1

P � Q2
P for any symmetric matrices Q1, Q2 ∈ Rn×n and

any P ≥ 1. Furthermore, recall that larger eigenvalues of R cause larger eigenvalues
of RP and hence, when S P , 0, larger eigenvalues of Q̃P. Thus, Theorem 4.2.3
allows to extend the class of Q-matrices which are admissible for the techniques
from [10] from positive semidefinite to indefinite matrices if the positive eigenvalues
of Q and R are sufficiently large and if A is of a particular form that renders QP
positive semidefinite for some P ≥ 2.

Example 4.2.5. Consider the indefinite LQ-problem with

A =

(
0 1
1 0

)
, B =

(
2
1

)
, `(x, u) = 2x2

1 − x2
2 + 10u2, X = R2, U = [−1, 1].

For P = 2, the matrices corresponding to the transformed P-step LQ-problem (4.2.4)
can be computed as

Q̃2 =
1

17


0 0 0 0
0 0 0 0
0 0 16 4
0 0 4 1

 � 0, R2 =

(
17 0
0 10

)
� 0,

52



4.2. A P-step system approach

Ã2 =
1

17


0 0 2 9
0 0 18 −4
0 0 18 −4
0 0 2 9

 , B2 =


2 0
1 0
1 2
2 1

 .

As one readily verifies, (Ã2, Q̃2) is detectable and thus, by Theorem 4.2.3 (i), the
above problem has the near equilibrium turnpike property. Moreover, the corre-
sponding optimal steady-state can be computed as (xe, ue) = (0, 0) ∈ int (X ×U)
and thus, since (A, B) is stabilizable, the problem is strictly dissipative and has the
turnpike property at (0, 0).

In analogy to [10, Theorem 8.3], we can formulate Theorem 4.2.3 also for compact
state constraints. In this case, detectability of the matrix pair (ÃP, Q̃P) is replaced by
observability of eigenvalues on the unit circle C=1 in the complex plane.

Theorem 4.2.6. Consider the LQ-problem (2.1.1) with X ⊂ Rn compact and U ⊆

Rm. Suppose there exists a P ≥ 1 such that Q̃P � 0 and RP � 0. Then the following
statements hold:

(i) If the matrix pair (ÃP, Q̃P) has no unobservable eigenvalues on C=1, then
the LQ-problem (2.1.1) has the near equilibrium turnpike property at some
equilibrium (xe, ue) ∈ X ×U. If, further, (xe, ue) ∈ int(X ×U) and (A, B)
stabilizable, then the LQ-problem (2.1.1) is strictly dissipative and has the
turnpike property at (xe, ue).

(ii) If the LQ-problem (2.1.1) has the near equilibrium turnpike property at an
equilibrium (xe, ue) ∈ int (X ×U), then (ÃP, Q̃P) has no unobservable eigen-
values on C=1.

Proof. The idea of the proof is identical to the one of Theorem 4.2.3 and therefore it
is omitted. �

Remark 4.2.7. Note that, in principle, the results from Section 4.1 can be combined
with Theorem 4.2.3 and Theorem 4.2.6. To be more precise, there might exist
multipliers as in Section 4.1 such that an LQ-problem with modified stage cost (in
the sense of Section 4.1) is strictly convex in the input but non-convex in the state.
In this case, given that the dynamics are of a suitable form, the above results for
P-step systems could be used to provide sufficient conditions for strict dissipativity of
this modified LQ-problem, which in turn leads to strict dissipativity of the original
problem of interest.
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We conclude the section by applying Theorem 4.2.6 to a specific optimal control
problem involving a continuous stirred tank reactor (CSTR). The system dynamics in
the following example are adopted from [23].

Example 4.2.8. Consider the indefinite LQ-problem with

A =

(
0.7776 −0.0045

26.6185 1.8555

)
, B =

(
−0.0004
0.2907

)
,

`(x, u) = −q̄x2
1 + x2

2 + u2,

X = [−0.5, 0.5] × [−5, 5], U = [−15, 15].

This setting can be interpreted as maximizing the reactant concentration in a CSTR
while keeping the reactor temperature as well as the cooling effort small. The quantity
q̄ > 0 is an additional parameter that allows for a trade-off between the performance
objectives. Straightforward algebraic computations reveal that, for P = 2, R2 � 0
and Q̃2 � 0 hold for any q̄ ≤ 92.88. Moreover, A2 has no eigenvalues on C=1. Thus,
according to Theorem 4.2.6, the above LQ-problem has the near equilibrium turnpike
property for any q̄ ≤ 92.88. When fixing q̄, e.g., to q̄ = −50, the optimal steady-state
of the transformed P-step system can be computed explicitly as (x̃e, z̃e) = (0, 0).
Reversing the transformation, we conclude that (xe, ue) = (0, 0) is the optimal
steady-state at which the present LQ-problem has the near equilibrium turnpike
property. Hence, due to stabilizability of (A, B) as well as (xe, ue) ∈ int(X ×U),
we conclude that, for q̄ = −50, the LQ-problem is strictly dissipative and has the
turnpike property at (0, 0). The above-mentioned upper limit on q̄ can be further
increased when allowing for a higher P-step system length P. Table 4.1 shows the
maximal admissible q̄ for which the definiteness assumptions Q̃P � 0, RP � 0 are
satisfied, depending on P.

Table 4.1.: Maximal admissible q̄ depending on P (Example 4.2.8)
P 3 4 5 6 7 8 9 10 11
q̄ 206 313 401 471 524 564 594 617 634

It can be seen that the upper bound on q̄ increases with P but the rate of change
decreases. Note that these results suggest that there does not seem to be an obvious
connection between the minimal P which is sufficient for Q̃P � 0, RP � 0 and the
dimension of the system.
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5.1. Summary

The present thesis dealt with strict dissipativity and turnpike properties w.r.t. steady-
states and periodic orbits in discrete-time linear quadratic optimal control problems
with indefinite stage cost and constraints on states and inputs. In Chapter 3, for
compact constraints, non-strict dissipation inequalities were used to construct a pri-
ori unknown optimal periodic orbits. This approach provided necessary as well as
sufficient conditions for periodic dissipativity, but was computationally intractable.
A convex relaxation of the underlying optimization problem was used to arrive at
tractable sufficient conditions for strict dissipativity, where a complementary slack-
ness condition turned out to be a key ingredient. In Section 4.1, similar techniques
were used to characterize strict dissipativity w.r.t. steady-states with non-compact
constraints. Again, complementary slackness played an important role and it became
apparent that negative eigenvalues of the cost, the exact shape of the constraints,
and the location of the optimal steady-state are highly intertwined. Section 4.2 pro-
vided a fundamentally different approach. The main idea was that, given that the
stage cost accumulated over several consecutive time instances satisfies a suitable
convexity assumption, necessary and sufficient conditions for strict dissipativity and
turnpike properties of the original LQ-problem can be stated in terms of a suitably
transformed P-step system. In summary, the present thesis provided novel results on
the characterization of strict dissipativity and turnpike properties

• for indefinite LQ-problems,

• w.r.t. steady-states and periodic orbits,

• under explicit consideration of the constraints.

Thereby, it contributes to the theory of classical linear quadratic optimal control as
well as to modern economic MPC research, where the above-named properties are
commonly made assumptions which need to be verified in practice.
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5.2. Future work

There are several promising directions for future research. A large portion of the
presented results relied heavily on the S-procedure, which seems to be a very particu-
lar approach for analyzing periodic dissipativity. The traditional results on optimal
periodic control provide a more fundamental view on this problem. A thorough
investigation of the connection between the classical literature on optimal periodic
control [3] and periodic dissipativity and turnpike properties is a promising approach
for arriving at a more general characterization of periodic optimality.

More directly related to the present thesis is the extension of the results to a
continuous-time setting. While this seems to be straightforward for the steady-state
case, one would need to employ different technical tools to characterize periodic
optimality since, in continuous-time, (non-trivial) periodic orbits are uncountably
infinite sets. Furthermore, as already mentioned in Remark 3.2.7, the presented
results apply to sets more general than periodic orbits, such as affine subspaces of the
state space. The analysis of strict dissipativity (and possibly turnpike properties) w.r.t.
subspaces constitutes another interesting direction for future research, which would
also be of practical use in tracking MPC (cf. Example 3.2.6).
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A. Appendix

A.1. Auxiliary Lemmas

Lemma A.1.1. Let A ∈ Rn×n, C ∈ Rp×n. λ ∈ C is an unobservable eigenvalue of
the matrix pair (A, C) if and only if it is an unobservable eigenvalue of (A, C>C).

Proof. If:
Suppose λ is an unobservable eigenvalue of (A, C>C), i.e., there exists an eigen-

vector v ∈ Cn of A such that Av = λv and C>Cv = 0. By left-multiplying v>, the
latter equation reads v>C>Cv = (Cv)>(Cv) = 0 and thus Cv = 0, i.e., λ is an
unobservable eigenvalue of (A, C).

Only if:
Suppose λ is an unobservable eigenvalue of (A, C), i.e., there exists an eigenvector

v ∈ Cn of A such that Av = λv and Cv = 0. It directly follows that C>Cv = 0,
which is exactly the desired statement. �

Lemma A.1.2. Consider a finite discrete set of the form L =
{
x1, . . . , xP

}
with

xi ∈ X ⊂ Rn, X compact, and a continuous function f : X → R≥0 with nonnegative
image. Suppose that f vanishes exactly on L, i.e.,

f (x) > 0 ∀x ∈ X \ L and f (x) = 0 ∀x ∈ L. (A.1.1)

Then, there exists a class K∞ function α such that

f (x) ≥ α (|x|L) ∀x ∈ X. (A.1.2)

Proof. Due to compactness of X, it is sufficient to construct α ∈ K . The proof is
divided into two parts:

(i) For any xi ∈ L there exist a neighborhood Ni ⊂ X containing xi and a class K
function αi such that

f (x) ≥ αi
(∥∥∥x − xi

∥∥∥) (A.1.3)

for all x ∈ Ni.
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(ii) There is a class K function α such that (A.1.2) holds.

(i): (A.1.1) implies that f has a strict local minimum at xi, i.e., there exists ε > 0
such that for all d ∈ Rn with ‖d‖ = 1 and for all 0 < δ ≤ ε it holds that

f
(
xi
)
< f

(
xi + δd

)
.

In case that xi ∈ ∂X, the admissible directions d are only allowed to point inwards
the constraint set. Given some i ∈ I[1,P] as well as ε > 0 and d ∈ Rn with ‖d‖ = 1
from above, define gi

d : [0, ε] → R as

gi
d(δ) = f

(
xi + δd

)
.

Due to the continuity of f and its local minimum at xi, there must exist a neighbor-
hood Ni ⊂ X of xi such that gd is strictly increasing for any admissible d. In this
neighborhood, we define

αi(r) = min
d∈Rn

‖d‖=1
d admissible

gi
d(r) ,

noting that αi is strictly increasing. Then, since for any x ∈ Ni there exists a unique
d∗ ∈ Rn with ‖d∗‖ = 1 such that x = xi + ‖x − xi‖d∗, we obtain

f (x) = f
(
xi +

∥∥∥x − xi
∥∥∥ d∗

)
= gi

d∗
(∥∥∥x − xi

∥∥∥) ≥ αi
(∥∥∥x − xi

∥∥∥) .

(ii): Outside of the neighborhoods of the xi’s, due to compactness of X, f is
bounded from below by a positive constant. Hence, by choosing their slope small
enough, the αi’s from (i) can be extended to X \ Ni such that

f (x) ≥ αi
(∥∥∥x − xi

∥∥∥) (A.1.4)

for all x ∈ X \
{⋃P

j=1N j
}

and for all i ∈ I[1,P]. Define

α(r) B min
i∈I[1,P]

αi (r)

and note that α ∈ K . From (A.1.4), we conclude

f (x) ≥ α (|x|L)

for any x ∈ X \
{⋃P

i=1Ni
}
. Moreover, according to (i), we have

f (x) ≥ α (|x|L)

for all x ∈ Ni and all i ∈ I[1,P], which concludes the proof. �
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