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Abstract

Background: Following the recent discovery of the role of Anopheles rufipes Gough, 1910 in human malaria
transmission in the northern savannah of Cameroon, we report here additional information on its feeding and
resting habits and its susceptibility to the pyrethroid insecticide deltamethrin.

Methods: From 2011 to 2015, mosquito samples were collected in 38 locations across Garoua, Mayo Oulo and
Pitoa health districts in North Cameroon. Adult anophelines collected using outdoor clay pots, window exit traps
and indoor spray catches were checked for feeding status, blood meal origin and Plasmodium circumsporozoite
protein. The susceptibility of field-collected An. rufipes to deltamethrin was assessed using WHO standard
procedures.

Results: Of 9327 adult Anopheles collected in the 38 study sites, An. rufipes (6.5%) was overall the fifth most
abundant malaria vector species following An. arabiensis (52.4%), An. funestus (s.l.) (20.8%), An. coluzzii (12.6%) and
An. gambiae (6.8%). This species was found outdoors (51.2%) or entering houses (48.8%) in 35 suburban and rural
locations, together with main vector species. Apart from human blood with index of 37%, An. rufipes also fed on
animals including cows (52%), sheep (49%), pigs (16%), chickens (2%) and horses (1%). The overall parasite infection
rate of this species was 0.4% based on the detection of P. falciparum circumsporozoite proteins in two of 517
specimens tested. Among the 21 An. rufipes populations assessed for deltamethrin susceptibility, seven populations
were classified as “susceptible” (mortality ≥ 98%) , ten as “probable resistant” with a mortality range of 90–97% and
four as “resistant” with a mortality range of 80–89%.

Conclusions: This study revealed changeable resting and feeding behaviour of An. rufipes, as well as further
evidence on its ability to carry human malaria parasites in North Cameroon. Besides, this species is developing
physiological resistance to deltamethrin insecticide which is used in treated nets and agriculture throughout the
country, and should be regarded as one of potential targets for the control of residual malaria parasite transmission
in Africa.
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Background
The Anopheles fauna of the Afrotropical region has
about 150 species, and almost 20 species are involved
in the transmission of malaria parasites to humans
[1]. Between 2010 and 2015, there was a 13% reduc-
tion of the population at risk of malaria in sub-
Saharan Africa. However, most cases (90%) and
deaths (92%) still occur in the WHO African Region
[2]. In Cameroon, the disease is endemic throughout
the country, with some variations on the transmission
intensity in specific areas such as highlands and
Sahel. The estimated number of malaria cases in the
country was almost 1.2 million cases in 2013 [3]. The
vast majority of cases and related deaths are due to
P. falciparum, with P. malariae and P. ovale species
being of minor importance. Plasmodium falciparum
malaria is responsible for 36% of outpatient consult-
ation, 67% of childhood mortality and 48% of hospital
admissions [4]. Various interventions such as targeted
case management of vulnerable groups (children
under 5) and mass prevention strategies mostly based
on the general use of long-lasting insecticidal nets
(LLINs) against vectors have contributed to signifi-
cantly reduce the overall malaria prevalence from 46.
3% in 2008 to 26.5% in 2013 [4]. However, this pro-
gress may be compromised by the risk of develop-
ment of drug resistance in parasites and of vector
resistance to insecticides.
Vector control is currently a key strategy to prevent

malaria in Cameroon and other endemic countries.
Six anopheline species also distributed across the Af-
rican region are considered as main local vectors of
human malaria parasites: Anopheles gambiae Giles,
1902; An. coluzzii Coetzee et al., 2013 (see [5]); An.
funestus Giles, 1900; An. arabiensis Patton, 1905; An.
nili Theobald, 1904; and An. moucheti Evans, 1925.
Alongside these main vectors, several species of so-
called “secondary vectors” contribute locally to con-
tinuous identified transmission of malaria [6–8]: An.
paludis Theobald, 1900; An. carnevalei Brunhes et al.,
1999 (see [9]); An. coustani Laveran, 1900; An. mar-
shallii Theobald, 1903; An. ziemanni Gruenberg,
1902; An. pharoensis Theobald, 1901; An. hancocki
Edwards, 1929; An. wellcomei Theobald, 1904; and
An. ovengensis Awono-Ambene et al. 2004 (see [10]).
The recent revision of the list of malaria vectors to
include two additional species, An. ziemanni [11] and
An. rufipes [12], suggests that full assessment of po-
tential malaria vectors across the country is needed.
Several studies conducted in areas where LLINs are
used in large scale have revealed deltamethrin resist-
ance in An. gambiae (s.l.) and An. funestus popula-
tions [13–16]. With the intensification of use of
insecticidal vector control interventions, the landscape

of local malaria epidemiology and insecticide suscepti-
bility may change. New vectors may be introduced or
well established vectors may become scarce, poten-
tially with an expansion of insecticide resistance to
marginalized potential vector species. In fact, changes
in vectorial capacity may also occur in some anophel-
ine species previously known as non-competent mal-
aria vector species, such as An. rufipes.
Anopheles rufipes Gough, 1910, which belongs to

the subgenus Cellia and series Neocellia is mostly dis-
tributed in tropical savannas of the sub-Saharan re-
gion. Apart from this typical form, there is a
darkform (Anopheles rufipes brousseri Edwards, 1929)
also found in these areas [17]. In Cameroon, the typ-
ical form An. rufipes, is regularly found in mosquito
collections from northern region [12]. Its larvae nor-
mally develop in various standing and open water
pools (e.g. rice fields, stream pools) which are also
typical aquatic habitats for immature stages of An.
gambiae (s.l.). In North Cameroon, main vector spe-
cies belong to the An. gambiae complex, An. funestus
(s.s.) and An. pharoensis [7], for which patterns of
feeding and resting behavior, as well as the status of
susceptibility to insecticides are increasingly docu-
mented [7, 13–16]. This region has a long history of
pesticide utilization in agriculture and vectors have
developed phenotypic resistance to DDT and pyre-
throids, with multiple insecticide resistance mecha-
nisms [14, 15, 18]. However, despite the abundance of
An. rufipes in northern regions of Cameroon, very lit-
tle attention has been given to this species bionomic
as it was previously considered a non-competent mal-
aria vector based on its zoophilic tendencies [17]. Fol-
lowing the recent publication of a cross-sectional
survey on the role of this species in human malaria
transmission in North Cameroon [12], we report fur-
ther information on its feeding and resting habits,
and first evaluation of its susceptibility to deltameth-
rin, the main pyrethroid insecticide of LLINs used in
this area.

Methods
Study period and sites
Cross-sectional studies were conducted once each year
during the rainy season (September to November) from
2011 to 2014 in 38 locations (clusters) belonging to
three health districts (Garoua, Mayo Oulo and Pitoa) in
the North region of Cameroon (Fig. 1). In the year
2015, the field survey was limited to larval collections
and susceptibility tests on adults in different study sites.
The three health districts are located in the tropical do-
main of the North region of Cameroon, and served as
regional sentinel sites for monitoring of the efficacy of
LLINs since the nationwide mass distribution of 2011.
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The full description of the selected health districts and
their respective study sites has been made in previous
reports [12, 19].

Mosquito collections
Mosquito collections were performed every year be-
tween September and November using the dipping
technique for larval collections and three conventional
adult mosquito sampling methods: outdoor clay pots
(OCPs), window exit traps (WETs) and indoor spray-
ing collections (ISCs) [20, 21]. The adult mosquito
trapping methods were chosen to specifically target
resting mosquitoes as they enter or leave the houses,
and also when they rest outdoors [22].
OCPs used as outdoor shelters for mosquitoes were

approximately 0.5 m in diameter with an opening 20
cm wide. At each location, 9 OCPs were used for
trapping outdoor resting mosquitoes in 3 dwellings
each one separated by approximately 200–300 m. Per
dwelling, a set of 3 OCPs were placed outside in a
radius of 1–5 m from the houses, with the opening
mouth directed away from sunlight. Five to ten liters
of water were poured into each pot to keep it moist
during the two consecutive nights of sampling. OCPs
were placed at 18:00 h and left overnight. OCPs were

then visited every morning between 7:00 and 8:00 h
and mosquitoes found inside the pots were collected
with mouth aspirators and transferred into paper cups
for subsequent analyses.
WETs were set up from 18:00 to 7:00 h to collect

mosquitoes that attempted to escape from bedrooms.
Per location, 10 rooms were selected and equipped
with WETs adapted from the model developed by
Muirhead-Thomson [23, 24]. WETs were placed over
the window of each selected bedroom and left over-
night for 2 consecutive days. Mosquitoes were then
collected from each trap every morning between 7:00
and 9:00 h using a mouth aspirator, and transferred
in paper cups for further analyses.
ISCs were performed once between 6:00 and 9:00 h

in rooms used for WETs. After covering the entire floor
space and objects with white sheets, the rooms were
then sprayed with commercial aerosols containing del-
tamethrin insecticide and closed for 10–15 min. Mos-
quitoes that fell on the sheets were picked up, counted
and individually preserved on silica gel in tubes.
For larval collections, anopheline larvae and pupae

samples were collected by dipping from active breeding
sites [20]. Each year, samples were pooled per study site
and brought to a local insectary rearing conditions, until
F0 adult emergence.

Mosquito processing
Adult specimens were morphologically identified
using keys for the species of the genus Anopheles
[17], and An. rufipes were separated from other local
anopheline species by checking its typical characters
on wings, legs and maxillary palp [25]. Members of
the An. gambiae complex found in sympatry with An.
rufipes were identified using PCR methods [26]. The
physiological status of Anopheles samples was visually
assessed as “blood-fed”, “gravid”, “half gravid” or “un-
fed”. All Anopheles specimens were screened for P.
falciparum circumsporozoite protein (CSP) [27, 28]
and for blood meal origin (if freshly fed Anopheles
samples) by ELISA methods [29, 30]. For the latter,
monoclonal antibodies against human, cow, pig,
horse, chicken and sheep blood were used.

Insecticide susceptibility testing
Susceptibility of adult An. rufipes mosquitoes to delta-
methrin was assessed using WHO test kits and stand-
ard procedures [31]. Test kits including impregnated
papers, test tubes and accessories were purchased
from the WHO reference center at the Vector Con-
trol Research Unit, University Sains Malaysia. Insecti-
cide susceptibility tests were performed on F0 females
that emerged from aquatic stages (larvae and pupae).
Batches of 20–25 two- to four-days-old unfed An.

Fig. 1 Map of Cameroon showing the location of the three selected
health districts
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rufipes were exposed to filter papers impregnated
with 0.05% deltamethrin. Another batch was at the
same time exposed to untreated filter papers to serve
as a control. The number of knocked down mosqui-
toes was recorded during exposure (60 min), and then
tested mosquitoes were transferred to holding tubes
with cotton pads soaked with 10% sugar to determine
the mortality 24 h post-exposure. Susceptibility tests
were concomitantly performed with the Kisumu sus-
ceptible reference strain of An. gambiae (s.s.).

Data analysis
The circumsporozoite infection rate was calculated as
the proportion of mosquitoes tested positive for P. fal-
ciparum circumsporozoite protein by ELISA. The overall
human blood index (HBI) was determined as the propor-
tion of mosquitoes identified to have fed on human blood
by ELISA, i.e. included all mosquito samples positive for
human blood meals either alone or mixed with other
blood meals (undetermined blood sources were not con-
sidered). For each susceptibility test, the mortality rate
was calculated as the proportion of dead mosquitoes over
the total number of exposed specimens, when < 5% mor-
tality was recorded in the control replicates. In the cases
where the control mortality was ≥ 5% but < 20%, the mor-
tality rate of tested samples was adjusted using Abbott’s
formula [32]. Resistance status was evaluated according to
the WHO criteria [31]. Knockdown times for 50 and 95%
(KDT50 and KDT95) An. rufipes tested mosquitoes were
estimated using a log probit model performed with
WINDL software (version 2.0, 1999). The recorded KDT50

were compared with that of the Kisumu reference suscep-
tible strain by estimates of KDT50 Ratios (KDT50R). For
the statistical analysis, data were analyzed using Chi-
square tests of the free online statistic tools of AnaStats
2016. The level of significance was α = 0.05.

Results
Anopheline density and distribution
A total of 9327 adult Anopheles were collected during
4 successive years (2011–2014) using the three sam-
pling methods, among which 609 An. rufipes individ-
uals were identified (6.5%) alongside An. gambiae (s.
l.) (71.8%) and An. funestus (s.l.) (20.8%) (Table 1).

Six other species represented less than 1% (81/9327)
of total samples i.e. An. pharoensis, An. paludis, An.
ziemanni, An. coustani, An. nili and An. longipalpis.
Anopheles rufipes samples was identified across 35 of
38 selected study locations (including 3 locations
positive at larval stages) (Fig. 2).

Resting behavior
The proportion of An. rufipes samples resting in outdoor
pots was 51.2 vs 22.0% of those entering houses before
resting indoors (χ2 = 70.244, df = 1, P < 0.001). As
shown in Table 1 and compared with main vector
species, An. rufipes [as An. funestus (s.l.)] showed a
consistent propensity to rest outdoors than An. gambiae
(s.l.) (χ2 = 130.561, df = 1, P < 0.001). This observation
was enhanced by the high percentage of An. rufipes
samples attempting to escape through WET (54.9%)
after entering houses compared with that of An. funestus
(χ2 = 85.412, df = 1, P < 0.001).

Blood-feeding status and indices
In total 581 An. rufipes samples were checked for their
feeding status, among which 379 (65.2%) were blood-fed,
125 (21.5%) unfed and 77 (13.3%) gravid and/or half-
gravid. The highest percentage of blood-fed samples was
recorded in WET (74.9%), followed by those collected by
ISCs (64.0%) and in oudoor pots (60.5%), respectively
This seems to be positively correlated with the exophilic
habits of this vector species.
A total of 329 blood samples from An. rufipes were

checked for blood meal origins, and 22 different
blood meal combinations were recorded. About 18.5%
(n = 61) blood meals were exclusively from human
origin, 12.8% (n = 42) were a mixture of human and
animals, 30.1% (n = 99) were from five single animal
hosts including cows (14.3%), sheep (11.6%), pigs (4%)
, chickens and horses, 24.3% (n = 80) were a mixture
blood meals taken from two or more animal hosts
and 14.3% (n = 47) were undetermined (Fig. 3).
The overall human blood index of An. rufipes was

37% with insignificant variations between indoor
(53%), outdoor (35%) and window exiting (33%) sam-
ples (χ2 = 4.801, df = 2, P = 0.0907) (Table 2). This
suggests plasticity in resting and feeding behavior

Table 1 Number (n) and frequency (%) of Anopheles rufipes and other anophelines collected by three conventional methods from
study districts of the North Cameroon

Sampling
methods

An. rufipes An. gambiae (s.l.) An. funestus An. pharoensis Anopheles sp. Total anophelines

n % n % n % n % n % n %

OCP 312 3.35 1787 19.16 1231 13.20 11 0.12 13 0.14 3354 35.96

WETs 163 1.75 2400 25.73 174 1.87 21 0.23 10 0.11 2768 29.68

ISCs 134 1.44 2509 26.90 536 5.75 17 0.18 9 0.10 3205 34.36

Total/species 609 6.53 6696 71.79 1941 20.81 49 0.53 32 0.34 9327 100
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developed by An. rufipes populations from study
locations. As shown in Table 2, blood indices of each
animal host also displayed variations either by vector
species or by resting places.

Malaria parasite infection
The ELISA screening for the presence of Plasmodium
circumsporozoite protein found two positive individ-
uals (0.39%) among 517 An. rufipes tested. This spe-
cies contributed for less than 2% of the global CSP
infection rate of 1.26% (± 0.23%), dominated by An.
gambiae (s.l.) (~ 90%) (Table 3).

Status of susceptibility to deltamethrin
Between 2012 and 2015, 21 bioassays were performed
(Table 4). In all, susceptibility tests were performed on
a total of 1092 female An. rufipes representing 59, 198
and 835 samples from Pitoa, Garoua and Mayo Oulo

health districts, respectively. The recorded KDT50,
KDT95 and KDT50R are presented in Table 4 and the
mortality rates in Fig. 4.
Seven An. rufipes populations from six locations

(Nassarao, Lounderou, Batoum, Bossoum, Kirambo
and Nassarao-Be) revealed susceptible to deltamethrin
(100% mortality) with KDT50 and KDT95 ranges of 5.
4–21.6 and 40.0–46.1 min respectively (0.57 ≤
KDT50R ≤ 2.27). Four An. rufipes populations in 4
different locations (Kanadi, Maboni, Doumo and
Mboum aviation) showed resistance to deltamethrin
(mortality from 80.8 to 88.7%), with KDT50 and
KDT95 ranges of 22.6–35.2 and 37.2–80.2 min, re-
spectively (2.38 ≤ KDT50R ≤ 3.71). Finally, 10 An.
rufipes populations from 8 clusters (Nassarao,
Batoum, Boyoum, Bocki, Matra, Banaye, Bossoum and
Dourbeye) showed probable resistance (from 91.6 to
97.8% mortality) with KDT50 and KDT95 ranges of 13.

Fig. 2 Overall number of adult Anopheles rufipes mosquitoes collected using three sampling methods in 32 study locations of North Cameroon
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9–30.7 and 39.7–68.7 min, respectively (1.46 ≤
KDT50R ≤ 3.23).
The trends in mortality rates (± standard devi-

ation) of An. rufipes showed unpredictable variations
across locations and years of collection. Deltamethrin
susceptibility among populations was more distrib-
uted in 2014, with four “susceptible” populations and
three remaining populations classified “probably re-
sistant”, compared with year 2013 with two suscep-
tible populations, three ranged as “probably
resistant” and three as “resistant”, and year 2015
with no susceptible population out of five tested. In
addition, An. rufipes populations from Nassarao
(2012 and 2013), Bossoum and Batoum (2013, 2014
and 2015) displayed changes on their status from
“susceptible” one year to “probably resistant” another
year and vice versa.

Discussion
The present paper is complimentary to a recently
published paper which highlighted for the first time
in Cameroon the important epidemiological role of
An. rufipes in malaria transmission, with 0–0.481 in-
fectious bites/person/night recorded in study locations
[12]. Few reports from western and southern Africa
[32–37] are in accordance with this recent studies
conducted so far in Cameroon.
The study objective was to present additional informa-

tion on An. rufipes populations from the North
Cameroon with a focus on its resting and feeding behav-
iors as well as on its susceptibility to deltamethrin in-
secticide after the nationwide distribution of LLINs in
Cameroon in 2011. From the study, it appeared that An.
rufipes was widely distributed in both suburban and
rural locations in the study area, concomitant with

Fig. 3 Blood meal composition of Anopheles rufipes collected in 2012 and 2013 in selected health districts of North Cameroon
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known major malaria vector species of the An. gambiae
complex (An. arabiensis, An. gambiae and An. coluzzii),
An. funestus (s.s.) and An. pharoensis. This composition
of resting individuals of malaria vectors has been fre-
quently reported from savanna villages in Cameroon [7,
38] and elsewhere in Africa [36, 37, 39, 40]. This com-
position of resting vector populations does not necessar-
ily reflect the relative abundance of a given species in
the field; species including An. rufipes have displayed
high and significant numbers of resting samples com-
pared with that collected on human volunteers in same
location in Senegal [39] and Chad [40]. Normally,
Anopheles rufipes breed in various standing water bodies
including marshes, pools, rice fields, river banks, tem-
porary streams locally called “Mayos” which are also
prolific, most especially for An.gambiae (s.l.) larval
development.
An. rufipes was found to be highly opportunistic re-

garding its feeding and resting habits; this species was
found to feed on a large variety of hosts including hu-
man, cows, sheep, pigs, chickens, horses and potentially
other undetermined animals [12]. This observation was
confirmed by our findings showing that, in the presence
of alternative hosts, An. rufipes were less anthrophagic

than zoophagic, about 37% of it blood meals were from
human while up to 50% were from animals (P < 0.001).
However, the preferred animal hosts were cows, sheep
and pigs. This zoophagic propensity of An. rufipes is not
uncommon and has been reported previously in the field
[17]. Meanwhile, the combination of various blood meal
origins, including human and animal hosts, is not un-
usual and has also been reported in well-known malaria
vector species such as members of the An. gambiae
complex, An. funestus and An. pharoensis in Cameroon
[19, 38] and other tropical African countries [41–43].
Concerning the resting behavior, the sampling

methods used have been previously applied as standards
to sample mosquitoes resting around and inside human
dwellings [44–47]. Based on this distribution in sampling
methods, An. rufipes exhibited endophilic and exophilic
behaviour in the study sites, consistent with flexibility
observed in the local malaria vectors species An. ara-
biensis, An. funestus and An. pharoensis. The best ex-
ample of this behavioral plasticity is the widespread
African malaria vector species, Anopheles arabiensis,
which is capable of adapting its feeding responses ac-
cording to various situations by feeding on human out-
doors or on alternative animal hosts [48]. Any species

Table 3 Rate of Plasmodium falciparum circumsporozoite protein positivity (CSP+) of Anopheles rufipes and other malaria vector
species by sampling methods from 2011 to 2014 in North Cameroon

Sampling method An. rufipes An. gambiae (s.l.) An. funestus

Tested CSP+ % (95% CI) Tested CSP+ % (95% CI) Tested CSP+ % (95% CI)

OCP 258 1 0.39 (0.34–0.44) 1773 18 1.02 (1.01–1.03) 1223 3 0.25 (0.24–0.26)

WETs 143 1 0.70 (0.59–0.81) 2386 26 1.09 (1.08–1.10) 169 0 0

ISCs 116 0 – 2466 59 2.39 (2.38–2.40) 528 5 0.95 (0.91–0.99)

Total 517 2 0.39 (0.37–0.41) 6625 103 1.56 (1.55–1,57) 1920 8 0.42 (0.41–0.43)

Abbreviation: CI confidence interval

Table 2 Overall human and animal blood indices of Anopheles rufipes and main anopheline species from 2011 to 2014 in North
Cameroon

Species Method Human Cow Sheep Pig Chicken Horse

An. rufipes OCP (n = 143) 0.35 0.55 0.41 0.20 0.03 0.02

WET (n = 103) 0.33 0.50 0.60 0.15 0.01 0.00

ISC (n = 36) 0.53 0.53 0.47 0.06 0.03 0.00

Total (n = 282) 0.37 0.52 0.49 0.16 0.02 0.01

An. gambiae (s.l.) OCP (n = 236) 0.62 0.40 0.40 0.12 0.03 0.00

WET (n = 159) 0.85 0.22 0.16 0.09 0.04 0.00

ISC (n = 689) 0.69 0.30 0.25 0.10 0.03 0.01

Total (n = 1084) 0.70 0.31 0.27 0.11 0.03 0.01

An. funestus OCP (n = 240) 0.35 0.54 0.57 0.19 0.01 0.00

WET (n = 25) 0.36 0.64 0.40 0.04 0.08 0.08

ISC (n = 165) 0.25 0.44 0.69 0.16 0.01 0.02

Total (n = 430) 0.31 0.51 0.60 0.17 0.01 0.01

Abbreviation: n number tested positive (undetermined not included)
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with such behavioural heterogeneity in the field should
be regarded as a potential target for the control of re-
sidual malaria parasite transmission [49].
More importantly, two An. rufipes specimens were

found positive for CSP, one from Ouro Lawane in
2013 (n = 38) and one from Lombou in 2014 (n =
17). This finding confirms the ability of this species
to carry human malaria parasites, as it has been also
demonstrated in a parallel study on transmission pro-
files carried out in the same locations [12]. This fur-
ther observation is remarkable since several authors
ranked this species as zoophilic, with very little or no
epidemiological importance in some areas. The
screening of the presence of malaria infection in mos-
quitoes was continuously improved since the first evi-
dence of sporozoites in a single An. rufipes specimen
60 years ago to date with the detection of parasite
antigens by ELISA and PCR methods. These advanced
techniques frequently detect as positive for Plasmo-
dium sporozoites several species that are not consid-
ered vectors, and provide little indication of the
transmission ability of such species [50–54]. Based on
these observations, An. rufipes could henceforth be
considered as a potential vector in North Cameroon,

indicating that it should also be considered during
monitoring along with other malaria vector species of
the vectorial system.
Furthermore, by assessing for the first time the sus-

ceptibility of An. rufipes populations to deltamethrin,
one of the common pyrethroid insecticides used in
LLINs distributed nationwide in 2011 and in 2016 in
Cameroon, we observed that mortality rates were
highly variable depending on the location and time
point. The distribution of confirmed or suspected re-
sistance in 12 of the 15 tested An. rufipes populations
is indicative of the development of phenotypic resist-
ance to pyrethroids in the three surveyed health dis-
tricts. In addition to previous reports on pyrethroid
resistance in members of the An. gambiae complex
from the same locations [19, 55, 56], these data high-
light the extent of insecticide resistance in potential
malaria vector populations from North Cameroon. This
is the first report of pyrethroid resistance in An. rufipes
from Cameroon, which may have a potential impact on
the efficacy of LLINs in study health districts. Insecti-
cide resistance in An. rufipes populations and other
vector species of An. gambiae complex and An. funes-
tus group from this region should therefore be hence

Table 4 Knockdown times (KDT50 and KDT95) and KDT50 ratios (KDT50R), following exposure to 0.05% deltamethrin of Anopheles
rufipes (s.l.) populations from study locations of North Cameroon from 2012 to 2015

Year Health district Location n KDT50 (95%CI) (min) KDT95 (95%CI) (min) KDT50 ratio Status

2012 Garoua NAS 48 17.5 (15.4–19.4) 42.0 (36.5–51.0) 1.84 S

2013 Garoua Kanadi 22 22.6 (20.3–25.0) 37.2 (34.2–46.5) 2.38 R

Lounderou 28 21.6 (19.1–24.0) 40.2 (34.9–47.9) 2.27 S

Mboum Aviation 26 35.2 (31.7–38.6) 70.2 (60.6–87.9) 3.71 R

Nassarao 12 24.6 (21.2–28.2) 39.8 (33.6–54.7) 2.59 SR

Mayo Oulo Batoum 80 21.3 (19.3–23.2) 54.5 (48.3–63.7) 2.24 SR

Bossoum 32 21.5 (18.2–24.5) 53.0 (44.5–69.1) 2.26 S

Boyoum 87 25.0 (23.4–26.6) 55.9 (50.6–63.4) 2.63 SR

Maboni 51 32.4 (29.7–35.5) 80.2 (68.2–100.4) 3.41 R

2014 Garoua Bocki 62 21.9 (20.1–23.7) 48.3 (43.0–56.2) 2.31 SR

Mayo Oulo Batoum 107 9.9 (9.0–10.7) 27.0 (24.1–30.9) 1.04 S

Bossoum 43 18.0 (15.2–20.5) 39.4 (34.0–48.7) 1.90 S

Matra 90 21.2 (19.8–22.7) 51.3 (46.2–58.4) 2.23 SR

Pitoa Banaye 20 13.9 (8.3–18.1) 39.7 (31.2–61.0) 1.46 SR

Kirambo 26 10.5 (4.6–15.7) 41.5 (30.8–63.2) 1.11 S

Nassarao-Be 13 5.4 (0.8–10.9) 46.1 (25.5–174.8) 0.57 S

2015 Mayo Oulo Batoum 21 27.5 (24.1–31.2) 60.1 (49.9–80.5) 2.90 SR

Bossoum 67 23.7 (22.1–25.4) 49.1 (44.3–56.1) 2.50 SR

Boyoum 89 28.0 (26.2–29.8) 65.1 (58.4–74.5) 2.95 SR

Doumo 97 26.6 (21.4–23.8) 45.4 (41.7–50.3) 2.80 R

Dourbeye 71 30.7 (28.3–33.0) 68.7 (60.8–80.8) 3.23 SR

Abbreviations: n number tested, CI confidence interval, S susceptible, SR suspected resistance to be confirmed, R resistance
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monitored according to the new WHO guidelines [57],
in order to guide comprehensive and data-driven plan-
ning and implementation of vector control.

Conclusions
The current study gathered relevant information on the
resting and feeding behavior and deltamethrin suscepti-
bility of An. rufipes populations from North Cameroon
relative to other malaria vectors, and confirmed that this
species may have a potential role in local malaria epi-
demiology. The findings indicate that An. rufipes should
be considered in monitoring programs for malaria vec-
tors in North Cameroon, and potentially throughout the
tropical domain of African countries.
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