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Abstract— Depression is a serious mental disorder that affects
millions of people all over the world. Traditional clinical diag-
nosis methods are subjective, complicated and need extensive
participation of experts. Audio-visual automatic depression
analysis systems predominantly base their predictions on very
brief sequential segments, sometimes as little as one frame.
Such data contains much redundant information, causes a high
computational load, and negatively affects the detection accu-
racy. Final decision making at the sequence level is then based
on the fusion of frame or segment level predictions. However,
this approach loses longer term behavioural correlations, as the
behaviours themselves are abstracted away by the frame-level
predictions. We propose to on the one hand use automatically
detected human behaviour primitives such as Gaze directions,
Facial action units (AU), etc. as low-dimensional multi-channel
time series data, which can then be used to create two sequence
descriptors. The first calculates the sequence-level statistics of
the behaviour primitives and the second casts the problem
as a Convolutional Neural Network problem operating on a
spectral representation of the multichannel behaviour signals.
The results of depression detection (binary classification) and
severity estimation (regression) experiments conducted on the
AVEC 2016 DAIC-WOZ database show that both methods
achieved significant improvement compared to the previous
state of the art in terms of the depression severity estimation.

I. INTRODUCTION
Major Depression Disorder (MDD) is a psychiatric disorder
defined as as a state of low mood with a problematic
level of duration/severity (at least two weeks). Depression
negatively impacts one’s day to day life, causing people to
become reluctant or unable to perform activities [8]. It can
negatively affect a person’s personal, work, school life, as
well as sleeping, eating habits, general health, etc. and affects
thoughts, behaviour, feelings, and sense of well-being [8]. In
extreme conditions, people even die by suicide. Depression
is the most prevalent mental health disorder and the leading
cause of disability in developed countries [18]. A correct
diagnosis can provide vital information about how to reduce
inappropriate feelings of blame, shame, loneliness and low
self-esteem for the corresponding patients and also facilitates
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the communication between (potential) patients and health
professionals about the support and services they need [5].
It is key to choosing which interventions are suitable for
treating a patient.

Current clinical standards for depression assessment are
subjective. They depend almost entirely on verbal report
(clinical interview or questionnaire) of patients, their fam-
ily, or caregivers [4]. Also, people’s depression evaluation
requires extensive participation from experienced psycholo-
gists and relies on their own understanding of the individual’s
psychological testing records, history, self-reporting, and as-
sessment during interviews [30]. Unfortunately, this is often
a lengthy procedure and relevant data or experts may not
always be accessible, which results in many patients missing
the best chance for preventing or treating their depression at
the early stages of depression.

In order to compensate for the subjective nature of the
traditional methods, objective assessment methods to aid
monitoring and diagnosis must be explored. Motivated by
this, a large number of depression analysis methods based
on non-verbal biomarkers have been proposed. Most of these
adopted physical cues such as head movements [10], facial
expressions [23], [20], [9], or audio signals [18], [4]. Con-
sidering that such non-verbal information can be collected
and analysed without the intervention of clinicians, this may
help speed up the assessment and allow self-monitoring.
Unfortunately, working directly from raw video and audio
results in very high-dimensional data, and collecting large
number of examples of clinical cases is difficult. Thus, a
lower-dimensional solution is urgently needed.

Several works proposed in literature have developed auto-
matic depression analysis methods based on audio or video
data. Cohn et al. [4] have investigated the relation between
human behaviour primitives (Facial Action Units (AU),
vocal behaviour) and depression. They concluded that this
encoding of human behaviour can provide vital information
for depression assessment. Since human behaviour primitive
descriptors have a much lower dimensionality than video data
and systems for detecting them can be learned on non-clinical
data, this paper adopts various detected human behaviour
(see Fig. 1) from the video as the input.

Most related work in this area focuses on analysing depres-
sion at the frame or segment level, where segments last a few
seconds, and fuses predictions to generate the final decision
[22], [21], [20], [25], [31]. Yet long-term behaviour may
better represent depression status because a single behaviour978-1-5386-2335-0/18/$31.00 ©2018 Crown
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Fig. 1. Examples of human behaviour primitives.

in one or few frames can be explained by various causes, e.g,
a smile may be caused by feeling happy or feeling helpless.
In addition, while predictions made on short segments can be
fused to make a prediction for a whole sequence, the relations
between individual behaviour primitives are abstracted away
by the segment-level predictions. Motivated by this, we
propose two global depression feature extraction methods
for human behaviour signals from a whole video. The flow
charts of both methods are demonstrated in Fig. 2. The
first one calculates the statistics while the latter one applies
Convolutional Neural Networks (CNN).

Since the human behaviour signals from each video are
long and have varying lengths while our CNNs require a
fixed input dimensionality, these human behaviour signals
cannot be directly treated as the input to the network. To
solve this problem, one of the recent hand-crafted method
is proposed in [6]. They first extract facial landmarks to
obtain the dynamic facial shape and head pose information.
Then, combined with Gaussian Mixture Model (GMM),
improved Fisher Vector (IFV) coding [17] and Compact
Dynamic Feature Set (DFS) [7] were adopted to process
time series data of variable length. In this paper, we present a
data transformation method which converts the multi-channel
behaviour primitive signals to two frequency spectrum maps
of the same size. These spectrum maps are suitable to be
fed into CNNs. To evaluate the performance of the proposed
methods, several classification and regression experiments
were conducted on the DAIC-WOZ database [11] provided
by the AVEC 2016 depression challenge [20].

The motivations of this paper are exploring: 1. how to
use low dimensional automatically detected visual-behaviour
descriptors rather than high dimensional raw video data for
depression analysis; 2. how to extract long-term dynamic
feature from time-series data of variable length. The main
contributions of this paper can be summarized as follows:

1) A statistics-based global feature extraction method for
depression analysis is proposed.

2) Employing Fourier spectrum maps to allow variable
duration time-series data to be used by CNNs for
automatic human behaviour analysis.

3) A CNN-based global feature extraction method that
can jointly learn depression analysis features from the
amplitude and phase information of the spectrum maps.
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Fig. 2. The frameworks of the proposed methods

II. RELATED WORK

Wang et al. [23] is one of the early works that focus
on automatic neuropsychiatric disorders detection. The pro-
posed framework creates probabilistic expression profiles
for video data. It first locates important facial landmarks
to characterize facial expression changes and computes the
shape changes of 28 regions defined by 58 landmark points
as the facial expression features, which are then used to
train SVM classifiers. Next, sequential Bayesian estimation
scheme is applied to propagate the posterior probabilities
of facial expressions throughout the whole video and create
probabilistic profile of facial expressions. By analysing the
expressions profiles, the results show that patients who have
neuropsychiatric disorders follow different trends of facial
expression than healthy participants.



Another vision-based method using hand-crafted features
was proposed by Wen et al. [25]. In their framework,
facial region sub-volumes that consist of 60 sequential facial
regions are obtained and further processed to assure the
detected face is real. Dynamic features are extracted by
calculating the LPQ-TOP features of those sequential face
regions in three dimensions: XY, XT and YT, where XY
dimension provides the spatial information and the XT and
YT dimensions provide temporal information. Then, sparse
coding is employed to suppress the background noise for
the proposed system and further represent the features as
a liner combination of words from the K-SVD dictionary.
Finally, MFA method [29] and SVR are used to generate the
decisions from three dimensions, which fused later to give
the final result of the depression diagnosis.

Alghowinem et al. [2] investigated the generalisability
of a statistical method to detect depression severity cross-
culturally. Low-level features were extracted to describe
behavioural actions such as blink duration or head direction.
Finally, statistics of these low-level features were utilized as
the representation for each segment.

Due to the great success of deep learning in the computer
vision area, Zhu et al. [31] present a DCNN-based approach
that can predict the Beck Depression Inventory II (BDI-II)
values from video data. The proposed system consist of two
parallel CNNs; an appearance-DCNN to extract appearance
features and a dynamics-DCNN to extract dynamic motion
features by computing the optical flow between a certain
number of consecutive frames and both of them can predict
the depression values. At the end of their DCNN, two fully
connected layers with a fine-tuning step are adopted to
combine the results of appearance and dynamic models.

Besides video-based methods, audio-based automatic de-
pression diagnosis methods also have been investigated.
Williamson et al. [28], [27] achieved the best depression
estimation result in the AVEC 2013 [22] and AVEC 2014
depression challenge [21]. Based on the audio data, their
methods utilized formant frequencies and delta-mel-cepstra
to represent underlying changes in vocal tract shape and
dynamics. After that, by exploring the correlations between
these features and using PCA, a 11-dimensional feature
including five principal components for the formant domain
and six principal components for the delta-mel-cepstral do-
main is obtained. Finally, a Gaussian staircase model was
introduced to generate the final regression result.

Instead of directly using the video or audio, the human
behaviour displayed in videos and described in terms of
behaviour primitives can directly provide relevant informa-
tion for depression analysis. Cohn et al. [4] conducted three
experiments to examine the usefulness of the non-verbal
information in terms of detecting depression. Two video-
based methods (FACS coding and AAM-based face tracking)
and an audio-based method were adopted to evaluate facial
or vocal expression. For each AU, the proportion of the
interview in which each AU occurred, its mean duration,
the ratio of the onset phase to total duration, and the ratio
of onset to offset phase were extracted as FACS features,

while the mean, median, minimum, and maximum values
of the mean, median, and standard deviation of frame to
frame differences of each shape eigenvector were defined
as the AAM feature. The vocal features were variability of
vocal fundamental frequency and latency to respond to inter-
viewer questions and utterances. Finally, SVM and logistic
regression were introduced as the classifiers for video-based
methods and audio-based method. The result showed that
facial and vocal expression revealed depression and non-
depression consistent with DSM-IV criteria.

However, the manual detection for AU and other behaviour
is not suitable for automatic depression analysis because it
is time-consuming to annotate and requires human experts
trained to do so. Fortunately, automatic human behaviour
detection methods have been developed recently [13], [3]
that allow AU intensity, gaze direction, head pose and other
behaviour primitives to be detected in each frame. Building
on these works, this paper proposes two fully automatic
depression analysis methods.

III. SEQUENCE-LEVEL REPRESENTATION OF
BEHAVIOUR PRIMITIVES

In this section we describe the two sequence-level represen-
tations proposed in this paper, one based on the statistics of
the primitives, the other on their spectrum resulting from a
Fourier-transformation.

A. Sequence-level statistics representation

Human behaviour primitives (e.g. AU, head pose, etc.) are
either detected automatically in terms of their occurrence
(binary result) or the intensity (real-valued or ordinal result)
for each frame. To extend this representation to cover longer
segments, we present two statistics-based representations.

For each of the human behaviour primitives that have
intensity scores, 12 features are extracted to represent the
time series over a whole video/segment. The first four
features are the mean value, the standard deviation, median
value and maximum value of the entire behaviour intensity
signal. Since the minimum value for each behaviour is
fixed (zero for most systems) and the range equals the
difference between maximum and minimum value, they are
not included in the feature set.

After that, we calculate the same statistics of the frame
to frame difference, which we refer to as the first order
derivative of the intensity time series:

d(n) =
∂h(n)

∂t
= h (n)− h (n− 1) (1)

where h (n) is defined as a behaviour signal of the video.
Consequently, another four features are generated. The last
four features are mean value, standard deviation, median
value and maximum value of the second order derivative
of the human behaviour time series which denoted as

d2(n) = d (n)− d (n− 1) (2)

These 12 descriptors are then applied to represent each of
these human behaviour signals.



For human behaviour signals that only have occurrence
predictions, the mean value already contains their stan-
dard deviation and median value information. Meanwhile,
the maximum, the minimum and range are fixed values.
Therefore, only three features are calculated, which are the
mean value of the signal, the mean value of the first order
derivative of the signal and the mean value of the second
order derivative of the signal. As a result, three statistic
descriptors are generated for each of them.

B. Spectral Representation of Behaviour Primitives

In practice, videos will have variable duration, and thus
their behaviour primitive signals will have different lengths.
In order to train and use CNNs to extract task-specified
features that contain both global and local information, the
whole time-series data should be treated as a single input.
Therefore, the first task is to convert the behaviour primitive
signals from different videos to have the same length. There
are various solutions. One of them is to down-sample or re-
sample all signals, which would distort and lose some tem-
poral information of the original signals. Another solution is
using a histogram of the feature values as they appear in a
signal. Unfortunately, all temporal relations between frames
are removed by using this method. An additional problem
is that if the original videos have a large number of frames,
resulting in long time series signals, then a CNN learning
from this signal would have a large number of parameters
that need to be trained.

To avoid these drawbacks, we transform the set of be-
haviour signals to spectrum maps composed of two parts:
amplitude spectrum and phase spectrum. The former contains
the complete amplitude information of the signal while the
latter contains the temporal relation information between
frames. Let us define a human behaviour primitive signal
over a whole video as the time-series signal h(n), then its
Fourier transform spectrum can be obtained as follows:

H(w) =

∫ ∞
−∞

h(n)e−jwndn. (3)

H(w) is a complex function and can be rewritten as:

H(w) = |H(w)|ejϕ(w)

= R(w) + jI(w)
(4)

where R(w) =
∫∞
−∞ h(n) coswn dn is the real part of

H(w) and I(w) =
∫∞
−∞ h(n) sinwn dn is the corresponding

imaginary part. Here, |H(w)| =
√
R2(w) + I2(w) denotes

the amplitude spectrum and ϕ(w) = arctan
[
I(w)
R(w)

]
denotes

the phase spectrum.
In practice, each human behaviour signal has a finite

length. Then equation (3) can be rewritten as

H(kf1) =

M−1∑
0

h(mTs) · e−j2πmkTsf1

=

N−1∑
0

h(mTs) [cos(2πmkTsf1)− j sin(2πmkTsf1)]

(5)
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Fig. 3. Data transformation of variable length human behaviour signals in
a video to fixed-size two-dimensional amplitude and phase spectra.

where fs is the sample frequency; f1 is the frequency
resolution; N is the sampling points; f1 = fs

M ; Ts = 1
fs

.
Consequently, the amplitude can be denoted as

|H(kf1)|/M =
√

Re(H(kf1))2 + Im(H(kf1))2, (6)

and the phase can be denoted as

arg(H(kf1)) = arctan
Im(H(kf1))

Re(H(kf1))
(7)

where Re(H(kf1)) =
∑M−1

0 h(mTs) · cos(2πmkTsf1) and
Im(H(kf1) =

∑N−1
0 h(mTs) · sin(2πmkTsf1) For each

human behaviour signal, the same M sampling points are
adopted, and thus the converted spectrum map of each human
behaviour from all the videos is a 1-D signal of the same
length. Also, since M is much smaller than the N , the length
of the original data has been further reduced.

Suppose that there are a behaviour signals, then two a×M
multi-channel spectrum maps would be generated from each
video, where one contains the a amplitude spectrum maps
while the other is made up of a phase spectrum maps. Since
the spectrum map can be divided into two parts of the same
size and both parts have the same information, then only one
part of size M

2 + 1 is used for constructing the final multi-
channel spectrum maps. Figure 3 illustrates this process.

IV. DEEP LEARNED SPECTRAL FEATURE
EXTRACTION

The statistic features are calculated using fixed hand-crafted
functions related to the original data. These limited statistics
can not include all relevant information of signals while
other combination of the original data may contain significant
evidence for depression analysis. In other words, those
statistics may not the best feature set to describe the time
series of each human behaviour signal over a whole video
because what are the most important statistics for depression
analysis is still unclear.



M
ax

 

P
o

o
lin

g

D
ro

p
o
u
t

F
u

lly

C
o
n
n
ected

LogSoftMax

 

C
o
n
v

o
lu

tio
n

6
4

B
atch

 

N
o

rm
alizatio

n

R
eL

U

C
o
n
v

o
lu

tio
n

1
2

8

B
atch

 

N
o
rm

alizatio
n

R
eL

U

C
o

n
v

o
lu

tio
n

6
4

B
atch

 

N
o
rm

alizatio
n

R
eL

U

Amplitude 

Spectrum

Phase 

Spectrum

Input

(a) The CNN architecture for depression detection
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(b) The CNN architecture for depression severity estimation

Fig. 4. Two Spectral Behaviour Primitive CNN architectures

Deep learning techniques have achieved great success for
feature extraction in the computer vision area, and has shown
great potential in the one-dimensional signal processing area,
such as speech recognition [1], or other time-series analysis
[24]. For each video, after the spectral signal transformation,
two multi-channel spectral human behaviour primitive maps
have been generated. These spectrum maps contain both
the temporally global and local information of the original
human behaviour signals. Thus, it is interesting to see if a
CNN can extract most related features from them.

The CNN architecture for depression detection (binary
classification) is displayed in figure 4 (a), while The CNN
architecture for depression severity estimation (regression) is
shown in figure 4 (b). Both CNNs have three main convo-
lutional layers which consist of 64 filters of size 7× 1, 128
filters of size 5× 1, and 64 filters of size 3× 1, respectively.
Each of them are followed by a batch normalization layer
and a ReLU layer.

Then, for depression detection, an average pooling layer of
size 129× 1 is adopted to down-sampling each feature map
into one value while a max pooling layer of the same size is
introduced for the depression severity estimation CNN. After
that, a Dropout layer is utilized to prevent both networks
from overfitting. Finally, a fully connected layer with 64
input neurons and two output neurons is used for the binary
classification, whose transfer function is the LogSoftMax.
For the severity estimation, a fully connected layer with 64
input neurons and one output neurons is utilized for the
regression and the transfer function is the Sigmoid. Here,
the output of the fully connected convolution layer (64D)
are treated as the deep learned features.

V. EXPERIMENTAL SETUP

A. The statistic method

The dimension of the calculated statistics feature vector is
higher than the number of the training data that we used
for our experiments. To avoid the classifier/regressor from

overfitting, Correlation-based Feature Selection (CFS) [12]
is introduced to reduce the dimensionality of the statistic
feature. However, because the training examples we used
in this paper are not balanced, a voted version of CFS is
employed to decide the final feature set. The procedure of
V-CFS is explained in Algorithm (1).

Algorithm 1 Procedure of V-CFS
1: Divide the training set into a subsets with the same

number of examples, where each subset has equal de-
pressed and non-depressed examples. These subsets can
be overlapped;

2: Applying CFS to each subset, resulting in k selected
feature sets;

3: Voting all features and ranking them in descending order
based on the frequency;

4: Select those top ranked features as the final feature set.

B. The CNN method

During the human behaviour primitives detection, occasion-
ally the face or other related regions can not be detected
in the video, which will lead to invalid predictions of
their occurrence or intensity. Therefore, the results of those
frames have been removed before the feature extraction. For
regression experiments, all the training labels were divided
by the maximum value to ensure their values between zero
and one and all the predicted values obtained at the test
phase were timed this maximum value to generate the final
results. Before the CNN training, all the spectrum maps of
human behaviour primitives were normalized using the z-
norm to ensure they had the mean value of zero and standard
deviation of one, where the sampling points for generating
spectrum maps is 256 for this study.

For each video, a m × 129 amplitude spectrum and a
m× 129 phase spectrum are concatenated as a training data
that contains two feature maps. These data are then fed as



the training examples to the our CNNs described in Figure
4. The detection network is trained with logarithmic loss
function while the severity estimation network is trained with
the mean square error (MSE) loss function. Both networks
are optimized by Stochastic Gradient Descent (SGD).

In this paper, since we conducted several different exper-
iments, the size of training examples are different for each
of them. For instance, the training examples for AU-based
experiment using phase spectrum consists of 40 channels:
the phase spectrum maps of 20 AUs and amplitude spectrum
maps of 20 AUs while the training examples for gaze-based
experiments are made up of 24 channels.

VI. EXPERIMENTAL RESULT

A. Database

The database utilized in this paper is the Distress Analysis
Interview Corpus - Wizard of Oz(DAIC-WOZ) provided
by AVEC 2016 depression analysis sub-challenge, which
contains 107 clips for training and 35 clips for validation.
The training set consists 44 female clips and 63 male clips,
where 30 of them are depressed and 77 of them are non-
depressed. Meanwhile, the development set have 19 female
clips and 16 male clips. The database provided various video
features, including facial landmarks, HOG (histogram of
oriented gradients), gaze direction, head pose, emotion and
AUs, for each participants. In this paper, only AUs, gaze
directions and head poses have been used as the human
behaviour signals for the depression analysis. Meanwhile, we
treat 35 development clips as the test set which was not used
during the training and validation process. The PHQ-8 scores
that provided by AVEC 2016 were treated as the labels at the
training, validation and testing stages. The hyper-parameters
for all systems were optimized by five-fold cross validation
based on the training set.

B. Evaluation measurements

In order to evaluate the performance of the proposed methods
and compare them to previous works, recall, precision and
F1 score are employed to measure the performance of
the depression detection. Meanwhile, two measurements are
introduced to measure the depression severity estimation
performance, which are mean absolute error (MAE) and
root mean square error (RMSE). The formulas of them are
detailed in the equation (8) and (9)

MAE =
1

n

n∑
i=1

|fi − yi| (8)

RMSE =

√√√√ 1

n

n∑
i=1

(fi − yi)2 (9)

where fi is the predicted PHQ-8 value and yi is the ground
truth.

TABLE I
GENDER-INDEPENDENT DEPRESSION DETECTION RESULT

Modality Classifier Recall Precision F1
Video baseline .428(.928) .600(.867) .500(.896)
[14] [14] 1.00(0.54) 0.35(1.00) 0.52(0.70)
[15] [15] 0.71(0.86) 0.56(0.92) 0.63(0.89)
[16] [16] N/A(N/A) N/A(N/A) 0.50(0.90)
AU SVM .333(.913) .667(.724) .444(.808)

Gaze SVM .167(.826) .333(.655) .222(.731)
Head Pose SVM N/A(N/A) N/A(N/A) N/A(N/A)

AU+Gaze+HP SVM .333(.826) .500(.704) .400(.760)
AU CNN .250(.913) .300(.778) .273(.667)

Gaze CNN .500(.913) .750(.778) .600(.840)
Head Pose CNN .583(.739) .538(.773) .560(.756)

AU+Gaze+HP CNN .583(.826) .636(.792) .609(.809)

C. Depression detection results

Table I displays the depression detection experimental re-
sults, where the threshold used here for PHQ-8 is nine
which is predefined by the database (values for class not
depressed are reported in brackets). For both methods, We
present the detection results of using each modality only
as well as using them together. According to the table, all
detection result obtained by the statistic method are not as
good as the baseline and previous visual-based works. When
the head poses were adopted as the input to calculate the
features and train SVM, all the test data were predicted
as Non-depressed. However, the CNN method generated
much better result than the statistic method. Except treated
AU as the input, the CNN features extracted from other
three combinations outperformed results reported in [14]
and achieved comparable results of the baseline and systems
proposed in [16].

Due to that depressed males and depressed females may
show dissimilar behaviour [19], the gender-specific exper-
iments were also conducted. Considering that the number
of the training clips for each gender are different and less
than it for the gender-independent experiments, it is not fair
to employ all clips for training. As a result, for female,
44 training clips were all used. For male and the gender-
independent experiments, 10 different combinations of 44
clips were randomly selected from the corresponding training
set. The reported results are the mean value of those 10
experiments. As illustrated in the Table II, there is a clear
win for gender-specific by using statistic method. As for the
CNN method, due to the limited amount of the training data,
the result of the gender-specific experiment system haven’t
show significant priority over the gender-independent system.

D. Depression severity estimation results

Besides the depression detection, we have also implemented
the depression severity estimation (regression) experiments
to estimate the PHQ-8 score of each participant. As shown in
Table III, the best result was obtained by the statistic feature
extracted from the behaviour combination AU+Gaze+HP
(HP stands for the head pose, shown in Fig. 5), where SVR is
adopted as the regressor. The feature from this combination



TABLE II
GENDER-SPECIFIC DEPRESSION DETECTION RESULT

Gender Modality Classifier Recall Precision F1
Female AU+Gaze+HP SVM .571(.833) .667(.769) .615(.800)
Male AU+Gaze+HP SVM .560(.782) .550(.797) .550(.788)
F+M AU+Gaze+HP SVM .333(.856) .570(.715) .418(.784)

Female AU+Gaze+HP CNN .429(.750) .500(.692) .462(.720)
Male AU+Gaze+HP CNN .480(.800) .550(.770) .504(.780)
F+M AU+Gaze+HP CNN .433(.863) .574(.743) .453(.793)
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Fig. 5. The best result achieved for depression severity estimation

achieved significant improvement over the baseline as well
as other previous proposed vision-based systems. Compared
with the baseline, it obtained 18.1% relative improvement of
RMSE and 25.7% relative improvement of MAE. In addition,
it achieved 9.5% and 25.7% relative improvement over other
two previous methods separately in terms of the RMSE.
However, by using the CNN, the regression results are not as
good as the statistic method. This may due to that the limited
number of the training data, which means a well-trained
model maybe overfitting. Fortunately, it still outperformed
the baseline and previous works listed in the table.

Again, we have conducted the gender-specific experiments
for the depression severity estimation. With the same setup
as before, the statistic-based gender-specific systems get the
better RMSE result over the gender-independent system. On
the contrary, the CNN method generate the worse results for
gender-specific system in terms of the RMSE. The reason
may still the limited amount of the training data.

VII. CONCLUSION AND FUTURE WORK

Aiming to automatically and objectively analyze depression,
this paper proposed two global feature extraction methods:
the statistic method and the CNN method, which directly
extract global features from those automatically detected
human behaviour, such as AUs, gaze, etc. For statistic
method, a voted version of CFS was introduced to reduce the
dimension of the feature to keep the classifier or the regressor
from overfitting. Since the hand-crafted statistic feature may
lose important information of the original data, another
method applied Convolution Nerual Networks to automatic

TABLE III
GENDER-INDEPENDENT DEPRESSION SEVERITY ESTIMATION RESULT

Modality Regressor MAE RMSE
Baseline Baseline 5.88 7.13

[26] [26] 5.33 6.45
[15] [15] 6.48 7.86
AU SVR 4.91 5.98

Gaze SVR 4.88 6.36
Head Pose SVR 5.03 6.44

AU+Gaze+HP SVR 4.37 5.84
AU CNN 5.01 6.32

Gaze CNN 5.24 6.36
Head Pose CNN 5.04 6.18

AU+Gaze+HP CNN 5.15 6.29

TABLE IV
GENDER-SPECIFIC DEPRESSION SEVERITY ESTIMATION RESULT

Gender Modality Regressor MAE RMSE
Female AU+Gaze+HP SVR 4.39 5.75
Male AU+Gaze+HP SVR 4.54 5.68
F+M AU+Gaze+HP SVR 4.37 5.84

Female AU+Gaze+HP CNN 5.36 6.47
Male AU+Gaze+HP CNN 5.12 6.31
F+M AU+Gaze+HP CNN 5.15 6.29

extract task-specified deep features. For this method, a data
transformation algorithm is introduced to allow all data
having the same length as well as significantly reducing the
length of data. It converted the original time-series data of
different numbers of frames to spectrum maps that have the
same lengths. The depression detection experiment results
illustrated that the CNN feature can generate competitive
results compared to the previous works. Meanwhile, the
depression severity estimation experiment results showed
that both methods are capable of predict more precise PHQ-8
score over the baseline and other previous algorithms.

However, our methods still have a large development
space, especially the CNN method. This is because that the
result obtained by them are not as good as we expected.
There are three main reasons: 1. the training data is limited
(only 107) and is not enough to train a deep CNN; 2. the
automatically detected human behaviours are not completely
correct, which means the errors may affect the later depres-
sion analysis; 3. Besides AU, gaze directions and head poses,
other behaviours are not included in our feature set, which
may contain more vital clues related to depression. If the
aforementioned problems can be solved, the CNN method



would be further enhanced. Therefore, Our future work will
mainly focus on three parts: 1. Recording more data (may
be more than several thousands clips including PHQ-9 and
BDI reports, audios, videos, EEG, etc.) and construct a new
database for automatic depression analysis; 2. Try more
complex CNN architectures when enough data is available; 3.
Introducing more modalities, such as other behaviour signals,
audio, etc. to improve the performance of our frameworks.
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