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Abstract

In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in

shape are decomposed in affine and non affine components. Furthermore the non affine component

can be in turn decomposed in a series of local deformations (partial warps). If the extent of

deformation between two shapes is small, the difference between centroid size and m-Volume

increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo

very large deformations, involving large changes in size. The cardiac example, analyzed in the

present paper, shows changes in m-Volume that can reach the 60%. We show here that standard

Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of

the deformation) can be generalized to better describe the very large deformations of biological

tissues, without losing a synthetic description. In particular, the classical decomposition of the

space tangent to the shape space in affine and non affine components is enriched to include also

the change in size, in order to give a complete description of the tangent space to the size-and-

shape space. The proposed generalization is formulated by means of a new Riemannian metric

describing the change in size as change in m-Volume rather than change in Centroid Size. This leads

to a redefinition of some aspects of the Kendall’s size-and-shape space without losing Kendall’s

original formulation. This new formulation is discussed by means of simulated examples using

2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data.

We demonstrate that our decomposition based approaches discriminate very effectively healthy

subjects from patients affected by Hypertrophic Cardiomyopathy.
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1. Introduction

Medical image analysis experienced, in the last two decades, a significant boost in both shape

recognition from medical images and analysis of related geometric data. In particular, 2D and 3D

Speckle Tracking Echocardiography (2D and 3D STE), CT-scan and Magnetic Resonance (MR)

represented the most used technologies, albeit not unique, in order to extract anatomical shapes

from medical images to be analyzed and evaluated in terms of form, function and, ultimately,

physiology. Shapes are identified by points (=landmarks) in 2D/3D space. These landmarks can

be considered (with a certain degree of approximation) anatomically homologous, or not, between

different subjects. In the former case anatomical homology allows the possibility to treat land-

marks with the standard Geometric Morphometrics (GM) toolkit (see below). Without homology’

assumption several strategies have been developed in order to perform shape matching basing on

a plethora of algorithms (Bronstein A. and Bronstein M., 2013) whose review is not the scope of

the present paper. In the last years the emerging disciplines of Diffeomorphometry and the re-

lated Functional Anatomy apply to replace classic GM through the use of diffeomorphisms, more

suitable to describe soft tissues changes (Miller M. I.and Qiu A., 2009; Miller et al., 2013, 2014,

2015). On the other hand, these descriptions are very sophisticated but do not incorporate in

their formulation some synthetic properties of the decomposition of deformation in some signif-

icant aspects. In this paper we focus on shapes represented by landmarks that are considered

anatomically homologous in different configurations. Very often, in medical applications, the goal

of shape analysis is not the assessment of differences between shapes; rather, the main aim is to

find differences between deformations. This distinction is crucial [3] and inevitably leads to the

definition and quantification of deformation occurring between two shapes, e.g. a source and a

target. Thus, before entering the clinical and physiological interpretation of the primary medical

datum, it is compelling to understand how the total observed deformation can be decomposed

in its main components, the one related to pure size, that related to a global affine deformation

and that representing a non affine transformation. GM and differential geometry’ tools can be

combined in different ways in order to answer differently to the same question. Thus, in advance

of presenting our clinical example, related to 3D STE data of healthy subjects and of patients

affected by Hypertrophic Cardiomyopathy (HCM), we necessarily must present the techniques

used to decompose the deformation with the help of explicit/controlled simulated examples. After

that, the return to the real clinical case will be eased by the augmented awareness of how and why

a deformation is decomposed.

First of all we will show how decomposing the deformation can help in describing the mechanical

behaviour of the myocardium, highlighting the different mechanical role of the two layers (Evan-

gelista et al., 2015). Second, we prove the ability of the threefold decomposition in discriminating

the HCM pathology from Control subjects.
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HCM is one the most common genetically determined cardiac disease. It results from functional

impairments of myocardial proteins and about 13 genes have been identified as responsibles of

pathology. This causes a muscular fiber disarray with a consequent dysfunctional contraction,

an augmented left ventricular pressure during filling as well as a huge left atrium hyperdilation.

Left ventricle dynamics in HCM presents an increased duration of LV twist consequent to the

inverse relationship of longitudinal strain rate and twist rate. This is viewed as a compensation

to preserve ejection fraction ( = systolic function). However, the increased duration of systolic

twist induces an untwisting delay, with elevated LV early diastolic pressures, reduced transmitral

pressure gradient and impaired LV early diastolic filling.Albeit the diagnosis can be easily done

using classic Echocardiography, studying in detail the mechanical behaviour of epicardium and

endocardium would be of great help in understanding how and where the pathology affects the

left ventricular anatomy. For example, it can be hypothesized that the muscular fiber’s disarray

could be at the base of an augmented non affine component of deformation due to the irregularity

of fiber’s orientation.

In (Rohlf, F.J. and Bookstein, F.L. , 2003) it was added to the existing method proposed in

(Bookstein, 1996a) other two methods for computing the affine component in a transformation: i)

the complement of the space of pure bending shape variation; ii) the regression method. Relatively

to (Bookstein, 1996a) these two methods do not require the reference configuration to be aligned

to its principal axes. While the former implies the computation of the bending energy matrix,

the latter does not and can be easily implemented using the computation of the pseudoinverse

matrix in a linear system relating the source and the target configurations. This solution is the

same as the least squares estimator when we wish to estimate the affine transformation between

a source and a target. In (Dryden, I.L., Mardia, K.V., 2016) further details about this are given

(see Equation (12.2) and Subsection (12.2.2) of the book). These approaches were presented in

the shape space, thus after scaling shapes at unit size. We present our decomposition strategy in

the size and shape space thus taking in account the contribution of size difference between source

and target.

Moreover, we do this by optionally computing the affine component using Thin Plate Spline

(TPS) or the pseudoinverse strategy (that is equivalent to the ‘regression’ method in (Rohlf,

F.J. and Bookstein, F.L. , 2003)). It is worth noting that the ‘complement of the space of pure

bending shape variation’ method proposed by (Rohlf, F.J. and Bookstein, F.L. , 2003) looks for the

pure affine component after computing the bending energy matrix thus using the TPS paradigm.

However, they do not use the affine component of the TPS formulation as it is not orthogonal

to the non affine one (see below). Instead, they compute the orthogonal complement to the non

affine part.

Our procedure furnishes both the magnitude and percentages relative to the whole deformation
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of pure homothetic, deviatoric and non affine components. These components belong to different

subspaces depicted in Fig.1.

The deviatoric component represents the affine non homothetic component, often called simply

‘affine’ in classic Geometric Morphometrics given that very often it is referred to transformations

in the shape space. On the basis of this we will refer, from now on, to the non affine component

as not having any homothetic component.

Deviatoric plus non affine component represent the global non homothetic component. It is

important to note that all components depicted in Fig.1 should be orthogonal between each other.

This can be verified using formulas defining the angle between two deformation vectors. The angle

between deviatoric and non affine components deserves particular attention: in fact it is easily

verifiable that, when using TPS approach they are not orthogonal. This is due to the following

fact. The landmark-wise representation of the TPS formulation (in (Dryden, I.L., Mardia, K.V.,

1998), eq. 10.6) is

ψ(x) = c+Ax+WT s(x) , x ∈ Em ,

being Em the m-dimensional Euclidean space. Using the shape-wise representation, where a

configuration X is defined in the Ckm configuration space (with k the number of landmarks), we

have

ψ(X) = lk c
T +X AT + SW , X ∈ Ckm , Sij = σ(xi − xj) , (1.1)

where

σ(h) =




||h||2 log(||h||2) if ||h|| > 0;

0 if ||h|| = 0.
for m = 2

σ(h) =




−||h|| if ||h|| > 0;

0 if ||h|| = 0.
for m = 3

we have X AT ⊥W , but X AT is not orthogonal to SW . On the opposite, when using the

pseudoinverse strategy the affine and non affine components are orthogonal.

We propose three methods to decompose the deformation in spherical, deviatoric (i.e. affine

non-spherical) and non affine components: 1) The "Fully Euclidean" based on the Pseudoinverse.

We use the term "Fully Euclidean" relatively to the decomposition per se and not to the pre-

liminary alignment procedure. Advantages: the components are orthogonal with respect to the

Euclidean metric. 2) A new method "GPp" based on the pseudoinverse but using as metric, in the

affine subspace, the metric of GL(m) i.e. Tr(ATA) where A is the linear transformation obtained

with the pseudoinverse. In the non affine subspace the metric is still Euclidean. Here the spherical

part is related to the change in m-Volume instead of Centroid Size. 3) A method "TPSs" based on

the metric introduced in (Varano et al., 2017) called TPS metric. Also in this case the spherical

component is related to the change in m-Volume. The advantage of this approach is that the affine
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Figure 1: The orthogonal subspaces identified by their corresponding vectors. Spherical, deviatoric and non affine

components should be orthogonal under a given decomposition metric.

and non affine components emerge from the TPS decomposition, thus allowing an interpolation

with grids. Using this metric XAT and SW are orthogonal.

Each of these criteria is used to decompose deformations in simulated cases:

1) family of rectangles with different aspect ratios but fixed Centroid Size (CS),

2) family of rectangles with different aspect ratios but fixed m-Volume,

3) 2D bilinear deformations (bending) of a rectangle in a family of trapezoids,

4) 3D bilinear deformations of a parallelepiped.

The same is done using real clinical data coming from 3D echocardiography

2. Background

In Landmark based Geometric Morphometrics, configurations are represented by k ×m ma-

trices, where k is the number of landmarks and m the dimension of the ambient space. When

configurations are centered, a strict representation is given by (k− 1)×m matrices. The space of

each centered configuration, the so-called Centered Configuration Space CCkm can be identified with

the linear space of the (k−1)×m matrices. On each point X ∈ CCkm, representing a configuration,

the tangent space TXCCkm is defined. A vector V ∈ TXCCkm represents a small deformation of the

configuration X and can be represented, in turn, by a (k − 1)×m matrix.

If one wants to filter out every rigid motion then rotations are removed, thus obtaining the

size-and-shape space SΣkm = CCkm/SO(m) as a quotient space with respect to the rotation’s group.

If one wants to filter out the scaling too, then each form is scaled to unit size, thus obtaining
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the shape space Σkm. This is the reason upon which the geometry of the shape space depends on

the choice of a size measure. As will be clear in the following this choice is not obvious.

In order to describe and compare different deformations it is very important to be able to

decompose each deformation by projecting it on different subspaces of TXCCkm, each one charac-

terizing some important features of the deformation.

The aim of the present paper is to propose some useful decompositions of the tangent space

TXCCkm in order to unify old and new methods in a unique framework. We prefer to formulate our

decompositions in the tangent space to the centered configuration space, rather than in the tangent

space to the shape space, as classically done, because we are interested in describing the whole

deformation. In fact, changes in size are important descriptors of the deformations. We recall

that a decomposition of a vector space is given if one defines different complementary subspaces.

Each vector of the original vector space can be expressed in a unique way as a linear combination

of elements belonging to the defined subspaces. We note that, in general, two subspaces can

be complementary without being orthogonal each other, with respect to the Euclidean metric.

Moreover, once given a decomposition of a vector space, it is always possible to define new metrics

relatively to which the given subspaces are orthogonal.

In order to describe the deformation it is important to introduce some important subsets of

TX(CCkm).

The first is the set Vu of the uniform deformations of X:

Vu = {V ∈ TX(CCkm) : V = XHT , H ∈ Cmm}}, (2.1)

It describes the overall deformation of the reference configuration. We use the term uniform

instead of the most used affine because affine includes also translations that are filtered out here.

There are other two very important subspaces that are, in turn, subspaces of Vu: the spherical
(homothetic) deformations of X Vsph ⊂ Vu and the small rotations of X Vrot ⊂ Vu:

Vsph = {V ∈ TX(CCkm) : V = λX , λ ∈ R} (2.2)

Vrot = {V ∈ TX(CCkm) : V = XW , W ∈ Cmm}, W +WT = 0}. (2.3)

While each one of the above mentioned subspaces has a direct characterization, there are

two important subspaces, namely the set Vnu of the non-uniform deformations of X, and the set

Vnsph of the non-spherical deformations of X, that admit only indirect definitions, as orthogonal

complements. In particular:

Vnu = {V ∈ TX(CCkm) : g(U, V ) = 0 ∀U ∈ Vu} (2.4)

Vnsph = {V ∈ TX(CCkm) : g(U, V ) = 0 ∀U ∈ Vsph}. (2.5)

In such a way the following decompositions holds:

TX(CCkm) = Vu ⊕g Vnu = Vsph ⊕g Vnsph (2.6)
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where ⊕g is the orthogonal sum with respect to the metric tensor g. In fact the orthogonality is not

a concept given a priori but it is defined by the metric tensor. We want to stress that g depends

on the considered point X then the orthogonality depends on X.

By defining the deviatoric component as the uniform non spherical component:

Vdev = Vnsph ∩ Vu (2.7)

we obtain, in turn, the following orthogonal decomposition, w.r.t. g, on each configuration X:

TX(CCkm) = Vrot ⊕g
Vnrot︷ ︸︸ ︷

Vsph ⊕g Vdev︸ ︷︷ ︸
Vu

⊕gVnu (2.8)

It is easy to understand that the above decomposition can be interpreted as a splitting of the

(small) deformation in a component that changes only orientation, size, shape (affine and non

affine Fig.2).
The&Four&Subspaces&of&the&Tangent&Space

Non&Uniform

De
v

Sph

Ro
t Face:&

Tangent&at&
Shape&Space

Cube:&
Horizontal&
subspace&
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Form&Space

Uniform&

where �g is the orthogonal sum with respect to the metric tensor g. In fact the orthogonality is not

a concept given a priori but it is defined by the metric tensor. We want to stress that g depends85

on the considered point X then the orthogonality depends on X.

By defining the deviatoric component as the uniform non spherical component:

Vdev = Vnsph \ Vu (2.8)

we obtain, in turn, the following orthogonal decomposition, w.r.t. g, on each configuration X:

TX(CCk m) = Vrot �g

Vnrotz }| {
Vsph �g Vdev| {z }

Vu

�gVnu (2.9)

It is easy to understand that the above decomposition can be interpreted as a splitting of the

(small) deformation in a component that changes only orientation, size, shape (affine and non90

affine).

TX(CCk m) = Vrot|{z}
orientation

�g

formz }| {
Vsph|{z}
size

�g Vdev �g Vnu| {z }
shape

(2.10)

. Then, given a small deformation VX of the configuration X, the rotational component Vrot must

be filtered out by using a proper procedure of alignment (either Ordinary Procrustes Analysis

(OPA) or Modified Ordinary Procrustes Analysis (MOPA) see below).

If one performs the quotient w.r.t the rotation’s group, for obtaining the size-and-shape space95

S⌃k
m = CCk

m/SO(m), the above decomposition can be interpreted as a decomposition in vertical

subspace (Vrot) and horizontal subspace (the orthogonal complement Vsph �g Vdev �g Vnu). The

horizontal subspace on the configuration X represents (is isometric to) the tangent space to the

size-and-shape space S⌃k
m at the form [X]S , where [X]S is the equivalence class given by the

action of SO(m) on X.100

Figure 1 shows the decomposition of the tangent space of the size-and-shape space T S⌃k
m. In

particular the subspace named non spherical tangent space corresponds to the shape space tangent

space T ⌃k
m.

It is important to stress that the above decomposition, in general, relies on the choice of g. In

particular, being CCk m globally a linear space, a possible choice of g could be the Euclidean dot105

product g(U, V ) = U · V = Tr(UT V ), as usually done in Procrustes analysis.

On the other hand, the choice of the euclidean metric is not the sole possible.

While the definitions of rotation, scaling, and uniform deformation are independent from the

choice of g, the definitions of size, shape, non uniform deformation depend on that choice.

In the next section we will discuss the definitions of size and shape by means of a very simple110

example: the size and shape space of the rectangles and we will show how that definitions are

related to the choice of the metric tensor g.
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Figure 2: The fourfold decomposition of the tangent space defined in eq. 2.9 can be visualized through an 4-

dimensional hypercube.

TX(CCkm) = Vrot︸︷︷︸
orientation

⊕g
form︷ ︸︸ ︷

Vsph︸︷︷︸
size

⊕g Vdev ⊕g Vnu︸ ︷︷ ︸
shape

(2.9)

.

Then, given a small deformation VX of the configuration X, the rotational component Vrot

must be filtered out by using a proper procedure of alignment (either Ordinary Procrustes Analysis

(OPA) or Modified Ordinary Procrustes Analysis (MOPA) see below).

If one performs the quotient w.r.t. the rotation’s group, for obtaining the size-and-shape space

SΣkm = CCkm/SO(m), the above decomposition can be interpreted as a decomposition in vertical
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subspace (Vrot) and horizontal subspace (the orthogonal complement Vsph ⊕g Vdev ⊕g Vnu). The
horizontal subspace on the configuration X represents (is isometric to) the tangent space to the

size-and-shape space SΣkm at the form [X]S , where [X]S is the equivalence class given by the

action of SO(m) on X.

Figure 1 shows the decomposition of the tangent space of the size-and-shape space T SΣkm. In

particular the subspace named non spherical tangent space corresponds to the shape space tangent

space T Σkm.

It is important to stress that the above decomposition, in general, relies on the choice of g. In

particular, being CCkm globally a linear space, a possible choice of g could be the Euclidean dot

product g(U, V ) = U · V = Tr(UTV ), as usually done in Procrustes analysis.

On the other hand, the choice of the Euclidean metric is not the sole possible.

While the definitions of rotation, scaling, and uniform deformation are independent from the

choice of g, the definitions of size, shape, non uniform deformation depend on that choice.

In the next section we will discuss the definitions of size and shape by means of a very simple

example: the size and shape space of the rectangles and we will show how that definitions are

related to the choice of the metric tensor g.

3. Two universes for Size: size and shape of a rectangle

3.1. Coordinate systems and concepts of size and shape

What is the size? What is the shape? And how can we distinguish a change in size from a

change in shape? In the present section we will discuss these issues by means of a very simple

example: the family of rectangles centered in the origin and aligned with a cartesian coordinate

system.

This family is characterized by symmetry with respect to both horizontal and vertical axes. It

is simple to understand that each rectangle can be described by the coordinates of just one vertex,

say (x1, x2), lying on the first quadrant x1 ≥ 0, x2 ≥ 0. In fact, once fixed the first landmark, the

whole configuration matrix can be parametrized as:

X =




x1 x2

−x1 x2

−x1 −x2

x1 −x2




(3.1)

Then, we can say that the size-and-shape space of rectangles is a two dimensional manifold

and the pair (x1, x2) ∈ R+×R+ is the trivial, cartesian, (upper right quadrant) coordinate system
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FIG. 3. Geometric size and shape. Shape is the space
of lines through the origin, not any particular mea-
sure of them. Size is constant along multiples of an
arbitrary curve cutting each radial once. See text.

scores we would usually call measures of
"proportion" unless the analysis is of log-
distances and PCI is close to isometry. Ex-
cept in the case of isometry, enlarging a
form by a constant factor (changing its geo-
metric scale) will alter its position in the
shape space of all subsequent principal
components, while the same enlargement
leaves shape as measured by ratios un-
changed.

For component analysis, the word "and"
in "size and shape" is limited to the vari-
ability of the coefficients of component one,
which represent the implications of change
in size for changes in the measured ratios
by which we conventionally quantify
"shape." The formally constructed "shape
space" of the second and subsequent com-
ponents is orthogonal to size by definition,
and no further meaning of the word "and"
is to be had there; shape change is change
of measured lengths by amounts inconsis-
tent with the regression coefficients on Size
given by PCI. In principal component
analysis, there is no equivalent of Wright's
"secondary size factors."

3. GEOMETRIC SIZE

A rather more rigorous conceptualiza-
tion of size and shape was introduced by
Mosimann (1970) as a generalization un-
derlying statistical studies of ratios. To
Mosimann, "size" is any combination G of
the observed data which scales to dimen-
sion one: that is, any function of the data
which is multiplied by a whenever each
datum is multiplied by a. When one's ob-
served data are measured lengths like A
and B in our example, for instance, size
may be any one of them, for instance G =
A, or G may be their total (here, A + B),
their geometric mean G = \/AB, their root-
sum-square G = V(A2 + B2), etc.

Once "size" is defined, however arbi-
trarily, "shape" becomes unambiguous: it
is the space of all ratios of the measured
variables with respect to that single size
variable G. Geometrically, shape was there
already, embodied in the bundle of lines
through the point of all measurements zero
in the original variable space—in our dem-
onstration, those are the lines through
(0,0), as drawn. All organisms whose mea-
surements lie on a single line have the same
geometrical shape as far as this suite of
measures can characterize it. Then the data
already have a distribution in shape space
before size is ever defined. The function G
serves to mark out a locus of "constant size"
transverse to this bundle of lines, as shown.
That is, the size variable G serves mainly
to pick out a certain point upon each line
of constant shape, so that we can compute
relations of shape and size.

Mosimann's approach concentrates upon
the word "and" of "size and shape" and
takes it to refer to all aspects of statistical
dependency. The principal gem uncovered
by his investigations is the elegant theo-
rem of 1970 that, under very general cir-
cumstances, at most one size variable G can
be independent of the shape space of ratios
(to itself) it induces. The assertion of the
theorem is made perhaps most intuitive if
we pass to the case of the log-normal data
(Bookstein et al., 1985). Then a useful class
of size variables G is the set of the products
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Figure 3: The left panel shows two different iso-shape vectors u,v applied to different sources (a square and a

rectangle) that are deformed into targets differing only for their (increased) size relatively to their proper source.

Center panel show the iso-size vector w connecting two different shapes that have actually the same size (m-Volume

in this case). Right panel reproduce original Bookstein’ intuition about size and shape change (Bookstein, 1989b).

"G" can represent any meaningful measure of size. Once defined it, the shape change becomes unambiguous under

that size definition.

describing it (Figure 3 and 4). On the other hand this is not the unique possible coordinate system

for the given space.

As we want to characterize two particular aspects (size and shape), we can ask if it is possible

to choose a different coordinate system in which one parameter represents the size and the second

the shape. In order to answer this, we can start by introducing two qualitative notions:

• A size measure σ(X) is any positive real valued function of the configuration matrix such

that σ(aX) = aσ(X) for any positive scalar a.

• The shape must be associated to a quantity that does not change when we scale X to aX.

In this simple case it is trivial to say that the shape of a rectangle is quantified by the aspect ratio

between height and width λ = x2/x1. In fact, when a rectangle enlarges without changing its

shape, the first landmark moves along a straight line of slope λ (see Figure 3 left). Each straight

line starting from the origin (Figure 3 and 4) is a iso-shape curve. Less obvious is to characterize

the family of iso-size curves. In particular, each line cutting all the iso-shape curves could be a

candidate to be an iso-size curve (see Figure 3 right).

On the other hand one could desire some additional requirements for choosing the iso-size

curve. For example one could prefer an orthogonal coordinate system, because one wants to

uncouple size and shape. This requirement brings to describe the iso-size curves as circumferences

by relating the size directly to the Euclidean length of the segment joining the first landmark to

the origin (see Figure 4 center). This is the most used definition of size in GM: the centroid size
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Figure 4: Different reference systems to illustrate change in shape while maintaining size according to different

size definitions. Left panel illustrate a classic cartesian coordinate system. Center panel shows iso-size lines that

maintains CS. Right panel shows a space where iso-size lines refer to the maintainance of m-Volume and are

hyperbolic. The squares in the center and right panels are identical while the rectangles, that are deformations

of the squares, are slightly different. The former has the same CS of the square, the latter the same m-Volume.

The couples of vectors e1 and e2 show the directions of iso-size and iso-shape changes; they are identical, in center

and right panels, in correspondence of the tangent to the square, while they visibly differ when evaluated in other

positions. In particular, we note that in the case of CS maintainig reference system, being iso-size lines circular,

e1 and e2 are always orthogonal (in Euclidean perspective), while it is not the case for the m-Volume maintaining

space.

CS =
√

Tr(XTX). In the particular case of rectangles, being X parametrized by (3.1), the size

measure can be defined σCS(X) = CS(X) =
√

Tr(XTX) = 2
√
x2

1 + x2
2.

In GM is usual to fix the size at σCS = 1 in order to lie in the shape space. Figure 5 left shows

as the shape space of rectangles can be represented by fixing the iso-size circumference of radius

1/2 (red line). The distance between two different rectangles should be measured walking on that

circumference (blue line).

A different choice could be to define directly the size in terms of physical meaning. In this

case the natural definition is that of m-Volume or, if one wants a quantity scaling linearly when

X becomes aX, the mth-root of the m-Volume. In the rectangle’ case the size is defined as

σAR = 2
√
x1 x2 and the iso-size curves are hyperbola (see Figure 4 right).

If we fix σAR = 1 we obtain a different shape space. Figure 5 right shows that in this case the

shape space of rectangles can be represented by fixing the iso-size hyperbola defined by x1 x2 = 1/4

(red line). The distance between two different rectangles should be measured walking on that

hyperbola (blue line). This parametrization, although more physically meaningful suffers from

three undesirables features:

• the iso-size curves are not convex

• the iso-size curves are not compact
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Figure 5: Distances (blue lines) between two configurations in the two subspaces that maintain, respectively, CS

(left panel) or m-Volume (right panel).

• the iso-size curves are not orthogonal to the iso-shape curves

While the firsts two features could be annoying only for very slender rectangles (near to vertical

or horizontal axes), the third feature seems to be the most problematic: the size and the shape

changes are not uncoupled. But this problem can be easily circumvented by exploiting the fact

that the orthogonality is not an intrinsic concept in a manifold (as the parallelism). The or-

thogonality is defined by the choice of a Riemannian metric on the manifold. In particular, the

chosen parametrization is not orthogonal with respect to the Euclidean metric. In this context

the Euclidean metric does not assume any physical meaning. It is very simple to build a metric

with respect to which the given parametrization is orthogonal. This can be done in the following

steps (see Table 1):

• build a field of basis e1, e2 tangent to the coordinate curves.

• build the field of the reciprocal basis e1, e2 so that eα · eβ = δβα, where α, β = 1, 2.

• build the metric tensor as g(u,v) = Gu · v, where G = e1 ⊗ e1 + e2 ⊗ e2.

It is easy to verify that g(eα, eβ) = Geα · eβ = δαβ , i.e. the system of coordinates is orthonormal

with respect to the metric g.

Table 1 shows the outlined construction of the metric in the case of three different parametriza-

tions (cartesian, centroid size, m-Volume). In the first two the resulting metric is the Euclidean

one, while in the third case we obtain a non Euclidean metric tensor.

This procedure is satisfactory but can be proposed only for very simple cases as that of rect-

angles, in which is simple to define explicitly the bases.
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Table 1: Three parametrizations

Cartesian Polar (Centroid Size) Hyperbolic (m-Volume)

Parametrization x = (x1, x2) x = σCS

2 (cos(θ), sin(θ)) x = σAR

2

(
1√

tan(θ)
,
√

tan(θ)

)

Basis e1 = (1, 0) e1 = (cos θ, sin θ) e1 = (cos θ, sin θ)

e2 = (0, 1) e2 = (− sin θ, cos θ) e2 = (− cos θ, sin θ)

Dual Basis e1 = e1 e1 = e1 e1 =
(

1
2 cos θ ,

1
2 sin θ

)

e2 = e2 e2 = e2 e2 =
(
− 1

2 cos θ ,
1

2 sin θ

)

Metric tensor




1 0

0 1







1 0

0 1







1
2 cos2 θ 0

0 1
2 sin2 θ




where θ = arctanx2/x1, σCS = 2
√
x2

1 + x2
2, σAR =

√
x1x2

3.2. A generalizable procedure (for affine component only)

One way to generalize the procedure sketched above toward more complicated cases is to

observe that each deformation from a rectangle to a different one can be expressed as a linear

transformation and, then, represented by a 2×2 matrix. In particular, it is possible to transform a

rectangle of coordinates x = (x1, x2) into a deformed one of coordinates x+v = (x1, x2)+(v1, v2) =

(x1 + v1, x2 + v2) through the matrix:

Av =



x1+v1
x1

0

0 x2+v2
x2


 =




1 + v1
x1

0

0 1 + v2
x2


 (3.2)

If one subtracts the identity, it can be obtained the transformation associated to the displacement

vector v:

Hv = Av − I =



v1
x1

0

0 v2
x2


 (3.3)

This can be done for each v ∈ R2 by defining, in this way, an isomorphism between R2 and the

tangent space to the lie group of the diagonal matrices 2× 2.

Using this correspondence one can obtain, starting from the basis eα, a basis in the space of

of the diagonal matrices 2× 2:

He1
=

1

σCS




1 0

0 1


 He2

=
1

σCS



−1 0

0 1


 (3.4)

Then He1 is a spherical matrix, while He2 is a deviatoric (traceless) one. This two matrices are

orthogonal with respect to the dot product between matrices. This means that, by using this
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representation, the change in shape is naturally uncoupled by the change in m-Volume. In fact, it

is well known that deviatoric matrices represent small deformations that do not change m-Volume.

Then, by means of the built isomorphism one can inherit the dot product from the matrices by

obtaining a Riemannian metric in V as follows:

g(v,u) = Hv ·Hu = Tr(HT
vHu) =

u1v1

x2
1

+
u2v2

x2
2

(3.5)

It is easy to verify that g(eα, eβ) = δαβ
2

σ2
CS

, thus we obtained an orthogonal parametrization. If

we prefer an orthonormal parametrization, we can define the metric as:

g(v,u) =
σ2
CS

2
Hv ·Hu (3.6)

As we will show in the following, this procedure is generalizable to k landmarks in m dimensions.

We note that the procedure explained above can be applied only to affine transformations.

The issues related to the non affine component will be faced in the next section.

4. A general conceptualization of size and shape change

With reference to Figure 1 we are interested to characterize two decompositions:

Uniform vs Non Uniform

Spherical vs Non Spherical

Given a configuration X, and a deformation vector V ∈ TX(CCkm) we may define an infinitesimally

deformed configuration Y by:

Y = X + V . (4.1)

The deformation vector V can be decomposed in an overall uniform part and a non uniform one:

V = Vu + Vnu (4.2)

If we assume Y aligned with X, Vrot = 0 and V can be decomposed in a spherical component and

a non spherical one:

V = Vsph + Vnsph

As explained in section 2, using both decompositions one obtains:

V = Vsph + Vdev + Vnu

V = Vsph + Vdev︸ ︷︷ ︸
Vu

+Vnu = Vsph + Vdev + Vnu︸ ︷︷ ︸
Vnsph

(4.3)
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In order to obtain the three components, starting from V , we need to characterize three orthogonal

projectors to choose a metric g. In section 3, with reference to the rectangle’s case, we discussed

two different choices for g. The Euclidean choice was suitable to describe change in size as change

in Centroid Size, where the non Euclidean choice was suitable to describe change in size as change

in m-Volume. In the platonic case of rectangles a very simple explicit formulation was possible

because the reference configuration was trivial and only uniform deformations were allowed.

In particular, in the case of rectangles, it is easy to calculate both the increments in size (CS

or m–Volume) and the actual values of the size (CS or m–Volume).

In order to expand both approaches to the general case, it is important to note that:

• In general 3D cases the calculation of the actual value of the CS is always possible using

the definition CS=
√

Tr(XTX). Different CS values correspond to different iso-size hyper

surfaces, that, in particular, are hyper spheres in the m(k−1) linear space. The hypersphere

of unit radius (once removed rotations), is the shape space.

• On the other hand, calculating the actual value of the m-Volume in 3D is not possible by

means of simple algebraic manipulations of the matrix X.

• The calculation of the increment in m-Volume given by a deformation V is instead possible

in two steps:

1) calculation of the uniform component Vu = V HT of V

2) calculation of the trace of the matrix H associated to the uniform component of V

Then the definition of a metric coherent with the size increment as m-Volume increment needs

a preliminary definition of the decomposition in uniform and non uniform components.

4.1. Unifying strategies for decomposition of deformations in one formalism

In the present section we characterize the decomposition of the deformation vector V , according

to 4.2 in an overall uniform part and a non uniform one. This decomposition can be performed in

different ways (Bookstein, 1989; Rohlf, F.J. and Bookstein, F.L. , 2003). A general representation

could be:

Vu = XHT (4.4)

Vnu = ΦW

whereH = A−I is them×mmatrix representing the uniform transformation, Φ is a (k−1)×(k−1)

symmetric matrix which can represent an interpolating function and W is a (k − 1) ×m matrix

parametrizing the non uniform component. The matricesH andW can be obtained asHT = Γ21V
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and W = Γ11V , with

Γ21 =
(
XTΦ−1X

)−1
XTΦ−1 (4.5)

Γ11 = Φ−1 − Φ−1XΓ21

see (Bookstein, 1989; Dryden, I.L., Mardia, K.V., 1998, 2016). The choice of Φ implies different

representations. In the following we consider only two cases:

• Φ = I. This corresponds to define the uniform component through the pseudo inverse (the

regression method of (Rohlf, F.J. and Bookstein, F.L. , 2003), sections 10.2 and 12.5 of

(Dryden, I.L., Mardia, K.V., 1998) .

• Φ = S, as defined in eqn. (1). This corresponds to define the uniform component through

the thin plate spline representation ((Bookstein, 1989), (Dryden, I.L., Mardia, K.V., 1998),

section 10.3).

We note that in the second case the matrix Γ11 is the so called bending energy matrix.

The two different definitions are not equivalent from many points of view.

• the first choice (pseudo inverse) leads to a decomposition that is orthogonal with respect to

the Euclidean metric, the second does not.

• the first choice does not allow the use of deformation grids as it is a function not defined in

the whole ambient space, the second allows them.

• the first choice is not based on an energetic criterion as the second one.

see Table 2 for attributes of the two approaches.

Table 2: Two decompositions

Compatible with Euclidean metric Interpolation based Energy based

Pseudoinverse YES NOT NOT

TPS NOT YES YES

By using (4.4), (4.2) can be rewritten as:

V = XΓ21V + ΦΓ11V (4.6)

where XΓ21 and ΦΓ11 are two complementary projectors (see proof in Appendix 1).

4.2. Unifying Procrustes metric and bending energy metric in one formalism

As we showed in the example of rectangles, a decomposition of the tangent space can be built

by deciding some important features, independently from the fact that the resulting subspaces
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are orthogonal or not with respect to the Euclidean metric. In a second step one can build

a Riemannian metric coherent with the given decomposition, i.e. such that the decomposition

results to be orthogonal with respect to the new metric.

As sketched in section 3.2, in the case of uniform transformations, a metric compatible with

the definition of size as m-Volume should be the metric induced by the inner product between the

m×m matrices of uniform transformations. The generalization of this concept consists in defining

the metric evaluated on two deformations U, V as the dot product between the two matrices HU

andHV of their uniform components. This is a pseudo metric because defined only on the subspace

of uniform deformations:

gu(U, V ) := gu(Uu, Vu) = µ1 (HU ·HV ) = µ1Tr
(
HT
UHV

)
= µ1Tr

(
UTΓT21Γ21V

)
(4.7)

where µ1 ∈ R+ is a positive coefficient. In order to obtain a nonsingular metric we need also

a metric defined only on the nonuniform component. First of all we observe that the Euclidean

product between the non uniform components of U, V gives:

Unu · Vnu = ΦΓ11U · ΦΓ11V = Tr
(
UTΓ11Φ2Γ11V

)
(4.8)

When Φ = I the above expression becomes simply Vnu · Unu = Tr
(
V TΓ11U

)
. Then we propose

the following expression for the non uniform component metric:

gnu(U, V ) := gnu(Unu, Vnu) = µ2Tr
(
V TΓ11U

)
(4.9)

where µ2 ∈ R+ is a positive coefficient. When Φ = I, this expression corresponds to the Euclidean

product between the non uniform components of U, V , while for Φ = S it gives the inner product

between U, V weighted by the bending energy matrix.

Finally, we propose a general representation for the complete metric tensor, suitable for different

situations:

g(U, V ) := Tr
(
UTGαV

)
(4.10)

where

G := µ1ΓT21Γ21 + µ2Γ11 = Gu +Gnu (4.11)

µ1, µ2 ∈ R+ can be functions of the undeformed configuration X, and the exponent α ∈ (0, 1)

can be set for giving the Euclidean (α = 0) or non Euclidean (α = 1) metrics. In fact for α = 0

Gα = I, whatever the values of µ1 and µ2. These parameters characterize the vector lengths in

the affine and non affine subspaces, respectively, in the case of α = 1.

Table 3 summarizes the different strategies that can be adopted when combining the various

Φ and α.
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Table 3: Three Methods

α = 0 α = 1

Φ = I Fully Euclidean Generalized Pseudoinverse procedure (GPp)

Φ = S NOT ALLOWED Thin Plate Spline space (TPSs)

Once defined the metric g, we can project the deformation vector along the direction of the

homothety (represented by the unit vector X/
√
g(X,X)) and on the orthogonal complement, thus

obtaining:

Vu = Vsph + Vdev (4.12)

where

Vsph = g

(
V,

X√
g(X,X)

)
X√

g(X,X)
=
g (V,X)

g (X,X)
X

Vdev = Vu − Vsph (4.13)

It is worth noting that in the case called "Fully Euclidean", the magnitude of Vsph represents

the increment of CS, while in both GPp and TPSs it represents the increment of m-Volume.

4.3. Unifying rotations definitions in one formalism: OPA and MOPA

A general technique of alignment between two forms [X]S and [Y ]S is based on the minimization

of the distance defined as:

d([X]S , [Y ]S) = inf
Q∈SOm

√
g ((Y Q−X), (Y Q−X)) = inf

Q∈SOm

√
Tr ((Y Q−X)TGα(Y Q−X)) .

Where g can be chosen as explained above. The aligned configuration Ŷ is obtained by means of

an optimal rotation Q̂ minimizing d.

Ŷ = Y Q̂

where Q̂ = argmin g ((Y Q−X), (Y Q−X)). According to this definition, Q̂ turns out to be the

rotational component of the polar decomposition of Y TGX.

When α = 0 we obtain the rotational component of Y TX (the classical Ordinary Procrustes

Analysis (OPA) (Dryden, I.L., Mardia, K.V., 2016)). When α = 1 then Y TGX = H, i.e. the

rotational component of the uniform part of the deformation, calculated through the pseudo inverse

or the TPS. In the latter case we define the alignment Modified OPA (MOPA) (Varano et al.,

2017).

4.4. Evaluation of the percentages

Define the percentages

sph% =
g(Vsph, Vsph)

g(V, V )
, dev% =

g(Vdev, Vdev)

g(V, V )
nu% =

g(Vnu, Vnu)

g(V, V )
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where g(V, V ) = g(Vsph, Vsph) + g(Vdev, Vdev) + g(Vnu, Vnu)

4.5. Meaning and estimation of the coefficients µ1 and µ2

Looking at the structure of the metric tensor G (4.11), it is clear that µ1 and µ2 must depend

only on the undeformed configuration X, being the metric tensor a characteristic of the tangent

space in X. Moreover, while the orthogonality between the three components (spherical, devia-

toric, non uniform), is encoded in the structure of the projectors ΓT21Γ21 and Γ11, the values of

the coefficients µ1 and µ2 characterizes the weight, in the total length of the deformation vector,

assigned to the uniform and non uniform components, respectively.

While in the Fully Euclidean case the values of the coefficients µ1 and µ2 are immaterial, in

the non Euclidean one they must be calibrated coherently with the choice of the interpolating

function Φ.

4.5.1. Generalized Pseudoinverse procedure (GPp)

In the GPp Φ = I i.e. the uniform component is evaluated through the pseudo inverse, as

in the Fully Euclidean approach, then the uniform and non uniform subspaces are orthogonal

also with respect to the Euclidean metric. As previously seen, by setting µ2 = 1 in this case the

metric of the non uniform subspace is Euclidean too. The unique difference between GPp and

Fully Euclidean is in the structure of the uniform metric. This is built by using the dot product

in the space of the linear transformations in such a way that the deviatoric component is related

to transformations that don’t change the m-Volume (instead of CS). This structure determines

only the direction of the spherical or deviatoric components. The lengths are determined by µ1.

As the non uniform metric is Euclidean, in order to make the lengths in the uniform subspace

comparable with that in the non-uniform one, we calibrate µ1 by imposing that the length of a

spherical deformation be equal to their Euclidean length, i.e.:

gu(λX, λX) = µ1λ
2Tr

(
HT
XHX

)
= µ1λ

2Tr (I) = µ1λ
2m (4.14)

λX · λX = λ2Tr
(
XTX

)
= λ2CS2 (4.15)

then

gu(λX, λX) = λX · λX → µ1 =
CS2

m
(4.16)

Finally, for GPp we set: µ1 = CS2

m and µ2 = 1

4.5.2. Thin Plate Spline space (TPSs)

In the TPSs Φ = S, i.e. the decomposition in uniform and non uniform components is per-

formed by means of the Thin Plate Spline. The TPS method is an interpolation method based on

the minimization of the so called bending energy J , gauging the second derivative of the displace-

ments. In particular, given a body, represented in the undeformed configuration, by the regular
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region Ω of Rm, we label x the points in Ω and y the points in the deformed configuration Ωt at

the instant t. If the configurations are sampled in k landmarks, then Ω can be represented by the

k ×m matrix X and Ωt by the deformed configuration Y . The displacement field is represented

by the difference vectors:

u = y − x (4.17)

In the landmark case the displacements experienced by the k landmarks can be collected in the

k ×m matrix U = Y −X.

The bending energy is defined as: J =
∫
Rm ∇∇u · ∇∇u.

The bending energy can be considered as a pseudo-distance because it gauges the difference

between two configurations but it is singular on the affine deformations. Moreover it is non

symmetric in the sense that J(X,Y ) 6= J(Y,X). A nonsingular distance, inspired by the continuum

mechanics, and used in the deformable templates method (Younes, 2010), is the strain energy ϕ.

We define the strain energy

ϕ =
1

2

∫

Ω

E ·E (4.18)

where

E =
∇u +∇uT

2
(4.19)

The strain energy lives naturally in a continuum context, while the bending energy lives in a

landmark based context but does not gauge uniform deformations. Moreover the strain energy

is defined as an integral on the body domain, while the bending energy is defined as an integral

on the whole Rm, which does not diverges because the curvature of the TPS grid, outside of Ω,

decays quickly to zero. In order to compare the two energies here we introduce the body-bending

energy, defined as JΩ =
∫

Ω
∇∇u · ∇∇u. In general the bending energy will be slightly greater

than the body-bending energy and we introduce the decay ρ = J/JΩ.

There exists a relationship between strain energy and body-bending energy? It is easy to show

that, while for a general deformation they assume different values, there exist at least one example

in which the two energies are identical. The simplest case of non uniform deformation is that

in which a rectangle bends in a trapezoid: a bilinear transformation. That can be realized by

assigning a bilinear displacement:

u = [(χ⊗B)x]x (4.20)

where B = e1 ⊗ e2 and χ = χ1e1 + χ2e2 are the bending with respect to the two axes.

∇u = [χ⊗ (B + BT )]x ∇∇u = χ⊗ (B + BT ) (4.21)

In this particular case ∇∇u is constant and than holds:

∇u = [∇∇u]x (4.22)
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and the strain energy can be calculated easily as:

ϕ =
1

2

∫

Ω

∇u · ∇u =
1

2

∫

Ω

([∇∇u]x · [∇∇u]x) (4.23)

=
1

2
[(χ · χ)

∫

Ω

x · x dA] =
1

2
(χ2

1 + χ2
2)Ip (4.24)

where Ip is the polar inertia of Ω calculated with respect to the centroid. on the other hand the

body-bending energy is:

JΩ =

∫

Ω

∇∇u · ∇∇u = 2(χ · χ)A = 2(χ2
1 + χ2

2)A (4.25)

where A is the area of Ω. We can note that, in this case:

ϕ =
Ip
4AJΩ =

Ip
4ρAJ (4.26)

According to (Varano et al., 2017) in 2D problems

J = 16πTr
(
UTΓ11U

)
(4.27)

we obtain

ϕ =
4πIp
ρA Tr

(
UTΓ11U

)
(4.28)

The strain energy is directly proportional to the bending energy and the proportionality coef-

ficient depends only on geometrical quantities of Ω together with the decay coefficient of the TPS.

Because in this case the expression of the TPS gives an analytic solution it is possible to find the

explicit expression of the decay:

ρ =
2πβ

(1 + β2) log(1 + β2)− β2 log(β2)
(4.29)

where β = L/H.

In the case of 2D bilinear transformations the strain energy can be evaluated by means of the

bending energy matrix, using a suitable coefficient depending on the geometry of Ω.

What happen with uniform deformations? In this case:

y = Ax (4.30)

and the gradient of the displacement is constant:

∇u = (A− I) = H = Γ21U (4.31)

When U is mopa-aligned with the source H is symmetric then E = H. it follows

ϕ(U) =
1

2

∫

Ω

H ·H =
1

2
m− V olume(Ω)H ·H =

m-Volume(Ω)

2
Tr
(
UTΓT21Γ21U

)
(4.32)
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In the case of uniform transformations the strain energy can be evaluated by means of the

symmetric matrix ΓT21Γ21, using a suitable coefficient depending on the geometry of Ω.

The above consideration, concerning linear and bilinear transformations of rectangles, leads to

define a new energy, able to reconcile the strain energy with the bending energy:

the Γ-energy, defined as the complete metric g introduced in the previous sections evaluated

on the pair (U,U):

Γ(U) = g(U,U) = gu(U,U) + gnu(U,U) = µ1Tr
(
UTΓT21Γ21U

)
+ µ2Tr

(
UTΓ11U

)
(4.33)

The first term µ1Tr
(
UTΓT21Γ21U

)
is called here stretching energy while the second term µ2Tr

(
UTΓ11U

)
=

µ2
J
νπ where ν = 16 for m = 2 and is ν = 8 for m = 3 (Varano et al., 2017) is then proportional to

the bending energy J .

In the case of a general deformation of a rectangle described by only 4 landmarks in a trapezoid,

the Γ-energy coincides with the strain energy if one set:

µ1 =
A
2

(4.34)

µ2 =
16πIp
4ρA =

4πIp
ρA

ρ =
2πβ

(1 + β2) log(1 + β2)− β2 log(β2)
(4.35)

where β = L/H.

It is important to stress that, for more general deformations, the Γ-energy does not coincides

with the strain energy. It is only a concept that allows to sum, with a meaningful ratio, the

stretching energy with the bending energy, in such away that one can evaluate suitable values for

µ1 and µ2 for comparing the magnitude of a uniform deformation with the magnitude of a non

uniform deformation.

We could consider the Γ-energy Γ(U) as the strain energy ϕ(Ũ) evaluated on a more sim-

ple deformation Ũ characterized by the same uniform component Ũu = Uu of U and a bilinear

deformation Ũnu storing the same bending energy of Unu, i.e. such that J(Ũnu) = J(Unu).

In order to obtain this equivalence one should set µ1 = m-Volume/2, while the calculation of

µ2 is slightly more complicated.

When the decomposition of deformation is performed on a couple of shapes only, the value of µ2

can be estimated by calculating numerically the strain energy and than imposing the equivalence

between the gamma energy and the strain energy Γ(U) = ϕ(U).

Γ(U) = gu(U,U) + gnu(U,U) = gu(U,U) + µ2
J

νπ
= ϕ(U)→ µ2 =

ϕ(U)− gu(U,U)
J
νπ

(4.36)

If one deals with a series of deformations of the same source, the value of µ2 must be estimated

using an optimization approach aimed at finding the optimal value common to all decompositions
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in order to make them comparable: for each decomposition between the same source and the ith

target the strain energy, stretching energy and bending energy are computed; then all values are

used in the regression model ((strain energies-stretching energies)∼bending energies/(νπ)). The β

coefficient of this model can be used as optimal µ2 value common to the entire deformation series

that starts from the same source.

In order to illustrate this, we anticipate here the µ2 optimization procedure of the deformation

of a regular parallelepiped reported below. The regular parallelepiped is deformed in 30 deformed

states and each deformation is decomposed. Using formula 4.36 the strain energy and gamma

energy are collinear but not equal (Fig. 6 left). Using the β coefficient of regression model

estimated in Fig. 6 (center) as µ2, we found a very satisfactory relationship between strain energy

and gamma energy (Fig. 6 right).
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Figure 6: The procedure used in order o find a common µ2 when dealing with a deformation series estimated

from the same source. In this case we show results relative to the 3D experiment (see below). The same rationale

applies to the 2D case. We calculated bending energy, stretching energy, strain energy and gamma energy for any

deformation in the series using the initial value of µ1= m-Voume/2 and µ2=polar inertia/m-Volume. We can see

that strain energy and gamma energy are collinear but not equal (left panel). By regressing (strain energy-stretching

energy) on bending energy/(8π) we found the beta coefficient (0.32 in this case) to use as a common µ2 value in

the procedure of decomposition of deformation for each source vs. each ith deformed state. After that we found

strain energy and gamma energy virtually identical. Continuous black line indicates isometry.

5. Theoretical simulations

We will provide here below a series of controlled explicit simulations aimed at showing the

different decomposition strategies explained above. Both affine and non affine transformations are

treated individually. Finally, we will show simulations where the spherical component is mixed

with affine or non affine transformations. For each simulation we perform decompositions using

both Euclidean and non Euclidean strategy (GPp and TPSs) following the classification illustrated

22



by Table 3. Moreover, we decomposed the deformations starting from the first configuration of

the transformation series and using a sequential comparison. While the former approach bears

a larger error during the projection on the tangent space (to the first configuration), the latter

mitigates this error when moving along the deformation sequence.

This allows appreciating the curvature attributes as identified by different Riemannian metrics.

5.1. Aspect ratio change preserving m-Volume or CS in rectangles

The first simulation concerns two families of rectangles characterized, respectively, by the

constraints:

• Centroid Size preserving:
√
B2 +H2 = 2

• m-Volume preserving: BH = 2

where B is the base length and H is the height. Rectangles are generated by deforming a square

identified by 4 landmarks and maintaining the CS or the m-Volume by modifying B/H ratio (Fig.

7). The initial square has side=
√

2, m-Volume=2 and CS=2. Deformations follow a series of

thirty equally spaced values in the series θ ∈ [0.1, π/2 − 0.1], by using the polar and hyperbolic

parameterizations shown in Table 1, respectively. We must remember here that µ1 and µ2 values

come, in these particular cases, from the explicit formulas 4.34 as the shapes involved are all

deformations of a general rectangle for which explicit µ1 and µ2 values can be computed. Results

relative to the affine size-preserving experiment where components of deformation are computed

from the square are shown in Fig. 8. It appears evident that when the decomposition starts from

the square the three methods returns identical results within the categories of CS constant or

m-Volume constant. This happens because the subspaces associated to the vector’s decomposition

are identical when estimated in correspondence of the square’ landmarks as shown in Fig. 4. At

that points the tangent to the circumference and that to the hyperbola are identical as shown

in Fig. 4 (center and right panels). The non affine part is always zero as expected being the

simulation built only upon uniform transformations. The small differences between CS constant

and m-Volume constant are evident at the initial and final positions of the deformation series,

where CS constant shows a smaller spherical component and a larger deviatoric component. This

is due to the fact that in the two cases the extreme rectangles are not the same in the CS preserving

and m-Volume preserving series as evident from Fig. 9 (left and center left panels). They actually

have the same aspect ratio but being forced to maintain CS or m-Volume within their proper series

they have inevitably different sizes in terms of CS or m-Volume when compared one with each

other. Toward their central positions the CS preserving and m-Volume preserving series behave

similarly and there the spherical part is close to 0 as expected in a size-preserving experiment.
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Figure 7: Rectangles generated by the deformations of the cyan square identified by 4 landmarks used in the CS

or m-Volume maintenance affine simulations. The cyan square has side=
√
2, m-Volume=2 and Centroid Size=2.

Aspect ratio is parameterized in order to maintain m-Volume (red shapes) or CS (black shapes).

Results relative to the affine size-preserving experiment where components of deformation

are computed from the initial individual of each series are shown in Fig. 10. Here the sources

from which components of deformation are computed are different in CS preserving or m-Volume

preserving series. As first it must be noted that the Fully Euclidean approach applied to m-Volume

constant series returns an incoherent result: in fact, the spherical component appears to be the

dominant one, an unexpected result in a size-preserving transformation. This can be explained

by looking at Fig. 9 (right panel): there the source (cyan) configuration (=the first rectangle

of the series) is deformed in the 24th rectangle of the series. We used the "Fully Euclidean"

approch to decompose the deformation vector. This means using a circumferential space tangent

to the source. According to this subspace the decomposition finds the spherical vector, i.e. that

orthogonal to the circumeference, much larger than that tangent to it, i.e. the deviatoric one. In

practice, in Fig. 9 right panel, we tried to adapt a metric built on a circumferential subspace to

a deformation series built by moving along an hyperbola as shown in Fig. 4 (right panel). The

opposite happens for CS preserving series decomposed according to GPp or TPSs approaches.
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Figure 8: Results of decomposition of deformation using the regular square as fixed source by applying the Fully

Euclidean approach, GPp and TPSs for the two deformation series, e.g. CS maintenance and m-Volume mainte-

nance. As the tangent to the square is equal for both CS maintaining space and m-Volume maintaining space (as

shown in Fig. 3) all these results are almost identical. See text for further details; "o" symbol indicates the spherical

component; "x" symbol indicates the non affine component; "+" symbol indicates the deviatoric component.

There the deformation occurring in a series built by moving along a circumferential space is

decomposed using the hyperbola tangent to the source, see Fig. 9 center-right panel. In this case

the source (cyan=the first rectangle of the CS preserving series) is deformed on the 2th rectangle

of the series and the decomposition using the hyperbola returns approximately equal spherical and

deviatoric components as quantified in Fig. 10 (bottom center and bottom right panel).

Fig. 11 shows the results relative di decompositions made in sequential fashion. In this case

the manifolds (hyperbola or circumference) are approximated by the tangent spaces that depend

on the approach used. When the decomposition approach is coherent with the subspaces used for

building the deformation series the spherical and non affine components are always =0, while the

deviatoric one is always =1. In the other cases this does not happen: when the Fully Euclidean

approach is applied to the m-Volume constant series the curves start from the same values obtained

when decomposing from the first series element. Toward the center of the series the components

have the expected contributions(about 0% for spherical and non affine components and about

100% for the deviatoric one). This happens because towards the series center we find the quasi-

square shapes and the decomposition performs similarly if done using hyperbola-based (=GPp

and TPSs) or circumference-based (Fully Euclidean) metrics.
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Figure 9: Decomposition of deformation vectors in iso-size and iso-shape components when the "inappropriate"

reference system is applied to data generated following the preservation of size defined under a different iso-size

reference system. Left panel shows the decomposition starting from the square with one of the most (affine) deformed

states of the CS preserving series, e.g. the 24th shape, by using the tangent to hyperbolic iso-size line instead to

the circumferential one under which data were generated. The blue vector is the total deformation vector and it

is decomposed into orthogonal components (in red) along the tangent built on the hyperbola. The same is done

in the center left panel where the decomposition between the rectangle and the 24th deformed state of preserving

m-Volume series is illustrated using the tangent to the circumferential iso-size line instead of the hyperbolic one

under which the data were generated. The two tangents are the same but the deformations and, consequently its

components, are slightly different from the left panel due to the fact that the targets are different. The center right

panel shows the decomposition from the first shape of CS preserving series toward the 2th deformed shape. Again,

the tangent is built on the inappropriate (hyperbolic) iso-size line. The same is done for m-Volume preserving data

in the right panel.

5.2. General Trapezoid

Each centered trapezoid can be generated starting from a centered rectangle (here constituted

by 24 landmarks), by using the following formula:

y = x + Hx + [(χ⊗B)x]x (5.1)

where H is a 2× 2 matrix, B = e1 ⊗ e2 and χ = χ1e1 + χ2e2 are the bending with respect to the

two axes.

Our dataset has been generated by means of (5.1), by randomly choosing thirty values among

uniform distributions: H11 ∈ [−0.1, 0.6], H12 ∈ [−0.1, 0.6], H21 ∈ [−0.1, 0.6], H22 ∈ [0, 0.3], χ1 ∈
[0, 0.3], χ2 ∈ [0, 0.3]. Fig.12 shows the resulting shapes together with their proper m-Volume and

CS values.

Figs. 13, 14 and 15 show results relative to the decomposition from the regular rectangle

and its deformed states illustrated in Fig.12. The three methods perform differently. As for

percentages shown in Fig. 13, the Fully Euclidean approach always shows the percentages of

spherical component larger than Gpp or TPSs. On the other hand, both GPp and TPSs present

the non affine component larger than the Fully Euclidean approach. However, the two methods

differ for the emphatization of the deviatoric component that is larger in GPp approach. As for

the maintainance of spherical component we plotted the ratio between the m-Volume (or CS) of
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Figure 10: Results relative to the affine size-preserving experiment where components of deformation are computed

from the initial individual of each series. Here the sources are fixed within CS preserving or m-Volume preserving

series but these two sources are different between each other; "o" symbol indicates the spherical component; "x"

symbol indicates the non affine component; "+" symbol indicates the deviatoric component.

original source and the ith shape of the deformation series against the ratio between the m-Volume

(or CS) of original source and the ith configuration associated to spherical, deviatoric or non affine

component. This configuration was obtained by summing to the source (i.e. the rectangle) the ith

component (spherical, deviatoric or non affine) of deformation series. The m-Volume, instead is

maintained in the neighbour of 1, while it is overestimated for deviatoric configurations associated

to deformations whose areas are larger than that of source (i.e. at abscissa’s values smaller than

1). On the opposite, the non affine configurations always maintain a nearly constant ratio value

of 1 (Fig.14). In particular, we can see that in the neighbour of 1 GPp and TPSs perform better

than the Fully Euclidean approach that does not return expected values. It is evident that CS

ratio is maintained close to 1 for deviatoric and non affine configurations as expected (Fig.15).

5.3. General three dimensional bilinear deformations.

In three dimensions bi-linear transformations can represent bending and torsion around three

axes. A general representation is:

y = x + u = x + Hx + (Hx)x (5.2)
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Figure 11: Results relative to decompositions made in sequential fashion. In this case the three approach returns

different results in CS or m-Volume preserving data; "o" symbol indicates the spherical component; "x" symbol

indicates the non affine component; "+" symbol indicates the deviatoric component.

where H is a 3× 3 matrix and

H = (Wi(I− ei ⊗ ei))⊗ ei (5.3)

Wi =




0 −χ3i χ2i

χ3i 0 −χ1i

−χ2i χ1i 0


 (5.4)

where χii is the amount of the torsion around the i-axis, and χij is the bending in the plane ei, ej .

Our dataset has been generated by means of (5.3), starting from a parallelepiped (L = B =

1, H = 5) defined by 30 landmarks as shown in Fig.16, by randomly choosing thirty values

among uniform distributions: H11 ∈ [−0.04, 0.24], H12 ∈ [−0.04, 0.24], H21 ∈ [−0.04, 0.24], H22 ∈
[−0.04, 0.24], χ11 ∈ [−0.04, 0.24], χ12 ∈ [−0.04, 0.24], χ13 ∈ [−0.04, 0.24], χ21 ∈ [−0.04, 0.24], χ22 ∈
[−0.04, 0.24], χ23 ∈ [−0.04, 0.24], χ31 ∈ [−0.04, 0.24], χ32 ∈ [−0.04, 0.24], χ33 ∈ −0.04, 0.24]. Fig.16

shows the resulting shapes together with their proper m-Volume and CS values.

Figs 17, 18 and 19 shows results relative to the decompositions from the regular parallelepiped

to its deformed states illustrated in Fig.16. The three methods perform differently. The Fully

Euclidean approach ("centroid size based" and thus "non energy based") intensifies the contribu-
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Figure 12: 2D data used for simulation where both affine and non affine deformations are mixed together. The

regular rectangle is deformed into 30 states. m-Volume and CS of each configuration are indicated.

tion of the spherical component, while the non affine and the deviatoric ones are less important.

GPp ("m-Volume based" and still "non energy based") and TPSs ("m-Volume based" and "en-

ergy based") methods furnish a different view: the spherical component is the less important for

both methods, while they differ in the way they weight the affine and non affine components. In

particular, TPSs emphasizes the non affine one whereas GPp emphasizes the affine part. This

can be explained upon the fact that TPSs use an energetic criterion to give differential weights

to affine and non affine components. As the non affine transformations are concentrated locally,

they are better evaluated using bending energy and for this reason they receive more weight in

TPSs than in GPp (or even in Fully Euclidean approach) that uses the Euclidean length to weight

components. The behaviour of m-Volume and CS maintainance is consistent for what seen in the

2D example.
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Figure 13: Percentages of components, under the three methods, for 2D data with mixed affine and non affine

deformations. In this case all decompositions are performed using the regular rectangle as fixed source; "o" symbol

indicates the spherical component; "x" symbol indicates the non affine component; "+" symbol indicates the

deviatoric component.
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Figure 14: Ratio betwen the m-Volume of the source (regular rectangle) and that of the shape associated to any

individual component (spherical, deviatoric or non affine) plotted vs. the ratio between source’ m-Volume and

that of its actual deformed state"o" symbol indicates the spherical component; "x" symbol indicates the non affine

component; "+" symbol indicates the deviatoric component.

6. Medical example: Left Ventricle Mechanics

In order to show a real model intimately related to the problems illustrated above, we present

here a cardiological example that illuminates the importance of deformation’ decomposition in the

context of Left Ventricle (LV) shape analysis and mechanics. We use here (in a different manner)

the same data used in (Madeo et al., 2015) to identify trajectories attributes in Hypertrophic Car-

diomyopathy (HCM). We contrasted the deformations occurring in epicardium and endocardium

in the Control subjects sample (n=46) and in HCM patients (n=20). We performed the decompo-

sition on the entire LV trajectory thus on shapes evaluated at 16 electromechanically homologous

times defined in (Piras et al., 2017). In Supplementary Information S1 we illustrated and explained

the homologous time’s interpolation. This allows to compare different phases of several individuals
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Figure 15: Ratio betwen the CS of the source (regular rectangle) and that of the shape associated to any individual

component (spherical, deviatoric or non affine) plotted vs. the ratio between source’ CS and that of its actual

deformed state; "o" symbol indicates the spherical component; "x" symbol indicates the non affine component;

"+" symbol indicates the deviatoric component.

at physiologically homologous time frames. We contrasted the ability in recognizing pathology for

the Fully Euclidean and TPSs methods. We did this in order to ease the readability of results

and because the GPp method is intermediate between the above mentioned approaches. For each

method (Fully Euclidean and TPSs) and for each homologous time we performed a classification

exercise using a permutated version of the common machine learning technique "Support Vector

Machine" (SVM) that randomizes data splitting. The 46 Controls and 20 HCM cases were ran-

domly split into a training dataset of 12 Control and 12 HCM used for learning and a test dataset

of 34 Control and 8 HCM used for classification. This splitting was nearly unavoidable in order to

have a balanced design during the learning phase. This was done 1000 times in order to produce a

large amount of classifications performed on completely unknown data. At each run, the 32 Con-

trol and 8 HCM randomly chosen test cases were classified using the function estimated upon the

corresponding training dataset. Using the resulting specificity and sensitivity we calculated the

Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. The mean

AUC values over all runs were retained as representative of global classification performance. We

performed the same bulk of analyses using epicardium/endocardium as dependent binary variable.

In this case, given that the response variable had different sample sizes for Control and HCM (i.e.

46 epi and 46 endo for Control and 20 epi and 20 endo for HCM) we used for learning 22 epi and

22 endo for Control and 12 epi and 12 endo for HCM. This particular analysis has no a clinical

meaning but a physiological/mechanical one as it is aimed at unveiling deformational differences

between the two LV layers. In fact, a very important question was introduced in (Evangelista et

al., 2015) related to epicardial and endocardial composing LV wall: in a previous investigation

using the finite element model of a human LV (Evangelista et al., 2011) they studied how to

measure the so called Principal Strain Lines (PSLs) (Gabriele et al., 2014, 2015). It was found
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Figure 16: 3D data used for simulation where both affine and non affine deformations are mixed together. The

regular parallelepiped is deformed into 30 states. m-Volume and CS of each configuration are indicated.

that endocardial PSLs are circumferential, so identifying functional strain lines whose direction is

different from the hypothesized direction of the muscle fibers which in the model spiral clockwise,

sharing an angle with the circumferential direction.

On the contrary, it was found that epicardial PSLs agree with muscle fiber directions, which

in the model spiral counterclockwise toward the base. The mechanical interpretation of these

results is based on the idea that the driving forces of the LV deformative process are muscle con-

traction and blood pressure, and the contraction-driven component of the deformation process

sets serious compatibility issues (given by surfaces curvature), affecting mainly subendocardium

layers due to their higher geometrical stiffness ((Nardinocchi et al., 2012)). In order to explain

this concept it may be useful to imagine the myocardium as divided into two semi-independent

layers (endocardium and epicardium), each one moving independently with respect to the other

and having uniformly oriented fiber. In this situation, muscle contraction would induce a large

counter-clockwise (clockwise) rotation of the epicardial (endocardial) layer ((Nardinocchi et al.,
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Figure 17: Percentages of components, under the three methods, for 3D data with mixed affine and non affine

deformations. In this case all decompositions are performed using the regular parallelepiped as fixed source; "o"

symbol indicates the spherical component; "x" symbol indicates the non affine component; "+" symbol indicates

the deviatoric component.

2012)), and we simply would find that PSLs, on each layer, are determined by fiber directions.

Actually, the two layers cannot move independently, due to compatibility (ensuring the continuity

of the material), and muscle orientation changes smoothly from the subepicardium to the subendo-

cardium; moreover, the larger radius of rotation for the outer epicardial layer assigns to epicardial

fibers a mechanical advantage in dominating the overall direction of rotation (Sengupta et al.,

2009). Hence, only epicardial deformations are rotation-driven whereas endocardial and subendo-

cardial layers, having a smaller rotation (due to the smaller radius of rotation or, it is the same,

to the larger geometrical stiffness), deform mainly along the circumferential and the longitudinal

direction, with the circumferential shortening larger than the longitudinal one due to LV geometry.

In terms of decomposition of deformation it implies that, relatively to the total deformation, the

percentage of affine component is larger than that of the non affine one for the endocardium while

it holds the opposite for the epicardium mainly affected by non affine deformation ( i.e. torsion

among other transformations). Thus, the endocardium experiences more spherical (=homothetic)

and deviatoric (=aspect ratio or shear) components in relation to its proper total deformation.

On the other hand, the epicardium deforms mainly according to the well known torsional (i.e. non

affine) dynamics described in the most of echocardiographical studies. We test these hypotheses

by quantifying components of deformation in Control and HCM LVs.

Important differences emerge when looking at Fig. 20 where, along the entire cycle, we plotted

the AUC relative to Control/HCM and endocardium/epicardium identification for percentages of

individual components (spherical, deviatoric and non affine) for Fully Euclidean and TPSs meth-

ods. While here only AUCs are plotted, Supplementary Information S1 shows the complete distri-

butions of data (with significances and effect sizes under ANOVAs) associated to each homologous

time. A more synthetic picture is given by Fig. 21 where AUC values refer to the classification
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Figure 18: Ratio betwen the m-Volume of the source (regular parallelepiped) and that of the shape associated to

any individual component (spherical, deviatoric or non affine) plotted vs. the ratio between source’ m-Volume and

that of its actual deformed state; "o" symbol indicates the spherical component; "x" symbol indicates the non affine

component; "+" symbol indicates the deviatoric component.

power of the three components combined together. Given that our homologous times have the

diastole in first position and systole in fifth position, the systo-diastolic decomposition is that cor-

responding to the fourth position. It emerges that both methods are effective in finding differences

both for Control from HCM and for epicardium from endocardium. The two approaches are more

efficient in discriminating epicardum from endocardium in comparison to pathology detection. In

the former case the TPSs method seems better than the Fully Euclidean approach mainly during

the mesodiastolic and telediastolic phases while in sistole they perform smilarly. On the opposite,

the Fully Euclidean approach recognizes HCM pathology better than TPSs. This is particularly

evident looking at 21 where the AUCs relative to the combinations of the three components are

illustrated. These results offer the possibility to choose the method that better agrees with the

initial null hypothesis and that reflects the mechanical or clinical aim of specific investigations. We

suggest that the Fully Euclidean method is preferable for HCM’ pathology detection while TPSs

has a more mechanical meaning as it better separates, on average during the entire LV’cycle,

epicardium from endocardium in both Control and HCM subjects. This can be appreciated in

Fig. 22 where only epicardium/endocardium comparisons at systole for Control and HCM and

for TPSs and Fully Euclidean methods are depicted. In Fig. 22 is evident that, independently

from the method (TPSs or Fully Euclidean) and from the cohort under study (Control or HCM)

epicardium has always a larger non affine component while the endocardium has always a larger

deviatoric component.

Following the logic exposed above, we found exactly what a qualitative description of the strain

line pattern predicts: independently from healthy/pathological status and from the use of the three

different methods, we found that epicardium presents a non affine component (probably related

to the torsion) always significantly larger (via ANOVA) than in endocardium, while the latter
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Figure 19: Ratio betwen the CS of the source (regular parallelepiped) and that of the shape associated to any

individual component (spherical, deviatoric or non affine) plotted vs. the ratio between source’ m-Volume and and

that of its actual deformed state; "o" symbol indicates the spherical component; "x" symbol indicates the non affine

component; "+" symbol indicates the deviatoric component.

shows a deviatoric component (here an aspect ratio change) always larger than in epicardium.

Confirming quantitatively this prediction represents a very important result for the understanding

of left ventricle mechanics and in general for cardiac functioning.

This has been depicted in Fig. 23 and 24 where PSL have been mapped on the deformation oc-

curring in systole starting from diastole for the mean shape of Control and HCM respectively. PSL

have been computed on total deformation and on the individual components. It can be noted that

the deviatoric component of epicardium and endocardium differ visibly as the former has a more

oblique PSL indicating smaller affine component while the latter shows a quasi-circumferential

pattern proper of an aspect ratio change as predicted by Continuum Mechanics. Moreover, it

can be appreciated that the PSL pattern of the total deformation of endocardium is very similar

to that found in the deviatoric component, while it is more similar to the non affine one for the

epicardium.

7. Conclusions

We have presented in this study a detailed survey on how to define and quantify different

components of deformation between shapes represented by homologous landmarks. We did this in

the context of cardiological data coming from 3D STE, a gold standard technology for following

LV deformation in time. However, we first presented results of three main strategies ("Fully

Euclidean" "GPp", "TPSs") coming from simluated/controlled experiments in order to depict the

meaning of the three methods and their deep differences when evaluated in known deformative

processes. This allowed to appreciate the distinction of different size measures: CS and m-Volume.

While the former is widely used in GM, the latter is more used in Continuum Mechanics and has
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Figure 20: SVM based AUC results, after 1000 randomizations, for Control/HCM (left) and epi-

cardium/endocardium (right) recognition at all homologous times for individual fractions.

a more physical meaning in comparison to CS. The use of CS as size measure is often motivated

upon the fact that this is "uncorrelated with shape". However this is strictly dependent on the

distribution of shape data around their mean. In fact, quoting (Bookstein, 1989b) "the space of

size variables is the set of all distances between landmark points in pairs. If the joint distribution

of these distances is that given by variation of each landmark point around a true mean location by

small, independent, identically distributed circular normal errors, then the variable G uncorrelated

with all distance-ratios is centroid size, square-root of the sum of squares of distances of all the

points from their center’ of gravity". Being "uncorrelated" means that no allometric effect is

present when relating shape with size. However, the centroid size computation is totally agnostic

relatively to the question of isometric or allometric shape change. The size computation per se

has no information about landmarks distribution and the assumption of "identically distributed

circular normal errors" is completely platonic with respect to real data. Consequently, CS is not

intrinsically a shape independent size measure. Thus, there is no "perfect" size index and the

most appropriate measure for a particular study will depend on particular forms investigated and

on the purposes of the study. In the clinical case of LV deformation the m-Volume is the natural,

universally used size measure and we proposed two methods ("GPp" and "TPSs") that consider

it as the size variable. As a consequence the decomposition of deformation should follow the

corresponding size measure adopted as size index.

Our three strategies can be adapted to specific collections of forms that, in each particular

cases, could require different methods. We also have shown that decomposing the total LV’

deformation allowed to achieve an important corroboration of Continuum Mechanics prediction
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Figure 21: SVM based AUC results, after 1000 randomizations, for Control/HCM (left) and epi-

cardium/endocardium (right) recognition at all homologous times for fraction’s decompositions combined together.

about the differential modes of shape changes of epicardial and endocardial layers.
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Figure 22: Boxplots at homologous time corresponding to systo-diasolic difference for the Fully Euclidean and

TPSs methods for epicardium/endocardium comparison for the three fractions for Control and HCM separately.

Asterisks in bottom x-axis indicate significance under ANOVA. Values in top x-axis indicate Cohen’d effectt size.
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Figure 23: PSL computed on individual components of deformation and on the total deformation at the homologous

time corresponding to systo-diasolic difference using the mean shapes of diastole and systole of the Control sample.
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Figure 24: PSL computed on individual components of deformation and on the total deformation at the homologous

time corresponding to systo-diasolic difference using the mean shapes of diastole and systole of the HCM sample.
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Appendix 1: Projectors features

We can proof that XΓ21 and ΦΓ11 are two complementary projectors (idempotents), in fact:

(XΓ21)(XΓ21) = X
(
XTΦ−1X

)−1
XTΦ−1X

(
XTΦ−1X

)−1
XTΦ−1 = XΓ21 (7.1)

(ΦΓ11)(ΦΓ11) = (I −XΓ21)(I −XΓ21) = I − 2XΓ21 + (XΓ21)(XΓ21) = ΦΓ11 (7.2)

(XΓ21)(ΦΓ11) = (ΦΓ11)(XΓ21) = (I −XΓ21)XΓ21 = XΓ21 −XΓ21 = 0 (7.3)

We can also check if the two components are orthogonal under the Euclidean metric:

Vu · Vnu = Tr
(
V Tu Vnu

)
= Tr

(
V TΓT21X

TΦΓ11V
)

= Tr
(
V TΓT21X

T (I −XΓ21)V
)

= Tr
(
V T (ΓT21X

T − ΓT21X
TXΓ21)V

)

= Tr
(
V T

(
Φ−1X(XTΦ−1X

)−1
XT − Φ−1X(XTΦ−1X)−1XTX(XTΦ−1X)−1XTΦ−1)V

)

= 0⇔ Φ = I (7.4)

Only the pseudo inverse based decomposition is compatible with the Euclidean metric.
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