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Abstract

Reliability is one of the important factors for manufacturing system. Most researches assume that the failure is independent and the components 
only have two states, which will lead to inaccurate results. In this paper, a reliability model is proposed considering both failure interaction and 
multi-state property of the manufacturing system. Starting with a two-component system, a function of state probability under the impact of 
failure interaction is established after the analysis of failure interaction. Then the multi-component system is decomposed into several 
subsystems and the failure interaction coefficient is estimated in each subsystem with a Copula function and the Grey model method. Finally, 
the reliability model is realized with the performance generating function which is derived with the UGF technique and failure interaction 
coefficients. An example of a cylinder engine manufacturing system is studied, and the result is closer to the practical data.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of The 50th CIRP Conference on Manufacturing Systems.
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1. Introduction

Reliability describes the probability of a system 
completing its expected function during an interval of time, 
which gives an assessment of the overall performance of a 
system. An accurate reliability measure for a system 
guarantees its functionality, efficiency and safety. With the 
development of its scale and complexity, manufacturing 
system puts forward higher requirements for reliability 
analysis.

Most of the reliability analyses are based on two simplified 
assumptions: First, consider the subsystems and the whole 
system as a binary system, which means the system has a fully 
operational state and a completely failed state. Second, no
failure interaction exists between the components. Failure 
interaction here refers to a prevailing phenomenon that one 
subsystem`s failure or degradation will affect the failure 
process of other related subsystems.

The study of multistate systems (MSS) started in the mid-
1970s[2], since then lots of research have been carried out in 
this area. Methods adopted to reliability analysis of MSS
mainly include: Monte Carlo Simulation[3,4], Stochastic 
Process Analysis[5], Universal Generating Function(UGF)[6]
and so on. Other methods were also developed. Ding et al.[7]
developed the fuzzy universal generating function considering
a multistate system where performance rates and 
corresponding state probabilities are presented as fuzzy values.
Lisnianski[8] extended the classical reliability block diagram 
method to a repairable multistate system based on the 
combined random processes and the universal generating 
function technique. Taboada et al.[9] developed a custom 
genetic algorithm to solve multiple objective multistate 
reliability optimization design problems. Qian et al.[10]
proposed a new discretized modeling process on Bayesian 
belief networks basis for the reliability of multi-state 
mechanical systems. The study mentioned above focus on the 
multistate property of MSS to extend the study on reliability 
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analyses. However, reliability can be influenced by various 
factors. Ping et al.[11] considered joint buffer station in a 
multi-state manufacturing network. Infinite and finite buffer 
volume was discussed and the study indicated that the 
assumption of infinite buffer volume will overestimate the
system reliability.

Failure interaction commonly exists in multistate systems,
which may also influence the performance of the system.
During the operation of a manufacturing system, failures of a 
unit caused by corrosion, ageing, wearing or shock damages
like improper maintenance or overwork may increase the load 
of other units, then affects the failure characteristics of the 
other units and eventually leads to the failure of the units.
Attention has been paid to the failure mechanism and failure 
interaction in the systems` reliability as well.

Nakagawa and Murthy[12] divided failure interaction into 
three types, which is widely used in this area. According to
this category, researchers expanded failure interaction into 
many aspects. Lai and Chen[13] developed an optimal 
periodical replacement policy for a multi-unit system subject 
to failure rate interaction between units. Sun et al.[14,15]
introduced the concepts of interactive failure, developed an 
analytical model and presents five approaches to estimate the 
interactive failures. Gao et al. [16] established a reliability 
model of system and a quasi-periodic dynamic Preventive 
Replacement to research the coexists of type I and II failure 
interaction. Qi et al.[17] presented two periodical maintenance 
cost models for a two-state series system and a three-state 
series system respectively based on the three types of failure 
interactions.

Considering the failure interaction gives rise to the analysis 
of the system, however the result always yields the practical 
data. The studies mentioned above focusing on the failure 
interaction studied issue on reliability and maintenance either
in a multistate two-component system or a binary multi-
component system. Study focusing on multistate multi-
component system with failure interaction is still in infancy.

This paper for the first time considers failure interaction in
a multi-component multistate manufacturing system(MSMS)
to derive the reliability. Moreover, based on a previous study 
on the influence of the degeneration[18]. The reliability is 
given with two failure mechanisms, namely failure interaction 
and the degeneration. To define the failure interaction, the 
copula function and Grey model is used to find the parameters 
as a new approach. The rest of the paper is organized as 
follows. The next section gives an analysis of a two 
components multistate manufacturing system with failure 
interaction. Markov chain is used to represent all the states 
and their transitions. Section 3 proposes a decomposition 
method of the system based on fault correlation of the 
components and figures out the failure interaction coefficient 
using Copula function and grey model method. Then the 
reliability model is constructed after giving the performance 
generating function of one component and the whole system 
by using the UGF technique and mapping relationship. 
Section 4 dedicates to a case study on a three processes engine 
cylinder manufacturing system. The paper concludes that
considering failure interaction in multistate system will give a 
lower reliability.

2. Failure Transition in A Two-component MSMS

2.1. Definition and Assumption

Consider a system with two machines. Any machine can 
have 1l different states in its lifecycle, represented by the 
set { , 1, ,0}L l l , where l denotes the new state and 0 
denotes the completely failure state. Very mild assumptions 
are required for the sequential study. These are follows:

All general faults are maintained immediately after it 
occurs and no maintenance time is considered.
Whenever a system failure occurs, it is detected 
immediately and only one unit fails naturally.
All failed units are correctively maintained but cannot be 
repaired as good as new.
All performance analyses are done only when the system is 
at a steady state.
The state transition caused by failure interaction is 
instantaneous.

2.2. Failure transition representation

According to the failure interaction category [12], the
failure transition for two machines is illustrated in Figure.1.

When a machine fails due to the fault of itself, such as 
corrosion, ageing and so on, it can induce the failure of the 
related component refer to Machine II in Figure.1 with a 
probability of p; or it increases the failure rate of machine II 
with a probability 1-p and gives rise to the failure of machine 
II with the accumulation of the damage. While the failure of 
machine II will induce an instantaneous failure to machine I
with a probability of q.

When machine I fails due to an external shock damage, the 
following two situation should be considered: The shock 
damage is quite small that only a general failure occurs on 
machine I. The hazard will increase the failure rate of 
machine II with a probability of p` and lead to failure when 
the total damage exceeds a specified level. While the failure 
of machine II caused by the damage will induce instantaneous 
damage to machine I with a probability of q` and lead to the 
failure of machine I. Otherwise, if the shock damage gives
rise to a ‘dramatic destroy’ on machine I it will lead to 
instantaneous failure. The hazard will induce an instantaneous 
failure of machine II with a probability of 1-p` and result in
failure of the system eventually.

p1-p q q`p`1-p`

Fig.1 Failure transition between two components

2.3. Markov model for state transition

In its lifecycle [0, t), all machines will degrade from state l
to its completely failure state 0. The machine can transfer to 
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any lower state from the start state due to the influence of 
itself or the failure interaction. Considering the state 
degeneration and failure interaction, the state transition of a 
two machine system is illustrated in Figure.2, where i,j and

j,i refer to the transition rate between different states.

Machine I

Machine II

p1-p q 1-qp`1-p`

l

1-l

1

0

, 1l l
, 2l l

1, 2l l

2,1

1,0

, 1l l

1,l l

1,l l

, 2l l

1, 2l l

2,1

1,0

2, 1l l

0,1

1,2

0,2

2, 1l l

1,2

0,1
0,2

l

1-l

1

0

Fig.2 State transition considering the failure interaction

According to the above analysis, one can find that the 
process of state transition with failure interaction is a 
stochastic process in continuous time interval [0, t) and finite 
state space ( ) { , 1, ,0}L t l l , which gives use of non-
homogeneous Markov chain. Based on Figure.2, the state 
transition matrix of component is derived:

( , 1) ( . 1) ( , 2) ( , 2) ( ,0) ( ,0)

( 1, 2) ( 1, 2) ( 1,0) ( 1,0)

(0,0) (0,0)

( ) ( ) ( )

0 ( ) ( )
( )

0 0 ( )

I II I I
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I
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t t t

t t
t

t

(1)

Where:
= failure interaction coefficient of machine I respect

to machine II;

( , ) ( )i j t = probability of state transition and 
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t
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2.4. State probability analysis considering the failure
interaction

For any multistate manufacturing system, the failure rate of 
components will increase due to the operation of the system. 
The probability of each state is a result of both internal and 
external factors of the component.

In allusion to the state transition process of a two units
system in Figure.1, supposing machine I and II have a service 
year of It and IIt . The failure of machine I will follow a non-

homogeneous Poisson process with mean-value function 

( )

0

( )
t

t u x dx and an intensity ratio of ( ) ( ) ( )u t r t p t ,

where ( )r t is failure rate of machine I and ( )t is the shock 

damage ratio function. And the state probability for machine I
is derived in paper[18].

While the state probability of machine II is decided by 
itself and the failure of machine I. When machine I fails, it
will influence the performance of machine II with a 

probability of p , making machine II work in a lower state. 

Suppose the failure rate of machine II is ( ) (1 ) ( )kr t r t

with represents the failure interaction coefficient. Then we 
can derive the probability of each state for machine II:
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Where:

IIX t = function of failure rate respect to time;

IN t = machine I`s failure number in time interval [0,t);
n = state number that machine I passed from state ml to 
state i ;
k = the kth failure.

3. Reliability analysis of Multi-Component MSMS

To measure the reliability of a MSMS with failure 
interaction, decomposition of the system is needed so that the 
failure interaction in one subsystem can be discussed. Based 
on the interaction analyses, a Copula function of failure 
interaction coefficient is constructed and grey model method 
will be used to determine the failure interaction coefficient. 
Then, the reliability model with failure interaction is realized.

M(i-1)1

M(i-1)1

Mi1

Mik

Mih

M(i+1)1

1S

1Sub

2Sub

3Sub

4Sub

2S

3S

Fig.3 A three-process manufacturing system

Consider a multistate manufacturing system with three 
processes S1, S2 and S3, showed in Fig.3. Any component of a 
process has l different states corresponding to different 
performance rates. The lifetime of all components are random 
variables with distribution function 1( )F t , 2 ( )F t , … , ( )nF t
and the components start from the new state at 0t .

3.1. Decomposition of the Multi-component manufacturing 
system

All materials flow from the first process to the following 
procedures. Any components of a previous process`s failure 
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will impact the performance of the components in the 
following process. A decomposition of the system is shown in 
Fig.3 based on the interaction caused by material flow. The 
whole system is thus divided into four subsystems:
Sub1(composed of M(i-1)1 and Mi1), Sub2(composed of M(i-1)1,
Mik and M(i+1)1), Sub3(composed of M(i-1)d, Mik and M(i+1)1)
and Sub4 (composed of M(i-1)d, Mih and M(i+1)1).

3.2. Estimation the failure interaction.

Copula is a function that joins or couples multivariate 
distribution functions to their one-dimensional marginal 
distribution functions and describes correlation between the 
random variables. The relevance of distributional copulas for 
failure interaction is mainly because of Sklar`s theorem, 
which states that for a given copula C and marginal 
distribution functions, the joint distribution can be obtained 
via:

1 2 1 2( , , , ) ( ( ), ( ), , ( ))n nF x x x C F x F x F x                (4)

If 1 2( ), ( ), , ( )nF x F x F x are continuous, then C is unique; 
otherwise, C is uniquely determined on random variables of
F .

In allusion to a multistate manufacturing system if we have 
the failure rate functions and the joint distribution function of 
two interaction components, the failure interaction coefficient 
can be calculated by choosing a proper Copula function 
followed by estimating it parameters.

Consider a MSMS with h subsystems, each subsystem is 
comprised of several machines. Set the failure rate function of 
the component as ( ), , 2,iP x i n and the joint distribution 
function as 1 2( , , , )nP x x x . According to the Copula function 
and Skalr`s theorem, a Copula function 1( ( ), , ( ); )nC P x P x
can be obtain, and it satisfy the following relationship:

1 2 1 2( , , , ) ( ( ), ( ), , ( ); )n nP x x x C P x P x P x                   (5)

For any manufacturing system, the failure interaction exists 
only between some components while the others remain 
independent. So the failure rate function should write as:

1 1

( ) ( ; ) ( )
m n

i i j
i j

P x C x P x                                               (6)

Where:
( )iC x = general failure rate of components with failure 

interaction;
( )jP x = failure rate of dependent component;

i = interaction coefficient of component i .
Traditionally, copula parameters are determined by 

Moment Estimation Method or Maximum Likelihood 
Estimation Method[19]. The method of moment estimation is 
fairly simple but the result may not necessarily sufficient, 
while the method of maximum likelihood estimation is to the 
contrary.

Grey system theory is a new methodology that focuses on 
problems involving small data and poor information. It deals 
with uncertain systems with partially known information 
through sequence operators, excavating, and extracting useful 

information from what is available and gives a result with 
high accuracy after simpler calculation. The failure interaction 
coefficient is derived from the failure rate and the correlation 
between components, which exactly meet the requirement for 
using Grey Model method. The typical procedure of 
estimating parameters with Grey model is the GM(1,1) 
model[20].

3.3. Reliability model with UGF technique

As mentioned previously, the target system in this paper 
can be decomposed into four subsystems. Take subsystem 2
as an example. When M(i-1)1 fails, it will have an impact on 
machine Mik, leading to the increase of its failure rate and the 
change of the performance and state probabilities. Suppose 
the increased failure rate of Mik is ip , the increased 
performance of each state is ig . Then the performance 
generating function of Mik consider the failure interaction can 
be derived using the UGF technique:
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Where:

( )iku z = variation of the generating function;

ip = probability of the machine at state i ;

ig = performance of the machine at state i ;
= failure interaction coefficient.

For the whole system a mapping from components 
performance to system can be realized as follow:
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According to the definition of reliability, the reliability 
model of the system is established:
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Where:
= required performance level;

1( ) = characteristic function, it takes 1 when ir ;

ir = performance value.
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4. Numerical Example

The manufacturing system illustrated in Fig.4 is used to 
machine an engine cylinder with three processes. Each 
process has several machines of the same characteristic. The 
reliability of each machine is the result of operation time, 
working load and maintenance. Due to the different 
processing time of each process, the utilization of each 
machine is not the same, which leads to a different 
degeneration in each machine. The probability of state 
transition due to its degeneration is given in Table 1.

Fig.4 Engine cylinder manufacturing system

Table 1. Probability of the state transition respect to degeneration

M11 M21 M22 M31 M32

11
(3,2) 0.002M  

11
(3,1) 0.001M  

11
(3,0) 0.002M  

11
(2,1) 0.007M  

11
(2,0) 0.003M  

11
(1,0) 0.001M  

21
(2,1) 0.021M

21
(2,0) 0.004M

21
(1,0) 0.002M

 

22
(2,1) 0.021M

22
(2,0) 0.004M

22
(2,0) 0.002M

 

31
(2,1) 0.030M

31
(2,0) 0.001M

31
(1,0) 0.002M

32
(2,1) 0.030M

32
(2,0) 0.001M

32
(1,0) 0.002M

When M11 fails, it will induce the failure of M21 and M22

with a probability of 11p , 12p respectively, and lead to the 

failure of the system eventually; or it increases the failure rate 
of M21 and M22 with the probability of 111 p and 121 p , and 

leads to the failure of M21 and M22 only if the damage 
accumulates to a proper level. While the failure of M21 and 
M22 will induce a failure of M11 with a probability of 21q and 

22q . The same failure transition exists between M21 respect to 

M31 and M32, M22 respect to M31 and M32. The probability of 
the failure transition is given in Table 2.

Table 2. Probability of failure transition

M

11

21

M

M

11

22

M

M

21

31

M

M

21

32

M

M

22

31

M

M

22

32

M

M

ijp 0.738 0.563 0.704 0.913 0.690 0.553

1 ijp 0.261 0.437 0.296 0.087 0.310 0.447

jiq 0.105 0.317 0.141 0.502 0.226 0.151

According to the decomposition proposed in section 3.1,
the engine cylinder manufacturing system can be divided into 
four subsystems: Sub1(comprised of M11, M21 and M31), 
Sub2(comprised of M11, M21 and M32), Sub3(comprised of M11,
M22 and M31), Sub4(comprised of M11, M22 and M32).

Then the function of failure interaction coefficient can be 
obtained from formula (6):

11 21 11 22 22 321 1 1( ) ( ; ) ( ; ) ( ; )

0.738 0.151

M M M M M MP X C x C x C x

Solving the function by using grey model method, the 
failure interaction coefficients are obtained in Table 3.

Table 3. Failure interaction coefficient

 
11 21M M

 
11 22M M

 
21 31M M

 
21 32M M

 
22 31M M

 
22 32M M

 
Value 0.359 0.602 0.015 0.223 0.116 0.407 

Utilizing the probability of state transition, failure 
interaction coefficient and the probability of failure transition, 
the performance and probability at each state of the machine 
are obtained in Table 4:

Table 4. Performance and probability at each state

Machine State performance Probability

M11

3

2

1

0

55

40

35

10

0.293

0.450

0.116

0.141

M21/M22

2

1

0

60

50

30

0.413

0.279

0.308

M31/M32

2

1

0

55

40

30

0.098

0.630

0.272

Based on the calculation above, the generating function of 
each machine considering failure interaction can be obtained
from equation (7):

11

35 40 35 10( ) 1.486 2.283 0.530 0.715Mu z z z z z

21

60 50 30( ) 2.870 2.736 2.765Mu z z z z

22

60 50 30( ) 2.288 2.154 2.183Mu z z z z

31

55 40 30( ) 1.967 2.499 2.141Mu z z z z

32

55 40 30( ) 1.468 2.000 2.135Mu z z z z

Then the generating function of the system is obtained
from formula (8):

11 21 22 31 32

110 95 15

( ) ( ) ( ) ( ) ( ) ( )

0.00106 0.011 0.000008

s M M M M MU z u z u z u z u z u z

z z z
According to the definition of reliability and formula (9), 

the reliability of the system is:

110 95 15

( ) ( ( ), )

(0.00106 0.011 0.000008 ,35)

       0.617

s s

S

R t U Z

z z z

If no failure interaction is considered, the generating 
function should be:
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55 40 35 10

60 50 30

60 50 30

55 40 30

55 40 30

162 89 27

( ) (0.293 0.450 0.116 0.141

(0.413 0.279 0.0.308 )

(0.413 0.279 0.308 )

(0.098 0.630 0.272 )

(0.098 0.630 0.272 )

0.004 0.002 0000036

sU z z z z z

z z z

z z z

z z z

z z z

z z z
Then the reliability of the system is:

162 89 27

( ) ( ( ), )

(0.004 0.002 0000036 ,35)

0.730

s s

S

R t U Z

z z z

Comparing the results, it can be found that considering the 
failure interaction will give a lower result in reliability 
analysis, which also proves that manufacturing system is a
complex system with various failure mechanism, considering
only degeneration by itself will inflate the error of the
reliability analysis and influence the prediction of
performance of the system eventually. Taking into account
two failure mechanism in the established model complicates 
the computation but gives a more accurate result.

5. Conclusion

This paper established a new reliability analysis model 
considering the failure interaction in the multistate 
manufacturing system. The model considered two failure 
mechanism of a manufacturing system, namely failure 
interaction and degeneration of the components. To present 
the influence of failure interaction, failure interaction 
coefficient was introduced, and derived with a copula function 
and Grey model method.

A case study was proposed to validate the model. The
result indicates that despite the failure interaction will 
overestimate system reliability, which also shows that the 
proposed method is more accurate and reasonable. The 
proposed model also provides a basis for maintenance policy 
study. To achieve a more practical insight, preventive
maintenance policy considering the failure interaction will be 
further study in the future.

Acknowledgements

This research is partially supported by National Science and 
Technology Major Project of the Ministry of Science and 
Technology of China (2011ZX04015-22) and Shanghai 
Municipal Science and Technology Commission 
(16111106502).

References

[1] Lisnianski A, Frenkel I, Ding Y. Multi-state System Reliability Analysis 
and Optimization for Engineers and Industrial Managers[J]. 2010.

[2] Murchland J D. Fundamental concepts and relations for reliability analysis 
of multi-state systems.[J]. Reliability & Fault Tree Analysis:581-618.

[3] Ramirez-Marquez J E, Coit D W. A Monte-Carlo simulation approach for 
approximating multi-state two-terminal reliability[J]. Reliability
Engineering & System Safety, 2005, 87(2):253-264.

[4] Yang J J, Liu F, Fang L I. Reliability Modeling and Simulation for Phased 
Mission System with Multi-mode Failures[J]. Fire Control & Command 
Control, 2011, 36(2):89-92.

[5] Aven T, Jensen U. Stochastic models in reliability /[M]. Springer, 1999.
[6] Youssef A M A, Mohib A, Elmaraghy H A. Availability Assessment of 

Multi-State Manufacturing Systems Using Universal Generating 
Function[J]. CIRP Annals - Manufacturing Technology, 2006, 55(1):445-
448.

[7] Ding Y, Lisnianski A. Fuzzy universal generating functions for multi-state 
system reliability assessment[J]. Fuzzy Sets & Systems, 2008, 
159(3):307-324.

[8] Lisnianski A. Extended block diagram method for a multi-state system 
reliability assessment[J]. Reliability Engineering & System Safety, 2007, 
92(12):1601-1607.

[9] Taboada H A, Espiritu J F, Coit D W. MOMS-GA: A Multi-Objective 
Multi-State Genetic Algorithm for System Reliability Optimization 
Design Problems[J]. IEEE Transactions on Reliability, 2008, 57(1):182-
191.

[10] Qian W X, Yin X W, Xie L Y. Discretized Modeling Process of 
Reliability of Multi-state Mechanical Systems[J]. Dongbei Daxue 
Xuebao/journal of Northeastern University, 2008, 29(11):1609-
1612+1632.

[11] Chang P C, Lin Y K, Chen J C. System reliability for a multi-state 
manufacturing network with joint buffer stations[J]. Journal of 
Manufacturing Systems, 2017, 42:170-178.

[12] Nakagawa T, Murthy D N P. Optimal replacement policies for a two-unit 
system with failure interactions[J]. RAIRO - Operations Research, 1993, 
27(4).

[13] Lai M T, Chen Y C. Optimal periodic replacement policy for a two-unit 
system with failure rate interaction[J]. The International Journal of 
Advanced Manufacturing Technology, 2006, 29(3):367-371.

[14] Sun Y, Ma L, Mathew J, et al. An Analytical Model for Interactive 
Failures[J]. Reliability Engineering & System Safety, 2006, 91(5):495–
504.

[15] Sun Y, Ma L. Estimate of interactive coefficients[C]// Reliability, 
Maintainability and Safety, 2009. ICRMS 2009. 8th International 
Conference on. IEEE, 2009:310-314.

[16] Gao W K, Zhang Z S, Liu Y, et al. Reliability modeling and dynamic 
replacement policy for two-unit parallel system with failure 
interactions[J]. Jisuanji Jicheng Zhizao Xitong/computer Integrated 
Manufacturing Systems Cims, 2015, 21(2):510-518.

[17] Qi G, Yang G. Maintenance interval decision models for a system with 
failure interaction[J]. Journal of Manufacturing Systems, 2015, 36:109–
114

[18] Zhou F X, Ai-Ping LI, Nan X, et al. Reliability analysis of multi-state 
manufacturing systems based on performance degradation[J]. Jisuanji 
Jicheng Zhizao Xitong/computer Integrated Manufacturing Systems Cims, 
2014, 20(6):1424-1431.

[19] Bill Ravens. An introduction to copulas[M]// An introduction to copulas 
/. Springer, 2006:xx,3

[20] Hsu C C, Chen C Y. Applications of improved grey prediction model for 
power demand forecasting[J]. Energy Conversion & Management, 2003, 
44(14):2241-224


