
6th ECCOMAS Thematic Conference on the Mechanical Response of Composites

COMPOSITES 2017

J.J.C. Remmers and A. Turon (Editors)

A MIXED-MODE COHESIVE MODEL FOR DELAMINATION WITH
ISOTROPIC DAMAGE AND INTERNAL FRICTION

Federica Confalonieri∗, Umberto Perego∗

?Politecnico di Milano
Piazza Leonardo da Vinci, 32

federica.confalonieri@polimi.it, umberto.perego@polimi.it

Keywords: Mixed-mode delamination, cohesive model

Summary: This work deals with the formulation of a thermodynamically consistent, isotropic
damage cohesive model for mixed-mode delamination under variable mode ratio. The proposed
model is based on the introduction of an internal friction angle in the tensile case, that allows
for an accurate modelling of the interaction between normal and shear openings.

1. INTRODUCTION

Delamination is a common failure mechanism in laminated composite materials, often char-
acterized by mixed-mode loading conditions with variable mode ratio. The capability to accu-
rately predict the progressive mixed-mode delamination in real life engineering applications is
a key ingredient in the development of robust design tools. The computational strategies for
the numerical simulation of the delamination process are often based on the use of interface
elements within the cohesive zone approach (see, for instance, [1, 2, 3]). Among the main
difficulties arising in the definition of a robust cohesive model, there are, on the one hand, the
necessity to ensure its accuracy and thermodynamic consistency for arbitrary loading paths and,
on the other hand, the capability to correctly reproduce the typical growth of fracture energy in
passing from Pure Mode I to Pure Mode II. A number of experimental works on composite
materials (see e.g. [4] for a comprehensive literature survey) show that the fracture energy in
Pure Mode II is typically higher than in Pure Mode I, as a result of a change in the involved mi-
cromechanical mechanisms, with a transition from pure mode I loading characterized by matrix
cleavage and fiber pull-out, to mode II conditions dominated by the formations of cusps and
hackles [5, 6].

A new cohesive model, specifically conceived for mixed mode delamination with variable
mode ratio, is presented in this work. The model is based on an isotropic damage formulation
and is thermodynamically consistent. The coupling between the normal and the shear behaviour
is achieved by projecting the cohesive stress vector onto three unit vectors defining three distinct
damage modes, accounting for mixed-mode interaction through a parameter playing the role of
an angle of internal friction. The proposed model is able to capture the non-monotonic increase
of fracture energy at increasing mode ratios without the need of introducing any empirical
law, as demonstrated by the comparison between the outcome of the present cohesive law and
the data resulting from experimental tests performed with the Mixed Mode Bending test [7]
apparatus.
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Figure 1. Damage modes

2. FORMULATION

The coupling between the normal and the shear behaviour is achieved by defining the three
damage modes, represented in Figure 1, in the plane of non-dimensional cohesive tractions (i.e.
the cohesive stresses divided by the corresponding pure Mode peak values). Each damage mode
is identified by a unit normal vector ni depending on an angle α playing the role of an angle
of internal friction.The first damage mode is associated to an opening dominated decohesion
process, while the second and third damage modes are the result of the interaction between shear
and normal relative displacements. The unit vector n1 is associated to the opening-dominated
mode, while n2 and n3 define the two shear-dominated, symmetrical modes.

n1 = [1 0]

n2 = [sinα cosα] (1)
n3 = [sinα − cosα]

The modelling of the delamination under mixed-mode conditions with variable mode ratios
and arbitrary loading paths is obtained formulating an isotropic damage cohesive model in a
thermodynamically consistent framework. The free energy per unit surface Ψ is defined as:

Ψ =
1

2
K (〈δn〉−)2 +

1

2
(1− d)K (〈δn〉+)2 +

1

2
(1− d)K (δs)2 (2)

being δn and δs the normal and tangential relative displacements, K the elastic stiffness of the
interface and d the isotropic damage variable. The unilateral effect is accounted for by the
introduction of the Macauley brackets 〈 〉 that allow to distinguish between the tensile and the
compressive cases. Within a classical thermodynamic framework, the cohesive tractions tn and
ts and the strain energy per unit of damage growth Y can be defined by means of the following
state equations:
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tn =
∂Ψ

∂δn
= K〈δn〉− + (1− d)K〈δn〉+ (3)

ts =
∂Ψ

∂δs
= (1− d)Kδs = (1− d)

ts0
δs0
δs (4)

Y = −∂Ψ

∂d
=

1

2
K (〈δn〉+)2 +

1

2
K (δs)2 (5)

with tn0 = Kδn0 and ts0 = Kδs0, being tn0 and ts0 the strengths in pure Modes I and II and δn0 and
δs0 the relative displacements at the onset of delamination, i.e. corresponding to tn0 and ts0. For
the sake of simplicity, only the tensile case, i.e. δn ≥ 0, will be considered in the following.
Let us introduce the vector t, collecting the non-dimensional cohesive tractions, i.e:

t =
[
t
n

t
s ]T

=
[

tn

tn0

ts

ts0

]T
(6)

A vector of effective cohesive stresses s is introduced to account for the interaction between
normal and tangential behaviour: each component si, i = 1, 2, 3 is computed by projecting t
onto the direction defined by one of the three normals in eqn. 1, identifying a distinct damage
mode:

s1 = t
T
n1 = t

n

s2 = t
T
n2 = t

n
sinα + t

s
cosα (7)

s3 = t
T
n3 = t

n
sinα− ts cosα

In matrix form:
s = Nt (8)

where matrix N = [n1 n2 n3]T gathers the unit vectors ni. The same approach can be followed
also for the relative displacements. Let δ define the vector collecting the non-dimensional
opening displacements in the normal and in the tangential directions as:

δ =
[
δ
n

δ
s ]T

=
[

δn

δn0

δs

δs0

]T
(9)

A vector w of effective relative displacements, conjugated to the effective cohesive stresses s
in the expression of the free energy density Ψ, is defined by introducing three structural vectors
mi, defined as:

m1 = a [1 0]T

m2 = b [sin θ cos θ]T (10)

m3 = b [sin θ − cos θ]T
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As depicted in figure 1, m1 is aligned to n1 for symmetry considerations, while the orientation
of m2 and m3 is defined as a function of the angle θ, different from the angle of internal friction
α. The effective relative displacements wi, i = 1, 2, 3 are obtained by the the projection of the
non-dimensional relative displacements vector δ onto a structural vector mi as:

w1 = δ
T
m1

w2 = δ
T
m2 (11)

w3 = δ
T
m3

In matrix form:
w = Mδ (12)

being M the matrix gathering the components of the three structural vectors mi.
The strain energy Ψ can be expressed as a function of the effective quantities defined in

eqns. 7 and 11 to underline the contribution of each single damage mode.

Ψ =
1

2
tTδ =

1

2
s1w1︸ ︷︷ ︸
Ψ1

+
1

2
s2w2︸ ︷︷ ︸
Ψ2

+
1

2
s3w3︸ ︷︷ ︸
Ψ3

(13)

The two unknown constants a and b are, then, determined by imposing that Ψ remains the same
in passing from the direct to the effective variables, i.e.

1

2
(tnδn + tsδs) =

1

2

(
s1w1 + s2w2 + s3w3

)
(14)

thus, obtaining:

a = (tn0δ
n
0 − ts0δs0 tanα tan θ) b =

ts0δ
s
0

2 cosα cos θ
(15)

By considering the strain energy Ψi associated to each damage mode, the following state
equations define three effective strain energies release rates Y i:

Y 1 = −∂Ψ1

∂d
=

1

2
(tn0δ

n
0 − ts0δs0 tanα tan θ)

(
δ
n
)2

Y 2 = −∂Ψ2

∂d
=

1

4
ts0δ

s
0

[
tanα tan θ

(
δ
n
)2

+
(
δ
s
)2

+ (tanα + tan θ) δ
n
δ
s
]

(16)

Y 3 = −∂Ψ3

∂d
=

1

4
ts0δ

s
0

[
tanα tan θ

(
δ
n
)2

+
(
δ
s
)2

− (tanα + tan θ) δ
n
δ
s
]

that play the role of driving forces acting on the corresponding damage modes, with:

Y 1 + Y 2 + Y 3 =
1

2
tn0δ

n
0

(
δ
n
)2

+
1

2
ts0δ

s
0

(
δ
s
)2

= Y ≥ 0 (17)
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Figure 2. First activation domain: a) for increasing values of α and k = 4; b) for increasing
values of k and α = 30◦

In the following, it is assumed that:

θ = arctan

(
tn0δ

n
0

ts0δ
s
0

tanα

)
(18)

so that in the tensile case Y 1 ≥ 0 for α < 45◦. On the contrary, either Y 2 or Y 3 can be negative,
but their sum Y 2 + Y 3, representing the fraction of the strain energy release rate associated to
the shear-dominated damage modes, is always non-negative.

The damage activation criterion is written as a function of the strain energy release rates Y i

as:

ϕ =

(
Y 1

χ1
0 + χ1

)k
+H(Y 2)

(
Y 2

χ2
0 + χ2

)k
+H(Y 3)

(
Y 3

χ3
0 + χ3

)k
− 1 ≤ 0 (19)

being the exponent k an input parameter of the model, H() the Heaviside function, introduced
to avoid negative contributions of Y 2 and Y 3 to the damage activation function, and χi + χi0
the current threshold for the i-th damage mode, evolving during the decohesion process as a
function of the damage variable d. χi0 represents the initial threshold, while χi is the internal
variable, governing the threshold evolution for increasing damage and determines the shape of
the softening branch. Figure 2 shows the damage activation surface at the onset of decohesion,
for increasing values of the internal friction angle α and k = 4 (a) and for increasing values of
the exponent k, while maintaining a constant value of the angle α = 30◦ (b).

In the framework of a classical thermodynamic formulation, the cohesive model is com-
pleted by the introduction of the damage evolution law and of the Kuhn-Tucker conditions. The
damage rate is obtained by imposing that ϕ = 0 and ϕ̇ = 0, i.e.:

ḋ = −
∂φ
∂δn

δ̇n + ∂φ
∂δs
δ̇s

∂φ
∂d

=

∑3
i=1

(
∂φ
∂Y i

∂Y i

∂δn

)
δ̇n +

∑3
i=1

(
∂φ
∂Y i

∂Y i

∂δs

)
δ̇s∑3

i=1

(
∂φ
∂χi

∂χi

∂d

) (20)
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Figure 3. Bilinear traction-separation laws in pure Modes I and II

while the loading-unloading conditions read as:

φ ≤ 0 ḋ ≥ 0 φḋ = 0 (21)

The thermodynamic consistency of the cohesive model can be proven considering the Clausius-
Duhem inequality for isothermal processes and showing that the mechanical dissipation is al-
ways non negative.

D = Y 1ḋ+ Y 2ḋ+ Y 3ḋ =
(
Y 1 + Y 2 + Y 3

)
ḋ = Y ḋ ≥ 0 (22)

The expressions of χi0 and χi can be found by prescribing a fixed functional form for the
two traction-separation laws in pure Modes. In this work, the case of a bilinear shape, shown
in Figure 3, is envisaged. Under this hypothesis, the two branches of the pure Mode traction-
separation law depicted in Figure 4 can be described as:

t =
t0
δ0

δ for δ ≤ δ0 (23)

t = (1− d)
t0
δ0

δ = t0
δcr − δ
δcr − δ0

for δ ≥ δ0 (24)

From eqn. 24 it is possible to derive the relation between the damage variable d and the relative
displacement δ for δ ≥ δ0, i.e.

δ =
δcrδ0

δcr − (δcr − δ0)d
(25)

Pure Mode I and II conditions can be retrieved by imposing that:

δn 6= 0 δs = 0 for pure Mode I (26)
δn = 0 δs 6= 0 for pure Mode II (27)
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The effective strain energies per unit of damage growth under pure Mode I and II loading
conditions can be found by substituting eqns. 27 into eqn. 16:

Y 1
mI =

1

2
(tn0δ

n
0 − ts0δs0 tanα tan θ)

(
δ
n
)2

Y 2
mI =

1

4
ts0δ

s
0

(
tanα tan θδ

n
)s

(28)

Y 3
mI =

1

4
ts0δ

s
0

(
tanα tan θδ

n
)s

Y 1
mII = 0

Y 2
mII =

1

4
ts0δ

s
0

(
δ
s
)s

(29)

Y 3
mII =

1

4
ts0δ

s
0

(
δ
s
)s

with the subscriptsmI andmII denoting pure Mode I and Mode II loading conditions. It could
be noticed that the behaviour in pure Mode II is uncoupled since Y 1

mII = 0, while in pure Mode
I one has Y 2

mI 6= 0 and Y 3
mI 6= 0. For that reason, it is necessary to deal first with the pure Mode

II case and, then, treat the Pure Mode I case on the basis of the results obtained for Mode II.
Because of the symmetry of the two shear dominated damage modes with respect to the

axis ts = 0, it turns out that Y 2
mII = Y 3

mII , χ
2
0 = χ3

0 and χ2 = χ3. The initial thresholds χ2
0

and χ3
0 can be determined by imposing that the activation criterion is fulfilled at the onset of

delamination, i.e. ϕ = 0 for d = 0 and δ
s

= 1.

ϕ =

(
Y 2
mII |1
χ2

0

)k
+

(
Y 3
mII |1
χ3

0

)k
− 1 = 2

(
Y 2
mII |1
χ2

0

)k
− 1 = 0 → χ2

0 = χ3
0 = 2

1
k

1

4
ts0δ

s
0 (30)

Similarly, the expressions of χ2 and χ3 can be found by imposing that the activation criterion is
met for a generic point belonging to the softening branch, i.e that the activation function is zero
for d > 0 and δ

s
> 1:

φ =

(
Y 2
mII

χ2
0 + χ2

)k
+

(
Y 3
mII

χ3
0 + χ2

)k
− 1 = 0 → χ2 = χ3 = 2

1
k

1

4
ts0δ

s
0

[(
δ
s
)2

− 1

]
(31)

By substituting eqn. 25 into eqn. 31, one obtains:

χ2 = χ3 = 2
1
k

1

4
ts0δ

s
0

[
δscr

δscr − (δscr − δs0) d

]2

− χ2
0 (32)

Let us now focus on pure Mode I. The expressions of χ1
0 and χ1 can be determined with an

analogous procedure, considering the delamination onset and the softening branch, respectively.
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Figure 4. Pure mode bilinear law

Figure 5. Mixed-mode traction-separation law

For δ
n

= 1 and d = 0, it holds that:

ϕ =

(
Y 1
mI |1
χ1

0

)2

+

(
Y 2
mI |1
χ2

0

)2

+

(
Y 3
mI |1
χ3

0

)2

− 1 = 0 → χ1
0 =

1

2

(
tn0δ

n
0 − ts0δS0 tanα tan θ

)
[1− (tanα tan θ)2]

1
2

(33)
while for a generic non-dimensional opening displacement δ

n
> 1 one has:

ϕ =

(
Y 1
mI

χ1
0 + χ1

)k (
Y 2
mI

χ2
0 + χ2

)k
+

(
Y 3
mI

χ3
0 + χ2

)k
− 1 = 0 (34)

and

χ1 =

(
tn0δ

n
0 − ts0δS0 tanα tan θ

){
1−

[(
δncr
δscr

δscr−(δscr−δs0)d

δncr−(δncr−δn0 )d

)2

tanα tan θ

]k} 1
k

1

2

(
δncr

δncr − (δncr − δn0 )d

)2

− χ1
0 (35)

The resulting mixed-mode response is depicted in Figure 5. Even though the pure Modes
laws are assumed to be bilinear, the softening branch in the mixed-mode law is, in general,
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curvilinear, except that for the particular case of identical pure Modes, i.e. tn0 = ts0 = t0,
δn0 = δs0 = δ0 and δncr = δscr = δcr. In this particular case, the resulting mixed-mode traction-
separation law can be determined analytically in the case of a radial path, expressing the non-
dimensional normal and tangential relative displacements as:

δ
n

= (1− β) δ δ
s

= βδ (36)

By substituting eqns. 36 into enqs. 16 and 19, the activation function turns out to be:

ϕ =

(1− β)2 [1− (tanα)2k
] 1

k δ
2[

δcr
δcr−(δcr−δ0)d

]2


k

+

 [(1− β) tanα + β]2 δ
2

21/k
[

δcr
δcr−(δcr−δ0)d

]2


k

+

+

 [(1− β) tanα− β]2 δ
2

21/k
[

δcr
δcr−(δcr−δ0)d

]2


k

− 1 = 0 (37)

being α = θ according to eqn. 18. Solving eqn. 37 for d, the following relationship between
the damage variable d and δ holds:

d =
δcr

δcr − δ0

(
1

Cβαδ

)
for ϕ = 0 with

Cβα =
{

(1− β)2k [1− tan2k α
]

+ 0.5 [(1− β) tanα + β]2k + 0.5 [(1− β) tanα− β]2k
} 1

2k

(38)

Thus, from eqns. 3 and 4, for ϕ = 0 one obtains:

tn = (1− β) t0
[
−Cβαδ0δ + δcr

]
(39)

ts = βt0
[
−Cβαδ0δ + δcr

]
(40)

3. NUMERICAL EXAMPLES

One of the strengths of the proposed cohesive model is that the overall fracture energy is an
outcome of the interaction between damage modes without the need of introducing any empiri-
cal law and without making any assumption on the loading path. In these numerical examples,
the effectiveness of the model in capturing the variation of the fracture energy with the mode-
mixity ratio is assessed considering the experimental data of three different fiber reinforced
composite materials, namely HMF/5322 I[8], IM7/8552 [9] and AS4/PEEK [10], resulting from
Mixed Mode Bending tests [7]. The input parameters required for the definition of the proposed
cohesive model, i.e. the fracture energies GIc, GIIc and the peak tractions tn0 , ts0 in pure Modes
I and II, the internal friction angle α and the exponent k appearing in the activation function φ,
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Material GIc GIIc t0n t0s K α k
mJ
mm2

mJ
mm2 MPa MPa N

mm2 deg
HMF/5322 0.3043 0.8039 10 18 10,000 32 10
IM7/8552 0.2085 0.7713 60 90 20,000 36 10

AS4/PEEK 0.969 1.719 75 80 100,000 42.8 1.56
Table 1. Adopted parameters.

Figure 6. HMF/5322. Experimental vs numerical mixed-mode fracture energies. Dots: experi-
mental data [8]. Solid line: result of the present model.

are listed in Table 1. Figures 6, 7 and 8 show the comparison between the experimental data and
the curve obtained with the proposed cohesive law: in all the three cases a good agreement can
be observed. In addition, for comparison purposes, the empirical Benzeggagh-Kenane (B-K)
law [11] Gc = GIc + (GIIc −GIc)

(
GII

GI+GII

)η
is depicted in Figures 7 and 8, considering the

exponent η determined in [9] and [10] by a fitting of the experimental data.

4. CONCLUSIONS

A new isotropic damage cohesive model for the simulation of mixed-mode delamination
has been presented in this work. The proposed model is based on the introduction of a dissipa-
tion mechanism described by a parameter qualitatively similar to an angle of internal friction,
leading in a natural way to a coupling between normal and shear behaviours. The model is
thermodynamically consistent and is able to accurately reproduce the fracture energy under
mixed-mode loading conditions, as shown in the numerical examples.
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Figure 7. IM7/8552. Experimental vs numerical mixed-mode fracture energies. Dots: experi-
mental data [9]. Dashed line: B-K law [11]. Solid line: result of the present model.

Figure 8. AS4/PEEK. Experimental vs numerical mixed-mode fracture energies. Dots: experi-
mental data [10]. Dashed line: B-K law [11]. Solid line: result of the present model.
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