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Abstract. This work is devoted to the formulation of a new cohesive model for mixed-
mode delamination. The model is based on a thermodynamically consistent isotropic
damage formulation, with consideration of an internal friction mechanism that governs
the interaction between normal and shear opening modes.

1 INTRODUCTION

Delamination, i.e. the progressive decohesion between two layers, is one of the main
causes of failure for laminated composites. Delamination often develops under the pres-
ence of concurrent interlaminar tensile and shear stresses, leading to mixed-mode loading
conditions with variable mode ratios. Several experimental works [1, 2, 3] have shown
that the micro-mechanical mechanisms involved in the delamination phenomenon vary
with the mixed-mode ratio, with a transition from pure mode I loading characterized by
matrix cleavage and fiber pull-out, to mode II conditions dominated by the formations of
cusps and hackles. At the macroscopic scale, this causes the fracture energy to increase in
passing from Mode I to Mode II, as confirmed by results of experimental tests performed
on many different composite materials (see, for instance, [4, 5]). As an example, Figure 1
shows the values of fracture energy at different mode ratios reported in [6] and deriving
from different experiments performed with the Mixed Mode Bending test apparatus [7]
on AS4/3501-6 carbon/epoxy composite. Empirical relationships have been proposed in
the literature to define a failure locus able to interpolate the toughness variation over the
full mixed-mode range. Among them, it is worth mentioning the Power Law [8] and the
BK law [4], widely employed as delamination criteria.

Robust numerical simulation tools are mandatory to obtain accurate predictions of
the onset and propagation of delamination in real-life problems, characterized by variable
loading paths. The finite element simulation of the decohesion between layers is often
addressed by means of interface elements, whose constitutive behavior is modeled by a
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Figure 1: AS4/3501-6: fracture energy vs mode mixity

cohesive law. In the literature, one can find a huge number of works on the cohesive
modeling of delamination, (see, for instance, [9, 10, 11]). However, many of them ex-
hibit some limitations, such as the need of assumptions on the loading path, the lack of
thermodynamic consistency, or the inability to ensure the correct energy dissipation in
case of non-proportional loading paths. These drawbacks may affect the reliability of the
numerical results when mixed-mode loading conditions with variable mode mixity ratios
and/or non-proportional loading are considered.

This work proposes a new cohesive model, based on a thermodynamically consistent
formulation with isotropic damage. An internal friction parameter is introduced to handle
the coupling between normal and shear stresses. The overall fracture energy at any mode
ratio is an outcome of the model, without the need to introduce any empirical laws to
define the fracture energy variation with the mode-mixity ratio.

2 FORMULATION

Let us consider the zero-thickness 2D interface element with four nodes shown in Figure
2. Under the hypothesis of small openings, the relative displacement vector δ is computed
as the difference between the displacements of two corresponding points belonging to the
top and bottom edges respectively:

δ = δ+ − δ− (1)

A local reference frame is introduced in order to identify the normal and the tangen-
tial directions. Superscripts n and s will denote the normal and the shear components,
respectively, of tractions and opening displacements.

The starting point of the formulation is the introduction of the free energy per unit
surface Ψ, defined as:

Ψ =
1

2
K (〈δn〉−)2 +

1

2
(1− d)K (〈δn〉+)2 +

1

2
(1− d)K (δs)2 (2)

where K is the elastic stiffness of the interface and d the isotropic damage variable.
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Figure 2: 4-node interface element

Figure 3: Damage modes

The same elastic stiffness is considered in the normal and in the shear directions. The
Macauley brackets 〈 〉 are introduced to distinguish between the negative and the positive
part of the normal opening displacement, so that the unilateral effect is accounted for.
The cohesive tractions tn and ts and the strain energy release rate Y per unit damage
growth are obtained through the state equations:

tn = ∂Ψ
∂δn

= K〈δn〉− + (1− d)K〈δn〉+ ts = ∂Ψ
∂δs

= (1− d)Kδs (3)

Y = −∂Ψ
∂d

= 1
2
K (〈δn〉+)2 + 1

2
K (δs)2 (4)

For the sake of simplicity, in the following only the tensile case, i.e. δn ≥ 0, will be
considered.

The model is based on the definition of three different damage modes in the plane of
non-dimensional cohesive tractions, identified by the normal unit vectors n1, n2 and n3

(see Figure 3), whose interaction governs the cohesive interface evolution under mixed-
mode loading conditions. As can be seen from Figure 3, n1 defines the opening-dominated
mode, while n2 and n3 the two shear-dominated modes. The three normals are collected
in matrix N:

N =




n1

n2

n3


 =




1 0
sinα cosα
sinα − cosα


 (5)

where the angle α, playing the role of a parameter of internal friction, defines the incli-
nation of the two shear-dominated damage modes.
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A vector of effective cohesive stresses s = [s1 s2 s3]
T
is defined by projecting the vector

of dimensionless cohesive traction t along the three normals:

s = Nt (6)

where:

t =

[
t
n

t
s

]
=

[
tn

tn0
ts

ts0

]
(7)

being tn0 and ts0 the strengths in pure Modes I and II. Thus, eqn. 6 becomes:

s1 = t
T
n1 = t

n

s2 = t
T
n2 = t

n
sinα + t

s
cosα (8)

s3 = t
T
n3 = t

n
sinα− t

s
cosα

Let us now introduce the effective opening displacements w = [w1 w2 w3]
T
, represent-

ing the kinematic variables conjugated to the effective cohesive stresses s in the expression
of the free energy density Ψ and defined as the projection of the dimensionless relative
displacements vector δ onto a structural vector mi (see Figure 3). In matrix form:

w = Mδ (9)

where:

δ =

[
δ
n

δ
s

]
=

[
δn

δn0
δs

δs0

]
(10)

being δn0 and δs0 the relative displacements at the onset of delamination, i.e. corresponding
to tn0 and ts0. M is the matrix gathering the components of the three structural vectors
mi:

M =




m1

m2

m3


 =




a 0
b sin θ b cos θ
b sin θ −b cos θ


 (11)

being θ the angle defining the orientation of m2 and m3. As shown in Figure 3, m1

is aligned to n1 for symmetry considerations. The two unknown constants a and b are
determined by imposing that the elastic strain energy density Ψ remains the same in
passing from the direct to the effective variables, i.e.

1

2
tTδ =

1

2

(
s1w1 + s2w2 + s3w3

)
(12)

From eqn. 12, one obtains:

a = (tn0δ
n
0 − ts0δ

s
0 tanα tan θ) b =

ts0δ
s
0

2 cosα cos θ
(13)

Thus,

w1 = δ
T
m1 = (tn0δ

n
0 − ts0δ

s
0 tanα tan θ) δ

n

w2 = δ
T
m2 =

ts0δ
s
0

2 cosα cos θ

(
sin θδ

n
+ cos θδ

s
)

(14)

w3 = δ
T
m3 =

ts0δ
s
0

2 cosα cos θ

(
sin θδ

n − cos θδ
s
)
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Based on the definitions 6 and 9 of effective stresses and relative displacements, the
overall strain energy density can be decomposed into the sum of three distinct contribu-
tions, each one associated to a damage mode as:

Ψ =
1

2
tTδ =

1

2
s1w1

︸ ︷︷ ︸
Ψ1

+
1

2
s2w2

︸ ︷︷ ︸
Ψ2

+
1

2
s3w3

︸ ︷︷ ︸
Ψ3

(15)

By exploiting the decomposition of eqn. 15, three effective strain energies Y i released per
unit growth of damage can also be defined through the state equations as:

Y 1 = −∂Ψ1

∂d
=

1

2
(tn0δ

n
0 − ts0δ

s
0 tanα tan θ)

(
δ
n
)2

Y 2 = −∂Ψ2

∂d
=

1

4
ts0δ

s
0

[
tanα tan θ

(
δ
n
)2

+
(
δ
s
)2

+ (tanα + tan θ) δ
n
δ
s
]

(16)

Y 3 = −∂Ψ3

∂d
=

1

4
ts0δ

s
0

[
tanα tan θ

(
δ
n
)2

+
(
δ
s
)2

− (tanα + tan θ) δ
n
δ
s
]

It can be observed that:

Y 1 + Y 2 + Y 3 =
1

2
tn0δ

n
0

(
δ
n
)2

+
1

2
ts0δ

s
0

(
δ
s
)2

= Y (17)

with tn0 = Kδn0 and ts0 = Kδs0. The decomposition of the strain energy release rate Y into

its three components Y i depends on the ratio
tn0 δ

n
0

ts0δ
s
0
and on the angles α and θ. In the

applications, it will be assumed that:

θ = arctan

(
tn0δ

n
0

ts0δ
s
0

tanα

)
(18)

so that Y 1 is always positive for any positive value of δn. Under this hypothesis, either

Y 2 or Y 3 can be negative, but their sum Y 2 + Y 3 = 1
2

[
tanα tan θ

(
δ
n
)2

+
(
δ
s
)2
]
, rep-

resenting the fraction of the strain energy release rate associated to the shear-dominated
damage modes, is always positive.

An energy criterion is considered to express the damage activation function:

ϕ =

(
Y 1

χ1
0 + χ1

)k

+H(Y 2)

(
Y 2

χ2
0 + χ2

)k

+H(Y 3)

(
Y 3

χ3
0 + χ3

)k

− 1 ≤ 0 (19)

where H() is the Heavyside function introduced to exclude possible negative contribution
of Y 2 or Y 3 to damage activation, the exponent k is a parameter of the proposed cohesive
model and (χi

0 + χi) represents the current threshold of the i − th damage mode, being
χi
0 its initial value and χi an internal variable governing its evolution with damage and

determining the shape of the softening branch. In this work, a model exhibiting a bilinear
traction-separation law in pure Modes I and II (see Figure 5) is considered, although other
choices of the functional form of the traction-separation curves (e.g. with an exponential
strength decay) are in principle allowed. Figure 4 shows the damage activation surface at
the onset of decohesion, for increasing values of the internal friction angle α and k = 2

5
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Figure 4: First activation domain: a) for increasing values of α and k = 2; b) for increasing values of k
and α = 30◦

Figure 5: Bilinear cohesive laws in pure Modes I and II

(a) and for increasing values of the exponent k, while maintaining a constant value of the
angle α = 30◦ (b).

The expressions of χi
0 and χi for the bilinear law can be found by considering the

behavior in pure loading Modes. At first, let us consider a pure Mode II case, characterized
by δn = 0 and δs �= 0. Under this hypothesis, it holds that (subscriptsmI and mII denote
pure Mode I and Mode II loading conditions):

Y 1
mII = 0

Y 2
mII =

1
4
ts0δ

s
0

(
δ
s
)s

(20)

Y 3
mII =

1
4
ts0δ

s
0

(
δ
s
)s

Because of the symmetry of the two shear dominated damage modes, it turns out that
Y 2
mII = Y 3

mII , χ
2
0 = χ3

0 and χ2 = χ3. The initial thresholds χ2
0 and χ3

0 can be determined
by imposing that the activation function is zero at the onset of delamination, i.e. for
δ
s
= 1. Thus,

6
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Figure 6: Pure mode bilinear law

φ =

(
Y 2
mII |1
χ2
0

)k

+

(
Y 3
mII |1
χ3
0

)k

= 2

(
Y 2
mII |1
χ2
0

)k

− 1 = 0 → χ2
0 = χ3

0 = 2
1
k
1

4
ts0δ

s
0 (21)

Analogously, by considering a generic point along the softening branch, it is possible
to find the expressions of χ2 and χ3 as:

φ =

(
Y 2
mII

χ2
0 + χ2

)k

+

(
Y 3
mII

χ3
0 + χ2

)k

− 1 = 0 → χ2 = χ3 = 2
1
k
1

4
ts0δ

s
0

[(
δ
s
)2

− 1

]
(22)

If a pure mode case is considered, the relationship between the relative displacement
and the damage variable can be obtained on the basis of purely geometrical considerations,
given the triangular shape of the cohesive law depicted in Figure 6.

δ =
δcrδ0

δcr − (δcr − δ0)d
(23)

By substituting eqn. 23 into eqn. 22, one obtains:

χ2 = χ3 = 2
1
k
1

4
ts0δ

s
0

[
δscr

δscr − (δscr − δs0) d

]2
− χ2

0 (24)

While in pure Mode II one has Y 1
mII = 0, in a pure Mode I case, i.e. for δn �= 0 and

δs = 0, Y 2
mI and Y 3

mI are also non-zero:

Y 1
mI =

1
2
(tn0δ

n
0 − ts0δ

s
0 tanα tan θ)

(
δ
n
)2

Y 2
mI =

1
4
ts0δ

s
0

(
tanα tan θδ

n
)s

(25)

Y 3
mI =

1
4
ts0δ

s
0

(
tanα tan θδ

n
)s

At delamination onset (i.e. for δ
n
= 1), it holds that:

φ =

(
Y 1
mI |1
χ1
0

)k

+

(
Y 2
mI |1
χ2
0

)k

+

(
Y 3
mI |1
χ3
0

)k

− 1 = 0 → χ1
0 =

1

2

(
tn0δ

n
0 − ts0δ

S
0 tanα tan θ

)

[1− (tanα tan θ)k]
1
k

(26)
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while, by imposing that the activation function is zero for a generic dimensionless opening
displacement δ

n
, i.e.

φ =

(
Y 1
mI

χ1
0 + χ1

)k (
Y 2
mI

χ2
0 + χ2

)k

+

(
Y 3
mI

χ3
0 + χ2

)k

− 1 = 0 (27)

one obtains:

χ1 =

(
tn0δ

n
0 − ts0δ

S
0 tanα tan θ

)
{
1−

[(
δncr
δscr

δscr−(δscr−δs0)d

δncr−(δncr−δn0 )d

)2

tanα tan θ

]k} 1
k

1

2

(
δncr

δncr − (δncr − δn0 )d

)2

− χ1
0 (28)

The formulation of the proposed cohesive model is completed by the introduction of
the evolution law, expressing the damage rate as:

ḋ = −
∂φ
∂δn

δ̇n + ∂φ
∂δs

δ̇s

∂φ
∂d

=

∑3
i=1

(
∂φ
∂Y i

∂Y i

∂δn

)
δ̇n +

∑3
i=1

(
∂φ
∂Y i

∂Y i

∂δs

)
δ̇s

∑3
i=1

(
∂φ
∂χi

∂χi

∂d

) (29)

together with the classical loading/unloading conditions:

φ ≤ 0 ḋ ≥ 0 φḋ = 0 (30)

Using a classical argument, based on the Clausius-Duhem inequality for isothermal
processes, the mechanical dissipation can be proven to be always non-negative:

D = Y 1ḋ+ Y 2ḋ+ Y 3ḋ =
(
Y 1 + Y 2 + Y 3

)
ḋ = Y ḋ ≥ 0 (31)

The definition of the proposed cohesive model requires the following input parameters:
the fracture energies GIc, GIIc and the peak tractions tn0 , t

s
0 in pure Modes I and II, the

internal friction angle α and the exponent k appearing in the activation function φ. These
parameters can be identified based on the results of standard experimental tests, i.e. one
Double Cantilever Beam (DCB) test for pure Mode I, one End Notch Flexure (ENF) test
for pure Mode II and a set of Mixed Mode Bending (MMB) tests [7] for varying mode-
mixity ratio, from which a curve describing the evolution of the fracture energy with the
mode mixity ratio can be constructed.

3 NUMERICAL EXAMPLES

The accuracy of the proposed model is assessed at a material point level by prescribing
the two components of the relative displacement along different paths, for a number of
different parameter sets.

3.1 Consistency tests: proportional path

Radial loading conditions with varying separation angles are enforced by imposing
δn = (1− β) γ and δs = βγ, γ being a multiplier linearly increasing from 0 to γmax = 0.1
mm and β ∈ [0, 1] a parameter defining the mode-mixity. Pure Modes I and II are
recovered for β = 0 and β = 1, respectively. Identical cohesive properties are here
assumed for the pure Modes, considering GIc = GIIc = 0.1 kJ/m2 and tn0 = ts0 = 6 MPa.

8
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Figure 7: Fracture energy vs mode mixity for k = 2, GIc = GIIc, t
n
0 = ts0 for increasing values of angle

α

Under these hypotheses, it is possible to show analytically that the softening branch is
linear for any value of β (note that this is not the case for β �= 0 and GIc �= GIIc,
even when the traction-separation curves are bilinear in pure modes). Moreover, for an
exponent k = 2 (i.e. quadratic damage activation surface), the response is symmetric with
respect to β = 0.5, i.e. the response is the same for β1 and β2 = 1−β1. Figure 7 shows the
evolution of the overall fracture energy Gc with the mode mixity parameter β, computed
as the sum of the areas beneath the traction-separation curves. Increasing the internal
friction α has the effect of reducing the peak value, without changing its position because
of symmetry. It is noteworthy that for α = 30◦, the model is able to reproduce the case
of constant fracture energy. This result can be found also analytically, by imposing that
the activation function is zero at the onset of delamination and at complete decohesion,
so that the two corresponding values of γ0 and γcr are obtained:

γ0 =
δ0[

(1− β)4 + 6β2 (1− β)2 tanα2 + β4
] 1

4

, γcr = γ0
δcr
δ0

(32)

For α = 30◦, one obtains:

γ0 =
δ0√

1− 2β + 2β2
, γcr =

δcr√
1− 2β + 2β2

(33)

The fracture energy turns out to be independent of β, i.e.:

Gc =
1

2
K (1− β)2 γ0γcr +

1

2
Kβ2γ0γcr =

1

2
Kδ0δcr = const. (34)

3.2 Consistency test: non-proportional path

The non-proportional, zig-zag loading path proposed in [12] and depicted in Figure
8a is considered in this example. The adopted cohesive properties are listed in Table 1.
Figure 8b shows the evolution of the damage variable: since a monotonically increasing
separation is applied, the damage increases monotonically as expected. The resulting
traction-separation curves are shown in Figure 9.

9
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Table 1: Non proportional zig-zag path: cohesive properties

tn0 MPa ts0 MPa GIc
J
m2 GIIc

J
m2 α k

10 10 100 100 30 4

Figure 8: Zig-zag path: a) relative displacement history, b) damage variable evolution.

3.3 Mixed-mode bending (MMB) tests

The experimental data of the Mixed Mode Bending (MMB) tests performed by Reeder
[8] on three different fibre reinforced composites, namely AS4/PEEK, AS4/3501-6 and
IM7/977-2, are here considered to assess the capability of the proposed model to reproduce
the mixed-mode behaviour over the full range of mode-mixity ratios. The adopted cohesive
properties are reported in Table 2. The internal friction angle α and the exponent k are
the values that guarantees the best fitting of the experimental data. The fracture energy
is computed as the sum of the areas beneath the normal and shear traction-separation
curves, obtained with a series of radial paths in the δn − δs plane, with increasing mode-
mixity ratio. In figure 10 the numerical prediction of the fracture energy for varying
mode-mixity ratio is compared with the experimental data and with the results obtained
with a Power Law, whose exponents have been calibrated in [8]: the dots corresponds to
the experimental points, the red dashed lines are obtained with the empirical Power Law
and the solid lines are the results of the present model. In all the three cases, the model
is able to reproduce correctly the non-monotonic growth of the fracture energy with the
mode mixity ratio and the numerical results are very close to the best fitting obtained by
Reeder, without the need of adopting any empirical law.

4 CONCLUSIONS

A new isotropic damage cohesive model has been proposed for the simulation of delam-
ination under mixed-mode loading conditions. The model is based on the introduction of

10
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Figure 9: Zig-zag path: traction-separation laws.

Table 2: Cohesive properties

tn0 MPa ts0 MPa GIc
J
m2 GIIc

J
m2 α k

AS4/PEEK 80 100 779 1142 24 1.6
AS4/3501-6 45 48 90 600 25 12
IM7/977-2 70 130 310 1410 28 12

an internal friction dissipation mechanism, which allows to handle the coupling between
normal and shear damage modes. The resuting mixed-mode fracture energy is the out-
come of modes interaction, without the need to define a-priori any empirical law. The
model is thermodynamically consistent, even under arbitrary non proportional loading
paths, with variable mode ratio.
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