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Abstract

WASP-12 is a hot Jupiter system with an orbital period of P=1.1 days, making it one of the shortest-period giant
planets known. Recent transit timing observations by Maciejewski et al. and Patra et al. founda decreasing period
with ∣ ˙∣P P =3.2Myr. This has been interpreted as evidence of either orbital decay due to tidal dissipation or a
long-term oscillation of the apparent period due to apsidal precession. Here, we consider the possibility that it is
orbital decay. We show that the parameters of the host star are consistent with either a M*;1.3Me main
sequence star or a M*;1.2Me subgiant. We find that if the star is on the main sequence, the tidal dissipation is
too inefficient to explain the observed Ṗ. However, if it is a subgiant, the tidal dissipation is significantly enhanced
due to nonlinear wave-breaking of the dynamical tide near the star’s center. The subgiant models have a tidal
quality factor *¢ ´Q 2 105 and an orbital decay rate that agrees well with the observed Ṗ. It would also explain
why the planet survived for ;3 Gyr while the star was on the main sequence and yet is now inspiraling on a 3Myr
timescale. Although this suggests that we are witnessing the last ∼0.1% of the planet’s life, the probability of such
a detection is a few percent given the observed sample of ;30 hot Jupiters in P<3-day orbits around
M*>1.2Me hosts.

Key words: binaries: close – planet–star interactions – planets and satellites: individual (WASP-12b) – stars:
oscillations

1. Introduction

The orbits of hot Jupiters are expected to decay due to tidal
dissipation within their host stars (Rasio et al. 1996). While
there is considerable indirect evidence of orbital decay in the
ensemble properties of hot Jupiter systems (Jackson et al. 2008,
2009; Hansen 2010; Penev et al. 2012; Schlaufman &
Winn 2013; Teitler & Königl 2014), the recent transit timing
observations of WASP-12 by Maciejewski et al. (2016) and
Patra et al. (2017) could be the first direct evidence of the
orbital decay of an individual system. They detect a decrease in
the orbital period at a rate Ṗ=−29±3 ms yr−1. This
corresponds to an inspiral timescale of just ∣ ˙∣P P =3.2 Myr
and a stellar tidal quality factor ¢ » ´*Q 2 105.

As both studies note, it is difficult to tell whether the
observed Ṗ is due to orbital decay or is instead a portion of a
long-term (≈14 yr) oscillation of the apparent period. The latter
could be due to apsidal precession if the eccentricity is
e≈0.002. However, it is not clear how to maintain such an e
in the face of rapid tidal circularization. Patra et al. (2017)
mention gravitational perturbations from the star’s convective
eddies, a mechanism Phinney (1992) proposed to explain the
small but nonzero eccentricities of pulsars orbiting white
dwarfs. However, the host star (M*;1.3Me) has a very low-
mass convective envelope (;10−3Me) and we estimate that
there is too little energy in the eddies to maintain an e∼10−3.
Another mechanism that can cause decade-long oscillations of
the period that Patra et al. mention is the Applegate (1992)
effect, which invokes variations in the quadrupole moment of
the star over a magnetic activity cycle. However, Watson &
Marsh (2010) estimate that for WASP-12b, this effect shifts the
transit arrival times by ΔT10 s after T≈10 yr. This
corresponds to an average ∣ ˙∣P ;2PΔT/T2<1 ms yr−1

(Birkby et al. 2014), more than an order of magnitude smaller
than the measured value.

With a few more years of monitoring it should be possible to
distinguish unequivocally between orbital decay and precession
(Patra et al. 2017). In this paper, we consider whether the decay
explanation is plausible. In Section 2, we construct stellar
models that fit the observed properties of WASP-12. In
Section 3, we describe the relevant tidal processes and then use
the stellar models to calculate the expected rate of tidal
dissipation. We conclude in Section 4.

2. Stellar Models of WASP-12

The WASP-12 host star has an effective temperature Teff=
6300±150 K and a mean density ρ*≡3M*/ *

pR4 3 =
0.475±0.038 g cm−3 (Hebb et al. 2009; Chan et al. 2011;
here and below we adopt the values from the latter reference).
Note that ρ* is measured solely from the transit parameters of
the light curve (see Seager & Mallén-Ornelas 2003) and is not
derived from a fit to stellar evolution models, unlike the stellar
massM* and radius R*. The spectrum of WASP-12 is consistent
with a supersolar metallicity ([Fe/H]=0.30± 0.10) and a spin
that is slow (vsini<2.2±1.5 km s−1) and likely misaligned
with the planet’s orbital plane (Schlaufman 2010; Albrecht
et al. 2012). By fitting stellar models to Teff, ρ*, and the
metallicity, Chan et al. (2011; see also Hebb et al. 2009; Enoch
et al. 2010; Fossati et al. 2010; Maciejewski et al. 2011) find
M*=1.36±0.14Me, R*=1.595±0.071 Re, and a surface
gravity log g*=4.164± 0.029 (in cgs units). Based on three
separate age-dating techniques (lithium abundance, isochrone
analysis, and gyrochronology) Hebb et al. (2009) find that
WASP-12 is likely to be several Gyr old, implying an age
comparable to its main sequence lifetime.
We construct stellar models using the MESA stellar

evolution code (Paxton et al. 2011, 2013, 2015), version
9575. We assume a solar abundance scale based on Asplund
et al. (2009; solar metallicity Z=Ze=0.0142) and follow the
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MESA prescriptions given in Choi et al. (2016) for calculating
the abundances, equation of state, opacity, and reaction rates.

As we show below, the properties of WASP-12 are
consistent with both M*;1.3Me main sequence models and
M*;1.2Me subgiant models. The range of subgiant models
that fits the observations is sensitive to how convection and
mixing in radiative zones is implemented in MESA. In
particular, we find it is sensitive to the values of the parameters
of mixing length theory αMLT, overshooting fov, semiconvec-
tion αsc, and diffusive mixing. Although recent studies are
starting to place interesting constraints on some of these
parameters (Silva Aguirre et al. 2011; Magic et al. 2015;
Moravveji et al. 2015, 2016; Deheuvels et al. 2016; Moore &
Garaud 2016), there is still considerable uncertainty, especially
as to how they depend on stellar mass, metallicity, and age. For
simplicity, we therefore use the Schwarzschild criterion with
fov=0, we neglect diffusive mixing, and we consider a range
of values for αMLT.

In Figure 1 we show the evolution of Teff and ρ* for six
stellar models. The three M*=1.30–1.35Me models (red
dashed curves) match the observed constraints (gray box) when
the star is on the main sequence. The three M*=1.20Me

models (blue solid curves) match the observed constraints
during the post-main sequence phase, when the star is a
subgiant and the core is no longer convective. The different
models are selected in order to illustrate that the evolution of
Teff and ρ* is sensitive to not only M*, but also Z and αMLT.

All six models shown in Figure 1 spend about 0.5 Gyr within
the measured range of Teff and ρ*. During this portion of their
evolution, the radii and surface gravity of the higher-mass
models span R*=1.50–1.62 Re and log g*=4.14–4.20,
while the lower-mass models span R*=1.47–1.55 Re and
log g*=4.13–4.18. These are consistent with the (model-
dependent) constraints reported in the literature.

As we describe in Section 3, the efficiency of tidal
dissipation is significantly enhanced if WASP-12 has a
radiative core. The only models with radiative cores that we
find are consistent with the measured Teff and ρ* are the
subgiant models. Torres et al. (2012) estimate a somewhat
lower Teff=6118±64 K, which could match the Teff of main
sequence models with fully radiative cores (i.e.,
M*1.1Me). However, we find that such models have too
high a ρ*.
In Figure 2 we show Teff as a function of ρ* at the moment the

core ceases to be convective and the star enters the subgiant
phase. We find that for a given M*, increasing αMLT or
decreasing Z increases Teff and ρ*. The models that are either
inside or to the right (since ρ* decreases with age) of the gray
box are consistent with the observations for a portion of the
subgiant branch. The constraints are consistent with subgiant
models whose parameters lie in the range 1.20M*/Me
1.25, ZeZ0.03 (i.e., 0[Fe/H]0.3), and 1.9
αMLT2.3.

3. Tidal Dissipation

The orbit of WASP-12 appears circular (e<0.05; Husnoo
et al. 2012), and given the age of the system, the planet’s
rotation is expected to be synchronized (Goldreich &
Soter 1966; Rasio et al. 1996). Therefore, any ongoing tidal
dissipation must be occurring within the non-sychronized host
star. Dissipation mechanisms include turbulent damping of the
equilibrium tide within the convective regions of the star and
linear or nonlinear damping of the dynamical tide. Studies of
the former find ¢ ~* –Q 10 108 9 (Penev & Sasselov 2011). This
is more than three orders of magnitude too small a dissipation
rate (too large a ¢*Q ) to explain the apparent orbital decay of
WASP-12. We therefore focus on tidal dissipation due to the
dynamical tide.

Figure 1. Evolution of the effective temperature Teff and mean density ρ* for
six stellar models. Each model is labeled by (M*/Me, Z, αMLT). The evolution
goes from right to left, starting from when the star is 1 Gyr old. The squares
mark when the core ceases to be convective. Observations of WASP-12
constrain its Teff and ρ* to lie within the region indicated by the gray box. The
blue solid (red dashed) curves are models that match the observations when on
the subgiant branch (main sequence).

Figure 2. Effective temperature Teff and mean density ρ* at the moment when
the core ceases to be convective and the star enters the subgiant phase. The
labels indicate M*/Me with points spaced by 0.01 Me (connected by straight
lines for clarity). The blue solid curves assume solar metallicity
Z=Ze=0.0142 and the black dashed–dotted curves assume Z=0.02. The
three curves for each Z assume, from bottom to top, αMLT=1.9, 2.1, and 2.3.
Observations of WASP-12 constrain its Teff and ρ* to lie within the region
indicated by the gray box.
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The dynamical tide in WASP-12 is dominated by resonantly
excited internal gravity waves. Such waves propagate in the
stratified regions of the star (where the Brunt-Väisälä buoyancy
frequency N2>0) and are evanescent within convective
regions (N2<0). As a result, the dynamical tide is excited
near radiative-convective boundaries (RCBs), where its radial
wavelength is long and it can couple well to the long length-
scale tidal potential (Zahn 1975, 1977).

When a star like WASP-12 (a late-F star) is on the main
sequence, it has both a convective core and a convective
envelope. When core hydrogen-burning ends and the star
evolves off the main sequence and becomes a subgiant, its core
ceases to be convective. In Figure 3 we show N as a function of
stellar radius r for a main sequence and subgiant model of
WASP-12. In the main sequence model, the convective core
extends from the center to r;0.1 Re and the convective
envelope extends from r;1.35 Re to very near the surface.
The propagation cavity of the dynamical tide is determined by
these two radii (they are its inner and outer turning points,
respectively; see the red arrows in Figure 3).

In the subgiant model, by contrast, N2>0 all the way to the
center. We find a linear scaling with radius N;Cr in the core,
where C;0.1(Re s)−1. The dynamical tide propagates where
the tidal frequency ω<N(r); for the dominant ℓ=2 tide,
ω=2Ω, where Ω is the orbital frequency. Thus, the tide raised
by WASP-12b (ω/2π=21.2 μHz) has an inner turning point
at r;ω/C;10−3 Re during the subgiant phase (blue arrows
in Figure 3). The dynamical tide propagates much closer to the
center of the star when the star is a subgiant compared to when
it is on the main sequence.

3.1. Dynamical Tide Luminosity and Wave-breaking

If the dynamical tide loses very little energy in the group
travel time between turning points, it forms a global standing
wave. Conversely, if it loses a significant fraction of its energy
between turning points, it behaves more like a traveling wave

excited near the outer convection zone and traveling inward to
the center. We will show that the dynamical tide is a standing
wave for the main sequence models of WASP-12 and a
traveling wave for the subgiant models. We now calculate the
dynamical tide luminosity L assuming a traveling wave.
In the gravity wave propagation zone, the traveling wave

luminosity is given by ò ry x= W( ) ˙L r r d r
2

dyn ,dyn, where ψ=
δp/ρ+U, δp is the Eulerian pressure perturbation, U is the
tidal potential, ξr is the radial displacement, and the subscript
“dyn” denotes the short-wavelength, dynamical tide piece. L(r)
is nearly constant with r in the propagation zone (except near
sharp features such as density variations on short length
scales3). To compute ξr and ψ, we solve the equations of
motion of the linear tide (e.g., Weinberg et al. 2012). We use
the Cowling approximation, in which the perturbed gravity is
ignored, a good approximation for the short-wavelength
dynamical tide. A mechanical boundary condition ψ−U=gξr
is used at the surface of the star, and the inward-going traveling
wave boundary condition d(ψ−ψ0)/dr=ikr(ψ−ψ0) is applied
at a radius well within the propagation zone. Here, ψ0 is
an approximation of the long-wavelength, particular solution,
called the “finite frequency equilibrium tide” (see Arras &
Socrates 2010); it is given by Λ2ψ0=ω2d(r2ξr,eq)/dr, where
Λ2=ℓ(ℓ+ 1) and ξr,eq=−U/g is the radial displacement of the
zero-frequency equilibrium tide. The dynamical tide piece of the
solution is given by ξr,dyn=ξr−ξr,eq, and ψdyn=ψ−ψ0.
This numerical calculation of L may be compared to analytic

treatments in which approximate solutions in the radiative and
convection zones are matched across the RCB (Zahn 1975;
Goldreich & Nicholson 1989; Goodman & Dickson 1998;
Kushnir et al. 2017). While an analytic treatment is, in
principle, useful for providing simple formulae, the solution in
the convection zone and the matching conditions at the RCB
are complicated and can depend on ω and the size of the outer
convection zone. Nonetheless, we derive an approximate fitting
formula as follows. Given an equilibrium tide displacement
ξr,eq ;−U/g, the dynamical tide near the RCB is ξr,dyn;ζ
(λ/r) ξr,eq, where ζ is a dimensionless constant that depends on
the structure of the convection zone found by the matching
conditions, and l w= - L -[ ( ) ]r dN dr2 2 2 2 1 3 is the wave-
length near the RCB. By the continuity equation,
Λ2ψdyn/ω

2r2;dξr,dyn/dr;ξr,dyn/λ. Thus, for the dominant
ℓ=2 gravity wave,
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where a is the semimajor axis, rc is the radius of the RCB
where the wave is excited, ρc is the density at rc, r̄c =
3Mc/4πrc

3 and Mc are the mean density and enclosed

Figure 3. Radial profile of the Brunt-Väisälä frequency N/2π (left axis) and the
nonlinearity measure xkr r (right axis). The blue solid curve and red dashed
curve show N/2π for two WASP-12 models, respectively: the subgiant model
(M*/Me, Z, αMLT, Age/Gyr)=(1.20, Ze, 2.1, 3.7) and the main sequence
model (1.30, 0.02, 1.9, 2.7). The blue dashed–dotted curve shows xkr r for the
subgiant model. The arrows indicate the turning points of the dynamical tide.

3 Our stellar models have one or two sharp spikes in N (near ∼0.1 Re) due to
composition discontinuities that form as the convective core shrinks. However,
these spikes are unphysical; we find that they disappear when we include
overshooting and diffusive mixing. Here, we simply smooth over them in order
to calculate L.
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mass within rc, and ωc=(GMc/rc
3)1/2 is the dynamical

frequency at rc. The dimensionless prefactor AL

z w- -[ ( ) ]r dN dr0.02 c c
2 2 2 1 3.

Equation (1) is similar to the form derived by Kushnir et al.
(2017). It is useful if AL is nearly constant for different P and
stellar models. In practice, we find that this is not the case.
Specifically, we find that for P2 days, AL increases as P
decreases (this is because at such large forcing frequencies, the
wavelength is not sufficiently small compared to a scale height
near the RCB; see Barker 2011). Furthermore, at a fixed
P=1.1 days, we find that the different WASP-12 subgiant
models give values in the range 0.2AL0.6. Because of
the complicated behavior of AL, we rely on the numerical
calculation of L rather than Equation (1).

If a fraction η of the wave luminosity L is deposited in a
single group travel time across the star, then (Goldreich &
Soter 1966; Ogilvie 2014)
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where L30=L/1030 erg s−1. The value of η depends on how
efficiently the dynamical tide is dissipated as it propagates
through the radiative interior.

The principal dissipation mechanisms acting on the dyna-
mical tide are damping due to radiative diffusion and nonlinear
wave interactions (Goodman & Dickson 1998; Barker &
Ogilvie 2010; Weinberg et al. 2012; Essick & Weinberg 2016;
Chernov et al. 2017). Radiative damping at a rate γ causes the
amplitude of the tide to decrease by a factor of exp(−γtgr) in a
group travel time tgr across the star. Damping due to nonlinear
interactions is especially strong if the wave displacement ξr is
so large that krξr1, where kr;ΛN/ωr is the radial
wavenumber. Such a strongly nonlinear wave overturns the
local stratification and breaks. Since it deposits all of its energy
and angular momentum before reflecting, wave-breaking
implies η;1 (Barker & Ogilvie 2010; Barker 2011).

We can estimate krξr in the WKB approximation using
conservation of energy flux, which states that r x ∣ ∣N v r

2
gr

2

pL r4 2 as the dynamical tide propagates inward from the
envelope RCB (Goodman & Dickson 1998). Here, vgr;ω/kr
is the radial group velocity and ξr now denotes the rms radial
displacement averaged over time and angles at fixed radius.
This gives
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The second line represents the scaling in a radiative core, where
N=Cr with C0.1=C/0.1(Re s)−1 and ρ2=ρ/102 g cm−3.
Our numerical solutions of krξr agree well with this WKB
estimate.

3.2. Resonance Locking

As a star evolves, its g-mode frequencies can increase,
allowing them to sweep into resonance with the tidal

frequency. If the resulting tidal torques are sufficiently large,
the dynamical tide can end up in a stable “resonance lock” and
drive orbital decay on the stellar evolution timescale.
Resonance-locking has been invoked to explain the observed
properties of a variety of tidally interacting binaries (Witte &
Savonije 2002; Fuller & Lai 2012; Burkart et al. 2013, 2014;
Fuller et al. 2016, 2017).
We find that resonance-locking cannot explain the apparent

orbital decay of WASP-12. This is because the g-mode
frequencies in the models evolve too slowly for a mode to
remain in resonance lock at the observed Ṗ (even during the
rapid evolutionary stage just before the convective core
disappears). In the future, we plan to investigate whether
resonance-locking is important in other short-period exoplane-
tary systems.

3.3. Tidal Dissipation on the Main Sequence

We find that tidal dissipation on the main sequence is too
inefficient to explain the observed Ṗ. Using the GYRE
pulsation code (Townsend & Teitler 2013) to solve the non-
adiabatic oscillation equations for the WASP-12 models, we
find that γtgr≈10−6 for internal gravity waves resonant with
the tidal forcing. Radiative damping is therefore an insignif-
icant source of dissipation. This is consistent with the results of
Chernov et al. (2017), who also consider radiative damping of
the dynamical tide in main sequence models of WASP-12.
Although they show that the observed Ṗ could be explained if
γtgr∼1, which they refer to as the moderately large damping
regime, they do not identify any mechanism that could enable
the tide to be in this regime.
Furthermore, we find krξr=1 throughout the propagation

cavity of the main sequence models. By Equation (3), krξr is
largest near the inner turning point, which for the main
sequence models is located at r;0.1 Re (the top of the
convective core); at this radius krξr=1. Thus, the dynamical
tide does not break while the star is on the main sequence.
Even if krξr=1 and the dynamical tide forms a standing

wave, it can still potentially lose energy through weakly
nonlinear interactions involving three-mode couplings (Essick
& Weinberg 2016). To check this, we computed three-mode
coupling coefficients κabc using the methods described in
Weinberg et al. (2012). We considered the stability of the
dynamical tide to the resonant parametric instability, which
involves the tide (mode a) coupling to daughter g-modes
(modes b and c) whose eigenfrequencies satisfy ωb+ωc;ωa.
We find that κabc is small (κabc∼1 using the normalization in
Weinberg et al. 2012) and the tide is stable to the parametric
instability (i.e., the nonlinear growth rate Γ<γ). We therefore
conclude that while the star is on the main sequence, η=1
and ∣ ˙∣P P Myr.

3.4. Tidal Dissipation on the Subgiant Branch

In the subgiant models, the radiative damping rate γ is again
too small to significantly damp the dynamical tide. However,
unlike the main sequence models, the subgiant models have a
radiative core and a convective envelope. As a result, the inner
turning point of the dynamical tide is much closer to the center
of the star and we find that krξr1 near the inner turning
point.
Our numerical solutions give luminosities in the range

L30=[3.0, 10.5] for the subgiant models. Specifically, for the
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subgiant model shown in Figure 3, we find L30=3.6. For this
model, the key parameters of the convective envelope are
rc;1.30 Re, Mc;1.20Me, ρc;2.3×10−3 g cm−3, and the
key parameters of the core are ρ2;3.8, and C0.1;1.3.
Plugging these into Equation (1) and taking Mp=1.40MJup

(Chan et al. 2011) gives L30;16AL, which, comparing to our
numerical solution, implies AL;0.2. Evaluating Equation (3)
at the inner turning point r=ω/C=1.0×10−3 Re, gives
krξr=1.5, in good agreement with the full numerical solution.
Our other subgiant models yield very similar results, with values
in the range krξr=[1.4, 2.5].

This implies that during the subgiant phase, the dynamical
tide becomes strongly nonlinear near the inner turning point
and breaks. As a result, η;1 and by Equation (2), the range in
L implies decay timescales in the range ∣ ˙∣P P =[1.4, 4.5]Myr
(and *

¢Q =[0.8, 2.2]×105). This agrees well with the
observed ∣ ˙∣P P =3.2±0.3Myr.

Although we find krξr>1, it is only just slightly in excess of
unity and one might wonder whether the wave really is
efficiently damped (η;1). Numerical simulations by Barker
(2011) show that as long as krξr>1, the wave breaks and
efficiently transfers its angular momentum to the background
mean flow. Furthermore, Essick & Weinberg (2016) find that if
kr ξr0.1, the dissipation due to weakly nonlinear interactions
with secondary waves is nearly as efficient as when krξr1.
This therefore suggests that η;1 for the WASP-12 subgiant
models.

4. Discussion

The main sequence and subgiant models are both ≈3 Gyr old
and spend ≈0.5 Gyr within the measured range of Teff and ρ*.
If the observed Ṗ is indeed due to orbital decay, then an
advantage of the subgiant scenario is that it naturally explains
why the planet survived for 3 Gyr and is now decaying on a
3Myr timescale. Although the system only spends ∼0.1% of
its life in the present state, there are ;30 hot Jupiters with
P<3 days orbiting stars with M*>1.2Me. The dynamical
tide likely breaks during the subgiant phase in these systems,
thus they spend ∼0.1% of their ∼Gyr long lives in a state
during which the planet decays on ∼Myr timescales.4 We
therefore estimate that out of the 30 systems, the probability of
detecting one in a state like WASP-12 is ∼3%.

Even though wave-breaking of the dynamical tide can drive
orbital decay onMyr timescales, it cannot spin up and align the
entire star. This is because the wave breaks very close to the
stellar center (r<0.01 Re), and while the torque L/Ω might
spin up the stellar core (Barker & Ogilvie 2010), it is too small
to strongly affect the spin at the stellar surface. Therefore, our
results do not conflict with the observed slow, misaligned
rotation of WASP-12.

A combination of continued transit timing and occultation
observations over the next few years should resolve whether
the WASP-12 timing anomalies are due to orbital decay or
apsidal precession (Patra et al. 2017). Since we find that the
decay scenario is only plausible if the star is a subgiant, tighter
constraints on the stellar parameters can also help provide
resolution. Given stellar modeling uncertainties, better con-
straints on just Teff and ρ* might not be sufficient.

Asterosesimology offers a promising alternative. Asteroseismic
studies have determined whether stars are subgiants by
measuring the sizes of convective cores (Deheuvels
et al. 2016) and measured the masses and radii of stars hosting
planets to few percent accuracy (Huber et al. 2013).

We thank Kishore Patra and Josh Winn for useful
conversations and the referee for comments that improved the
paper. This work was supported by NASA grant
NNX14AB40G.
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