
Goby-Acomms version 2: extensible
marshalling, queuing, and link layer
interfacing for acoustic telemetry ?

Toby E. Schneider ∗ Henrik Schmidt ∗

∗ Center for Ocean Engineering, Dept. of Mechanical Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA

(email: tes@mit.edu, henrik@mit.edu).

Abstract: We present the Goby-Acomms project version 2 (Goby2) which provides software
for communication amongst autonomous marine vehicles over extremely bandwidth-constrained
links. Goby2’s modular design provides four discrete yet interoperable components: 1) physics-
oriented marshalling via the Dynamic Compact Control Language (DCCL); 2) dynamic priority
queuing; 3) time division multiple access (TDMA) medium access control (MAC); 4) and an
extensible link-layer interface (ModemDriver).

Keywords: Communication protocols, autonomous vehicles, marine systems, telemetry, source
coding

1. INTRODUCTION

For successful collaboration of autonomous underwater
vehicles (AUVs) in tasks ranging from the scientific (e.g.
oceanographic sensing; see Petillo et al. (2012)) to com-
mercial and military (e.g. harbor surveillance; see Shafer
(2008)), transmission of datagrams is essential to prop-
agate state and sensor data. However, the only practi-
cal communications link, one carried by acoustics, has
extremely low throughput and high latencies due to the
physics governing propagation of sound in the ocean (pri-
marily little available bandwidth, low speed, and multi-
path due to boundary interactions) For an overview of
these challenges see Chitre et al. (2008) and Preisig (2007).

This severe throughput constraint forces the design of
novel communications protocols that attempt to maximize
the useful data sent. Commonly used terrestrial systems
impose overhead requirements that are unacceptable. For
example, a common maximum transmission unit (MTU)
for acoustic links is 32 bytes and the Internet Protocol
(IP) uses a minimum 20 bytes of header alone which would
comprise over half of the message. Early solutions to this
problem, such as the Compact Control Language (CCL),
used hand designed encoders and decoders for every data
structure (“message”) to be transmitted. While reasonably
efficient in terms of message size, adding a new message
was time-consuming and error-prone. The original version
of the Dynamic Compact Control Language (DCCL1)
provided an XML-based structure language that used a
common set of source coders. While it made the process
of creating new messages significantly quicker and more
robust, DCCL1 had only a rudimentary mechanism for
using physics-based (e.g. entropy coding) coders. The new
version of DCCL (DCCL2) presented in section 2 removes

? This work was sponsored under the Office of Naval Research
programs N00014-08-1-0011 and N00014-11-1-0097.

this limitation by providing an interface for writing appli-
cation specific coders.

Another significant reality caused by the acoustic link’s
low data rates is that total throughput is rarely or never
a possibility. Ideally all collaborating vehicles and the
topside human operator would have the entire data set
of all vehicles in the network in order to make the best
mission decisions. Instead, only a miniscule subset of the
data generated by an AUV can be relayed acoustically.
This leads to a significant prioritization problem; some of
this queuing can be automated by the Goby dynamic pri-
ority queuing module (Queue). Goby-Queue is discussed
in detail in Schneider and Schmidt (2012b), the paper on
Goby version 1 (Goby1), and is not significantly changed
in release 2. Goby-Queue is not significantly changed in
release 2, and is therefore not further addressed in this
paper.

The final significant challenge for underwater telemetry
addressed by Goby is the lack of standardization or
even significant commonality between different acoustic
modems. In order to allow communication that appears
seamless to the application in a variety of hardware en-
vironments, the Goby interface to the link layer (Modem-
Driver, see section 3) is extensible and polymorphic, allow-
ing Goby to communicate over any device that can send
bytes from point A to point B. At the same time, the appli-
cation can still use hardware-specific features as desired. In
collaboration with the ModemDriver, Goby provides ba-
sic time division multiple access (TDMA) medium access
control (MAC). Like Goby-Queue, the MAC from Goby1
is conceptually the same in Goby2 and is therefore not
treated in this paper.

All of these modules of Goby are designed to work together
as diagrammed in Fig. 1, but each has a distinct interface
allowing for mix-and-match functionality between Goby
and other research or commercial systems.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/156872769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modem Hardware

goby-acomms user

goby-acomms

QueueManager

DriverBase

MMDriver

DCCLCodec

«executable»
Acomms Application

«executable»
Modem Firmware

«file»
DCCL Protobuf (.proto)

MACManager

«module»
dccl

«module»
queue

«module»
modemdriver

«module»
amac

Presentation

Transport

Data Link

Physical

Fig. 1. UML Structure Diagram of Goby2 including de-
pendencies between modules. The approximate Open
Sources Initiative (OSI) network layer (see Zimmer-
mann (2002)) is given to the left.

1.1 Philosophy of Goby2

The overall goals of Goby2 versus the prior release are to

(1) improve extensibility by third-party authors. Release
1 was primarily focused on a specific marine vehicle
middleware (the MOOS project), and did not offer
many expansion opportunities except the ability to
define one’s own DCCL messages.

(2) promote the development of a system that provides
high correctness assurance as far before deployment
as possible, since ship time is highly valuable and
vehicles are costly. The communications system is,
almost by definition, an essential part of collaborative
vehicle missions, and thus it cannot fail.

2. MARSHALLING: THE DYNAMIC COMPACT
CONTROL LANGUAGE

The Dynamic Compact Control Language (DCCL2) is
comprised of two parts designed to make creating very
small datagrams straightforward and reliable: a structure
language and an encoding library. The language provides
a way of representing “methodless classes” or “dumb data
objects” that are similar to what can be represented in a
C struct, but with the addition of meta-data that provides
information allowing optimized encoding.

2.1 DCCL Structure Language

The DCCL2 structure language is based on an extension
of the Google Protocol Buffers (“protobuf”) language (see
Google (2012)). Protobuf was chosen to replace XML,
which was used in DCCL1, because it provides static
(compile-time) type safety and syntax checking. Develop-
ing systems for AUVs involves integrating large codebases

import "goby/common/protobuf/option_extensions.proto";

message CTDMessage
{
 option (goby.msg).dccl.id = 102;
 option (goby.msg).dccl.max_bytes = 64;

 required int32 destination = 1 [(goby.field).dccl.max=31,
 (goby.field).dccl.min=0,
 (goby.field).queue.is_dest=true
 (goby.field).dccl.in_head=true];

 required uint64 time = 2 [(goby.field).dccl.codec="_time",
 (goby.field).queue.is_time=true];

 repeated int32 depth = 3 [(goby.field).dccl.max=1000,
 (goby.field).dccl.min=0,
 (goby.field).dccl.max_repeat=10];

 repeated int32 temperature = 4 [(goby.field).dccl.max=40,
 (goby.field).dccl.min=0,
 (goby.field).dccl.max_repeat=10];

 repeated double salinity = 5 [(goby.field).dccl.max=40,
 (goby.field).dccl.min=25,
 (goby.field).dccl.precision=2,
 (goby.field).dccl.max_repeat=10];
}

8
5

17

100

30

110

Fig. 2. Definition of a DCCL message for sending ten sam-
ples from a Conductivity-Temperature-Depth (CTD)
sensor. On the left is the size of each encoded field in
bits; the whole message is 280 bits (35 bytes) including
required bit padding on the header and body. For
comparison, the default Protobuf encoding uses 81
bytes to encode this message with a representative
set of values.

from multiple research centers, and without a high degree
of compile-time correctness assurance, costly ship time will
be wasted tracking down avoidable software bugs. Since
DCCL1 was defined in XML, all correctness checking was
done at runtime, deferring detection of syntactical and
type errors.

Furthermore, Protobuf messages (and thus their deriva-
tives, DCCL messages) use a compiler that produces native
C++ classes, allowing for high efficiency which is critical
for embedded systems. Due to the fundamental tradeoff
between power and longevity (as detailed in Bradley et al.
(2001)), AUVs can only support low performance (but low
power) hardware, such as ARM based computers. C++
provides an excellent balance between programming ease
and runtime efficiency.

Finally, Protobuf provides class introspection, which al-
lows DCCL to operate on arbitrary user-provided mes-
sages, which can be compiled into the application or loaded
dynamically either through shared libraries or runtime
compilation of the DCCL message definition.

An example of the syntax of the structure language is given
in Fig. 2. Also in that figure is the encoded size of the
message. As in DCCL1, byte boundaries are dissolved and
fields can be comprised of any whole number of bits.

int32
(baseline)

uniform
(Goby 1)

gaussian
(Goby 2)

adaptive
(Goby 2)

0

10

20

30

40

50

60

70

80

90

100

bi
ts

 p
er

 x
yz

 tr
ip

le
t m

ea
su

re
m

en
t

Fig. 3. Mean message size for 24420 hypothetical transmis-
sions using actual AUV positions (meters in northings
(Y), eastings (X), and negative depth (Z)) from the
“Unicorn” vehicle in the GLINT10 Tyrrhenian sea
shallow water experiment. The use (made possible in
Goby2) of a fixed Gaussian model and an adaptive
model in an arithmetic encoder reduces the mean
message size by 20% and 52% respectively from the
Goby1 “uniform” model and 85% and 91% from using
standard 32-bit integers.

2.2 DCCL Encoding Library

The DCCL encoding library, which is written in C++,
contains a set of basic coders for all the primitive and
user-defined types supported by Google Protocol Buffers.
These default coders use the same algorithms as DCCL1
(see Schneider and Schmidt (2012b)), which are basically
arbitrary length numerics (integers and fixed-point num-
bers). For example, a 5-bit integer is used when the range
[20−52) is given for a field. Another way to think of these
coders is that they are similar to an arithmetic encoder
operating on a uniform probability distribution.

The new functionality for the Goby2 DCCL encoding
library is a set of base classes for defining application
specific coders (such as physics-based entropy coders)
that can be loaded by the application at run time. The
_time encoder/decoder (“codec”) given in Fig. 2 is an
example of such a special purpose coder. This coder
assumes the message is received within one-half day from
its transmission and thus only encodes seconds from start
of day, saving 15 bits (46%) over using a standard unsigned
32-bit UNIX time since midnight UTC start of 1970. This
is a primary example of the improved expansibility of
Goby2 over Goby1 as mentioned in section 1.1. Users
(message designers) understand the specifics of the data
they are sending and can encapsulate this knowledge (if
so desired) in a custom encoder.

An example of a user-defined codec is an implementation of
an arithmetic codec for sending highly compressed position
measurements of an AUV. Fig. 3 shows the bit sizes for
messages using standard 32-bit integers (as a baseline),
Goby 1 default encoders, and a non-adaptive and adaptive

model using the arithmetic codec. For more details and
results from this coder, see Schneider and Schmidt (2012a).

2.3 Further improvements

Besides the change from XML to Protobuf as the un-
derlying language for the DCCL structure, a number of
other advances were made for DCCL2 in light of feedback
from collaborators and users, as well as over half a dozen
field trials involving multiple AUVs. The first change was
switching from a fixed six-byte header to a one- to two-byte
minimum user-configurable header. The minimal header is
used to identify the message type and can support up to
215 − 1 (32767) types 1 . Even this part of the header can
be reconfigured by the user by providing a custom coder
that performs the same functionality. This allows for a
smaller type database to be used (e.g. three bits allows
eight types) for closed projects requiring a small number
of messages, or for use on extremely small datagrams such
as the WHOI Micro-Modem user mini-packet (13 bits, see
Freitag et al. (2005)).

Another significant change was supporting variable-length
coders. DCCL1 used fixed-length coders for all message
fields. DCCL2 supports coders such as ones using a “pres-
ence bit” to omit uncommonly used fields. For example,
a command message may have mutually exclusive fields,
so it makes no sense to take up space in the message
storing both fields. Another clear use for variable length
fields includes entropy coders or lossy coders of various
sorts. However, DCCL2 still mandates the generation of a
field’s maximum size. This allows the system designer to
know definitively if a given message will always fit within a
given MTU. Since it can be minutes or longer between the
receipt of consecutive datagrams, it is often undesireable
to fragment application level data. For this reason, Goby
does not support any automatic fragmentation (e.g. such
as that provided by the Transmission Control Protocol
(TCP)).

2.4 Comparison to prior work

In the marine community, two contributions provide a
similar framework to DCCL:

• REMUS Compact Control Language (CCL, see Stokey
et al. (2005)): while CCL and derivatives are rel-
atively widely used in the AUV community, it is
inflexible and difficult to extend since the encoders
are relatively ad-hoc and no mechanism is provided
to automatically encode a newly designed message.
Since DCCL2 adds the ability to add custom en-
coders, CCL can now be written as a proper subset
of DCCL. This allows vehicles communicating using
DCCL to optionally interoperate with vehicles using
the older CCL language.

• Inter-Module Communication (IMC, see Martins
et al. (2009)): uses XML with XSLT transforma-
tions into the native language code (e.g. C++) that
gives a similar language-neutral data object (but with
compile-time type safety) to DCCL2. However, IMC
uses the standard system primitive types (e.g. 32-

1 A variable integer coder is employed such that one byte is used for
types 0-127 and two bytes otherwise

and 64-bit integers) and does not allow arbitrary
bounding or user-defined codecs.

In the general computing regime, Abstract Syntax Nota-
tion One (ASN.1) and Advanced Message Queuing Pro-
tocol (AMQP) both provide complicated standards for
defining data structures to be encoded via a standard set
of rules. However, similarly to IMC, neither provides any
mechanism for adding user-defined encoders.

Finally, while DCCL only uses Google Protocol Buffers
(Protobuf) as a starting point for its language definition,
Protobuf also provides a binary encoding. The encoding
is reasonably compact, but does not take into account
the origin of each field’s data, which allows DCCL to
provide a more compact encoding. The DCCL encoding
of the message given in Fig. 2 is 56% more compact
than the Protobuf built-in encoding because the DCCL
message designer can incorporate information about the
fields’ physical origins (e.g. salinity is bounded between 25
and 40 in the world’s oceans).

3. LINK LAYER INTERFACE: THE MODEMDRIVER
MODULE

No standard exists for the interfaces to acoustic modems,
and it is unlikely one will arise in the near future. Even
with a common interface, modems will likely continue
to have useful special features (such as navigation and
ranging functionality) that exist outside realm of the core
functionality of a modem, which is to send data. Thus,
in order to make use of the rest of Goby (especially
DCCL) on a variety of AUVs using different hardware,
the link layer interface (ModemDriver) was written with a
standard object-oriented design: a base class that provides
an interface to the higher layers of Goby, and an increasing
suite of derived classes to implement this interface for a
specific piece of hardware. A beneficial side effect of this
design is the ability to write drivers for a variety of non-
acoustic links that have similar characteristics to acoustic
links (low throughput), such as satellite communications
or a faster-than-realtime underwater autonomy simulator,
such as the MOOS-IvP “uField Toolbox” from Benjamin
(2012).

The key to the success of this design is simplicity. A single
function call initiates a transmission using the Modem-
Transmission class, which is typically a data telegram
(type == DATA). Symmetrically, a single signal (again con-
taining an instantiation of the ModemTransmission) is
emitted upon asynchronous receipt of data. However, the
ModemTransmission can be extended (even outside the
Goby project) to support any number of additional data
structures relating to an alternative type of transmission
(e.g. long baseline (LBL) pings such as the WHOI Micro-
Modem’s type == NARROWBAND_LBL). If the application is
aware that is using a specific piece of hardware, all these
extensions become visible. If not, the application can still
use the core functionality (data transmission). This design
allows the system designer to choose abstraction when
desirable or have full control of a modem’s functionality
as needed. See Fig. 4 for a diagram illustrating the core
and extended functionality for several acoustic and other
“slow” links.

REMUS_LBL
MINI_DATA
NARROWBAND_LBL
 TWO_WAY_PING

UFIELD_POLL

DATA
ACK

PING
Configuration

Configuration
Configuration

Diagnostics

Fig. 4. Diagram of core ModemDriver functionality (cen-
ter) versus extended modem-specific features for an
acoustic modem (the WHOI Micro-Modem), a satel-
lite link, and a faster-than-realtime virtual “mo-
dem”(the uField simulator).

This simplicity makes the task of writing a new driver
easier. Rather than deal with a plethora of functionality
(the superset of all supported modems would have been an
alternative design), the new driver author must only deal
with sending and receiving data. Once that is finalized,
new functionality can be added as needed.

4. FIELD TRIALS

Since Goby2 is new, it has only been involved in three field
trials (plus many hours of simulation and hardware-in-the-
loop testing), compared to over a dozen or more that the
authors are aware of that used Goby1:

• CAPTURE11 (August 2011): Chief scientist: C. Mur-
phy (WHOI). Nodes: 2 OceanServer Iver2 AUVs (R.
Eustice, University of Michigan), 1 WHOI SeaBED
AUV (H. Singh, WHOI), 1 unmanned surface vehi-
cle (F. Hover, MIT), and two research vessels, all
equipped with an acoustic WHOI Micro-Modem. This
experiment (using hardware and software assets from
four different laboratories) successfully demonstrated
multi-hop transmission of rich (e.g. imagery) datasets
using C. Murphy’s CAPTURE protocol. CAPTURE
used Goby2 DCCL and ModemDriver, showing its
extensibility in the hands of several other research
groups that do not collaborate on a daily basis. The
design and results of CAPTURE are detailed in Mur-
phy (2012).

• Cyborg12 (May 2012): Chief scientist: A. Balasuriya
(MIT). Nodes: 1 Bluefin 9” AUV, 1 WHOI Micro-
Modem shallow water buoy, 1 research vessel, all
equipped with an acoustic Micro-Modem. This trial
was an engineering test in the process of developing
a collaborative network of human experts and AUVs
for mine countermeasures.

• Tiger12 (June 2012): Chief scientist: L. Freitag
(WHOI). Nodes: 1 Tiger sonar mooring (prototype
for an AUV), 1 Liquid Robotics WaveGlider, 1 re-
search vessel. This cruise was a test of using Goby2
over a heterogenous mix of physical links for the
purpose of sending control messages from the research
vessel to the Tiger mooring and status messages in
the opposite direction. The research vessel was out
of acoustic range of the mooring, so the waveglider
was used as a forwarding router between the acoustic

DCCL

Queue

AMAC

TCPStoreDriver

Route

G
ob

y
2

Research Vessel

MMDriver

Mooring/AUV

Sa
te

ll
it

e
T

C
P

 (
w

it
h

 S
Q

Li
te

st
or

e-
an

d
-f

or
w

ar
d

)
Su

bn
et

: 0
20

W
H

O
I

M
ic

ro
-M

od
em

Su
bn

et
: 0

00

Ir
id

iu
m

 S
at

el
li

te
Su

bn
et

: 0
10

Shore

IridiumDriver TCPStoreDriver

Waveglider

IridiumDriver MMDriver

Fig. 5. Structure diagram of the Goby components for
the Tiger12 cruise to form a seamless link from
the Research vessel to the Tiger mooring (and in-
termediate nodes) over a collection of different link
types (satellite-TCP, satellite-Iridium “call”, acoustic
Micro-Modem).

(sub-sea) and Iridium subnets. Since Iridium does not
well support calls directly to mobile nodes, a shore
station was used as a store-and-forward intermediate.
All messages were logged here and retrieved at the
next opportunity by the research vessel. This system
provided reliable end-to-end transmission of DCCL
messages for several days of continuous operation.
While DCCL was designed initially for acoustic net-
works, it is equally useful for satellite links because of
the similar characteristics (low throughput and very
high cost per bit).

These trials have made us confident that we were successful
in the primary design themes (see section 1.1) of third-
party extensibility and field reliability. Furthermore, only
one of these (Cyborg12) would have even been possible
with Goby1.

The Goby project is open source (combination of GNU
Public License (GPL) and Lesser GPL version 3) and
is hosted at https://launchpad.net/goby. We welcome
and greatly appreciate contributions of code, suggestions
and bug reports.

ACKNOWLEDGEMENTS

We thank our collaborators at the Woods Hole Oceano-
graphic Institution, especially the WHOI Micro-Modem
group for their modem and Chris Murphy in the Deep
Submergence Lab for essential critical feedback. We also
thank the open source software community that provides
many of the tools without which our work would not be
possible. Finally, we extend our gratitude to the past and
future contributors to the Goby project.

REFERENCES

Benjamin, M.R. (2012). The MOOS-IvP uField Toolbox
for Multi-Vehicle Operations and Simulation. Technical
Report 12.2, Massachusetts Institute of Technology.

Bradley, A., Feezor, M., Singh, H., and Yates Sorrell,
F. (2001). Power systems for autonomous underwater
vehicles. Oceanic Engineering, IEEE Journal of, 26(4),
526–538.

Chitre, M., Shahabudeen, S., and Stojanovic, M. (2008).
Underwater acoustic communications and networking:
Recent advances and future challenges. The State of
Technology in 2008, 42(1), 103–114.

Freitag, L., Grund, M., Singh, S., Partan, J., Koski, P., and
Ball, K. (2005). The WHOI Micro-Modem: an acoustic
communications and navigation system for multiple
platforms. In IEEE Oceans Conference.

Google (2012). Protocol Buffers - Google Code. URL
http://code.google.com/apis/protocolbuffers/.

Martins, R., Dias, P., Marques, E., Pinto, J., Sousa, J.,
and Pereira, F. (2009). Imc: A communication protocol
for networked vehicles and sensors. In OCEANS 2009-
EUROPE, 1–6. IEEE.

Murphy, C. (2012). Progressively communicating rich
telemetry from autonomous underwater vehicles via re-
lays. Ph.D. thesis, Massachusetts Institute of Technol-
ogy and Woods Hole Oceanographic Institution.

Petillo, S., Schmidt, H., and Balasuriya, A. (2012). Con-
structing a distributed auv network for underwater
plume-tracking operations. International Journal of
Distributed Sensor Networks, 2012.

Preisig, J. (2007). Acoustic propagation considerations
for underwater acoustic communications network de-
velopment. ACM SIGMOBILE Mobile Computing and
Communications Review, 11(4), 2–10.

Schneider, T. and Schmidt, H. (2012a). Approaches
to improving acoustic communications on autonomous
mobile marine platforms. In UComms 2012 Sestri
Levante, Italy.

Schneider, T. and Schmidt, H. (2012b). Goby-Acomms:
A modular acoustic networking framework for short-
range marine vehicle communications. URL http://
gobysoft.com/dl/goby-acomms1.pdf.

Shafer, A. (2008). Autonomous cooperation of heteroge-
neous platforms for sea-based search tasks. Master’s
thesis, Massachusetts Institute of Technology.

Stokey, R.P., Freitag, L.E., and Grund, M.D. (2005). A
compact control language for AUV acoustic communi-
cation. Oceans 2005-Europe, 2, 11331137.

Zimmermann, H. (2002). OSI reference model–The ISO
model of architecture for open systems interconnection.
Communications, IEEE Transactions on, 28(4), 425–
432.

