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Abstract

- Mehmet R. Dogar'2 . Daniela Rus’

This work presents a soft hand capable of robustly grasping and identifying objects based on internal state measurements along
with a combined system which autonomously performs grasps. A highly compliant soft hand allows for intrinsic robustness
to grasping uncertainties; the addition of internal sensing allows the configuration of the hand and object to be detected. The
finger module includes resistive force sensors on the fingertips for contact detection and resistive bend sensors for measuring
the curvature profile of the finger. The curvature sensors can be used to estimate the contact geometry and thus to distinguish
between a set of grasped objects. With one data point from each finger, the object grasped by the hand can be identified. A
clustering algorithm to find the correspondence for each grasped object is presented for both enveloping grasps and pinch
grasps. A closed loop system uses a camera to detect approximate object locations. Compliance in the soft hand handles that
uncertainty in addition to geometric uncertainty in the shape of the object.

Keywords Soft robotics - Soft gripper - Proprioceptive soft robotic hand - Proprioceptive sensing - Online object identification -

Learning new objects - Autonomously grasping

1 Introduction

Soft and under-actuated robotic hands have a number of
advantages over traditional hard hands (Dollar and Howe
2006, 2010; Deimel and Brock 2013, 2014; Ilievski et al.
2011; Stokes et al. 2014; Shepherd et al. 2013; Brown et al.
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2010). The additional compliance confers a greater intrin-
sic robustness to uncertainty, both for manipulating a broad
range of objects and for conforming during interactions with
the static environment.

Traditionally, grasping with rigid robotic hands requires
detailed knowledge of the object geometry and precise loca-
tion information for the object. Complex algorithms calculate
the precise locations where the hand will grasp an object.
With soft hands, we can grasp with a simpler, more intuitive
approach handling more uncertainty.

While compliance enables intuitive grasping, the hand’s
specific configuration at a given time is hard to know due to
the body’s compliance. This is especially true when the hand
is interacting with objects or the environment. This requires
advanced internal sensing approaches, called proprioception,
to infer the Soft Hand’s configuration at any given moment.
Knowing the configuration of the hand is crucial for decision
making during the manipulation process. The hand configu-
ration, for example, can be useful for determining whether a
grasp is successful, whether a grasp is robust, and whether
the object was grasped in the intended pose. The hand con-
figuration can also be very useful in determining the shape
of a grasped object, since the soft links tend to conform to
the environmental constraints they interact with.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9754-1&domain=pdf
http://orcid.org/0000-0001-7143-7259

Autonomous Robots

Fig.1 The soft robotic hand, mounted to the wrist of a Baxter robot, is
picking up a sample object

In this paper we build on our previous work (Katzschmann
et al. 2015; Marchese et al. 2015) and develop a soft robotic
gripper called the DRL (Distributed Robotics Laboratory)
Soft Hand (Fig. 1). The DRL soft hand is modular, allowing
for the interchange of digits. Internal sensing from bend and
force sensors provide feedback while grasping. In this paper
we also evaluate two key features of this soft hand: its pro-
prioceptive grasping capability and its robustness to object
pose uncertainty during grasping.

In evaluating the proprioceptive grasping capability of this
new hand, we build a model to relate the values coming from
integrated bend sensors to the configuration of the soft hand.
We then use this model for haptic identification of objects
during grasping: The DRL soft hand is able to identify a set
of representative objects of different shape, size and com-
pliance by grasping them. We do this by building a relation
between objects and the configurations the soft hand takes
while grasping them. Then, given an unidentified object from
our training set, the robot grasps it and uses proprioception
to identify it. We also present an online identification algo-
rithm where the hand learns new objects progressively as it
encounters them by detecting measured sensor differences
from grasps of known objects.

The intrinsic compliance of the DRL soft hand allows it
to pick up objects that a rigid hand is not capable of picking
without extensive planning and precise execution. Through
experiments we show that the DRL hand is robust to a high
degree of uncertainty. We perform an extensive number of
experiments, in total attempting over 900 grasps of more than
100 randomly selected objects, to characterize this robustness
quantitatively. We also show that the soft hand is more suc-
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cessful at grasping compared to a standard electric parallel
gripper, especially for delicate objects that are easily crushed
and for grasping thin, flat objects that require contacting the
environment. We evaluate the hand’s capabilities by itself,
but also for pick-and-drop tasks in an end-to-end system that
integrates perception, planning, and grasping on a Baxter
robot. We evaluate the DRL soft hand for a wide variety of
grasping modes that include enveloping grasps, pinch grasps,
side grasps, and fop grasps.

In this paper we make the following contributions to soft
robotic grasping:

e A modular, proprioceptive soft hand that includes inte-
grated bend and force sensors;

e Evaluation of the proprioceptive grasping capabilities of
the soft hand, which includes development of algorithms
for the haptic identification of objects;

e Evaluation of the hand’s robustness to object pose uncer-
tainty during grasping, which includes an end-to-end
solution to grasping that starts by visually recognizing
the placement of the object, continues with planning an
approach, and ends by successfully grasping the object
by a Baxter robot;

e Extensive set of grasping experiments that evaluates the
hand with a wide variety of objects under various grasp-
ing modes.

We present a complete account of the hardware design deci-
sions and the grasping and sensing capabilities of this hand.
Moreover, we test the practical performance of this hand
in a state-of-the-art end-to-end perception-planning-grasping
system. This complete account of the design decisions and
the performance of the hand should inform future designers
of soft hands.

In Sect. 2, we start with a discussion of related work. In
Sect. 3, we present the DRL soft hand and describe the com-
ponents and fabrication. In Sect. 4, we discuss the high-level
system and algorithms used to control the hand and identify
objects. In Sect. 5, we describe the experiments validating
the construction of the hand. In Sect. 6, we conclude with a
discussion of future work.

2 Related work

We build on recent developments in the fabrication of soft
or underactuated hands. An overview of soft robotics is pre-
sented in Rus and Tolley (2015), Laschi et al. (2016) and
Polygerinos et al. (2017). Dollar and Howe (2006, 2010)
presented one of the earliest examples of underactuated and
flexible grippers. Ilievski et al. (2011) created a pneumatic
starfish-like gripper composed of silicone and PDMS mem-
branes and demonstrated it grasping an egg. Deimel and



Autonomous Robots

Brock (2013) developed a pneumatically actuated three-
fingered hand made of reinforced silicone that was mounted
to a hard robot and capable of robust grasping. More recently,
they have developed an anthropomorphic soft pneumatic
hand capable of dexterous grasps (Deimel and Brock 2014,
2016). Stokes et al. (2014) used a soft elastomer quadrupedal
robot to grasp objects in a hard-soft hybrid robotic platform.
A puncture resistant soft pneumatic gripper was developed
by Shepherd et al. (2013). An alternative to positive pres-
sure actuated soft grippers is the robotic gripper based on
the jamming of granular material developed by Brown et al.
(2010). The fast Pneu-net designs by Mosadegh et al. detailed
in Mosadegh et al. (2014) and by Polygerinos et al. detailed
in Polygerinos et al. (2013) is closely related to the single
finger design used in this paper. The design and the lost-wax
fabrication of the fingers of the DRL soft hand builds upon
the soft gripper and arm structure proposed in Katzschmann
et al. (2015), which demonstrates autonomous soft grasping
of objects on a plane.

To the best of our knowledge, configuration estimates
of soft robots so far have been acquired primarily through
exteroceptive means, for example motion tracking systems
(Marchese et al. 2014) or RGB cameras (Marchese et al.
2014). Various sensor types that can measure curvature and
bending have been studied, but few have been integrated into
a soft robot. Park et al. (2010, 2012) have shown that an arti-
ficial skin made of multi-layered embedded microchannels
filled up with liquid metals can be used to detect multi-axis
strain and pressure. Danisch et al. (1999) described a fiber
optic curvature sensor, called Shape Tape, that could sense
bend and twist. Weill and Worn (2005) have reported on the
working principle of resistive tactile sensor cells to sense
applied loads. Biddiss and Chau (2006) described the use
of electroactive polymeric sensors to sense bend angles and
bend rates in protheses. Kusuda et al. (2007) developed a
bending sensor for flexible micro structures like Pneumatic
Balloon Actuators. Their sensor used the fluid resistance
change of the structure during bending. Other recent work in
this area include that by Vogt et al. (2013) and Chossat et al.
(2014). Chuah and Kim (2014) presented a new force sensor
design approach that mapped the local sampling of pressure
inside a composite polymeric footpad to forces in three axes.

Previous studies on haptic recognition of objects focus on
hands with rigid links (Allen and Roberts 1989; Caselli et al.
1994; Johnsson and Balkenius 2007; Takamuku et al. 2008;
Navarro et al. 2012). Paolini et al. (2014) presented a method
which used proprioception to identify the pose of an object in
arigid hand after a grasp. Tactile and haptic sensors have also
been used in manipulation to sense the external environment
in Hsiao et al. (2007), Jain et al. (2013), Javdani et al. (2013)
and Koval et al. (2013).

Liarokapis et al. (2015) presented a method to identify
objects using force sensors in the context of a hybrid hard/soft

underactuated hand powered by cables. Farrow and Correll
(2015) placed a liquid metal strain sensor and a pressure
sensor in a soft pneumatic actuator and used the data to esti-
mate the radius of a grasped object. Bilodeau et al. (2015)
presented a free-hanging starfish-like gripper that is pneu-
matically actuated and has embedded strain sensors made of
liquid metal. The sensor was used for determining if a grip is
established. Building on the fiber-optical sensor in Danisch
etal. (1999) and Zhao et al. (2016) presented a soft prosthetic
hand that has integrated stretchable optical waveguides for
active sensation experiments. Shih etal. (2017) showed a cus-
tom sensor skin for a soft gripper that can model and twist
convex-shaped objects.

This paper improves the soft proprioceptive hand we pre-
sented in Homberg et al. (2015) with new capabilities and a
new set of experiments. Particularly, our contributions in this
paper over Homberg et al. (2015) and other previous work
include:

e A new capability to sense force/contact through the inte-
gration of a force sensor in each finger of the soft hand;

e Force-controlled grasping experiments using the new
force sensors;

e Addition of a fourth finger for improved grasping capa-
bility;

e All experiments previously presented were again con-
ducted with the new hand using also the force sensors;

e An algorithm that allows the hand to identify new objects
as it encounters them;

e New set of experiments to test this online object identi-
fication approach;

e Incorporation of the DRL Soft Hand into an end-to-end
autonomous grasping pipeline and extensive experiments
to measure its grasping performance under object pose
uncertainty.

3 Device

The gripper used in this paper, the DRL soft hand, is an
improved version of the gripper used in Homberg et al.
(2015). Our objective was to develop modular, interchange-
able fingers that can be slipped onto a 3D-printed interface.
We designed each finger with several key goals in mind:

Internal state sensing capability

Force contact sensing

Constant curvature bending when not loaded

Partially constant curvature bending under loaded condi-
tions

Highly compliant and soft in order to be inherently safer

Most notably, a resistive bend sensor was embedded into
each finger by affixing it beneath the finger’s inextensible
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(a) Wax core model

(d) Constraint layer

Fig.2 Create wax core mold using 3d printed model (a). For each finger
create a wax core by pouring wax into the wax core mold. Create mold
assembly for finger base (¢) using wax core, insert part (f) and white
lid. Cast the first layer of the finger using mold assembly (c¢) Melt the
wax core out of the rubber piece and remove the insert piece. Re-insert

Fig.3 A cutaway view of the finger, showing the internal air channels,
sealed sections, and inserted sensors and constraint layer

constraint layer, as can be seen in Fig. 3. Bending the resis-
tive strip changes the resistance of the sensor. The resistive
change can be correlated with the curvature of the finger. A
force sensor was added on top of the constraint layer, also vis-
ible in Fig. 3. When the finger contacts an object, the resistive
sensor’s resistance changes, allowing us to detect the contact.

The combined hand, which we refer to as the DRL soft
hand, is modular. Fingers easily attach and detach via 3D-
printed interface parts. We can combine fingers to create
different configurations of soft hands with different num-
bers of fingers. The primary configuration discussed in this
paper is a four-fingered hand, an improved version of the
previous three-fingered design (Homberg et al. 2015). The
added finger directly opposes the thumb of the hand, allow-
ing for a better enveloping of the object and an increased
payload capability due to the firmer grasp at the center and
the additional contact force. The four-fingered design allows
for additional grasping options when compared to the previ-
ous design, such as a two finger pinch on small objects.

@ Springer

(e) Top mold for constraint and sensor

(f) Insert part

the rubber piece into the base mold. Glue the sensors onto the constraint
layer (d). Place the constraint layer on top of the rubber piece (e). Pour
a second layer of softer rubber into the mold. Remove the finger and
plug the hole at the finger tip with solid tubing

Fig.4 Views of an individual finger and the entire composed hand

3.1 Fabrication

The fabrication of a single finger is based on a lost-wax cast-
ing process (Katzschmann et al. 2015; Marchese et al. 2015).
As described in Homberg et al. (2015) and Fig. 2, the process
has an added step where the bend and force sensors are added
to the stiff constraint layer.

Figure 3 shows an image of the inside of the finished fin-
ger; the constraint layer and the sensors are visible.

The updated DRL finger is streamlined at 1.8 cm wide
by 2.7 cm tall by 10 cm long, contains both bend and force
sensors, and is not prone to popping or leaks. Various views of
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a completed finger can be seen in the left column of Fig. 4.
The new version benefits from shaping of the internal air
channels and eternal finger shape to avoid all sharp corners
which can be places of stress on the rubber. While the old
version of the finger often broke intermittently, sometimes
after only light use, the new version of the finger lasts several
months and many hundreds of grasps before succumbing to
rubber fatigue.

3.2 Actuation

Each finger is connected via a tube attached along the arm
to a pneumatic piston. The actuation system is described in
Katzschmann et al. (2015); Marchese et al. (2015).

3.3 Sensing

There are two sensors in each finger: the Flexi-force force
sensor at the tip of the finger and the Bendshort-2.0 flex sensor
from iCubeX. Both sensors are resistive sensors: as the sensor
is pressed or bent, the resistance of the sensor changes.

(1) Force sensor The force sensor has a range of 4.5N but
has an op-amp circuit to lower the range and increase the
sensitivity. In order to get accurate results, we place a small
metal piece behind the active area of the sensor. This prevents
the bending of the finger from affecting the resistance of the
sensor so that any sensed measurement comes just from the
contact of the finger with an object.

(2) Bend sensor The sensors embedded in each finger are
resistive bend sensors. The resistance of a sensor changes as
it is bent.

3.4 Resistive sensor characterization

Due to the construction of the sensor, the relative change in
resistance increases as the curvature of the sensor increases.
Thus, the sensor has better accuracy and resolution as its
diameter decreases. The diameter we refer to is the diameter
of a circle tangent to the bend sensor at every point, for some
constant curvature bend of the sensor. This relation between
diameter of the finger and sensor value is shown in Fig. 5,
where sensor values versus finger curvatures are plotted for
the unloaded case.

Due to the inherent changes in variance for the sensor
values, we are able to distinguish objects more accurately
for objects with a smaller diameter.

4 Control

In this section we discuss the high level algorithms governing
control for the finger and overall DRL soft hand. Implemen-
tation details are discussed in the next section.

25 Diameter vs. Sensor Value

pX1] SR : : : : g G
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0'0 | | 1 1 L | 1 1
0 20 40 60 80 100 120 140 160 180
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Fig.5 The diameter of the finger versus the sensor values

4.1 Architecture

For the hand-specific control, there are three sets of compo-
nents: the physical fingers, the electronics, and the control
software. The fingers are actuated via pneumatic tubing. The
pneumatic tubing is pressurized by a piston, and the piston is
driven by a linear actuator. Motor controllers, one per linear
actuator, set the position of the linear actuators, setting the
volume of the air in each finger. Additionally, each finger has
a bend and a force sensor. Each of the sensors are connected
to filtering and buffering electronics and then measured using
an Arduino board.

On the software side for the hand, there is a middle-level
controller enabling us to command the hand using primi-
tive actions such as “close the hand” or “open the hand”.
This middle-level controller communicates with the low-
level motor controllers via serial communication. It also
receives sensor values from the Arduino board on the hand
through rosserial.!

On the robot side, the two key pieces of hardware are the
hand cameras and the robot arm, to which the hand is attached
via 3D printed interface parts. For the robot software, we
implemented the grasping and object recognition pipeline
using a set of ROS nodes (Quigley et al. 2009). One main
ROS node coordinates the overall behavior. One ROS node
reads the camera input streams and performs object detection
using basic image processing in OpenCV (Bradski 2000).
One strength of the DRL soft hand is its ability to grasp
unknown objects with uncertain pose estimation. This vision
system serves to detect approximate poses of objects even if
they are completely unknown to the robot. A suite of ROS
nodes run for the Movelt planner Sucan and Chitta 2018. One
object in the codebase interfaces with the Movelt planner to
coordinate calls to plan motions to different locations. For

1 http://wiki.ros.org/rosserial.
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side grasps, the motion planning node finds a grasp plan given
a potential object location using an intermediate way point.
The planner considers 16 potential directions by which to
approach the object. Along the direction, it first considers
an offset pre-grasp location which is offset far enough to be
simple to plan to without getting too close to the object. For
top grasps, the motion planner is called to find a plan to a pose
where the hand is vertically above the object. For top grasps
of small objects, first the fingers are half closed to allow
the hand to approach closer to the table without the fingers
hitting the table and being unable to bend to grasp due to
excessive friction. Another object handles the control of the
soft hand, opening, closing, and grasping. A separate node
sends specific commands via serial to the motor controllers.

4.2 Finger control

The value measured from the force sensor is an approximate
force. Due to noise after the hardware low pass filter, we
buffer the output in software and consider an average of the
past five data samples. If the average of the data samples
crosses a certain threshold, we consider this to be a contact
between the fingertip and an external object.

In grasping an object, we keep increasing the volume of
air in each finger until we detect a point of contact. Since
the grasp criterion for each finger is independent, it does
not matter if an object is oddly shaped; the fingers will each
close the correct amount. If no contact is detected, the fingers
simply keep closing until their maximum closure (Algorithm

D).

Algorithm 1: Active Grasping Algorithm

while not each finger either completely closed or in contact do
for each finger which is not either completely closed or in
contact do
| Move delta towards closing finger.
end

end

4.3 Grasping

We incorporated the DRL soft hand into a complete, end-
to-end grasping system. This grasping system demonstrates
the versatility of the soft hand by showing its robustness to
uncertainty in the location of the object and the minimal need
for grasp planning.

The grasping system pipeline consists of three phases:
location, approach, and grasp (Algorithm 2). A successful
execution of a grasp means that all steps of Algorithm 2 are
executed without failure. To be more specific, this entails that
the arm motion is successfully planned and executed, and
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the object is then successfully grasped, correctly identified,
dropped into the bin.

Algorithm 2: Full System Algorithm

while rrue do

Move arms to object spotting location (cameras facing down).

Plan grasp to object.

Execute grasp to object.

if grasp execution is unsuccessful then
Repeat planning and execution steps until successful
execution is achieved or the maximum number of
attempts is exceeded.

end

Grasp object (using force sensor feedback to detect grasp).

Move to fixed side location.

Record sensor values and perform object identification.

Drop object into bin.

end

4.4 Object identification

Once trained, the DRL soft hand is able to identify the grasped
objects based on a single grasp. We first characterize the
relation between hand configurations and sensor readings.
Then, we present a data-driven approach to identify an object
based on sensor readings.

(1) Modeling the sensor noise The DRL hand has different
configurations as it interacts with the environment and grasps
objects. We define a configuration of the DRL hand as a
vector q = [q1, g2, q3, q4], where each g; € Q represents the
way finger i is bent. Q is the configuration space of a finger:
that is, the space of all different shapes our soft finger can
achieve. For a given configuration of the hand, we get bend
sensor readings s = [s1, 52, §3, 54], where each s; represents
the bend sensor reading for finger i and a force value f =
[f1, f2, f3, fa], where each f; represents the force sensor
reading for finger i.

The sensor readings are noisy. We represent the sensor
reading given a hand configuration as a probability distribu-
tion, p(s, f | q). Given the configuration of a finger, the sensor
values of that finger is independent of the configuration of
the other fingers. Therefore, the sensor model of the whole
hand can be expressed in terms of the sensor model for each
finger:

4
ps.tlQ) =[] pGi, fila) ()

i=1

We model p(s; | gi), the bend sensor noise for a finger, in a
data-driven way by placing the finger at different configu-
rations and collecting the sensor value data. In Sect. 3.4 we
present experiments for such a characterization, where we
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use constant curvature configurations of the unloaded finger.
The force value will depend not just on the configuration of
the finger but also on the interface of the finger with the envi-
ronment, as the sensor values differ based on where exactly
the sensor is pressed. In order to model the desired probability
p(si, fi | gi), we also need to take into account the interac-
tion with the environment. In the absence of any external
interaction, the finger is constructed such that f; will always
be equal to 0.

Note that when the finger is loaded in a grasp, the resulting
finger configurations and the corresponding sensor readings
have significant variation due to the highly compliant nature
of the fingers. Therefore, to identify objects during grasping,
we use data collected under the grasp load.

(2) Object identification through grasping We use the sensors
on the hand to predict the hand configuration, which we then
use to identify the grasped object.

The grasping configuration for an object can be different
for different types of grasps. In this work we focus on two
types of grasps: enveloping grasps and pinch grasps. For a
given object, o, we represent the configuration at the end of
an enveloping grasp as qﬁ”vd; and we represent the configu-
ration at the end of a pinch grasp as 2"

For given sensor readings s and f and a grasp type g €
{envel, pinch}, we define the object identification problem
as finding the object with the maximum likelihood:

0* < argmax p(q} |s, ) @)

0€0

where O is the set of known objects and o* is the predicted
object. Applying Bayes’ rule, we get:

, f 8 8
o* < argmax p(s. f1q5)p(qs) 3)

0€0 p(sﬂ f)

Since the denominator is a constant over all objects o, we
see:

o* < argmax p(s, | q3) p(q5) “4)

0€0

Assuming a uniform prior over finger configurations, the
above formulation becomes:

0% <« argmax p(s, f|q5) 3)
00

In our experiments we use a trained dataset to build an
empirical model of p(s, f | q3) for different objects and grasp
types. Then, we identify the object for a new grasp (Eq. 5)
using a k-nearest neighbor algorithm.

3) Trained Object Identification: Algorithm 3 uses an initial
trained dataset. We train using a dataset of sensor values for

repeated grasps of known objects. We use the same dataset
as for clustering, but with the originally known identities
of each of the objects. We use this training set to identify
objects as they are grasped in a separate testing phase. After
each new grasp, the five nearest neighbors of the new point
in the original training data are determined. We calculate
the distance via the Euclidean metric on the 4-dimensional
point comprised of the four sensor values, one per finger.
The object is identified based on the most common identity
of the five nearest neighbors, using the KNeighborsClassifier
from scikit-learn (Pedregosa et al. 2011). The identification
algorithm runs in less than 0.01 seconds. This algorithm is
flexible: it was used on three-fingered and four-fingered ver-
sions of the hand without modification. Given a number of
fingers, D, and a number of objects to identify, N, the running
time of the algorithm grows as O (D log(N)). The number of
classes we are able to successfully distinguish is limited by
the sensor resolution: with noisy sensors, object clusters must
be relatively far apart in order to be distinguishable. Higher
fidelity sensors, additional sensors in each finger, or the use
of additional sensing sources (e.g., vision) would enable this
technique to work with more classes of objects.

Algorithm 3: Trained Object Identification Algorithm
Import previously recorded grasp data, 10 data points per item
for all objects to be grasped do
Grasp item.
Record sensor values.
Calculate Euclidean distances to all recorded points
Find the 5 nearest neighbors.
Output the identity of the object-based voting from the 5
nearest neighbors.

end

4) Online Object Identification: In Algorithm 4, the robot
identifies objects online as it grasps new and old objects.
Initially, the hand is trained to identify the empty grasp as
a baseline via ten grasps. This allows the robot to have a
known starting point of what the sensor values are when it
has not grasped an object. As the hand grasps objects, the
algorithm decides as it grasps each object whether the object
is a known object from the objects it has already learned or
a new object it has not yet seen. If the object is identified
as a known object, it adds the data from that grasp with the
label of the identified object. If the object is identified as a
new object, it creates a new label and adds the data from that
grasp with the new label.

Essentially, when grasping an object, the algorithm con-
siders the distance between the values of the sensors for that
object and all of the other objects currently in the dataset.
Based on the average distance to all data points from a label
and the number of data points with that label, a score is cal-
culated for each label. If the label with the highest score has a

@ Springer
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score higher than a fixed cutoff score, then the grasped object
is labelled with that label. This cutoff score was empirically
determined based on the sensor variability across identical
grasps. The score for a label is equal to 1/(avggiss - n) where
avggis; 18 the average distance from the current sensor values
to all data points (in the 4D space of the sensor values for
the four fingers) with the given label and # is the number of
data points with that label (Algorithm 4). Given a number of
fingers, D, and a number of past grasps M, the running time
of the algorithm grows as O (D - M). Further work should
consider an adaptive cutoff score and post-processing to re-
balance learned classes. Such methods could allow the same
algorithm to adapt to sensors with different levels of noise.

Algorithm 4: Online Object Identification Algorithm

Train with three grasps of the empty grasps, record data

for all objects to be grasped do

Grasp item.

Record sensor values.

Calculate Euclidean distances to all recorded points.
Calculate the average distance to all currently identified
objects.

Calculate a score for each object equal to 1/(avggis; - n).

if the highest score > the cutoff score then
Add the data as a data point from an existing object with

that label.
else
| Add the data as a new object with a new label.

end
end

5 Experiments and results

We performed experiments to evaluate the DRL soft hand’s
capability in three different aspects, presented in separate
sections below:

e The basic grasping capability of the soft hand (Sect. 5.1),

e The proprioceptive capability of the hand applied to
autonomous object identification and force-controlled
grasping (Sect. 5.2),

e The grasping performance of the soft hand under object
pose uncertainty within an end-to-end system (Sect. 5.3).

In general, our goal with these experiments has been to
produce an exhaustive characterization of the capabilities of
this soft hand. Therefore we tested the hand with a high num-
ber of different objects (more than 100 objects), used many
different grasping modes (enveloping grasps, pinch grasps,
side grasps, and top grasps), used different proprioceptive
modalities (finger curvature and contact forces), and differ-
ent end-to-end setups. During the experiments, in total, we
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Fig.6 Objects grasped. a ~100 objects grasped by the DRL soft hand
and b the six objects the DRL soft hand failed to pick up

performed more than 900 grasping attempts with the DRL
soft hand, of which more than 600 were successful.

5.1 Basic grasping capability

To first evaluate the general grasping capability of the soft
hand, we tested it with a wide variety of objects. The full set
of 100 objects can be seen in Fig. 6. Some grasps of these
objects can be seen in Fig. 7.

During the experiments, each object was placed ataknown
pose and a grasp was attempted by the Baxter robot using the
DRL soft hand. For this set of experiments, our goal was to
focus on the grasping capability of the DRL soft hand, and
therefore we took the liberty to implement different grasping
strategies for different objects. (Section 5.3 presents our set of
experiments where we evaluated the soft hand within an end-
to-end system using autonomous perception and planning.)
Some objects were grasped via enveloping grasps. Others
were picked up via a top grasp with two or three fingers in
a pinch grasp. The flat objects, e.g. the CD and the piece of
paper, were grasped off of the table as was shown in Fig. 8b.
All objects were positioned in the orientations as they are in
Fig. 6. The DRL soft hand was able to successfully grasp and
pick up 94 of 100 objects.

‘We made three key observations during these experiments.
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(e) ®

Fig. 7 Various objects grasped by the DRL soft hand. a Aquaphor, b
lemonade bottle, ¢ squash, d mug, e ring and f marker

Fig. 8 Rigid gripper squashing a cup and soft gripper picking up a
thin object. a Cup squashed by rigid gripper and b gripper performs a
compliant grasp to pick up a thin object off a table

First, the DRL soft hand was capable of grasping a
wide variety of objects with different sizes and shapes.
The objects in Fig. 6 were chosen to explore the extents of
the grasping capability of the soft hand and it, thanks to its
soft compliance, easily adapted to different shapes and sizes.

Second, the DRL soft hand was capable of grasping
objects that require simultaneous compliant interaction
with the environment. Specifically, we tested grasping a CD
and a piece of paper off of a table, again using both the DRL
soft hand and the default rigid gripper. The default gripper
was unable to pick up a CD or piece of paper. Our soft hand
was reliably able to pick up the CD and the piece of paper.
Figure 8b shows how the soft gripper smoothly interacts with
the environment to pick up the CD.

Third, the DRL soft hand was qualitatively better at
grasping a compliant object when compared with the
rigid gripper. Specifically, we tested grasping a soft paper

Table 1 Identification percentages for each of the tested objects. Dashes
represent that an object was not used in a particular test due to it not
being the right shape for grasping in that orientation

Object Enveloping grasp (%) Pinch grasp (%)
Zip tie container 100 -
Cup 60 -
Egg 100 -
Tennis ball 100 80
Plastic lemonade bottle 100 100
Glass lemonade bottle 100 N
Aquaphor 100 -
Plush hedgehog 80 100
Plastic bin 100 100
Wood block 100 100
Safety goggles - 80
Eggbeater - 40
Empty grasp 100 100

cup using the DRL soft hand and the default rigid parallel
grippers of the Baxter robot. When the default gripper picked
up the cup (Fig. 8a), it crushed it; the soft gripper was able
to pick it up repeatedly without crushing.

The DRL soft hand was net able to pick up six of the 100
objects. These objects can be seen in Fig. 6b. The hand was
not able to pick them up primarily because they were too
heavy or too flat for the finger to gain any traction on them.
The gripper had trouble picking up a spoon, a pair of scissors,
and a propeller because they were not high enough — the
fingers were unable to make a good connection. The gripper
was unable to pick up an amorphous bag of small objects
because of the combination of its odd shape and heaviness,
the fingers did not get a solid grasp below the center of mass
and the bag deformed to slip out of the fingers. The fish tail
could be grasped, but slipped due to its weight. The screw
was simply too small to be reliably grasped.

5.2 Proprioceptive grasping

We performed our second set of experiments to evaluate the
proprioceptive capability of the DRL soft hand. First, we
performed experiments to identify objects based on finger
curvature after grasping. Second, we performed experiments
to perform force-controlled grasping of objects.

1) Object identification using finger curvature: We first tested
the trained object identification algorithm described in Algo-
rithm 3. To characterize the hand’s capabilities in different
grasping modes, we performed experiments both for envelop-
ing grasps and pinch grasps. For enveloping grasps we used
ten objects and the empty grasp (Table 1, Fig. 10), and for
pinch grasps we used seven objects and the empty grasp
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Fig.9 The 4-finger data for a enveloping grasps and b pinch grasps. In
both a and b, the first 3D plot uses the curvature values from the first
three fingers and the second 2D plot uses the third and fourth fingers.
There were ten grasps of each object. These grasps were labeled with
true object ids. The true ids of these objects are shown via color, as seen

(c) (d)

(® (h)

@ @ (k) M

Fig. 10 The test objects used in the grasping experiments. a Zip tie,
b cup, ¢ egg, d tennis ball, e lemonade plastic, f lemonade glass, g
aquaphor, h hedgehog, i Bin, j wood block, k goggles, 1 eggbeater

(Table 1, Fig. 10). For each grasp type, we first performed
ten grasps of an object and labelled it with its object id. Then
we performed additional unlabeled grasps (55 for envelop-
ing grasps and 40 for pinch grasps) and used Algorithm 3 to
identify the objects based on proprioception. In Fig. 9, we
present the distribution of the 4-dimensional proprioceptive
data and the labels Algorithm 3 assigned to each grasped
object. 94.5% of tests (52/55 trials) identified the objects
correctly for enveloping grasps; the breakdown per object is
shown in Table 1. For pinch grasps, 87.5% of tests (35/40
trials) identified the objects correctly; again, the breakdown
per object can be seen in Table 1. This includes correctly
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in the keys of each subfigure. Using this labeled set as training data, the
soft hand predicted the identity of grasped objects in further unlabeled
grasping experiments, as shown in Table 1, with 100% accuracy for
most of the objects (Color figure online)
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Fig. 11 The predicted IDs of objects at the end of the online object
identification. The first 3D plot uses the curvature values from the first
three fingers during the grasp of an object. The second 2D plot uses
the third and fourth fingers. The predicted ids of objects are shown in
color. Except the lemonade and the hedgehog, which were clustered as
the same object, all other objects were clutered distinctly and correctly
by the system. The key at the bottom shows the corresponding object
name for each color (Color figure online)

identifying the empty grasp when the robot did not actually
pick up an object.

We also tested the online object identification algorithm
outlined in Algorithm 4 by grasping the same objects used
in the pinch grasp tests. We started by training the empty
grasp, then picked up the wood block, plastic lemonade bot-
tle, goggles, hedgehog, bin, tennis ball, and eggbeater in that
order. We trained the empty grasp with three iterations and
then picked up each of the other objects three times. Except
for the hedgehog, for which all grasps were identified as the
previously-grasped lemonade bottle, the algorithm correctly
identified each object as a new object the first time and as
itself for subsequent grasps, for an identification success rate
of 85.7%, on par with the trained results for pinch grasps.
Notably, once the system identified an object correctly as a
distinct object, it successfully matched future grasps of the
object correctly in all cases. 6/7 objects were identified cor-
rectly as distinct objects. The plot of the identified data points
can be seen in Fig. 11.
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Table 2 Number of fingers which sensed contact with the object for
each of the tested objects

Object Average number of fingers
that sensed force (out of 4)

Glass lemonade bottle 2

Plastic lemonade bottle 33

Ziptie container 2.33

Wood block 2.66

Tennis ball 0

Squash 0

Hedgehog .66

Fig. 12 The DRL soft hand with stiff backdrop inserted for object
identification grasps

(2) Proprioceptive force-controlled grasping We also per-
formed experiments to test the accuracy of the proprioceptive
force-controlled grasping algorithm and the force sensors.
First, we calibrated the force sensors and identified a thresh-
old that was high enough so that we did not get any false
positive contact signals. Afterwards, three grasps each of
seven objects were tested. Table 2 shows how many fingers
stopped grasping due to force contact before the grasp was
completed.

We made two key observations during the proprioceptive
grasping experiments using the finger curvature sensors and
the force sensors.

First, during these experiments, we had to place a stiff
pad behind the rubber bands to provide a backdrop
(Fig. 12) and allow the primary conforming of the hand to
come from the fingers rather than the rubber bands. This
observation will play an important role in designing future
versions of the hand.

Second, while the finger curvature sensors provided
valuable data which resulted in an impressive object identi-
fication performance, the data from force sensors resulted
in mixed performance as shown in Table 2. Many objects
were simply too small so maximum closure was required

before the force sensors were activated. For others, the fin-
gers grasped them at an angle that did not activate the sensor.

5.3 Grasping under object pose uncertainty within
an end-to-end system

In our third set of experiments we evaluated the grasping per-
formance of the DRL soft hand under object pose uncertainty
within an end-to-end system.

Soft hands, due to their intrinsic compliance, have the
advantage of being robust to uncertainties in object pose dur-
ing grasping. We use the capture area as a measure of the
degree to which the DRL Soft Hand is robust to object posi-
tion uncertainty. We define the capture area as the size of
the region within which an object can move and can still be
grasped robustly by the hand.

We performed this evaluation in three steps of increasing
system complexity:

(1) We evaluated the DRL soft hand’s grasping performance
under object pose uncertainty. This provided us with a
baseline for the following two cases.

(2) We evaluated the same grasping performance under
object pose uncertainty, but in an end-to-end system that
consists of the DRL soft hand, a perception component
to detect objects, and a planning component to move the
hand to a detected object. To measure the extent to which
this system can tolerate uncertainty, we injected artificial
uncertainty into the system.

(3) We evaluated the general grasping performance of the
end-to-end system with a wide variety of initial object
poses, but without artificial uncertainty.

For all three test types, we tested both side grasps and top
grasps with an appropriate object for each. We present the
details of these three sets of experiments below.

1) Grasping under Object Pose Uncertainty: The first tests
considered the range over which top and side grasps would
successfully grasp the object. The hand was centered over a
10x10cm grid and performed repeated grasps of an object
placed at the center. Over multiple trials, the object was
moved to different positions in the grid and we recorded
whether or not the object was successfully grasped. For each
grasp, the hand moves to the same location; the purpose of
this test is to see how much uncertainty in object location
the gripper can handle while still successfully grasping the
object.

For side grasps, the object used was the lemonade bottle.
See Fig. 13a to see the configuration of the test setup and
the approach angle of the hand. Figure 14a shows the grid
used in the test with dots at points which were tested. For
each location, two trials were performed. For the 41 locations
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Fig. 13 Objects in grasp configuration. a Lemonade bottle in test con-
figuration and b foam block in test configuration
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Fig. 14 Top row shows the results with a hard-coded grasp location
(Sec. V-C.1). Bottom row shows the results using a full perception-
planning-grasping pipeline (Sec. V-C.2). Grasp success rates are shown
over a 10x 10 grid. @: two successful grasps; O: one successful grasp
and one failed grasp; ©: one successful grasp and two failed grasps; @:
two failed grasps. a Tests of the pre-programmed side grasps, b Tests
of the pre-programmed top grasps, ¢ Tests of the end-to-end side grasps
and d Tests of the end-to-end top grasps (Color figure online)

shown in the grid, 82 grasps were attempted, 55 of which
were successful.

For top grasps, the object used was a foam block cov-
ered with black electrical tape. The test setup can be seen
in Fig. 13b. The object was placed with its longer dimen-
sion along the hand’s opening as seen in the figure. The hand
descended on a centered position and closed three fingers in
one of the types of top grasp. Figure 14b shows the grid used
in the test with dots at points which were tested. For each
location, two trials were performed. For the 121 locations
shown on the grid, 242 grasps were attempted of which 145
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were successful. Again, we observed that the soft hand was
able to grasp the object reliably even when the object was
significantly away from the center, the exact value chang-
ing between 3cm and 5 cm depending on the axis, since the
object is asymmetric. Other asymmetries in the plot are due
to different dynamic interactions between the fingers and the
block during grasping.

In Table 3, we present the capture areas of the DRL Soft

Hand as a general measure of how robust it is to object pose
uncertainty during grasping. In the total area of 100 cm?
within which the object position was varied, the capture
area shows the size of the region for which the grasps were
robustly successful. The values in the table are found by mea-
suring the areas spanned by the green dots in Fig. 14. If a data
point is missing on a particular grid point, we assumed that
the capture region is convex (Dogar and Srinivasa 2010). We
are only using this assumption for calculating the capture
region as a means of representing the raw data in Fig. 14
with a summarizing metric. As Table 3 shows, the DRL Soft
Hand was robust to an uncertainty region of 53 ¢m? during
side grasps and 66 cm? during top grasps.
2) Grasping under Object Pose Uncertainty in an End-to-End
System: For the second test, we used the same grid as before
and the same location of the grid on the table, but rather than
using a hard-coded location, we used the full perception-
planning-grasping pipeline to detect objects, plan motions,
and grasp. We allowed the robot to detect the object with
the vision system while it was in the centered location. Then,
while the robot planned its motion, we moved the object to the
testing location. The robot planned its motion and grasp with
the object in the original location, so this test examines what
uncertainty in the object location the whole grasping system
can handle. This takes into account not just the uncertainty
from the object’s different location versus anticipated loca-
tion (as was tested in the previous test) but also the uncertainty
from the vision system and motion planner.

For side grasps, we again used a lemonade bottle to ensure
a fair comparison between this test and the previous test. Fig-
ure 14c¢ shows the grid used in the test with dots at points
which were tested. For each location, two trials were per-
formed. For the 33 locations shown on the grid, 66 grasps
were attempted, 52 of which were successful. The difference
in offset in the NW/SE axis offset versus the pre-programmed
scenario is most likely due to an offset in the vision system,
sending the hand to a different location, on average, than the
correct location. The average location that the hand went to is
approximately (.56m, .28m) while the ground truth location
for a centered grasping pose is approximately (.55m, .26m),
measured in the robot coordinate system. Specifically, this
means that the robot was aiming more to the right and bot-
tom of the image, shifting the pattern of successful grasps
to the top left compared to the pre-programmed position, as
expected. The size of the capture area, shown in Table 3,
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Table 3 Capture areas during

. . Pre-programmed
grasping under uncertainty

side grasp (Fig. 14a)

Pre-programmed top
grasp (Fig. 14b)

End-to-end side
grasp (Fig. 14c)

End-to-end top grasp
(Fig. 14d)

53 cm?

66 cm?

50 cm?

reduces to 50 cm? for side grasps with the end-to-end sys-
tem. This is expected as the uncertainty of the vision system
and the motion planner also affects grasping performance
during these tests.

For top grasps, we again used the foam block with tape

as a test object for grasping. Figure 14d shows the grid used
in the test with dots at points which were tested. For each
location, two trials were performed, except for the orange
dots, where after one success and one failure an additional
trial was run. For the 25 locations shown on the grid, 52 grasps
were attempted, 34 of which were successful. Again, there
is a slight offset, in the same direction, between the system
with vision tests and the preset grasping location, again due
to an offset in the vision system object detection. The extent
of the grasp area is roughly similar to the prior test, though
at the edges some more objects were knocked away during
the trajectory than with the perfectly straight down trajectory
in the previous trials. The size of the capture area, shown in
Table 3, reduces to 41 cm? for top grasps with the end-to-end
system. Again, this is expected due to the uncertainty of the
vision system and the motion planner.
(3) Grasping performance within an end-to-end system For
the third test, we placed a single object at various locations
over the table to identify where the system could pick up
the object and where it failed. We executed the complete
Algorithm 2 during these experiments. We considered a trial
a failure if the motion plan failed, if the motion plan was
not executed successfully, or if the object was not grasped
successfully. Points tested on the table were 10 cm apart; we
tested 11 points in the y-axis of the Baxter coordinate system
and 5 points in the x-axis. We only performed grasps with
the left hand; the range would increase if the right hand were
used as well.

For side grasps, we used a dark cylindrical object. The
results can be seen in Fig. 15a. Again, we use dots to show
the data at each point; the locations represented by the dots
were spread uniformly 10cm apart in both dimensions. Two
grasps were attempted at each grid point. For the 55 grid
points, 110 grasps were attempted, 40 of which were suc-
cessful.

Here, there are more potential causes of failure: some-
times, the vision system did not identify the object. Often,
errors came from the vision system reporting an inaccurate
location for the object — often due to objects far away from
the camera being elongated due to perspective — so the arm
knocked over the object on its trajectory over or failed to
grasp it since the object was outside the successful uncer-

Fig. 15 Grasp success for grasps over the whole table. Points are 10 cm
away from each other. The colors are coded as follows. @: two success-
ful grasps; O): one successful grasp and one failed grasp; @: two failed
grasps; ©: one out of workspace and one successful grasp; @: one out
of workspace and one failed grasp; ©: one successful grasp and one
vision failure; @: one vision failure and one failed grasp; @: two vision
failures; ©: one vision error and one out of workspace of left arm; (OF
out of workspace of left arm. a Side grasps, b top grasps (Color figure
online)

tainty range. Asymmetries in the vision spotting are due to
the fact that the right hand had a two-finger gripper while
the left hand had a three-finger gripper which blocked more
area.

For top grasps, we again used the same foam block as
in the previous top grasp tests. Since the block was shorter
than the cylindrical object used in the side grasp tests, the
locations determined for grasps were much more accurate
throughout the range of the table. This led to the increased
success rate for top grasps versus side grasps. The results can
be seen in Fig. 15b. Two grasps were attempted at each grid
point. For the 55 grid points, 110 grasps were attempted, 51
of which were successful. Again, we use dots to show the
data at each point; the locations represented by the dots were
spread uniformly 10cm apart in both dimensions.

We made two key observations during these final set of
experiments.

First, the soft hand proved robust against uncertainty
in object pose during grasping. Specifically, we observed
that the soft hand was able to grasp the object reliably even
when the object was more than three centimeters away from
the intended grasp pose.

Second, we observed that it was possible to integrate
our soft hand easily with an existing robot platform and
perform end-to-end sense-plan-grasp operations. This was
important for us, as it showed that we achieved our design
goal of building a modular hand that can be integrated with
existing robot platforms and these platforms’ perception and
planning frameworks.

Some potential methods to further improve the grasp suc-
cess rate are to
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e increase the width of the hand by linearly actuating the
base distance between the thumb and the other fingers;

e adjust the surface shape of the finger to conform better
to objects;

e vary the type of grasp depending on object type and loca-
tion;

e employ a more complicated grasping strategy such as
push grasp;

e improve localization accuracy of the visual detection sys-
tem.

6 Conclusions and future work

This paper presents a composed robotic system with a soft
gripper which can successfully grasp objects under uncer-
tainty and identify a set of objects based on data from internal
bend sensors. Internal sensing addresses one of the primary
disadvantages of soft hands: the final configuration of the
fingers and the final pose of the object are unknown. This sys-
tem allows us to maintain the positive aspects of soft hands,
including increased compliance leading to greater ability to
pick up various objects with arbitrary shapes with no need
for complicated grasp planning. The resulting data from the
internal sensing, assumed to be independent for each finger,
is sufficient when used to identify objects within a trained set
of objects and to learn the identity of objects online.

We aim to improve the soft hand in future work. Addi-
tional sensors are needed for more accurate feedback while
grasping. With additional sensor data, we will be able to cre-
ate a more robust and accurate prediction of the configuration
of the fingers, the identity of the grasped object, and the pose
of the grasped object. These additional data will enable the
system to identify when objects are not grasped robustly and
enable them to re-grasp accordingly.

Additionally, the data provided by the sensors has the
potential to enable more capabilities. The proprioceptive
feedback intrinsic to the DRL soft fingers is necessary for
the in-hand manipulation of objects, extending pick and place
operations to complex manipulation. This data will be useful
for enabling robots to use tools, picking up objects intended
for use with a certain grasp and orientation, identifying the
object and confirming that the orientation of the object is cor-
rect, and then planning the interaction of the grasped object
with the environment to robustly use tools.

Moving robots from experimental settings to real-world
settings will require not just an excellent soft manipulator, but
also the base and integration necessary to allow the robot to
use the soft manipulator in varying, complex environments.
We plan to mount the DRL soft hand on a mobile platform
for manipulation, allowing the robot to interact with objects
throughout a natural human environment, updating the vision
and motion planning systems to accommodate the more com-
plex environment.
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All of these manipulation skills are crucial to enable grasp-
ing robots to leave the laboratory and the automated factory
to engage in work alongside humans in factories, homes, and
workplaces. Anywhere robots will need to interact in human
environments, robots will need to be able to have the dexter-
ity and flexibility of grasping that humans do. We envision a
future where soft hands enable that fluidity of interaction.
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