
AN EFFICIENT TREE DECOMPOSITION METHOD FOR
PERMANENTS AND MIXED DISCRIMINANTS

DIEGO CIFUENTES AND PABLO A. PARRILO

Abstract. We present an efficient algorithm to compute permanents, mixed dis-
criminants and hyperdeterminants of structured matrices and multidimensional ar-
rays (tensors). We describe the sparsity structure of an array in terms of a graph,
and we assume that its treewidth, denoted as ω, is small. Our algorithm requires

Õ(n 2ω) arithmetic operations to compute permanents, and Õ(n2 + n 3ω) for mixed
discriminants and hyperdeterminants. We finally show that mixed volume computa-
tion continues to be hard under bounded treewidth assumptions.

1. Introduction

The permanent of a n× n matrix M is defined as

Perm(M) :=
∑
π

n∏
i=1

Mi,π(i)

where the sum is over all permutations π of the numbers 1, . . . , n. Computing the
permanent is #P-hard [35], which means that it is unlikely that it can be done efficiently
for arbitrary matrices. As a consequence, research on this problem tends to fall into
two categories: algorithms to approximate the permanent, and exact algorithms that
assume some structure of the matrix. This paper lies in the second category. We
further study related problems in structured higher dimensional arrays, such as mixed
discriminants, hyperdeterminants and mixed volumes.

The sparsity pattern of a matrix M can be seen as the bipartite adjacency matrix of
some bipartite graph G. This bipartite graph fully encodes the structure of the matrix.
We assume here that the treewidth ω of G is small. Even though it is hard to determine
the treewidth of a graph, there are many good heuristics and approximations that justify

our assumption [12]. We show an algorithm to compute Perm(M) in Õ(n 2ω) arithmetic

operations. In this paper, the notation Õ ignores polynomial factors in ω. We note
that the algorithm can be used over any commutative ring.

The permanent of a matrix can be generalized in several ways. In particular, given a
list of n matrices of size n× n, its mixed discriminant generalizes both the permanent
and the determinant [4,21]. Our algorithm for the permanent extends in a natural way
to compute the mixed discriminant. The natural structure to represent the sparsity
pattern in this case is a tripartite (i.e., 3-colorable) graph. The running time of the
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resulting algorithm is Õ(n2+n 3ω), where ω is the treewidth of such graph. In particular,
this algorithm can compute the determinant of a matrix in the same time.

More generally, our methods extend to generalized determinants/permanents on ten-
sors. A special case of interest is the multidimensional permanent [2, 18, 34]. Another
interesting case is the first Cayley hyperdeterminant, also known as Pascal determinant,
which is the simplest generalization of the determinant to higher dimensions [5,14,25].
Note that unlike the determinant, the hyperdeterminant is #P-hard, in particular be-
cause it contains mixed discriminants as a special case [21,22].

Given a set of n polytopes in Rn, its mixed volume provides a geometric generalization
of the permanent and the determinant [30]. We focus on the special case of mixed
volume of n zonotopes. Although there is no “natural” graph to represent the structure
of a set of zonotopes, we associate to it a bipartite graph that, when the mixed volume
restricts to a permanent, corresponds to the matrix graph described above. This allows
us to give a simple application for mixed volumes of zonotopes with few nonparallel
edges. Nevertheless, we show that mixed volumes remain hard to compute in the general
case, even if this bipartite graph has treewidth 1 and the zonotopes have only 3 nonzero
coordinates.

The diagram of Figure 1 summarizes the scope of the paper. It presents the main
problems we consider, illustrating the relationships among them. Concretely, an arrow
from A to B indicates that B is a special instance of A. It also divides the prob-
lems according to its difficulty, with and without bounded treewidth assumptions. In
this paper we start from the simplest problems, i.e., permanents and determinants of
matrices, moving upwards in the diagram.

Det Perm

MDisc MVol

HDet

matrix matrix

n matrices n zonotopes

tensor
MVol

n polytopes

Easy (small ω)

Hard
Hard (small ω)Easy

(known)

(this paper)

Figure 1. Diagram describing the complexity relations of computing:
determinants, permanents, mixed discriminants, hyperdeterminants and
mixed volumes.

The document is structured as follows. In Section 2 we review the concept of
treewidth and tree decompositions. We also present three graph abstractions of a
sparse matrix. Among these graphs is the bipartite graph G described above, and a
projection GX onto the column set. In Section 3 we present a decomposition method,
Algorithm 1, that computes the permanent based on the graph GX . We first use graph
GX because the decomposition algorithm is easier to explain in this case. In Section 4
we extend this method to work with the bipartite graph G, as shown in Algorithm 2.
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We provide a Matlab implementation of this algorithm. In Section 5 we discuss the
case of mixed discriminants, presenting a decomposition method for it. We also treat
the case of generalized determinants/permanents on tensors. Finally, in Section 6 we
discuss the case of mixed volumes of zonotopes.

Related work.

Permanents. The best known to date method for exactly computing the permanent of
a general matrix was given by Ryser and its complexity is O(n 2n) [29]. There are two
main research trends on permanent computation: approximation algorithms and exact
algorithms for structured matrices. We briefly discuss related work in both of them.
Tree decomposition algorithms, which belong to the second group, will be presented
afterwards.

We first mention some work on approximation schemes. For arbitrary matrices,
Gurvits gave a randomized polynomial time approximation, with error proportional to
the operator norm [21]. For nonnegative matrices there is a vast literature, see e.g., [37]
and the references therein. Most remarkably, Jerrum et al. gave a fully polynomial
randomized approximation scheme (FPRAS) [23]. Recent work studies approximation
schemes based on belief propagation, also for nonnegative matrices [37,38].

As for exact algorithms for structured matrices, different types of structure have been
explored in the literature. Fisher, Kasteleyn and Temperley gave a polynomial time
algorithm for matrices whose associated bipartite graph is planar [24, 33]. Barvinok
showed that the permanent is tractable when the rank is bounded [6]. The case of
0/1 circulant matrices has also been considered [27], as well as sparse 0/1 Toeplitz
matrices [15]. Schwartz showed a O(log(n)26w) algorithm for certain band, Toeplitz

matrices, where w is the bandwidth [31]. Temme and Wocjan showed a O(n 23w2
)

algorithm for a special type of band matrices [32]. Note that for arbitrary band matrices

our algorithm is Õ(n 22w).

Permanents and treewidth. Tree decomposition methods for permanent computation
have been considered. Courcelle et al. first showed that the permanent can be com-
puted efficiently if the treewidth is bounded [16], although their methods, based on the
Feferman-Vaught-Shelah Theorem, do not lead to an implementable algorithm. Later
work of Flarup et al. gives a O(n 2O(ω2)) algorithm [20]. This algorithm is extended
in [26] to a wider class of matrices. Note the strong dependency on the treewidth. Fur-
thermore, the graph abstraction used in the above methods, which is not the bipartite
graph G, has two inconvenient features: its treewidth can be significantly larger than
the one of G (see Example 2.1) and it is dependent on the specific order of the columns
of the matrix (see Remark 2.2).

Closer to this paper is the work of van Rooij et al. [36]. They gave a Õ(n 2ω)
decomposition algorithm for counting perfect matchings in a graph. Counting perfect
matchings is closely related to the permanent, and one could derive from their proof an
analogous, but different, method for calculating the permanent. Our algorithm could
be seen as a variant of such method that is easier to extend to the higher dimensional
problems we consider.
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Mixed discriminants, mixed volumes, tensors. The higher dimensional problems we
study generalize the permanent of a matrix, and thus are #P-hard in general. As for
the permanent, there are two natural relaxations: approximation algorithms and exact
algorithms under special structure. Approximation algorithms have been considered
for mixed discriminants [7,21], mixed volumes [7,19] and multidimensional permanents
[8]. As for exact algorithms under special structure, we are only aware of Gurvits’
tractability result for mixed discriminants and the 4-hyperdeterminant under some
bounded rank assumptions [21].

To our knowledge this is the first paper that studies tree decomposition methods
for mixed discriminants, mixed volumes and generalized determinants/permanents on
tensors. Related to this is a recent log-space algorithm for computing determinants
under bounded treewidth assumptions [3]. Also related is the problem of partitioning
a low treewidth graph into k-cliques, which is considered in [36].

2. Tree decompositions and matrix graphs

In this section we review some basic facts regarding tree decompositions of a graph.
We also present three graphs that can be associated to a sparse matrix.

2.1. Tree decompositions. The notions of treewidth and tree decompositions are
fundamental in many areas of computer science and applied mathematics [12,17]. Intu-
itively, the treewidth of a graph G is a measure of how close it is to a tree. A graph has
treewidth 1 if and only if it is a forest, i.e., a disjoint union of trees. The smaller the
treewidth, the closer the graph is to a tree, and the easier it is to solve certain problems
on it. We note that a graph of treewidth ω has at most nω edges, and thus treewidth
imposes a sparsity constraint. We give the formal definition now.

Definition 2.1. Let G be a graph with vertex set X. A tree decomposition of G is a
pair (T, χ), where T is a rooted tree and χ : T → {0, 1}X assigns some χ(t) ⊆ X to
each node t of T , that satisfies the following conditions.

i. The union of {χ(t)}t∈T is the whole vertex set X.
ii. For every edge (xi, xj) of G, there exists some node t of T with xi, xj ∈ χ(t).
iii. For every xi ∈ X the set {t : xi ∈ χ(t)} forms a subtree of T .

The sets χ(t) are usually referred to as bags. The width ω of the decomposition is the
size of the largest bag (minus one). The treewidth of G is the minimum width among
all possible tree decompositions.

Algorithms based on tree decompositions typically depend exponentially on the width
of the decomposition, and polynomially on the number of nodes [12]. Thus, given a
graph G it is desirable to obtain a tree decomposition of minimum width. However,
finding the treewidth is NP-hard [1]. The treewidth of some simple graphs are known:
for a tree is 1, for a cycle graph is 2, for the n × n grid graph is n, for the complete
graph Kn is n−1, for the complete bipartite graph Kn,n is n. For general graphs, there
are good heuristics and approximation algorithms [12].

Tree decompositions are closely related to chordal graphs [11, 17]. Indeed, given a
chordal graph G, we can construct a tree decomposition where the bags χ(t) correspond
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to its maximal cliques. We remark that there are at most n maximal cliques in a chordal
graph. In general, we can always assume that a tree decomposition has at most n nodes.

The following is a simple property of tree decompositions.

Lemma 1. Let (T, χ) be a tree decomposition of G. Then for any clique Y of G there
is some node t of T with Y ⊆ χ(t).

Proof. For each vertex y ∈ Y , let Ty denote the subtree of all bags containing y. Let
ty ∈ Ty be the closest node to the root and let d(ty) denote the distance from ty to the
root. Observe that if d(ty) ≤ d(ty′) then ty′ ∈ Ty (otherwise, Ty ∩ Ty′ = ∅ and the edge
(y, y′) would not belong to any bag). Let t ∈ {ty}y∈Y be the farthest away from the
root, i.e., d(ty) ≤ d(t) for all y ∈ Y . It follows that Y ⊆ χ(t). �

2.2. Matrix graphs. The sparsity structure of a matrix, i.e., its pattern of nonzero
entries, can be described in terms of a graph. We consider here three possible graph
abstractions of such sparsity structure, and we compare their treewidths.

Let M be a n × n matrix. We will index the rows with a set A = {a1, . . . , an} and
the columns with a set X = {x1, . . . , xn}. We use subindices to index the coordinates
of M , i.e., Ma,x denotes the entry in the a-th row and x-th column. Similarly, let Ma be
the a-th row of M . We now present two (undirected) graphs that are usually associated
to a sparse matrix.

Definition 2.2 (Bipartite graph). Let M be a n × n matrix, let A denote its set of
rows, and let X denote its set of columns. The bipartite graph of M , denoted as G(M),
has vertices A ∪X, and there is an edge (a, x) if Ma,x is nonzero.

Definition 2.3. (Symmetrized graph) Let M be a n × n matrix, let A denote its set
of rows, and let X denote its set of columns. The symmetrized graph of M , denoted as
Gs(M), has vertices 1, . . . , n and has an edge (i, j) if Mai,xj 6= 0 or Maj ,xi 6= 0.

Remark 2.1. Note that Gs(M) is the adjacency graph of the symmetric matrix M+MT ,
assuming no terms cancel out.

Remark 2.2 (Permutation invariance). Note that the permanent of a matrix is invariant
under independent row and column permutations. The bipartite graph G preserves
this invariance. On the other hand, the symmetrized graph Gs is only invariant under
simultaneous row and column permutations.

The bipartite graph G is our main object of study in this paper. Let ω := tw(G)
be the treewidth of G and ωs := tw(Gs) the one of Gs. Tree decomposition methods
based on graph Gs have been studied before [3, 16, 20, 26]. We claim that graph G
is a better abstraction for the purpose of permanent computation. In particular, G
preserves the permutation invariance of the permanent as stated above. Furthermore,
ωs can be much larger than ω as shown in the following example.

Example 2.1 (Two nonzero entries per row). Let M be a matrix with at most two
nonzero entries per row. We claim that for all nontrivial cases the bipartite graph G
has treewidth ω ≤ 2. Let G0 be a connected component, and let n0 be its number of
row vertices. In order for G0 to have a perfect matching, it must have as many row
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x1 x2 x3 x4 x5 x6 x7 x8 x9



a1 0 1 0 2 0 0 0 0 0
a2 0 0 1 0 2 0 0 0 0
a3 0 0 3 0 0 2 0 0 0
a4 0 0 0 0 1 0 2 0 0
a5 0 0 0 0 0 1 0 2 0
a6 0 3 0 0 0 0 0 0 2
a7 0 0 0 0 0 0 3 1 0
a8 0 0 0 3 0 0 0 0 1
a9 3 0 0 0 0 0 0 0 0

2 3

4 5 6

7 8 9

1

ColsRows

x2

x4

x9

x3

x5

x6

x7

x1

x8

a1

a6

a8

a2

a3

a4

a5

a9

a7

G

x2

x4 x9

x3

x5 x6

x7

x1

x8

GX

Gs

Figure 2. Graph abstractions of a matrix: bipartite graph G, sym-
metrized graph Gs and column graph GX .

vertices as column vertices. Note also that G0 has at most 2n0 edges because the row
degrees are at most 2. Then G0 is a connected graph with 2n0 vertices and at most 2n0

edges, so it has at most one cycle. It follows that ω ≤ 2.
On the other hand, we will see that ωs is unbounded. Let n = m2 and consider the

matrix M whose nonzero entries are

Mai, xi+1
= 1, if m does not divide i

Mai, xi+m = 2, if 1 ≤ i ≤ n−m
Ma(m−i+1)m, xi = 3, if 1 ≤ i ≤ m

Man−i, xim+1
= 3, if 1 ≤ i < m

The corresponding graph Gs contains the grid graph, and thus ωs ≥
√
n. The case

n = 9 is shown in Figure 2.

The following example shows that the treewidth of G is always better than the
treewidth of Gs.

Example 2.2 (G is “better” than Gs). Let’s see that given a tree decomposition of Gs

of width ωs we can form a tree decomposition of G of width 2ωs. Let (T, ι) be a tree
decomposition of Gs, where ι(t) ⊆ {1, . . . , n}. Let µ : T → {0, 1}A∪X , be such that
µ(t) = {ai : i ∈ ι(t)}∪{xi : i ∈ ι(t)}. Then (T, µ) is a decomposition of G of width 2ωs.
On the contrary, for a fixed ω the treewidth of Gs is unbounded as seen in Example 2.1.

We now introduce a third graph GX that we can associate to matrix M .

Definition 2.4. (Column graph) Let M be a n×n matrix, let A denote its set of rows
and let X denote its set of columns. For any a ∈ A let X(a) denote the set of nonzero
components of row Ma. The column graph GX(M) has X as its vertex set, and for each
a ∈ A we put a clique in X(a). Equivalently, there is an edge (xi, xj) if there is some
a ∈ A such that xi, xj ∈ X(a).

Graph GX can be seen as a projection of G onto the column set X. We show in the
following example that ω ≤ ωX + 1, where ωX := tw(GX).
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Example 2.3 (G is “better” than GX). Let (T, χ) be a tree decomposition of GX of
width ωX . For each row a ∈ A we associate to it a unique node t ∈ T such that
X(a) ⊆ χ(t). This assignment can be made because of Lemma 1. For some t ∈ T ,
let at1, a

t
2, . . . , a

t
k be all rows that are assigned to t. Let’s replace node t of T with a

path t1, t2 . . . , tk, and let µ(tj) = χ(t) ∪ {atj} for j = 1, . . . , k. The nodes previously
connected to t can be linked to any of the new nodes. By doing this for every t ∈ T ,
we obtain a tree decomposition (T, µ) of G of width ωX + 1.

On the other hand, for a fixed ω the treewidth of GX is unbounded. For instance,
consider the matrix M whose only nonzero entries are: Mai,xi = 1 (diagonal) and
Ma1,xi = 1 (first row) for all i. In this case GX is the complete graph (ωX = n− 1) and
G is a tree (ω = 1).

The reason why we consider the graph GX is that we can give a very simple algorithm
for the permanent based on it. We present this algorithm in Section 3, and then extend
it to G in Section 4.

To conclude this section, let’s see how the three graphs G,Gs, GX can capture the
special case of a band matrix.

Example 2.4 (Band matrix). Let w1, w2 ∈ Z>0 and let M be such that Mai,xj = 0 if
either i− j > w1 or j − i > w2. Let T be a path t1, t2, t3, . . .. Optimal decompositions
(T, χ), (T, ι), (T, µ) for the graphs GX , Gs, G respectively, are given by

χ(ti) := {xi, xi+1, . . . , xi+w1+w2}, ι(ti) := {i, i+ 1, . . . , i+ max{w1, w2}},
µ(t2i−1) := {ai+w1 , xi, xi+1, . . . , xi+w1+w2−1}, µ(t2i) := {ai+w1 , xi+1, xi+1, . . . , xi+w1+w2}

The widths of these decompositions are ω = ωX = w1 + w2 and ωs = max{w1, w2}.

3. Column decompositions

Notation. For sets Y, Y1, Y2, let Y = Y1 t Y2 denote a set partition, i.e., Y = Y1 ∪ Y2

and Y1 ∩ Y2 = ∅.

In this section, we develop an algorithm to compute the permanent based on a tree
decomposition of the column graph GX (see Definition 2.4). For this section only, we
denote the treewidth of GX by ω . We will show that we can compute Perm(M) in

Õ(n 4ω). Recall that the notation Õ ignores polynomial factors in ω.
As before, A denotes the row set and X the column set. We use subindices to index

the coordinates of M , i.e., Ma,x denotes the element in row a and column x. The
following example illustrates the methodology we follow.

M =


Ma1,x1 0 Ma1,x3 Ma1,x4 0
Ma2,x1

0 Ma2,x3
Ma2,x4

0
0 Ma3,x2

Ma3,x3
Ma3,x4

0
0 Ma4,x2

Ma4,x3
0 Ma4,x5

0 Ma5,x2 Ma5,x3 0 Ma5,x5


x1

GX

x5x3

x4 x2

T

x3x1

x4

x3x2

x5

x3x2

x4

Figure 3. Matrix M , its column graph GX and a tree decomposition T .
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Example 3.1. Consider the 5× 5 matrix M of Figure 3 and the following partition of
its rows:

A = {a1, a2} t {a3} t {a4, a5}.

There is a simple expansion of Perm(M) in terms of this partition:

Perm(M) = Perm

([
Ma1,x1 Ma1,x3

Ma2,x1 Ma2,x3

])
Perm

([
Ma3,x4

])
Perm

([
Ma4,x2 Ma4,x5

Ma5,x2 Ma5,x5

])
+ Perm

([
Ma1,x1 Ma1,x4

Ma2,x1 Ma2,x4

])
Perm

([
Ma3,x3

])
Perm

([
Ma4,x2 Ma4,x5

Ma5,x2 Ma5,x5

])
+ Perm

([
Ma1,x1 Ma1,x4

Ma2,x1 Ma2,x4

])
Perm

([
Ma3,x2

])
Perm

([
Ma4,x3 Ma4,x5

Ma5,x3 Ma5,x5

])
.

This expansion implies that to compute Perm(M) we just need to evaluate two 2 × 2
permanents corresponding to {a1, a2}, three 1 × 1 permanents corresponding to {a3},
and two 2× 2 permanents corresponding to {a4, a5}. This requires only 14 multiplica-
tions, compared to 4 × 5! = 480 multiplications using the definition. The reason why
this formula exists is because the column graph GX of matrix M has a simple tree
decomposition, which is shown in Figure 3.

As in the example above, we can always obtain an expansion of Perm(M) using a
tree decomposition of graph GX . By carefully evaluating this formula we will obtain a
dynamic programming method to compute Perm(M).

3.1. Partial permanent. In our notation, the permanent of M can be expressed as

Perm(M) =
∑
π

∏
a∈A

Ma,π(a)

where the sum is over all bijections π : A→ X. For a given row a, let X(a) denote the
column coordinates where it is nonzero. We will refer to a bijection π as a matching if
π(a) ∈ X(a), i.e., Ma,π(a) 6= 0, for all a ∈ A. Then we can restrict the above sum to be
over all matchings.

We consider a tree decomposition (T, χ) of the column graph GX . Note that by
construction of GX then X(a) is a clique for any a ∈ A. Thus, Lemma 1 says that we
can assign each row a ∈ A to some node t, such that X(a) ⊆ χ(t). From now, we fix
an assignment of each a to a unique node. Let At denote the rows that are assigned to
node t. Thus, we have the partition A =

⊔
t∈T At.

For a node t ∈ T , we denote the subtree of T rooted in t by Tt. Let χ(Tt) be the
union of χ(t′) over all t′ ∈ Tt, and similarly let ATt be the union of At′ over all t′ ∈ Tt.
For instance, for the root node we have ATroot = A and χ(Troot) = X.

For a fixed matrix M and some sets D ⊆ A and Y ⊆ X we denote

perm(D, Y ) :=
∑
π

∏
a∈D

Ma,π(a)(1)

where the sum is over all matchings π : D → Y . Equivalently, it is the permanent
of the submatrix of M corresponding to such rows and columns. Clearly, this only
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makes sense if |D| = |Y |, and otherwise we can define perm(D, Y ) = 0. We refer to
perm(D, Y ) as a partial permanent.

3.2. Decomposition algorithm for the permanent. Algorithm 1 presents our dy-
namic programming method to compute Perm(M). We will explain and derive this
algorithm in the following sections. For each node t of the tree, the algorithm computes
a table Pt indexed by subsets Ȳ of χ(t). It starts from the leaves of the tree and recur-
sively computes the tables of all nodes following a topological ordering. The permanent
of M is found in the table corresponding to the root.

Algorithm 1 Permanent with column decomposition

Input: Matrix M and tree decomposition (T, χ) of column graph GX(M)
Output: Permanent of M

1: procedure ColsPerm(M,T, χ)
2: assign each a ∈ A to some t with X(a) ⊆ χ(t)
3: order := topological ordering of T starting from its leaves
4: for t in order do
5: Qt := SubPerms(t,M)
6: if t is a leaf then
7: Pt := Qt

8: else
9: c1, . . . , ck := children of t

10: Pt :=EvalRecursion(t, Qt, Pc1 , . . . , Pck)

11: return Proot(χ(root))

12: procedure SubPerms(t,M)
13: At := rows assigned to node t
14: Qt(Ȳ ) := perm(At, Ȳ ) for all Ȳ ⊆ χ(t)

15: procedure EvalRecursion(t, Qt, Pc1 , . . . , Pck)
16: for cj child of t do
17: ∆j := χ(cj) \ χ(t), Λj := χ(cj) ∩ χ(t)
18: Qcj(Ȳ ) := Pcj(Ȳ ∪∆j) for all Ȳ ⊆ Λj

19: Pt := SubsetConvolution(Qt, Qc1 , . . . , Qck)

20: procedure SubsetConvolution(P0, P1, . . . , Pk)

21: P (Ȳ ) :=
∑

Ȳ0t···tȲk=Ȳ

P0(Ȳ0)P1(Ȳ1) · · ·Pk(Ȳk)

Algorithm 1 has two main routines:

• For any node t, SubPerms computes a table Qt with the permanents of all
submatrices corresponding to t. (See Section 3.3).
• EvalRecursion computes table Pt of an internal node t, by combining table
Qt with the tables Pc1 , . . . , Pck of the node’s children. (See Section 3.4).
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The values Pt(Ȳ ) that we compute correspond to a partial permanent of the matrix,
as we explain now. Consider the collection

S := {Y : χ(Tt) \ χ(t) ⊆ Y ⊆ χ(Tt)}.

Observe that Y ∈ S is completely determined by Y ∩ χ(t). Therefore, if we let Ȳ :=
Y ∩ χ(t), there is a one to one correspondence between S, and the collection S̄ := {Ȳ :
Ȳ ⊆ χ(t)}. Then the partial permanents that we are interested in are

Pt(Ȳ ) := perm(ATt , Y ) = perm(ATt , Ȳ ∪ (χ(Tt) \ χ(t))).

The reason why we index table Pt with Ȳ instead of Y , is that in this way it becomes
clearer that the recursion formula is actually a subset convolution.

Observe that the permanent of M is indeed computed in Algorithm 1, as for the root
node we have Proot(χ(root)) = perm(A,X) = Perm(M). Also note that for a leaf node
we have Pt(Ȳ ) = perm(At, Ȳ ) = Qt(Ȳ ).

Example 3.2. Consider the matrix M and tree decomposition T of Figure 3. Let
t1, t2, t3 be the nodes of T , where the central node t2 is the root. We show the tables
computed by Algorithm 1. The tables Qt with the permanents of all submatrices are:

Qt1({x, y}) = perm({a1, a2}, {x, y}), for x, y ∈ χ(t1) = {x1, x3, x4}
Qt3({x, y}) = perm({a4, a5}, {x, y}), for x, y ∈ χ(t3) = {x2, x3, x5}
Qt2({x}) = perm({a3}, {x}), for x ∈ χ(t2) = {x2, x3, x4}

We now show the final tables Pt for each node. For the leaves t1, t3 we have Pt1 = Qt1 ,
Pt3 = Qt3 . As for the root t2, the recursion is:

Pt2({x2, x3, x4}) = Qt2({x4})Pt1({x1, x3})Pt3({x2, x5}) +

Qt2({x3})Pt1({x1, x4})Pt3({x2, x5}) +Qt2({x2})Pt1({x1, x4})Pt3({x3, x5}).

Note that this recursion matches the permanent expansion in Example 3.1.

In the following sections we explain the two main routines of Algorithm 1, i.e., Sub-
Perms and EvalRecursion, obtaining complexity bounds for them.

3.3. Permanent of all submatrices. Let M0 be a rectangular matrix with row set A0

and column set X0. As a part of our algorithm, which can be seen as the base case, we
require a good method to compute the permanents of all submatrices of M0. In other
words, we want to obtain the partial permanents perm(D, Y ) for all pairs (D, Y ). We
can do this in a very simple way using an expansion by minors. The following lemma
explains such procedure and gives its running time.

Lemma 2. Let M0 be a matrix of dimensions n1×n2. Let A0 denote its row set, X0 its
column set and let S = {(D, Y ) ⊆ A0 ×X0 : |D| = |Y |}. We can compute perm(D, Y )
for all (D, Y ) ∈ S in O(n2

max 2n1+n2), where nmax = max{n1, n2}.

Proof. Let Si = {(D, Y ) : |D| = |Y | = i} for 1 ≤ i ≤ min{n1, n2}. We use an expansion
by minors to compute perm(D, Y ) for (D, Y ) ∈ Si, using the values of Si−1. Let a0 be
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the first element in D, then

perm(D, Y ) =
∑
x∈Y

Ma0,x perm(D \ a0, Y \ x).

Thus, for each (D, Y ), we loop over at most n2 elements, and for each we need O(nmax)
to find the sets D \ a0 and Y \ x. The result follows. �

3.4. Recursion formula. The heart of Algorithm 1 is given by the recursion formula
used, i.e., the procedure to obtain table Pt of node t from the tables of its children.
This recursion formula is given in the following lemma.

Lemma 3. Let M be a matrix with associated column graph GX . Let (T, χ) be a tree
decomposition of GX . Let t be an internal node of T , and let Y be such that

χ(Tt) \ χ(t) ⊆ Y ⊆ χ(Tt), |Y | = |ATt |(2)

Let c1, . . . , ck be the children of t. Then

perm(ATt , Y ) =
∑
Y

perm(At, Yt)
k∏
j=1

perm(ATcj , Ycj)(3)

where perm(·, ·) is as in (1) and the sum is over all Y = (Yt, Yc1 , . . . , Yck) such that:

Y = Yt t (Yc1 t · · · t Yck)(4a)

χ(Tcj) \ χ(t) ⊆ Ycj ⊆ χ(Tcj) Yt ⊆ χ(t).(4b)

Proof. Observe that ATt can be partitioned as

ATt = At t (ATc1 t · · · t ATck ).

Let π : ATt → Y be a matching. Let c be a child of t and let πc : ATc → Y be the
restriction of π to ATc . Let Yt := π(At) ⊆ χ(t) be the range of π restricted to At, and
let Yc be the range of πc. As π is injective, then equation (4a) holds. Observe also that
Yc = π(ATc) ⊆ χ(Tc). Note now that if x ∈ χ(Tc) \ χ(t), then it is in the range of π.
However, as x /∈ χ(t) then x /∈ χ(Tc′) for any other child c′, and thus x has to be in the
range of πc. Thus, the range of πc, i.e., Yc, contains χ(Tc) \ χ(t).

Therefore, for any matching π : ATt → Y and for any child c, π induces a matching
from ATc to some Yc that satisfy equations (4). On the other hand, given Yt, Yc1 , . . .
satisfying (4) and matchings πt, πc1 , . . . on At, ATc1 , . . . with such ranges, we can merge
them into a function on ATt . Observe that (4) ensures that the ranges of these matchings
are disjoint and their union is Y . We conclude that

perm(ATt , Y ) =
∑

π:ATt→Y

∏
a

Ma,π(a)

=
∑
Y

∑
πt:At→Yt
πc:ATc→Yc

(∏
at

Mat,πt(at)

)∏
cj

(∏
ac

Mac,πcj (ac)

)

=
∑
Y

perm(At, Yt)
∏
cj

perm(ATcj , Ycj).
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�

At first sight, the recursion of equation (3) looks difficult to evaluate. It turns out
that this formula is a subset convolution and thus it can be computed efficiently using
the algorithm from [10], as explained in the following lemma. We follow this approach
in method EvalRecursion of Algorithm 1.

Lemma 4. Given the values of the partial permanents perm(At, Yt) and perm(ATcj , Ycj),

we can evaluate equation (3) for all Y satisfying (2) in Õ(k 2ω).

Proof. Let Ȳ := Y ∩ χ(t), Ȳt := Yt, Ȳcj := Ycj ∩ χ(t), and let

∆t := χ(Tt) \ χ(t) ∆cj := χ(Tcj) \ χ(t)

Pt(Ȳ ) := perm(ATt , Ȳ ∪∆t), Qt(Ȳt) := perm(At, Ȳt), Qcj(Ȳcj) := perm(ATcj , Ȳcj ∪∆cj)

Then equation (3) can be rewritten as

Pt(Ȳ ) =
∑

ȲttȲc1t···tȲck=Ȳ

Qt(Ȳt)
k∏
j=1

Qcj(Ȳcj)(5)

where Ȳt ⊆ χ(t) and Ȳcj ⊆ χ(cj) ∩ χ(t). Equation (5) is a subset convolution over the
subsets of χ(t). Therefore, it can be evaluated in O(kw2 2w), where w = |χ(t)|, using
the algorithm from [10]. �

The following theorem gives the running time of Algorithm 1, proving that we can
efficiently compute the permanent given a tree decomposition of GX of small width.

Theorem 5. Let M be a matrix with associated column graph GX . Let (T, χ) be a tree

decomposition of GX of width ω. Then we can compute Perm(M) in Õ(n 4ω).

Proof. Let t be some node in T . We compute perm(ATt , Y ) for every Y satisfying (2).
In particular, we will obtain Perm(A) = perm(ATroot , χ(Troot)). We will show that for

each t we can compute perm(ATt , Y ) for all Y in Õ((kt + 1)4ω), where kt is the number
of children of t. Note that

∑
t kt is the number of nodes of tree T . As the tree has O(n)

nodes, the total cost is then Õ(n 4ω), as wanted.
The base case is when t is a leaf of T , so that ATt = At and χ(Tt) = χ(t). Let M0

be the submatrix of M with rows At and columns χ(t). Then all we have to do is to
obtain the permanent of some submatrices of M0. Observe that |At| ≤ |χ(t)| ≤ ω, as

otherwise there is no Y satisfying (2). Thus, we can do this in Õ(22ω) using Lemma 2.
Assume now that t is an internal node of T with kt children and let Y that satisfies (2).

Then equation (3) tells us how to find perm(ATt , Y ). Lemma 4 says that we can evaluate

the formula in Õ(kt 2ω), assuming we know the values of the terms in the recursion. Note
that we already found perm(ATc , Yc) for all children and that we can find perm(At, Yt)

for all possible Yt in Õ(22ω) in the same way as for the base case. Thus, it takes

Õ(4ω + kt 2ω) = Õ((kt + 1)4ω) to compute perm(ATt , Y ) for all Y . �

Remark 3.1. The factor Õ(4ω) in the proof came from the base case. This bound can
be improved, but we omit this as for the approach of Section 4, based on the bipartite

graph, the bound will be Õ(2ω).
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3.5. Computing the determinant. Given the similarity between permanent and
determinant, it should be possible to find an analogous algorithm for the determinant.
We will derive such algorithm in this section. Ironically, this algorithm is slower than
the one for the permanent. The reason is that the approach we follow does not take
advantage of linear algebra: we loop over all permutations (carefully) and then compute
its sign. We remark that our algorithm does not use divisions and thus can be applied
in any commutative ring. The ideas from this section will be used in Section 5 to derive
a decomposition algorithm for the mixed discriminant.

Example 3.3. Consider again the matrix M of Figure 3, and observe that a similar
expansion holds for the determinant:

Det(M) = Det

([
Ma1,x1 Ma1,x3

Ma2,x1 Ma2,x3

])
Det

([
Ma3,x4

])
Det

([
Ma4,x2 Ma4,x5

Ma5,x2 Ma5,x5

])
−Det

([
Ma1,x1 Ma1,x4

Ma2,x1 Ma2,x4

])
Det

([
Ma3,x3

])
Det

([
Ma4,x2 Ma4,x5

Ma5,x2 Ma5,x5

])
+ Det

([
Ma1,x1 Ma1,x4

Ma2,x1 Ma2,x4

])
Det

([
Ma3,x2

])
Det

([
Ma4,x3 Ma4,x5

Ma5,x3 Ma5,x5

])
.

As suggested in the above formula, the recursion used to compute the permanent can
also be used to compute the determinant, by appropriately selecting the signs.

We recall now the definition of the parity function, and we extend it to ordered
partitions.

Definition 3.1. Let D, Y be ordered sets of the same size. For a bijection π : D →
Y we define its sign or parity as sgn(π) := (−1)N(π), where N(π) is its number of
inversions:

N(π) :=
∣∣{(a, a′) ∈ D2 : a < a′, π(a) > π(a′)}

∣∣ .
Let Y = (Y1, . . . , Yk) be an ordered partition of Y , i.e., Y = Y1 t · · · t Yk. We define its
sign to be sgn(Y) := (−1)N(Y), where N(Y) is:

N(Y) := |{(yi, yj) : yi ∈ Yi, yj ∈ Yj, i < j, yi > yj}| .

Equivalently, we can associate to Y a permutation πY : {1, 2, . . . , |Y |} → Y that consists
of blocks: we put first Y1 (sorted), then Y2 (sorted), and so on. Then sgn(Y) = sgn(πY).

From the definition above it is clear that we can obtain the sign of a permutation
in O(n2) by counting the number of inversions. However, it is well known that we can
find it in O(n) by counting its cycles.

For a matrix M , there is a natural order for its row set A and column set X, namely
from top to bottom and from left to right. We recall the definition of the determinant:

Det(M) =
∑
π

sgn(π)
∏
a∈A

Ma,π(a)
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where the sum is over all bijections π : A→ X. Similarly, for a fixed matrix M and for
some D ⊆ A and Y ⊆ X we define the partial determinants:

det(D, Y ) :=
∑
π

sgn(π)
∏
a∈D

Ma,π(a)(6)

where the sum is over all bijections π : D → Y . Note that Det(M) = det(A,X).
We now provide a recursion formula similar to the one in Lemma 3. We need one

lemma before.

Lemma 6. Let D, Y be ordered sets, and let π : D → Y be a bijection, which we view
as a subset of D × Y . Let D = (D1, . . . , Dk) and Y = (Y1, . . . , Yk) be partitions of D
and Y . Let π = π1 t · · · t πk be a decomposition with πj ⊆ Dj × Yj. Then

sgn(π) = sgn(D)sgn(Y)
k∏
j=1

sgn(πj).

Proof. It follows from the multiplicativity of the sign function. �

Lemma 7. Under the same conditions of Lemma 3, then

det(ATt , Y ) = sgn(D)
∑
Y

sgn(Y)det(At, Yt)
k∏
j=1

det(ATcj , Ycj)(7)

where det(·, ·) is as in (6) the sum is over all Y = (Ys, Yc1 , . . . , Yck) satisfying (4),
D = (At, ATc1 , . . . , ATck ) and sgn(·) is as in Definition 3.1.

Proof. The proof is basically the same as the one of Lemma 3. The only difference is
that we have the additional factor sgn(π), but it factors because of Lemma 6. �

Despite the resemblance between equations (3) and (7), the latter is not a subset con-
volution because of the sign factors. Therefore, we cannot use the algorithm from [10]
in this case. We now show to the complexity analysis.

Lemma 8. Given the values of the partial determinants det(At, Yt) and det(ATcj , Ycj),

we can evaluate equation (7) for all Y satisfying (2) in Õ(k(n+ 3ω)).

Proof. We will first express equation (7) in a similar format as formula (5) of Lemma 4.
To simplify the notation, let Y =: (Y0, Y1, . . . , Yk). For each j let Y j

0 = Y0∪Y1∪· · ·∪Yj,
and observe that sgn(Y) =

∏
j sgn(Y j−1

0 , Yj). Then equation (7) can be rewritten as:

D(Ȳ ) = sgn(D)
∑

Ȳ0t···tȲk=Ȳ

k∏
j=0

Sj(Ȳ
j−1

0 , Ȳj)Dj(Ȳj)

where Ȳ0, . . . , Ȳk ⊆ χ(t) and

∆ := χ(Tt) \ χ(t) ∆0 := ∅ ∆j := χ(Tcj) \ χ(t)

D(Ȳ ) := det(ATt , Ȳ ∪∆), D0(Ȳ0) := det(At, Ȳ0 ∪∆0), Dj(Ȳj) := det(ATcj , Ȳj ∪∆j)

Ȳ j
0 = Ȳ0 ∪ · · · ∪ Ȳj ∆j

0 := ∆0 ∪ · · · ∪∆j

Sj(Ȳ
j−1

0 , Ȳj) := sgn(Ȳ j−1
0 ∪∆j−1

0 , Ȳj ∪∆j)
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For each 0 ≤ l ≤ k, and for each Ȳ l
0 ⊆ χ(t), let

Dl
0(Ȳ l

0 ) = sgn(D)
∑

Ȳ0t···tȲl=Ȳ l0

l∏
j=0

Sj(Ȳ
j−1

0 , Ȳj)Dj(Ȳj)

Note that Dk
0(Ȳ ) = D(Ȳ ), and thus it is enough to compute Dl

0 for all l. We can do
this recursively, observing that D0

0(Ȳ ) = sgn(D)D0(Ȳ ) and

Dl+1
0 (Ȳ l+1

0 ) =
∑

Ȳ l0tȲl+1=Ȳ l+1
0

Sl+1(Ȳ l
0 , Ȳl+1)Dl

0(Ȳ l
0 )Dl+1(Ȳl+1)(8)

We reduced the problem to evaluating the above formula, and we will show that for

each l we can do this in Õ(n + 3ω). Assume for now that the signs Sl+1(Ȳ l
0 , Ȳl+1) are

known. Then for each Ȳ l+1
0 of cardinality i, we can evaluate (8) in O(2i). Thus, for

all Ȳ l+1
0 we require O(

∑
i

(
w
i

)
2i) = O(3w), where w = |χ(t)|. We will see that after

a precomputation that takes Õ(n), we can obtain Sl+1(Ȳ l
0 , Ȳl+1) in Õ(1), which will

complete the proof.
Observe that

Sl+1(Ȳ l
0 , Ȳl+1) = sgn(Ȳ l

0 , Ȳl+1) sgn(Ȳ l
0 ,∆l+1) sgn(∆l

0, Ȳl+1) sgn(∆l
0,∆l+1).

Note that the last factor does not depend on the partition and it can be precomputed

in O(n). Also note that the first factor can be computed in O(ω) = Õ(1), so we can
ignore it. We are left with the second and third factor.

For each x ∈ χ(t), let

N∆l+1
x = |{y ∈ ∆l+1 : x > y}| .

We can precompute N
∆l+1
x for all x in O(ωn) = Õ(n). Note that sgn(Ȳ l

0 ,∆l+1) = (−1)N

where N =
∑

x∈Ȳ l0
N

∆l+1
x . Thus, after the precomputation, we can obtain this factor in

O(ω) = Õ(1). A similar procedure can be done for sgn(∆l
0, Ȳl+1). �

Theorem 9. Let M be a matrix with associated column graph GX . Let (T, χ) be a tree

decomposition of GX of width ω. Then we can compute Det(M) in Õ(n2 + n 4ω).

Proof. There are two changes with respect to the proof of Theorem 5. First, in the base
case we need to compute the determinant of all submatrices of M0. Using an expansion

by minors as in the proof of Lemma 2, we can do this in Õ(4ω), i.e., the same as for the
permanent. Second, for the recursion formula we use Lemma 8. This increases the time

per node from Õ(kt 2ω) to Õ(kt(n+ 3ω)). Therefore, the overall cost is Õ(n2 +n 4ω). �

We conclude this section by presenting an open question. Given the resemblance
in the definition of the permanent and the determinant it is not surprising that they
can be computed using very similar tree decomposition methods. The immanant of a
matrix is another closely related notion:

Immλ(M) :=
∑
π

χλ(π)
∏
a∈A

Ma,π(a)
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where the sum is over all bijections π : A → X and χλ is an irreducible character
of the symmetric group. The immanant reduces to the permanent when χλ is the
trivial character, and it reduces to the determinant when χλ is the sign character. The
computational complexity of immanants has been analyzed in e.g., [13]. A natural
question that arises is whether a tree decomposition method can be used to compute
them. We remark that the recursion in (7) does not hold for the immanant as χλ is not
necessarily multiplicative.

Question. Given a matrix M of bounded treewidth, can we compute Immλ(M) in
polynomial time? In particular, can this be done if either the height or the width of the
Young diagram is bounded?

4. Bipartite decompositions

In the previous section we showed a decomposition method based on the column

graph GX . We showed that we can compute the permanent in Õ(n 4ωX ), where ωX is
the treewidth of GX . In this section we will extend this decomposition method to work
with the bipartite graph G (see Definition 2.2). We will show that we can compute the

permanent in Õ(n 2ω), where ω is the treewidth of G. A Matlab implementation of our
algorithm is available in www.mit.edu/~diegcif.

Let G be the bipartite graph of M . As in the previous sections, we index the rows
with a set A and the columns with X. We now rephrase the definition of a tree
decomposition of G. A bipartite decomposition of G is a tuple (T, α, χ), where T is a
rooted tree and α : T → {0, 1}A, χ : T → {0, 1}X assign some α(t) ⊆ A and χ(t) ⊆ X
to each node t of T , that satisfies the following conditions.

i-1. The union of {α(t)}t∈T is the whole row set A.
i-2. The union of {χ(t)}t∈T is the whole column set X.
ii. For every edge (a, x) of G there exists a node t of T with a ∈ α(t), x ∈ χ(t).

iii-1. For every a ∈ A the set {t : a ∈ α(t)} forms a subtree of T .
iii-2. For every x ∈ X the set {t : x ∈ χ(t)} forms a subtree of T .

The width ω of the decomposition is the largest of |α(t)| + |χ(t)| among all nodes t.
Note that the above literals are consistent with the ones in Definition 2.1.

As before, we now present an example to illustrate the use of the bipartite graph for
computing the permanent.

T

x4x3

a3

a5a4

x2 x3

a5a4

x5

x3x2

a3

x3a3

a2a1

x3 x4

a2a1

x1

x4 x2

x1 x3 x5

a3

a1 a2 a4 a5

G

Figure 4. Bipartite graph G of the matrix of Figure 3 and a tree de-
composition T .

www.mit.edu/~diegcif
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Example 4.1. Consider again the matrix M of Figure 3. Note that Perm(M) can also
be expressed in the following form:

Perm(M) = perm({a1, a2}, {x1, x4}) perm({a3, a4, a5}, {x2, x3, x5})
+ perm({a1, a2, a3}, {x1, x3, x4}) perm({a4, a5}, {x2, x5})
−Ma3,x3 perm({a1, a2}, {x1, x4}) perm({a4, a5}, {x2, x5})

perm({a1, a2, a3}, {x1, x3, x4}) = Ma3,x3 perm({a1, a2}, {x1, x4}) + Ma3,x4 perm({a1, a2}, {x1, x3})
perm({a3, a4, a5}, {x2, x3, x5}) = Ma3,x3 perm({a4, a5}, {x2, x5}) + Ma3,x2 perm({a4, a5}, {x3, x5})

To evaluate the above formula we need to compute four 2×2 permanents, and we need
in total 16 multiplications. It turns out that this formula arises by considering the tree
decomposition of the bipartite graph shown in Figure 4.

4.1. Bipartite decomposition algorithm. Algorithm 2 presents our dynamic pro-
gramming method to compute Perm(M) using a bipartite decomposition. As for Al-
gorithm 1, for each node t we compute a table Pt, following a topological ordering of
the tree. The permanent of M is in the table corresponding to the root. There are two
main routines: SubPerm computes the permanents of all submatrices, and EvalRe-
cursion evaluates a recursion formula, which is slightly more complex than the one of
Algorithm 1.

As before, the values Pt(D̄, Ȳ ) computed correspond to a partial permanent of the
matrix. Consider the collection

S = {(D, Y ) : α(Tt) \ α(t) ⊆ D ⊆ α(Tt), χ(Tt) \ χ(t) ⊆ Y ⊆ χ(Tt)}.

Observe that (D, Y ) ∈ S is completely determined by (D ∩ α(t), Y ∩ χ(t)). Therefore,
if we let D̄ = D ∩α(t), Ȳ := Y ∩χ(t), there is a one to one correspondence between S,
and the collection S̄ := {(D̄, Ȳ ) : D̄ ⊆ α(t), Ȳ ⊆ χ(t)}. The partial permanents that
we are interested in are

Pt(D̄, Ȳ ) := perm(D, Y ) = perm(D̄ ∪ (α(Tt) \ α(t)), Ȳ ∪ (χ(Tt) \ χ(t))).

For the root node Proot(α(root), χ(root)) = perm(A,X) = Perm(M).

4.2. Recursion formula. The recursion formula that method EvalRecursion of
Algorithm 2 evaluates is given in the following lemma.

Lemma 10. Let M be a matrix with associated bipartite graph G. Let (T, α, χ) be a
bipartite decomposition of G. Let t be an internal node of T , let Tt ⊆ T denote the
subtree rooted in t, and let D, Y be such that

α(Tt) \ α(t) ⊆ D ⊆ α(Tt), χ(Tt) \ χ(t) ⊆ Y ⊆ χ(Tt), |D| = |Y |(9)

Let tc1 , . . . , tck be the children of t. Then

perm(D, Y ) =
∑
D,Y

perm(Dt, Yt)
k∏
j=1

(−1)|Dtcj |perm(Dtcj , Ytcj)perm(Dccj , Yccj)(10)
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Algorithm 2 Permanent with bipartite decomposition

Input: Matrix M and tree decomposition (T, α, χ) of bipartite graph G(M)
Output: Permanent of M

1: procedure BipartPerm(M,T, α, χ)
2: order := topological ordering of T starting from its leaves
3: for t in order do
4: Qt := SubPerms(t,M)
5: if t is a leaf then
6: Pt := Qt

7: else
8: c1, . . . , ck := children of t
9: Pt :=EvalRecursion(t, Qt, Pc1 , . . . , Pck)

10: return Proot(α(root), χ(root))

11: procedure SubPerms(t,M)
12: Qt(D̄, Ȳ ) := perm(D̄, Ȳ ) for all D̄ ⊆ α(t), Ȳ ⊆ χ(t)

13: procedure EvalRecursion(t, Qt, Pc1 , . . . , Pck)
14: for cj child of t do
15: ∆α

j := α(cj) \ α(t), Λα
j := α(cj) ∩ α(t)

16: ∆χ
j := χ(cj) \ χ(t), Λχ

j := χ(cj) ∩ χ(t)

17: Qtcj(D̄, Ȳ ) := (−1)|D̄|Qt(D̄, Ȳ ) for all D̄ ⊆ Λα
j , Ȳ ⊆ Λχ

j

18: Qccj(D̄, Ȳ ) := Pcj(D̄ ∪∆α
j , Ȳ ∪∆χ

j ) for all D̄ ⊆ Λα
j , Ȳ ⊆ Λχ

j

19: Pt := SubsetConvolution(Qt, Qtc1 , Qcc1 , . . . , Qtck , Qcck)

20: procedure SubsetConvolution(P0, P1, . . . , P2k)

21: P (D̄, Ȳ ) :=
∑

D̄0t···tD̄2k=D̄
Ȳ0t···tȲ2k=Ȳ

P0(D̄0, Ȳ0)P1(D̄1, Ȳ1) · · ·P2k(D̄2k, Ȳ2k)

where perm(·, ·) is as in (1) and the sum is over all D = (Dt, Dtc1 , . . .), Y = (Yt, Ytc1 , . . .)
satisfying:

D = Dt t (Dtc1 tDcc1 t · · · tDtck tDcck)

Y = Yt t (Ytc1 t Ycc1 t · · · t Ytck t Ycck)
α(Tcj) \ α(t) ⊆ Dccj ⊆ α(Tcj) Dt ⊆ α(t) Dtcj ⊆ α(t) ∩ α(tcj)

χ(Tcj) \ χ(t) ⊆ Yccj ⊆ χ(Tcj) Yt ⊆ χ(t) Ytcj ⊆ χ(t) ∩ χ(tcj).

To prove this lemma we need some additional notation. We view a bijection π : D →
Y as a subset of D × Y , by identifying it with the set {(a, π(a)) : a ∈ D}. For a given
node t and for some D, Y satisfying (9), we denote

perm∗(D, Y ) :=
∑
π

∏
a∈D

Ma,π(a)
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where the sum is over all bijections π : D → Y such that

π ∩ (α(t)× χ(t)) = ∅.(11)

We now show a different recursion formula, which is closer to the one in Lemma 3.

Lemma 11. Following the same notation as above, the following equation holds:

perm(D, Y ) =
∑

Yt,Ycj ,Dt,Dcj

perm(Dt, Yt)
k∏
j=1

perm∗(Dcj , Ycj)(12)

where the sum is over all Yt, Ycj , Dt, Dcj such that

D = Dt t (Dc1 t · · · tDck)(13a)

Y = Yt t (Yc1 t · · · t Yck)(13b)

α(Tcj) \ α(t) ⊆ Dcj ⊆ α(Tcj) Dt ⊆ α(t)(13c)

χ(Tcj) \ χ(t) ⊆ Ycj ⊆ χ(Tcj) Yt ⊆ χ(t).(13d)

Proof. Let π : D → Y be a matching, which we view as a subset of D × Y . Note that

D = (D ∩ α(t)) t (D ∩ α(Tc1) \ α(t)) t · · · t (D ∩ α(Tck) \ α(t))

Y = (Y ∩ χ(t)) t (Y ∩ χ(Tc1) \ χ(t)) t · · · t (Y ∩ χ(Tck) \ χ(t))

Let’s decompose π in a similar way as above. Let πt be the submatching of π with
domain contained in D ∩ α(t) and range contained in Y ∩ χ(t). Equivalently, πt =
π ∩ (D ∩ α(t))× (Y ∩ χ(t)). Observe that if some a ∈ D ∩ α(t) is not in the domain of
πt, then a ∈ α(Tc), π(a) ∈ χ(Tc) for some child c. The reason is that by definition of tree
decomposition, there must be some node tp with π(a) ∈ χ(tp), a ∈ α(tp). However, the
assumption on a says that π(a) ∈ χ(Tt)\χ(t) and thus we must have tp ∈ Tc for some c.
Similarly, if some x ∈ Y ∩χ(t) is not in the range of πt, then x ∈ χ(Tc), π

−1(x) ∈ α(Tc)
for some child c. In the same way, we have the following

π(D ∩ α(Tc) \ α(t)) ⊆ D ∩ χ(Tc)

π−1(Y ∩ χ(Tc) \ χ(t)) ⊆ Y ∩ α(Tc)

The above paragraph implies that we can decompose

π = πt t πc1 t · · · t πck(14)

in such a way that πt ⊆ (D ∩ α(t)) × (Y ∩ χ(t)) and for each child c we have that
πc ⊆ (D ∩ α(Tc)) × (Y ∩ χ(Tc)) and πc satisfies (11). Moreover, it is easy to see that
such decomposition is unique.

Let Yt ⊆ Y ∩ χ(t) be the range of πt and let Yc ⊆ Y ∩ χ(Tc) be the range of πc.
Analogously, define Dt ⊆ D∩α(t) and Dc ⊆ D∩α(Tc) as the domains of πt, πc. Observe
that χ(Tc) \ χ(t) ⊆ Yc, as if x ∈ χ(Tc) \ χ(t) then (π−1(x), x) ∈ πc by construction, and
thus x ∈ Yc. Similarly, χ(Tc) \ χ(t) ⊆ Yc. Therefore, the equations (13) are satisfied.

Thus, for any matching π ⊆ D × Y there is a unique partition as in (14) such that
the ranges and domains Yt, Yc, Dt, Dc satisfy (13). On the other hand, assume that
Yt, Yc, Dt, Dc satisfy (13), and we are given some matchings πt, πc with these ranges
and domains and such that (11) holds. Then equations (13) tell us that we can merge
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them into a matching π with domain D and range Y . Condition (11) ensures we are
not overcounting, as it implies that decomposition (14) is unique. These remarks imply
equation (12). �

Remark 4.1. Let (TX , χ) be a tree decomposition of the column graph GX , and let
(T, α, χ) be the corresponding decomposition of the bipartite graph G given in Exam-
ple 2.3. In such case, the above lemma reduces to Lemma 3.

We now derive the recursion formula in Lemma 10, which follows from the above
lemma by using inclusion-exclusion.

Proof of Lemma 10. For a child c of t, we will show that

perm∗(Dc, Yc) =
∑

DtctDcc=Dc
YtctYcc=Yc

Dtc⊆α(t),Ytc⊆χ(t)

(−1)|Dtc|perm(Dtc, Ytc)perm(Dcc, Ycc).(15)

Combining equations (12) and (15) we obtain equation (10), concluding the proof.
Given a matching πc : Dc → Yc, let I(πc) := πc ∩ (α(t)× χ(t)) and let Iα(πc) ⊆ α(t),

Iχ(πc) ⊆ χ(t) be the domain and range of I(πc). For someDtc ⊆ Dc∩α(t), Ytc ⊆ Yc∩χ(t)
with |Dtc| = |Ytc|, let

perm∗(Dc, Yc;Dtc, Ytc) :=
∑

πc:Dc→Yc
Iα(πc)=Dtc
Iχ(πc)=Ytc

∏
a

Ma,πc(a).

Note that perm∗(Dc, Yc) = perm∗(Dc, Yc; ∅, ∅). Observe now that given matchings πtc :
Dtc → Ytc and πcc : Dc\Dtc → Yc\Ytc, we can merge them into a matching π∗c : Dc → Yc
that satisfies Iα(π∗c ) ⊇ Dtc, Iχ(π∗c ) ⊇ Ytc. Therefore, we have the following equation

perm(Dtc, Ytc) perm(Dc \Dtc, Yc \ Ytc) =
∑

D∗tc⊇Dtc
Y ∗tc⊇Ytc

perm∗(Dc, Yc;D
∗
tc, Y

∗
tc).

Based on the above formula, we can now find perm∗(Dc, Yc) using inclusion-exclusion
(or Möbius inversion):

perm∗(Dc, Yc; ∅, ∅) =
∑
i

∑
Dtc⊆Dc∩α(t)
Ytc⊆Yc∩χ(t)
|Dtc|=|Ytc|=i

(−1)iperm(Dtc, Ytc) perm(Dc \Dtc, Yc \ Ytc).

Rewriting the above equation leads to (15), as wanted. �

4.3. Complexity analysis. We just derived the recursion formula (10) which is used
in Algorithm 2. As in the proof of Lemma 4, this formula is a subset convolution and
thus it can be evaluated efficiently using the algorithm from [10]. The overall running
time of Algorithm 2 is stated now.

Theorem 12. Let M be a matrix with associated bipartite graph G. Let (T, α, χ) be a

bipartite decomposition of G of width ω. Then we can compute Perm(M) in Õ(n 2ω).
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Proof. The proof is very similar to the one of Theorem 5. For each node t ∈ T , we
will compute perm(D, Y ) for every pair D, Y that satisfies equation (9). We will show

that for each t we can compute perm(D, Y ) for all such D, Y in Õ((kt + 1)2ω), where
kt is the number of children of t. Observe that for the root node tr we will compute
Perm(M) = perm(α(Tr), χ(Tr)). This will conclude the proof.

The base case is when t is a leaf of T , so that Tt = {t}. Let M0 be the submatrix of M
with rows α(t) and columns χ(t). We need to obtain the permanent of all submatrices

of M0. As |α(t)|+ |χ(t)| ≤ ω, we can do this in Õ(2ω) using Lemma 2.
Assume now that t is an internal node of T with kt children and let D, Y that

satisfy (9). Then equation (10) tells us how to find perm(D, Y ). Similarly as in

Lemma 4, we can evaluate this formula in Õ(kt 2ω), assuming we know the values
of the terms in the recursion. Note that we already found perm(Dcc, Ycc) for all chil-

dren in the recursion. We can find perm(Dt, Yt) for all Dt, Yt in Õ(2ω) in the same
way as for the base case, and this includes the values perm(Dtc, Ytc). Then, it takes

Õ(2ω + kt 2ω) = Õ((kt + 1)2ω) to compute perm(D, Y ) for a all D, Y . �

Similarly as in Theorem 9, we can find an analogous algorithm for the determinant.

Theorem 13. Let M be a matrix with associated bipartite graph G. Let (T, α, χ) be a

bipartite decomposition of G of width ω. Then we can compute Det(M) in Õ(n2 +n 3ω).

Proof. We just need to follow the steps of Section 3.5. For instance, the recursion is

det(D, Y ) =
∑
D,Y

sgn(D)sgn(Y)det(Dt, Yt)
k∏
j=1

(−1)|Dtcj |det(Dtcj , Ytcj)det(Dccj , Yccj)

where Y = (Yt, Ytc, Ycc),D = (Dt, Dtc, Dcc). The complexity analysis is basically the

same as in the proof of Theorem 9. The base case can be done in Õ(2ω) using an

expansion by minors. The recursion can be evaluated in Õ(kt(n+ 3ω)) in a similar way
as in Lemma 8. �

5. Mixed discriminant and higher dimensions

The mixed discriminant of n matrices is a common generalization of the permanent
and the determinant. As such, it is also hard to compute in the general case. We show
now that the techniques presented earlier generalize to compute mixed discriminants.
Even more, we show that this method extends to compute similar functions in higher
dimensional tensors.

5.1. Mixed discriminant. Let M be a list of n matrices of size n× n. Equivalently,
we can think of M as a n × n × n array. We index the first coordinate with a set A,
and the second and third coordinates with sets X1, X2. The mixed discriminant of M
is given by

Disc(M) :=
∑
π1,π2

sgn(π1)sgn(π2)
∏
a∈A

Ma,π1(a),π2(a)
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where the sum is over all bijections π1 : A → X1 and π2 : A → X2, and sgn is
the parity function. For a ∈ A, let Ma denote the n × n matrix obtained by fixing
the first coordinate. Observe that if Ma = m for some matrix m and for all a ∈ A,
then Disc(M) = n! Det(m). In the case that Ma is diagonal for all a ∈ A, then
Disc(M) = Perm(D) where D is the matrix obtained by concatenating these diagonals.
Some of the properties of mixed discriminant are discussed in [4].

In the case of a n×n matrix, a bipartite graph was the natural structure to represent
its sparsity. Similarly, if we are given a sparse n× n× n array M , a natural structure
is a tripartite graph G, as follows. Let G be the graph on A ∪X1 ∪X2, where for each
nonzero entry Ma,x1,x2 we put a triangle {a, x1, x2}.

We rephrase the definition of a tree decomposition of a tripartite graph G. A tripartite
decomposition of G is a tuple (T, α, χ1, χ2), where T is a rooted tree, α : T → {0, 1}A,

χ1 : T → {0, 1}X1
and χ2 : T → {0, 1}X2

, that satisfies the following conditions.

i. The union of {α(t)}t∈T (resp. χ1, χ2) is the whole A (resp. X1, X2).
ii. For every triangle (a, x1, x2) in G there is a t with (a, x1, x2) ∈ (α× χ1 × χ2)(t).
iii. For every a ∈ A (resp. X1, X2) the set {t : a ∈ α(t)} is a subtree of T .

The width of the decomposition is the largest of |α(t)| + |χ1(t)| + |χ2(t)| among all
nodes t. Note that the above literals are consistent with the ones in Definition 2.1. In
particular, observe that the second condition does not impose additional constraints
due to Lemma 1.

We proceed to extend the previous results to the mixed discriminant. For some sets
D ⊆ A, Y 1 ⊆ X1 and Y 2 ⊆ X2 we denote

disc(D, Y 1, Y 2) :=
∑
π1,π2

sgn(π1)sgn(π2)
∏
a∈D

Mπ1(a)π2(a)(16)

where the sum is over all bijections π1 : D → Y 1 and π2 : D → Y 2. This only makes
sense if |D| = |Y 1| = |Y 2|, and otherwise we can define disc(D, Y 1, Y 2) = 0.

As for the case of the permanent, the dynamic program to compute Disc(M) has two
main steps: computing the mixed discriminant of all subarrays of M , and evaluating
some recursion formula. For the first step, it is easy to see that the approach from
Lemma 2 extends, as we show now.

Lemma 14. Let M0 be a n1 × n2 × n3 array. Let A0, X
1
0 , X

2
0 be its set of coordinates,

and let S = {(D, Y 1, Y 2) ⊆ A0 × X1
0 × X2

0 : |D| = |Y 1| = |Y 2|}. We can compute
disc(D, Y 1, Y 2) for all triples in S in O(n3

max 2n1+n2+n3), where nmax = max{n1, n2, n3}.

Proof. For i = 1, 2, . . . ,min{n1, n2, n3} let

Si := {(D, Y 1, Y 2) ⊆ A0 ×X1
0 ×X2

0 : |D| =
∣∣Y 1
∣∣ =

∣∣Y 2
∣∣ = i}.

We can find disc(D, Y 1, Y 2) for all (D, Y 1, Y 2) ∈ Si using the values of Si−1 as follows.
Let a0 be the first element in D, it is easy to see that

disc(D, Y 1, Y 2) =
∑

x1∈Y 1,x2∈Y 2

ε(x1, x2)Ma0,x1,x2 disc(D \ a0, Y
1 \ x1, Y

2 \ x2)
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where ε(x1, x2) is either +1 or −1. To be concrete, if we identify Y 1, Y 2 with the set
{1, . . . , i}, then ε(j1, j2) = (−1)j1+j2 . Thus, for each triple (D, Y 1, Y 2) we just need to
loop over n2n3 terms, and for each we need O(nmax) to find D \ a0, Y

1 \x1, Y
2 \x2. �

The recursion formula we need to evaluate is given in the following lemma.

Lemma 15. Let M be a list of n matrices of size n×n, with associated tripartite graph
G. Let (T, α, χ1, χ2) be a tripartite decomposition of G. Let t be an internal node of T ,
let Tt ⊆ T denote the subtree rooted in t, and let D, Y 1, Y 2 be such that

α(Tt) \ α(t) ⊆ D ⊆ α(Tt), |D| =
∣∣Y 1
∣∣ =

∣∣Y 2
∣∣(17a)

χ1(Tt) \ χ1(t) ⊆ Y 1 ⊆ χ1(Tt), χ2(Tt) \ χ2(t) ⊆ Y 2 ⊆ χ2(Tt)(17b)

Let c1, . . . , ck be the children of t. Then

disc(D, Y 1, Y 2) =
∑
D,Y1,Y2

sgn(Y1)sgn(Y2)disc(Dt, Y
1
t , Y

2
t )

k∏
j=1

(−1)|Dtcj |disc(Dtcj , Y
1
tcj
, Y 2

tcj
)disc(Dccj , Y

1
ccj
, Y 2

ccj
)

(18)

where disc(·, ·, ·) is as in (16), sgn(·, ·) as in Definition 3.1, and the sum is over all
D = (Dt, Dtc1 , . . .), Y1 = (Y 1

t , Y
1
tc1
, . . .), Y2 = (Y 2

t , Y
2
tc1
, . . .) satisfying:

Z = Zt t (Ztc1 t Zcc1 t · · · t Ztck t Zcck) where Z ∈ {D, Y 1, Y 2}
ζ(Tcj) \ ζ(t) ⊆ Zccj ⊆ ζ(Tcj) Zt ⊆ ζ(t) Ztcj ⊆ ζ(t) ∩ ζ(tcj) where ζ ∈ {α, χ1, χ2}.

Proof. Let π1 : D → Y 1 and π2 : D → Y 2 be matchings. Observe that Lemma 6 says
that sgn(π1) will factor in the tree decomposition, leading to the term sgn(D)sgn(Y1).
Similarly, sgn(π2) leads to the term sgn(D)sgn(Y2) (note that sgn(D) cancels). There-
fore, for the rest of the proof we can ignore all sign factors. We can think of the pair
(π1, π2) as a subset of D×Y 1×Y 2. In a similar way as we did in the proof of Lemma 11,
there is a unique decomposition of (π1, π2) of the form

(π1, π2) = (π1
t , π

2
t ) t (π1

c1
, π2

c1
) t · · · t (π1

ck
, π2

ck
)(19)

where (π1
t , π

2
t ) ⊆ (α × χ1 × χ2)(t), and for each child c we have that (π1

c , π
2
c ) ⊆ (α ×

χ1 × χ2)(Tc) and

(π1
c , π

2
c ) ∩ (α× χ1 × χ2)(t) = ∅.(20)

Note that by construction π1
t , π

2
t have the same domain. Let Dt denote this domain,

and let Y 1
t , Y

2
t denote the respective ranges. Similarly, let Dc, Y

1
c , Y

2
c be the domain

and ranges of π1
c , π

2
c . Then we have

Z = Zt t (Zc1 t · · · t Zck) where Z ∈ {D, Y 1, Y 2}(21a)

ζ(Tc) \ ζ(t) ⊆ Zc ⊆ ζ(Tc) Zt ⊆ ζ(t) where ζ ∈ {α, χ1, χ2}(21b)

Thus, for matchings (π1, π2) ∈ D×Y 1×Y 2 there is a unique partition as in (19) and
the corresponding domains and ranges satisfy (21). On the other hand, assume that
Dt, Dc, Y

1
t , Y

1
c , Y

2
t , Y

2
c satisfy (13), and we are given some matchings π1

t , π
1
c , π

2
t , π

2
c with
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these domains and ranges and such that (π1
c , π

2
c ) satisfy (20). Then equations (21) tell

us that we can merge them into matchings π1, π2 with domain D and ranges Y 1, Y 2.
Condition (20) ensures we are not overcounting. Then we have

disc(D, Y 1, Y 2) =
∑

Dt,Dc,Y 1
t ,Y

1
c ,Y

2
t ,Y

2
c

disc(Dt, Y
1
t , Y

2
t )

k∏
j=1

disc∗(Dcj , Y
1
cj
, Y 2

cj
)(22)

where the sum is over all triples as in (21), and where disc∗(Dc, Y
1
c , Y

2
c ) is similar to

disc(Dc, Y
1
c , Y

2
c ), except that it only uses matchings (π1

c , π
2
c ) satisfying (20).

Finally, we can obtain disc∗(Dc, Y
1
c , Y

2
c ) using inclusion-exclusion in a similar way as

in the proof of Lemma 10:

disc∗(Dc, Y
1
c , Y

2
c ) =

∑
DtctDcc=Dc, Dtc⊆α(t)
Y 1
tctY 1

cc=Y
1
c , Y

1
tc⊆χ1(t)

Y 2
tctY 2

cc=Y
2
c , Y

2
tc⊆χ2(t)

(−1)|Dtc|disc(Dtc, Y
1
tc, Y

2
tc)disc(Dcc, Y

1
cc, Y

2
cc).

(23)

Combining equations (22) and (23), we obtain equation (18). �

We proceed to the complexity analysis.

Theorem 16. Let M be a list of matrices with associated tripartite graph G. Let
(T, α, χ1, χ2) be a tripartite decomposition of G of width ω. Then we can compute

Disc(M) in Õ(n2 + n 3ω).

Proof. The proof is very similar to the one of Theorem 12. For each node t ∈ T , we
compute disc(D, Y 1, Y 2) for every triple D, Y 1, Y 2 that satisfies equation (17). We will

show that for each t we can get disc(D, Y 1, Y 2) for all such D, Y 1, Y 2 in Õ((kt + 1)(n+
3ω)), where kt is the number of children of t.

The base case is when t is a leaf of T . Let M0 be the subarray of M given by indices
(α(t), χ1(t), χ2(t)). Then we need to find the mixed discriminant of all subarrays of M0.

We can do this in Õ(2ω) using of Lemma 14.
Assume now that t is an internal node of T with kt children and let D, Y 1, Y 2 that

satisfy (17). Then equation (18) tells us how to find disc(D, Y 1, Y 2). Similarly as in

Lemma 8, we can evaluate this formula in Õ(kt(n + 3ω)), assuming we know all terms
in the recursion. We already found disc(Dcc, Y

1
cc, Y

2
cc) for all children in the recursion,

and we can find disc(Dt, Y
1
t , Y

2
t ) for all Dt, Y

1
t , Y

2
t in Õ(2ω) in the same way as for the

base case. This leads to a bound of Õ((kt + 1)(n+ 3ω)) to compute disc(D, Y 1, Y 2) for
all D, Y 1, Y 2. �

5.2. Higher dimensions. It is easy to see that our methods extend to compute gen-
eralizations of the permanent and determinant in higher dimensions. We consider a
square (d+1)-dimensional array (or tensor) M of length n, i.e., of size n×· · ·×n (d+1
times). Here we assume d to be constant. Let’s index the first coordinate of M with
a set A, and the following coordinates with sets X1, . . . , Xd. Consider a function F of
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the form

F (M) =
∑

π1,...,πd

∏
a∈A

ε1(π1) · · · εd(πd)Ma,π1(a),...,πd(a)(24)

where the sum is over all bijections πl : A→ X l, and where εl(πl) is either 1 or sgn(πl).
Let’s consider two special cases of equation (24). The simplest case is when εl(πl) = 1

for all l. We refer to such function as the (d+1)-dimensional permanent and we denote
it as Perm(M) [18]. Some applications of this permanent are shown in [2, 34].

Consider now the case when d+1 is even and εl(πl) = sgn(πl) for all l. This is perhaps
the simplest generalization of the determinant, and it is usually referred to as the first
Cayley hyperdeterminant [14]. Some applications of the hyperdeterminant are shown
in [5, 25]. As opposed to the 2-dimensional case, computing the hyperdeterminant is
#P-hard [22].

We now proceed to extend our decomposition methods to this setting. We asso-
ciate a (d + 1)-partite graph G where for each nonzero entry of M we put a (d + 1)-
clique in the respective coordinates. A tree decomposition of G can be seen as a tuple
(T, α, χ1, . . . , χd). The width ω of the decomposition is the largest of |α(t)|+ |χ1(t)|+
· · ·+

∣∣χd(t)∣∣ among all nodes t.

As before, for some sets D ⊆ A, Y l ⊆ X l, we consider the function

f(D, Y 1, . . . , Y d) :=
∑

π1,...,πd

∏
a∈A

ε1(π1) · · · εd(πd)Ma,π1(a),...,πd(a)(25)

where the sum is over all bijections πl : D → Y l.
There are two steps in order to generalize our results to this setting: evaluate f in

all subarrays, and evaluate the recursion formula. For the former, the approach from
Lemma 2 (and Lemma 14) has a simple generalization. Indeed, Barvinok shows this for
the case of the hyperdeterminant [5]. The proof is the same for an arbitrary function
F as in (24). Thus, we have the following.

Proposition 17 ( [5]). Let M0 be a (d + 1)-dimensional array of size n0 × · · · × nd,
and let f be as in (25). Let A0, X

1
0 , . . . , X

d
0 be its set of coordinates, and let

S := {(D, Y 1, . . . , Y d) ⊆ A0 ×X1
0 × · · · ×Xd

0 : |D| =
∣∣Y 1
∣∣ = · · · =

∣∣Y d
∣∣}

We can compute f(D, Y 1, . . . , Y d) for all tuples in S in O(nd+1
max 2n0+···+nd), where nmax =

max{n0, . . . , nd}.

Repeating the same analysis as in the proof of Lemma 15, the recursion formula is:

f(D, Y 1, . . . , Y d) =
∑

D,Y1,...,Yd
δ1(D,Y1) · · · δd(D,Yd)f(Dt, Y

1
t . . . , Y

d
t )

k∏
j=1

(−1)|Dtcj |f(Dtcj , Y
1
tcj
, . . . , Y d

tcj
)f(Dccj , Y

1
ccj
, . . . , Y d

ccj
)

(26)
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where δl(D,Y l) is either 1 or sgn(D)sgn(Y l) depending on εl, and the sum is over all
tuples D,Y1, . . . ,Yd such that

Z = Zt t (Ztc1 t Zcc1 t · · · t Ztck t Zcck) where Z ∈ {D, Y 1, . . . , Y d}
ζ(Tcj) \ ζ(t) ⊆ Zccj ⊆ ζ(Tcj) Zt ⊆ ζ(t) Ztcj ⊆ ζ(t) ∩ ζ(tcj) where ζ ∈ {α, χ1, . . . , χd}

The complexity of the decomposition algorithm is as follows.

Theorem 18. Let M be a square (d + 1)-dimensional array of length n, with (d +
1)-partite graph G. Let F be a generalized determinant/permanent as in (24). Let
(T, α, χ1, . . . , χd) be a tree decomposition of G of width ω. Then we can compute F (M)

in Õ(n2 + n 3ω).

Proof. The proof is very similar to past ones. For each node t, we compute f(D, Y 1, . . . , Y d)

for all valid tuples. We show that for each t we can do this in Õ((kt+1)(n+3ω)), where
kt is the number of children of t.

The base case, i.e., leaf nodes, reduces to Proposition 17, leading to a bound of Õ(2ω).
For an internal node t, equation (26) tells us how to find f(D, Y 1, . . . , Y d). Similarly

as in Lemma 8, we can evaluate this formula in O(kt(n+ 3ω)). �

For the special case of the permanent, we can give a better bound.

Theorem 19. Let M be a square (d+ 1)-dimensional array of length n, with (d+ 1)-
partite graph G. Let (T, α, χ1, . . . , χd) be a tree decomposition of G of width ω. Then

we can compute Perm(M) in Õ(n 2ω).

Proof. If there are no sign factors we can follow the procedure of Lemma 4 for the

recursion, leading to a bound of Õ((kt + 1) 2ω) per node. �

6. Mixed volume of zonotopes

The mixed volume MVol of n convex bodies K1, . . . , Kn in Rn is the unique real
function that satisfies the following properties.

• MVol is multilinear and symmetric in its arguments.
• MVol(K, . . . ,K) = n! vol(K), where vol denotes the volume.

Alternatively, it can be shown that the function f(λ) := vol(
∑

i λiKi) for λi ≥ 0, is a
homogeneous polynomial, and MVol is the coefficient of λ1 · · ·λn. For more information
about mixed volumes, see e.g., [30]. We focus here in the case that all bodies Ki are
zonotopes, which are a special class of polytopes.

6.1. Mixed volumes and permanents.

Definition 6.1. A zonotope z is a polytope that is a Minkowski sum of line segments,
i.e., it has the form

z = [0, 1]z1 + [0, 1]z2 + · · ·+ [0, 1]zm = {r1z1 + · · ·+ rmzm : 0 ≤ ri ≤ 1}
where zi ∈ Rn are vectors. In case z1, . . . , zm are linearly independent, we say that z is
a parallelotope.

The mixed volume of zonotopes has a simple description as follows.
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Proposition 20. Let zi =
∑

j∈Ji [0, 1]zij be a zonotope, for i = 1, . . . , n. Then

MVol(z1, . . . , zn) =
∑

j1∈J1,...,jn∈Jn

|Det(z1
j1
, z2
j2
, . . . , znjn)|(27)

Proof. The multilinearity of the mixed volume implies

MVol(z1, . . . , zn) =
∑

j1∈J1,...,jn∈Jn

MVol([0, 1]z1
j1
, . . . , [0, 1]znjn).

Thus, we just need to argue that

MVol([0, 1]z1
j1
, . . . , [0, 1]znjn) = |Det(z1

j1
, . . . , znjn)|

which follows by noting that
∑

i[0, 1]λiz
i
ji

is a parallelepiped with sides λiz
i
ji

, and thus
its volume is given by the absolute volume of the determinant. �

The mixed volume of n parallelotopes reduces to a permanent when their main axes
are aligned, as shown now.

Corollary 21. Let u1, . . . , un ∈ Rn and let M ∈ Rn×n
≥0 be a nonnegative matrix. Let

zi =
∑

j[0, 1]Mi,juj be a zonotope. Then

MVol(z1, . . . , zn) = |Det(u1, . . . , un)| Perm(M).

Proof. We just need to use equation (27), and cancel out all terms that contain a re-
peated vector uj, as the determinant is zero. The remaining terms have |Det(u1, . . . , un)|
as a factor and we get the desired formula. �

6.2. Graph representation. To use a decomposition method for mixed volumes we
need to have a graph description of the zonotopes. We consider now two different
graphs that can be associated to a set of zonotopes, and more generally to polytopes.
The first one is a bipartite graph that can be thought of as the analogue of the bipartite
graph of a matrix. The second one has to do with the sparsity in the standard basis
representation and it is a more intuitive notion for general polytopes.

Definition 6.2. Let Q be a set of n polytopes in Rn. Let U denote the set of all vectors
(up to scaling) that are parallel to some edge in Q. We refer to U as the edge directions
of Q. The edge graph G(Q) is a bipartite graph with vertices Q ∪ U and edges (q, u) if
q contains an edge parallel to u.

Definition 6.3. Let Q be a set of n polytopes in Rn. Let X = {x1, . . . , xn} denote the
coordinates. The coordinates graph GX(Q) has X as vertex set, and for each polytope
q ∈ Q we form a clique in all its non constant components. Note that if q =

∑
j[0, 1]zj

is a zonotope, we form a clique in the nonzero coordinates of
∑

j zj.

Remark 6.1. Note that the edge graph G(Q) is invariant under affine transformations
of Q, whereas the coordinates graph GX(Q) is not.



28 DIEGO CIFUENTES AND PABLO A. PARRILO

Example 6.1 (Zonotopes of bounded treewidth). Consider the following zonotopes:

z1 = [0, 1](a1en + e1) + [0, 1]e1(28a)

zi = [0, 1](aien + ei − ei−1) + [0, 1](ei − ei−1) for i = 2, . . . , n− 1(28b)

zn = [0, 1](anen − en−1)(28c)

where {ei}i is the canonical basis and ai ∈ Z are some integers.
Note that the segments of the above zonotopes are all nonparallel (there are 2n + 1

edge directions). This means that the edge graph G has n connected components, one
for each of the zonotopes, and each of component is either a 2-path or a 1-path. Thus,
G has treewidth 1. As for the coordinates graph GX , it is the union of the triangles:
Xi := {xi, xi+1, xn}. It is easy to see that GX has treewidth 2.

The following example shows the relationship between these graphs and the matrix
graphs we used before.

Example 6.2 (Relationship with matrix graphs). Let zi =
∑

j[0, 1]Mi,juj be zonotopes
as in Corollary 21. The edge graph G of the zonotopes has vertices Z ∪ U where
Z = {zi}i and U = {uj}j, and it has an edge (zi, uj) whenever Mi,j 6= 0. If we replace
Z with the row set and U with the column set, this is precisely the bipartite graph of
matrix M .

On the other hand, the coordinates graph GX depends on the sparsity structure of
vectors U . Assume now that U = {ej}j is the canonical basis. Then GX has an edge
(xj, xk) whenever there is some zi with Mi,j 6= 0 and Mi,k 6= 0. This corresponds to the
column graph of M .

Because of the above example it is expected that the tree decomposition methods
derived for the permanent should allow to compute mixed volumes of certain families
of zonotopes. Indeed, we show now if there are few edge directions and the edge graph
G has bounded treewidth then the mixed volume can be computed efficiently.

Theorem 22. Let Z be a set of n zonotopes in Rn. Let U be the set of edge directions of
Z, and assume that d := |U | − n is constant. Let G denote the edge graph of Z. Given

a tree decomposition of G of width ω, we can compute MVol(Z) in Õ(nd+3 + nd+1 2ω).

Proof. If |U | < n it follows from (27) that MVol(Z) = 0. If |U | = n, then Corollary 21
tells us that we just need to compute the determinant of the ui’s and the permanent
of some matrix M . We can find the determinant in O(n3) with linear algebra. For the
permanent, as the edge graph G corresponds to the bipartite graph of M , we can use

Theorem 12. Thus, we can find this permanent in Õ(n 2ω).
If |U | > n, let W ⊆ U of size n. For each z ∈ Z assume z =

∑
u∈U [0, 1]cuu for

some scalars cu. Let zW =
∑

u∈W [0, 1]cuu, and let ZW = {zW : z ∈ Z}. It follows from
equation (27) that

MVol(Z) =
∑

W⊆U, |W |=n

MVol(ZW ).

For each such W the associated graph is a subgraph of G, so we can compute MVol(ZW )

in Õ(n3 + n 2ω). As there are
(
n+d
n

)
= O(nd) possible W , the result follows. �
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Example 6.3 (Zonotopes with few edge directions). Consider the following zonotopes:

zi = [0, 1]aiei + [0, 1]bie for i = 1, . . . , n

where {ei}i is the canonical basis, e :=
∑

j ej = (1, . . . , 1) and ai, bi ∈ Z are some
integers. Observe that there are n+ 1 edge directions: e1, . . . , en, e. Also note the that
the edge graph G is a tree, consisting of pairs (zi, ei) and (zi, e). Therefore, Theorem 22
says that can compute the mixed volume of these polytopes in polynomial time.

As an application, recall that Bernstein’s Theorem [9] gives a correspondence between
mixed volumes and the roots of systems of polynomials. This allows us to conclude that
we can efficiently count the number of solutions of the following system of equations:

0 = ci,1 + ci,2 x
ai
i + ci,3

∏
j

xbij + ci,4 x
ai
i

∏
j

xbij for i = 1, . . . , n.

6.3. Hardness result. Theorem 22 shows that it is possible to exploit tree decompo-
sitions for mixed volume computations. However, it restricts the zonotopes to have a
small number of edge directions. This is a strong requirement which is not satisfied
in many cases (such as in Example 6.1). Unfortunately, we will see that we need this
condition. We remark that the same condition appears in discrete optimization, where
it allows to derive (strongly) polynomial time algorithms for certain discrete convex
optimization problems [28].

We show now that computing the mixed volume of the zonotopes in Example 6.1 is
#P-hard. This shows that mixed volumes of zonotopes continue to be hard, even if
both G and GX have bounded treewidth. We use a similar reduction as in [19], where
they prove that the volume of zonotopes is #P-hard.

Lemma 23. The determinant of the following n× n matrix is s1 + s2 + · · ·+ sn.

M =


1 −1 0 0 ··· 0 0
0 1 −1 0 ··· 0 0
0 0 1 −1 ··· 0 0
...

...
...

...
...

...
...

0 0 0 0 ··· −1 0
0 0 0 0 ··· 1 −1
s1 s2 s3 s4 ··· sn−1 sn


Proof. If we perform Gaussian elimination we end up with an upper triangular matrix
where the diagonal is: Mi,i = 1 for i < n and Mn,n = s1 + · · ·+ sn. �

Proposition 24. The following problem is #P-hard. Given integers a1, . . . , an, com-
pute the mixed volume of the n zonotopes of equations (28).

Proof. We consider the #P-complete problem Subset-Sum: given a set of integers A,
determine the number of subsets S ⊆ A with sum zero. Let k = n−1, A = {a1, . . . , ak}
and let an = δ be a parameter. We will show that the solution to the Subset-Sum
problem is given by

1

2
MVol(z1, . . . , znδ=−1)−MVol(z1, . . . , znδ=0) +

1

2
MVol(z1, . . . , znδ=1).(29)
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Let’s evaluate equation (27). Consider the following n× (2n− 1) matrix.

Mδ =


1 1 −1 −1 0 0 ··· 0 0 0 0 0
0 0 1 1 −1 −1 ··· 0 0 0 0 0
0 0 0 0 1 1 ··· 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 ··· −1 −1 0 0 0
0 0 0 0 0 0 ··· 1 1 −1 −1 0
0 0 0 0 0 0 ··· 0 0 1 1 −1
a1 0 a2 0 a3 0 ··· ak−1 0 ak 0 δ


Observe that columns 2i − 1 and 2i of Mδ correspond to zi, and the last column
corresponds to znδ . Then formula (27) considers submatrices of Mδ that use columns
j1, . . . , jn where ji ∈ {2i − 1, 2i} for i = 1, . . . , k and jn = 2n − 1. Note now that
for any subset S ⊆ A, there is a natural submatrix MS

δ to consider: if ai ∈ S then
ji = 2i− 1 and otherwise ji = 2i. This correspondence is a bijection. Observe also that
each submatrix MS

δ has the form of Lemma 23. Thus, we have the following equation:

MVol(z1, . . . , znδ ) =
∑
S⊆A

∣∣∣∣∣δ +
∑
ai∈S

ai

∣∣∣∣∣ .
Finally, observe that for any integer s we have

1

2
|(−1) + s| − |s| +

1

2
|1 + s| =

{
1 if s = 0

0 otherwise

The last two equations imply that (29) indeed counts the subsets S with sum zero. �
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