A task-based parallelism and vectorized approach to 3D
Method of Characteristics (MOC) reactor simulation for
high performance computing architectures

John R. Tramm®®*, Geoffrey Gunow®, Tim He?, Kord S. Smith®, Benoit
Forget”, Andrew R. Siegel®

@ Argonne National Laboratory, Center for Exascale Simulation of Advanced Reactors
9700 S Cass Ave, Argonne, IL 60439
b Massachusetts Institute of Technology, Department of Nuclear Science & Engineering
77 Massachusetts Avenue, 24-107, Cambridge, MA 02139

Abstract

In this study we present and analyze a formulation of the 3D Method of
Characteristics (MOC) technique applied to the simulation of full core nuclear
reactors. Key features of the algorithm include a task-based parallelism
model that allows independent MOC tracks to be assigned to threads dy-
namically, ensuring load balancing, and a wide vectorizable inner loop that
takes advantage of modern SIMD computer architectures. The algorithm
is implemented in a set of highly optimized proxy applications in order to
investigate its performance characteristics on CPU, GPU, and Intel Xeon
Phi architectures. Speed, power, and hardware cost efficiencies are compared.
Additionally, performance bottlenecks are identified for each architecture in
order to determine the prospects for continued scalability of the algorithm on
next generation HPC architectures.

Keywords:
Method of Characteristics, Neutron Transport, Reactor Simulation, High
Performance Computing

*Corresponding author. Tel.: +1 (847) 421-1534.
Email addresses: jtramm@mcs.anl.gov (John R. Tramm), geogunow@mit .edu
(Geoffrey Gunow), shuohe@ncs.anl.gov (Tim He), kord@mit.edu (Kord S. Smith),
bforget@mit.edu (Benoit Forget), siegela@mcs.anl.gov (Andrew R. Siegel)

Preprint submitted to Computer Physics Communications January 26, 2017

1. Introduction

A central goal in computational nuclear engineering is the high fidelity
simulation of a full nuclear reactor core. Full core simulations can potentially
reduce design and construction costs, increase reactor performance and safety,
and reduce the amount of nuclear waste generated. To date, however, the time
to solution for a full core high-fidelity deterministic 3D calculation has ren-
dered such calculations infeasible, even using leadership class supercomputers.
However, with High Performance Computing (HPC) architectures evolving
rapidly towards exascale class supercomputers, the computational horsepower
required to accomplish full 3D deterministic reactor simulations may soon
be available. One simulation approach, the 3D Method of Characteristics
(MOC) technique, has the potential for fast and efficient performance on a
variety of next generation HPC systems. While 2D MOC has long been used
in reactor design and engineering as a medium-fidelity simulation method for
smaller problems, the transition to 3D has only begun recently, and to our
knowledge no 3D production codes have been developed [1, 2, 3].

Next generation supercomputer designs, such as GPUs and the Intel Phi,
rely on a number of novel accelerator architectures with characteristics dis-
tinct from traditional CPUs [4]. This increased diversity of computational
architectures highlights the need to gain a deep understanding of performance
before committing to a specific implementation strategy, parallel programming
language, target architecture, or parallelization scheme. Investment in a full
scale 3D MOC production code must be done with confidence that the end
product code will perform efficiently on a variety of exascale computing archi-
tectures. This imperative leads us to develop a set of “mini-apps”, specifically
SimpleMOC (previously presented by Gunow et al.[5]) and Simple MOC-kernel,
which mimic the computational performance of a full 3D MOC solver while ab-
stracting away elements necessary to achieve full solutions — allowing for much
easier performance analysis on a wide variety of hardware and architecture
simulators.

In the present work, we present a brief overview of our formulation of the
3D MOC algorithm, as implemented in our mini-apps, and a discussion of
how the algorithm is constructed to optimally map onto a variety of HPC
architectures. Then, we compare performance data for CPU, GPU, and Intel
Phi architectures, and analyze performance bottlenecks on each architecture.
Power profiles of our mini-apps on several architectures are also presented
in order to analyze power efficiency. In addition, performance is normalized

against node hardware cost data to determine the cost efficiency of multiple
architectures. Finally, we use this data to estimate the likelihood of continued
scalability for the 3D MOC simulation algorithm on next generation HPC
and exascale architectures.

1.1. Reactor Simulation via the Neutron Transport Equation

The goal of the simulation of a nuclear reactor is to answer several questions
about the reactor in order to both make revisions to its initial design and to
better predict its operational behavior. Two of the most important items to
understand are: 1) the eigenvalue, or criticality, of the reactor, and 2) its power
distribution. The eigenvalue determines the ratio of neutron populations
between successive generations within the reactor. An eigenvalue of 1.0
indicates that the reactor is “critical” and therefore capable of operating at
steady state in a controllable fashion. The power distribution within the
reactor is also important to understand, as this governs the thermal-hydraulic
design considerations as well as the speed at which the nuclear fuel burns up.
n

The eigenvalue and power distribution are computed by numerically
estimating the solution of the Boltzmann Equation, represented for a steady-
state system as:

Q- V(7 O, E) + 547, E)p(7, QL E) =
+/ dE’/ AV (F, Y — QB — B (7, E')
0 47

(7, E)
47T]€eff

/ JEVS,(F, B) / i B (1)
0 47

Equation 1 defines the neutron transport equation where v is the angular
neutron flux, O is the angular direction vector, 7 is the spatial position
vector, F is the neutron energy, ¥; is the total neutron cross-section, ¥, is
the scattering neutron cross-section, ¢ is the fission neutron cross-section,
X is the energy spectrum for neutrons born from fission, v is the average
number of neutrons born per fission, and ks is the eigenvalue representing
the effective neutron multiplication factor. If the right hand side of Equation 1
is compressed into new total neutron source term Q(7, Q, E), the form given
in Equation 2 is reached.

streamirig term absorthiSn term total neutron source term
Q- Vo, Q,) + 57 By, 0 E) = Q(F, 9, E) (2)

3

An important aspect of these equations is the concept of a neutron cross-
section. This value represents the probability of interaction between a neutron
travelling at a certain speed (i.e., neutron energy F) and a target nucleus
(i.e., the material through which the neutron is travelling). A neutron cross-
section cannot be calculated by physics alone — rather, a combination of
empirical data and quantum mechanical modelling must be employed in order
to generate libraries of pointwise data for each target isotope of interest.

There exist a number of methodologies to solve the neutron transport
equation for a particular reactor geometry and material composition. Each
methodology involves a different set of assumptions that can be applied to
Equation 1 in order to simplify it into a form that can be solved numerically.
The Method of Characteristics (MOC) approach solves the equation along
characteristic lines, thus discretizing the angular dependency of the equation
into a set of linear tracks. In this manner, Equation 2 can be rewritten for a
specific segment length s at a specific angle O through a constant cross-section
region of the reactor geometry as:

di‘iws,ﬁ,E) + (s, E)Y(s, 9, E) = Q(s, 0, E) (3)

An analytical solution to this characteristic equation can be achieved with
the use of an integrating factor:

S
(s, Q, E) = (ry, Q, E)e™ Jo ds"%(s.) +/ ds"Q(s", Q, E)e” Jor ds'Se(s',E)
0
(4)
where 1 is a reference location.

Similar to many other solution approaches to the Boltzmann neutron
transport equation, the MOC approach also uses a “multi-group” approx-
imation in order to discretize the continuous energy spectrum of neutrons
travelling through the reactor into fixed set of energy groups G, where each
group g € G has its own specific cross section parameters. With these key
assumptions, the multi-group MOC form of the neutron transport equation
can be written as:

Wg(s,) = 0y (75, e o 1l 4 / ds"Q, (", (e S dsDu) (5
0

Note that there are a number of additional assumptions and minutiae not
fully expressed in Equation 5, but are fully documented by Gunow et al.[5]
and Boyd et al.[6].

1.2. 3D MOC Basics

Two-dimensional MOC calculations have long been used in reactor design
and engineering as a medium-fidelity simulation method. While 2D assembly
and core transport calculations have “reached industrial maturity” [7], they
suffer from a loss of accuracy when compared with 3D models. For high fidelity
modeling, the third dimension is necessary to correctly predict neutron leakage
as well as axial power distributions in heterogeneous reactors. While MOC is
easily extensible to three dimensions conceptually, the implementation of such
an algorithm is difficult in practice as the computational requirements can be
overwhelming [1]. To this end, an alternative approach has been developed
to extend MOC into 3D.

The MOC solution to the neutron transport equation involves discretizing
the equation along a set of characteristic tracks crossing the geometry of the
reactor. Fach specific track represents an angular neutron flux. At the outset
of the calculation, the tracks are laid down over the reactor geometry and then
subdivided into a series of segments, as shown in Figure 1, which correspond
to the individual geometric regions (i.e., fuel, clad, water, etc.) along the
characteristic track. This 2D track and segment information is generated for
many different angles and starting points through the reactor at the outset of
the computation. Extension to three dimensions is in principle possible by
extending the same process to include all the tracking and segment information
for the full 3D geometry, but the memory cost would be prohibitive. Our
formulation of the 3D MOC algorithm instead uses an extruded geometry in
the axial direction, which saves memory by storing only the explicit 2D track
and segment information, and then performing on-the-fly ray tracing along
stacked z-ray tracks (at many different angles) that extend the computation
into the 3rd dimension, as depicted in Figure 2. This method significantly
reduces the track information memory requirements for 3D MOC at only a
modest computational cost, thanks in large part to the nearly homogeneous
nature of reactor geometry in the axial direction.

1.3. Method of Characteristics with Quadratic Source Regions

The core idea behind the MOC algorithm is that along a characteristic
track, the complicated multi-group neutron transport equation can be reduced

Water Clad Fuel Clad Water
Segments —(F

Track

Figure 1: A single MOC track through a simplified reactor pin cell 2D geometry.
This example shows the relationship between a constructive solid geometry, a
track, and the segments which compose the track. An “intersection” is a further
subdivision of a segment representing a single energy group of the flux.

to an ordinary differential equation that can be solved analytically [6]. This
implies that the angular neutron flux ¥ can be easily computed along chosen
directions. The scalar flux ¢ of each region, which is necessary to compute
reaction rates, can be computed by adding the contributions of each angular
flux track that crosses through the region. Mathematically this can be
expressed as

¢ = 4% > wilit (6)

where the index k refers to the track number, wy, refers to the weight of track
k, I refers to the segment length of track k that passes through the region,
Yy, refers to the average angular flux of track k through the region, and V'
refers to the volume of the scalar flux region. The weights w;, are dependent
on the specific azimuthal quadrature selection, and correspond the angular
space “owned” by the track. These weights can be slightly different between

N

Fine Axial
Regions

A

Figure 2: Cutaway of a simplified reactor pin cell 3D geometry. This example
shows how our algorithm uses an explicit 2D tracking file and performs on-the-fly
ray tracing in the axial direction.

tracks due to cyclical tracking requirements affecting the particulars of the
track laydown routine. The particulars of the weighting scheme are described
in depth by Shaner et al.[8] as well as Boyd et al.[6].

Therefore, the core function of an MOC simulation code is the numerical
sweeping of discrete angular flux tracks across the reactor geometry. In this
process, we must perform several computations for each geometric segment
within the track, namely the attenuation of the angular flux 1 for a particular
energy group along a track and the contribution of that angular flux to
the scalar flux ¢. After these calculations are completed, a new neutron
source is calculated from the scalar flux tallies. As described by Gunow et
al.[5], the neutron source is approximated as quadratic in the axial direction
for each constant cross-section region. Taking advantage of the fact that
large coarse axial regions can be approximated as having constant cross-
sections, each coarse axial region is split into several fine axial regions. The
source contribution in each fine axial region can be directly formed on-the-fly

during the transport sweeps with the source magnitude calculated by fitting
a quadratic function to the sources neighboring fine axial regions. To simplify
the process and lessen computational requirements, the fitting routine only
involves the fine axial region being traversed and the neighboring fine axial
regions, as these three points can be used to define a quadratic function that
can be directly computed without any fitting routine.

With the implementation of higher order axial sources, the total number of
intersections necessary to converge the solution are greatly reduced. However,
the number of floating point operations (FLOPS) per intersection greatly
increases. Overall, usage of the quadratic source approximation is expected
to result in a significant net decrease in program runtime [5]. To analyze the
computational performance, we first need to consider the MOC equations over
the constant cross-section fine axial regions across which the equations are
applied. We are primarily concerned with two computations: the attenuation
of the angular flux ¢ for a particular energy group along a track and the
contribution of that angular flux to the scalar flux ¢ of the fine axial region. To
determine the angular flux attenuation, v is defined as a function of distance
s traversed along the track in the fine axial region with total cross-section ¥;.
The normal approximation of a spatially constant source ¢y leads to simple
exponential attenuation given by Equation 7.

Ww(s) = Y(0)e > + g—i (1—e) (7)

In contrast, if a quadratic approximation of the neutron source is intro-
duced, defined by Equation 8

q(s) =q+qs+ G25° (8)

where s is the distance traveled along a characteristic track, and ¢; and
go are the first and second order spatial coefficients of the scalar flux in
the z-axis direction. The quadratic approximation makes the angular flux
attenuation across each track much more computationally demanding, as seen
in Equation 9.

q1 cos B
i

do

N

qo cos? 0
b

U(s) = (0)e ™ + = (1—e75) + (Sps + e — 1)

(Sis(Sis—2)+2(1—e%)) . (9)

In addition to determining the angular flux attenuation, notice that in
Equation 6 the average angular flux across the region is needed to determine
the scalar flux. For the flat source approximation, this can be simply computed
with the relation given in Equation 10

5 B0 =) | @

= 10
sZt Zt ()

This adds trivial computational work since the difference in angular flux
¥(0) — ¥ (s) can be easily derived from the computation of the angular flux
attenuation and the constant go/3; term can be added to each scalar flux
tally after the transport sweep. For quadratic sources, the calculation of the
average angular flux is not as simple, with the required calculation given in
Equation 11.

~ 171
P = g ﬁ (qOEtS + (EW(O) - C]0) (1 - 6_&8))
Q12C§§9 (Zes (Ses —2) +2 (1 — 7))

% (Zes (Zes (s — 3) +6) — 6 (1 — %)) (11)

Notice that in both the computation of the angular flux attenuation and
average scalar flux for quadratic sources, there are three exponential terms
instead of just one, as is the case with the flat source approximation. With
efficient computation, this fact alone does not add much computational work
as the exponential only needs to be computed once and then reused. However,
there is a significant increase in the number of multiplications, causing a
large increase in the required number of FLOPS. Due to the number of terms
in the equation, there is also increased register pressure as the number of
values needed to be stored exceeds the space available in the CPU’s registers.
Therefore, great care must be taken in efficiently computing the attenuation
and contribution to the scalar flux.

1.4. Target Simulation Problem

In this study, we will examine the parallel computational performance
aspects of the 3D MOC algorithm on a variety of high performance computing
platforms. In order to form an accurate assessment, it is important to pick

9

a reasonable target problem for our tests that can provide a benchmark for
real-world usage scenarios for a full application. While there are a wide variety
of important reactor problems to solve, we are specifically targeting high-
fidelity full core reactor simulation applications, complete with several hundred
fuel nuclides and 100+ energy groups. A typical target simulation is well
represented by the BEAVRS community benchmark [9], which is composed
of parameters given in Table 1. As discussed by Gunow et al.[5], BEAVRS
would require approximately 75 TB of total data using our formulation of
the 3D MOC transport algorithm, which can be domain decomposed onto a
current generation supercomputer such as the IBM Blue Gene/Q Mira using
approximately 5,780 nodes [5].

Table 1: Anticipated parameters for a converged 3D MOC solution of a PWR
core.

Parameter Dimension
Geometry layout 17 x 17 assemblies
Assembly width (x and y) 21.24 cm
Assembly height (z) 400 cm
Coarse axial heterogeneity spacing 10 cm

Fine axial regions per coarse axial region)
Number of energy groups 128

Radial ray spacing 0.05 cm

Axial ray spacing 0.25 cm
Number of azimuthal angles 64
Number of polar angles 10

2. Application

To investigate on-node and mutli-node performance and scaling charac-
teristics of the 3D MOC algorithm, we have developed two different proxy-
applications — SimpleMOC and SimpleMOC-kernel — designed to mimic the
key performance characteristics of a full 3D MOC production application.
They retain the essential performance-related computational conditions and
tasks of fully featured reactor core 3D MOC neutron transport codes, yet
at a fraction of the programming complexity of a full application. These
proxy-applications provide a basis for evaluating the algorithm on various

10

architectures, and serve as a first step towards building a full featured pro-
duction 3D MOC solver. In this section, we describe the purpose of each
application and provide an outline of the algorithms, data structures, and
access patterns that they implement.

2.1. SimpleMOC

The SimpleMOC proxy application mimics the runtime of a full scale 3D
MOC reactor simulation when domain decomposed across many compute
nodes, as is commonly done in supercomputer calculations. This allows for the
computational sweeping kernel to be studied, as well as its relative costs com-
pared to the inter-node communication kernel that must be executed between
each sweep. This provides a much simpler and far more transparent platform
for testing the algorithm on different architectures, making alterations to the
code, and collecting hardware runtime performance data.

SimpleMOC is implemented in C, with inter-node parallelism expressed
in MPI and on-node shared memory threading expressed in OpenMP. It is an
open source code and is available online [10].

2.1.1. Algorithm

Algorithm 1 outlines the SimpleMOC implementation of the 3D MOC
algorithm as a top-down pool of independent tracks that can be dynamically
assigned to processors to ensure optimal load balancing. This key feature
is expressed as a parallel OpenMP for loop utilizing dynamic scheduling. A
second key feature of this algorithm is the wide SIMD vector forming the
inner loop over energy groups, which maps extremely efficiently onto modern
computing architectures.

Each track is composed of a series of segments that must be processed
sequentially in-order by the processor (as shown in Figures 1 and 2). The
inner loop of the algorithm involves three computations: an exponential
evaluation, the attenuation of the angular flux ¢ for a particular energy group
along a track, and the contribution of that angular flux to the scalar flux
¢ of the fine axial region. The added computational complexity inherent
in the quadratic source approximation allows for a significant increase in
fidelity, and moreover can easily be vectorized by the compiler. Note that
Algorithm 1 is slightly simplified — the actual implementation includes several
additional loops where Line 1 is found, representing polar angles and stacked
z-rays, though collectively these variables are independent and could also be
expressed as simply a pool of tracks as shown in Algorithm 1.

11

Algorithm 1 SimpleMOC 3D MOC Algorithm Formulation (Single Sweep)

1: for all Tracks do > thread level parallelism
2 Load Boundary Flux Data

3 for all Segments do

4 for all Energy Groups do > SIMD vector level parallelism
5: Exponential Evaluation

6 Attenuate Flux

7 Contribute Scalar Flux to Fine Axial Region > atomic
8 end for

9: end for

10: end for

11: Exchange Boundary Flux Data with Neighbors

While tracks may in general be processed independently, the contribution
of scalar flux to source regions must be an atomic or mutex locked operation,
as multiple tracks (i.e., threads) may be passing through a given source region
at any point in time. In SimpleMOC, this has been implemented using an
array of locks corresponding to each individual source region. Whenever a
thread is ready to write-back data to a source region, that region’s mutex lock
is set until all energy group fluxes have been updated. This operation comes
with minimal overhead as there are far more source regions than there are
threads, making lock contention trivial. In practice we observed only about
5% overhead from locking.

Finally, at the end of each computational sweep through the full geometric
domain, a number of small bookkeeping functions are executed and boundary
flux data is exchanged between nearest neighbor nodes using MPI. Prior work
by Gunow et al. has shown that communication costs, as measured by weak
scaling on the IBM Blue Gene/Q supercomputer Mira, are extremely low
and account for only a very small percentage (less than 5%) of the program’s
overall runtime [5].

2.1.2. Data Structures € Access Patterns

There are two key data structures that play a critical role in the perfor-
mance of SimpleMOC. The first is the source region flux array. When the
problem is decomposed as in Table 2, we anticipate approximately 36 MB
of data to be required to store all the relevant fluxes. Each time a segment
is processed, the geometrical source region that the segment resides in must

12

be accessed and the accompanying source flux vector (i.e., a float value for
each energy group) must be loaded. As the source regions of two neighboring
segments are unlikely to be co-located in memory (see section 2.2.1), the
resulting access pattern of the source arrays have low spatial and temporal
locality. Thus, it is important to retain the source region data array in cache,
in order to reduce latency costs associated with random reads from main
memory. The memory footprint of the source region array maps well onto
most, but not all, HPC node architectures as they often feature 20-40 MB of
cache!.

Table 2: SimpleMOC example decomposition for the BEAVRS benchmark

Parameter Value

Nodes 5,780

Source Region Flux Array Size per Node 36 MB
Border Flux Array Size per Node 12 GB

The second key data structure is the boundary flux array. This structure
is very large, roughly 12 GB in our example discretization (Table 2), and
holds all the incoming and outgoing track flux that must be exchanged via
MPI between neighbor nodes after each computational sweep. While this
data structure is extremely large, it is rarely accessed. Each thread processes
a single track at once, first loading in the incoming flux vector for the track
from the boundary flux array (i.e., a float value for each energy group),
and then processing the flux across all segments in the track (about 120 of
them) before storing the resulting flux to the outgoing section of the boundary
flux array. This infrequent and predictable access pattern means that the
border flux arrays are not important to keep in cache and can instead use
DRAM memory. Future exascale systems are likely to feature slow but large
NVRAM modules (providing nodes with up to several TB of high latency
memory), which should provide another good alternative given the boundary
flux array’s insensitivity to high memory latencies.

!The exception is the Intel Phi architecture, such as the 7120a, which only features 512
KB of effective last level cache.

13

2.2. SimpleMOC-kernel

Table 3 shows the call stack timing breakdown for SimpleMOC when
run on a modern CPU architecture (a dual socket, 36-core Intel Xeon E5-
2699v3 Haswell node). The majority of the runtime in SimpleMOC is spent
performing the computational sweep (i.e., attenuating neutron fluxes across
segments). With this in mind, combined with the knowledge that inter-
node communication costs are minimal for our target problem [5], we have
extracted a kernel application “SimpleMOC-kernel” which removes the MPI
communication functions and simplifies the looping structure of the application
into a simpler form. This was done to better isolate the computationally
important aspects of the algorithm in order to allow for easier profiling and
easier porting to new HPC node architectures.

Table 3: Call Stack Time Breakdown by Function in SimpleMOC

% Time Function Lines in Algorithm 1
82.11% Attenuate Fluxes 4,6, 7

11.79% Exponential Evaluation 5

3.84% Tracking Loops Above Attenuation 1,2,3

2.26% Other 11

SimpleMOC-kernel is implemented in C with shared memory threading
expressed in OpenMP. It is also implemented in CUDA in order to be run
on NVIDIA GPUs. Overall, the differences between the CPU and GPU
algorithms are fairly trivial, as the CPU algorithm is already well expressed
in thread level (independent) and vector level (SIMD) groupings, which maps
extremely easily onto GPU architectures. Conversion to CUDA was done by
grouping segments together (100 at a time) and assigning them to a CUDA
block. Each thread within the block then handles a single energy group.

Both CPU and GPU code versions have been aggressively optimized for
their respective architectures, though not beyond what would be reasonably
expected of performance-oriented scientific programmers. SimpleMOC-kernel
was also ported to OCCA and OpenACC [11], though only the CUDA version
is presented in our GPU analysis. SimpleMOC-kernel is an open source code
and is available online [12].

14

2.2.1. Algorithm € Data Structures

Algorithm 2 depicts a simplified version of the 3D MOC algorithm as
implemented in SimpleMOC-kernel [12]. As the attenuation of neutron fluxes
accounts for over 90% of the runtime of the application (the exponential
evaluation is part of this), the algorithm can be simplified to remove tracks
into a simpler series of segments. While a production MOC solver is required
to attenuate a flux across a specific set of segments sequentially (composing a
track, as in Figure 1), the actual computational flavor is similarly expressed
as a loop over randomized independent segments. While this is in a sense
unphysical, the only difference from a computational performance standpoint
is that the importing and storage of boundary flux at the beginning and
ending of each track is not captured by the independent segment assumption.
However, this difference can reasonably be ignored, as there are approximately
120 segments per track in our target problem discretization (i.e., the BEAVRS
benchmark), requiring about 150,000 FLOPS per border flux cache line read.
Instead, the state flux between segments can more simply be preserved on
the local thread rather than by track. This simplification from tracks to
independent segments significantly reduces the programming bookkeeping
and greatly reduces the length and complexity of the source code.

Algorithm 2 SimpleMOC-kernel Simplified 3D MOC Abstraction

1: for all Segments do > thread level parallelism

2 Randomly Sample Quadratic Source Region Index

3 Randomly Sample Fine Axial Interval Index

4 for all Energy Groups do > SIMD vector level parallelism
5 Exponential Evaluation

6: Attenuate Flux

7 Contribute Scalar Flux to Fine Axial Region > atomic
8 end for

9: end for

A full production MOC solver also associates a specific source region to
each segment. Even though a full MOC solver processes segments within a
track in-order, the source regions of two neighboring segments are unlikely to
be co-located in memory due to the complexities of mapping a constructive
solid geometry set of source regions into serial memory. Even if optimizations
were performed to the data layout, it would likely be impossible to achieve
significant source locality along segments in a track due to many segments at

15

unpredictable angles and z-heights passing through the same source region.
In effect, accessing of source regions during a computational sweep appears to
the computer as a “random walk” through memory. Therefore, a similar level
of random access of the source regions is preserved by randomizing the several
key definition parameters for each segment (i.e., quadratic source region and
fine axial interval). Rather than accessing a stored source index for each
segment as in a full MOC solver, SimpleMOC-kernel instead selects a random
quadratic source index ID and fine axial interval ID for each segment. This
simplification greatly reduces the amount of bookkeeping in the source code
implementation while still retaining the same computational characteristics
as a full 3D MOC solver.

2.2.2. Kernel Verification

The simplified kernel version of this algorithm captures the full compu-
tational flavor of the full application very well, matching the performance
of the full application almost exactly. Figure 3 shows the strong scaling of
both applications on a dual socket, 36-core (72 thread) Intel Xeon E5-2699v3
Haswell node. The speedup when running all 72 threads on the node is
only 4.1% different between SimpleMOC and SimpleMOC-kernel, which is
remarkably close given that the central control-flow portions of SimpleMOC-
kernel is about 8 times smaller in terms of lines of code compared to the full
SimpleMOC application. Additionally, we compared performance between
the applications directly via a common figure of merit — the amount of time
it takes to attenuate a single energy group of flux across a single geometric
segment (i.e., the time per intersection). This figure of merit was observed
to be extremely close between the two applications — SimpleMOC ran at
0.33 ns while SimpleMOC-kernel ran at 0.28 ns at 36 threads. Overall, this
shows that SimpleMOC-kernel manages to very accurately represent the key
computational parameters of the full application, thus making it far easier to
understand from a performance perspective and to port to new architectures
or coding languages.

3. Performance & Bottleneck Analysis

In order to evaluate the speed and future on-node scalability of the 3D
MOC algorithm on various architectures, a series of tests was performed using
performance data as well as hardware performance counters.

16

—Ideal
“*+SimpleMOC
~*-SimpleMOC-kernel

0 9 18 27 36 45 54 63 72
Threads

Figure 3: SimpleMOC vs SimpleMOC-kernel speedup on 36-core (72 thread) Intel
E5-2699v3 Haswell node.

3.1. Performance Comparison

A comparative performance study using SimpleMOC-kernel was performed
on six different platforms. In each test, two billion segments were processed
for 128 energy groups and the resulting figure of merit (time per intersection)
was reported. The results are shown in Figure 4. As can be seen, the NVIDIA
GPUs all perform extremely well, with the TitanX outperforming the other
architectures at 0.081 ns. The dual socket Intel E5-2699v3 Haswell node also
performs well, at 0.218 ns. The Intel Phi 7120a node performs worse, only
achieving a time per intersection of 0.383 ns. Finally, the dual socket Intel
E5-2650 Sandy Bridge node performs the worst, at 0.627 ns, but represents a
more common platform deployed in many current CPU based clusters.

Note that the TitanX platform is only capable of such high performance
if the bulk of the computation is performed using single precision floating
point values. As it is a consumer grade GPU, it lacks the ability to perform
double precision calculations efficiently, unlike all other platforms in this study

17

including the NVIDIA K40m and K20c. However, for our target application
(MOC style reactor calculations), a significant portion of the computational
work (such the inner loop, wherein angular flux is attenuated across a segment,
as in Equations 9 and 11) will not be sensitive to single precision errors as
no large accumulations take place and floating point arithmetic is likely to
stay within a few orders of magnitude. Other less common operations, such
as atomic writes into the source region scalar fluxes, may be more sensitive
to floating point error. For this purpose, SimpleMOC-kernel uses double
precision for the scalar flux arrays. As these double precision operations
only account for a small percentage of the total floating point computations
in the code however, the code still runs very efficiently even on the TitanX
architecture that has limited double precision resources.

0.7

g
=

<
o

<
=

ot
9%

Time per Intersection (ns)
o

@
=

NVIDIA NVIDIA NVIDIA 2X Intel 2X Intel Intel
K40m K20c TitanX E5-2650 E5-2699v3 Phi 7120a
(Kepler) (Kepler) (Maxwell) (Sandy Bridge) (Haswell) (Knights
16 Cores 36 Cores Corner)

Figure 4: SimpleMOC-kernel performance comparison on various architectures.
Performance is measured as time (ns) per intersection (lower is better). Perfor-
mance timings were taken using all computational resources (i.e., all cores, full
hyperthreads) from a node.

Additionally, floating point operations per second (FLOPS) were also

18

measured using PAPI [13] performance counters on CPU and NVIDIA’s
NVProf performance metrics on GPU. This data, given in Figure 5, shows
that the TitanX GPU is able to achieve an extremely high FLOP rate of 1,335
GFLOPS, which for comparison is over 8.7 times higher than the 2X Intel
E5-2650 Sandy Bridge node at 153 GFLOPS. However, it is important to
note that the theoretical FLOP maximums on these systems are very different
due to the large differences in hardware architectures such as different die
sizes, power consumption, hardware threading, and vector widths. Even
though the kernel is running extremely efficiently on the Sandy Bridge CPU,
achieving over 63% of peak achievable FLOPS (as measured by the LINPACK
benchmark [14]), it is still getting outperformed overall by the GPUs due to
the greatly improved FLOP capabilities of those architectures.

1,600
1,400
1,200
oy 11000
ol
S s
&
@
600
400
B .:
: =
NVIDIA NVIDIA NVIDIA 2X Intel 2X Intel Intel
K40m K20c TitanX E5-2650 E5-2699v3 Phi 7120a
(Kepler) (Kepler) (Maxwell) (Sandy Bridge) (Haswell) (Knights
16 Cores 36 Cores Corner)

Figure 5: SimpleMOC-kernel — Floating point operations per second on various
architectures.

Achieving high floating point throughput on any modern architecture
requires the usage of the vector SIMD floating points units that are present on
the CPU, Phi, and GPU. The 3D MOC algorithm, as depicted in Algorithm 2,

19

takes advantage of this architectural characteristic by composing the inner loop
across energy groups rather than by polar or azimuthal angle. This is highly
advantageous as a full core computation will have at least a hundred energy
groups, allowing for a high vectorization efficiency. A study of the impact of
the number of energy groups (i.e., the SIMD vector width) was performed on
CPU, GPU, and Phi architectures, as seen in Figure 6. Increasing the number
of energy groups results in efficiency gains of one to two orders of magnitude.
The NVIDIA TitanX GPU is able to achieve reasonable vector efficiency
with the fewest energy groups — reaching within 30% of its fastest time per
intersection at only 32 energy groups, compared to 56 energy groups for the
2X E5-2699v3 Haswell CPU node and 144 for the Intel 7120a Phi. Note
that the slight degradation of performance of the Intel E5-2699v3 Haswell
node is a result of the increase in the size of the source region flux array that
accompanies the increase in the number of energy groups. As discussed in
Table 2, these source arrays are approximately 36 MB for 128 energy groups,
but double to 72 MB when 256 groups are used. The Haswell’s last level cache
is 45 MB, making the transition towards 256 energy groups progressively
increase the cache miss frequency.

The extreme impact of the number of energy groups on the efficiency
of the calculation is an important result. Experiments using only several
energy groups will have a very different performance profile relative to full
scale simulations. In this paper, all performance data was collected using 128
energy groups.

3.2. Bottlenecks

While Figure 4 clearly shows the performance disparity between archi-
tectures, it is critical to understand the source of these differences. Some
issues are likely to be remedied by future micro-architectural development
while others could potentially get worse with time. Famously, the “von
Neumann” bottleneck [4] is especially dangerous for architecture lines where
FLOP capacities follow Moore’s Law while memory bandwidth improves only
marginally. This von Neumann bottleneck causes the FLOP units to rapidly
become starved. Thus, it is important to identify the reasons why we are
seeing the performance trends in Figure 4 and to evaluate the potential effects
of these issues on future architectures.

20

100 F
I B=Intel Phi 7120a (Knights Corner)
2 10 T ©—2X Intel E5-2699v3 (Haswell) 36 Cores
g NVIDIA TitanX (Maxwell)
2
3}
?
g 1N
= \-“
[
5 — —
[al
®
2 01 e
&
0.01 e ey
0 32 64 96 128 160 192 224 256
Energy Groups (i.e., SIMD Vector Width)

Figure 6: SimpleMOC-kernel — Performance (time per intersection) versus the
number of energy groups considered in the calculation. Computation across energy
groups forms the inner loop of the kernel and therefore determines the efficiency of
vectorization. Close inspection of the plot reveals a minor periodicity corresponding
to the vector widths of each machine (32 wide for the GPU, 16 wide for the Phi,
and 8 wide for the CPU), as indicated by the dotted vertical lines.

3.2.1. CPU & GPU

We used PAPI [13] performance counters on the CPU and NVIDIA’s
NVProf performance metrics on the GPU to determine the cause of stalled
cycles incurred during the runtime of SimpleMOC-kernel. Figure 7 compares
a 16-core Intel E5-2650 Sandy Bridge node to an NVIDIA TitanX GPU. The
performance bottleneck for the GPU is clearly identified as a memory latency
or bandwidth bottleneck, as stalled cycles are overwhelmingly due to memory
dependencies. Conversely, the CPU stall graph shows that a wider variety
of stall factors are at play. However, most of these stalls indicate register
pressure. Together with the high values seen in Figure 5, this indicates that
the source of the bottleneck is operands that are delayed when finding their

21

way between the level 1 (L1) cache and the CPU registers due to the register
scheduling mechanisms being overwhelmed. Any further optimizations would
likely involve manual management of the registers by directly writing assembly
code, though potential for improvements is small considering the already
extremely high percentage of peak performance achieved on the CPU.

Thread
Synchronization

9%

Execution
Dependency
%

Thread
Synchronization

(a) GPU (K20c) (b) GPU (TitanX)

Register Free
List Empty
13%

(c) CPU (Sandy Bridge)

Figure 7: Stalled Cycle Analysis - This figure shows the various reasons for
stalled cycles on CPU and GPU. As shown, the GPUs are bottlenecked by memory
dependency issues (i.e., latency or bandwidth), while the CPU is stalled by a wider
variety of factors. The CPU stall breakdown indicates that register pressure is the
likely bottleneck.

22

3.2.2. Intel Phi

SimpleMOC-kernel performance on the Intel Xeon Phi appears to be
limited by the last-level cache (LLC). On the 7120a model, this is a level 2
(L2) cache. The Xeon Phi has 61 cores, each of which has a local 512 KB L2
cache. These are connected in a bidirectional ring to yield the combined 30.5
MB of shared L2. While this appears to be sufficient memory to hold most
of the source region data in cache, in reality each core’s local L2 can only
store a small portion of the data. This means when a thread does not find its
required data in its local L2, it must fetch from another core’s L2 through
the ring interconnect. While this is technically not a cache miss, it is still a
significant penalty and has a similar impact as a full cache miss to DRAM.

One way to measure this is the “estimated latency impact,” which is an
approximate measure of the number of cycles spent on a (level 1) L1 cache
miss. For SimpleMOC-kernel’s transport sweep, we measured this to be 109.8.
Normal L2 access latency is 21 cycles, and main memory latency is about
300 cycles. Furthermore, L1 cache miss rate was measured to be 17%, which
means a significant amount of time spent fetching from non-local L2 and
main memory. Due to the effectively random access patterns of source region
data, data locality for each core is difficult to achieve, magnifying the penalty
of L1 misses.

Vectorization was evaluated using the metric “vectorization intensity,
which is a measure of the vector processing unit (VPU) efficiency. For ideal
vectorization, this quantity is 8 for double precision, and 16 for single precision.
We obtained a value of 14.8 for the transport sweep, which shows the effective
use of the VPU (as is also demonstrated in Figure 6).

7

3.3. Power

While Figure 4 clearly shows that the GPUs achieve superior performance
compared to CPU or Phi, the question remains as to whether or not they
are achieving this performance in a power efficient manner. As current
supercomputers such as the Tianhe-2 already use 17.8 MW of electricity, and
many exascale designs are limited to power budgets around this level, it is
critical to normalize any performance numbers by power. In order to do this,
we measured the power of two GPUs (the K20c and the TitanX), the Intel
Phi 7120a, and the dual socket Intel E5-2650 Sandy Bridge node?. Power

2Note that power metrics were not collected for the Haswell or K40m nodes. This is
due to difficulties associated with PAPI RAPL support on the Haswell architecture and

23

was measured on CPU via Intel running average power limit (RAPL) power
counters via PAPI, which allowed us to measure the total power used by
the CPU+DRAM of the node over the course of the computation. GPU
power was measured using the NVIDIA “nvidia-smi” utility, which provided
similar power data over the course of the computation for the entire GPU
card. Intel Phi power was measured using the Intel “micsmc” utility. For all
architectures, power readings were taken every 100 ms while computing the
flux attenuation over 1 billion segments.

As we can see in Figure 8, the TitanX is by far the most power hungry
of the architectures tested, reaching around 237 Watts compared to the
145 Watts averaged by the Intel Sandy Bridge node. However, given that
the amount of time taken to process the 1 billion segments was far less
for the TitanX and K20 GPUs, the total amount of energy spent during
the computation is the critical metric of importance. The power data from
Figure 8 was integrated to determine energy per billion intersections, as
shown in Figure 9. Here we can see that the TitanX GPU performs the best,
achieving a 4.8x power efficiency advantage over the Intel Sandy Bridge CPU
platform, and a 4x advantage over the Intel Phi node.

3.4. Hardware Dollars

While power efficiency is the most critical metric to consider in high
performance computing and supercomputer design, it is also important to
consider the direct hardware cost of a compute node. Even though the
NVIDIA TitanX is the highest performing and most power efficient card,
it is also surprisingly the cheapest node design ($1,100) of the six that we
compared in this study (as measured by retail prices on Amazon.com in June
of 2015). When performance is normalized by hardware price (in terms of $
per billion intersections/sec), as shown in Figure 10, we find that the NVIDIA
TitanX is able to best Intel’s highest performing offering (the dual socket
E5-2699v3 Haswell node) by over a factor of 23x.

The extreme price efficiency of the TitanX GPU is caused by the fact
that the TitanX is a consumer grade device. Notably, it lacks the ability to
perform double precision calculations efficiently unlike all other platforms
tested in this analysis. However, by making sparing use of doubles for key
variables, performance and accuracy can still be maintained on the TitanX

limited access to the K40m node.

24

250

200 WNW

100 1 ~NVIDIA TitanX (Maxwell)
H B=Intel Phi 7120a (Knights Corner)

©-2X Intel E5-2650 (Sandy Bridge) 16 Cores
A=NVIDIA K20c (Kepler)

50

0 T T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Figure 8: SimpleMOC-kernel power (Watts) performance comparison on vari-
ous architectures. Power is measured for 1 billion segments (including program
initialization) on all three architectures.

architecture as discussed in subsection 3.1.

4. Conclusions

In this study, we have developed a performance abstraction for the 3D
Method of Characteristics (MOC) algorithm in the context of high fidelity
full core nuclear reactor simulations. To this end, we developed two different
proxy-applications, SimpleMOC and SimpleMOC-kernel, that capture the
multi-node and single node performance and scaling characteristics of the 3D
MOC algorithm. SimpleMOC-kernel was also ported to the GPU platform,
and a wide variety of architectures (including CPU, GPU, and the Intel Phi)
were compared. Our mini-apps were able to show extremely high performance
due to 1) usage of a task-based pool of independent MOC tracks allowing for
efficient dynamic load balancing and 2) the placement of energy groups at
the inner loop of the computation allowing for the wide SIMD vector units of

25

14,000

12,000

10,000

8,000

=z
=
o
(=]

4,000

Joules / Billion Segments

2,000

NVIDIA NVIDIA 2X Intel Intel
K20c TitanX E5-2650 Phi 7120a
(Kepler) (Maxwell) (Sandy Bridge) (Knights Corner)
16 Cores

Figure 9: SimpleMOC-kernel total energy (Joules) to process 1 billion segments
for various architectures (lower is better).

modern computer architectures to be fully utilized. With our representation
of the 3D MOC algorithm, we were able to achieve 63% of peak FLOPS on
a dual socket Intel E5-2650 Sandy Bridge node. Additionally, we identified
the remaining bottlenecks of the algorithm on all three architectures, namely,
register pressure on CPU, memory latency on GPU, and insufficient cache on
the Intel Phi.

Ultimately, we found that the GPU platform delivered superior perfor-
mance in both speed, energy efficiency, and cost efficiency when compared
to CPU or Phi nodes operating with all cores and threads. Impressively, the
NVIDIA TitanX GPU outperformed the dual socket Intel E5-2699v3 Haswell
36-core CPU node by a factor of 2.3x, while simultaneously improving cost
efficiency by a factor of over 23x. These findings suggest that the 3D MOC
algorithm is well suited to achieving high performance on the GPU platform,
making the CUDA language an excellent candidate for implementation of a
full scale exascale class 3D MOC solver for reactor simulation applications.

26

$2,500
<
g
%3 $2,077
+ $2,000
o)
[}
w0
=)
2
B3]
5 $1.500 $1,411 $1,379
£
=
=
g
= $1,000
M
by $603
»
o $474
£ $500
E
el
-
3
== $89

$0 T
NVIDIA NVIDIA NVIDIA 2X Intel 2X Intel Intel
K40m K20c TitanX E5-2650 E5-2699v3 Phi 7120a
(Kepler) (Kepler) (Maxwell) (Sandy Bridge) (Haswell) (Knights
16 Cores 36 Cores Corner)

Figure 10: SimpleMOC-kernel - Hardware cost ($) per 3D MOC performance
unit (billion intersections/sec)

Additionally, the next generation NVIDIA “Pascal” GPU architecture (along
with many other low power architectures) are slated to feature mixed and
half precision (FP16) hardware support, which may prove advantageous for
our implementation of the 3D MOC algorithm.

It is critical to note that these findings form an important stepping stone
on the road towards the development of a full scale production 3D MOC
application. This in-depth performance analysis provides a foundational
understanding of 3D MOC reactor simulation on cutting edge high perfor-
mance computing architectures and offers a road map for selection of future
algorithmic choices, programming languages, and architecture targets for
exascale reactor simulations.

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract

27

DE-AC02-06CH11357. The submitted manuscript has been created by the
University of Chicago as Operator of Argonne National Laboratory (“Ar-
gonne”) under Contract DE-AC02-06CH11357 with the U.S. Department
of Energy. The U.S. Government retains for itself, and others acting on its
behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

The second author is a recipient of the U.S. Department of Energy Office of
Nuclear Energy’s Nuclear Energy University Programs Fellowship. Additional
support was provided by the Center for Exascale Simulation of Advanced
Reactors (CESAR), a co-design center under the U.S. Department of Energy.
The authors would also like to thank Michael Smith from Argonne National
Laboratory for providing guidance from his experience with 3D MOC solvers.

We gratefully acknowledge the computing resources provided and operated
by the Joint Laboratory for System Evaluation (JLSE) at Argonne National
Laboratory.

References

[1] B. Kochunas, A hybrid parallel algorithm for the 3-D Method of Char-
acteristics solution of the Boltzmann Transport Equation on high per-
formance computing clusters, Ph.D. Thesis, University of Michigan,
Department of Nuclear Engineering and Radiological Sciences (2013).

[2] G. Palmiotti, M. Smith, C. Rabiti, M. Leclere, D. Kaushik, A. Siegel,
B. Smith, E. Lewis, UNIC: Ultimate neutronic investigation code, in:
M&C + SNA 2007 — Joint International Topical Meeting on Mathematics
& Computation and Supercomputing in Nuclear Applications, Monterey,
California, 2007.

[3] M. A. Smith, D. Kaushik, A. Wollaber, W. S. Yang, B. Smith, C. Rabiti,
G. Palmiotti, Recent research progress on UNIC at Argonne National
Laboratory, in: International Conference on Mathematics, Computa-
tional Methods & Reactor Physics, Saratoga Springs, New York, 2009.

[4] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, Exascale
computing study: Technology challenges in achieving exascale systems,
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf (2008).

28

http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

[5] G. Gunow, J. R. Tramm, B. Forget, K. Smith, SimpleMOC — A perfor-
mance abstraction for 3D MOC, in: ANS&MC 2015 — Joint International
Conference on Mathematics and Computation (M&C), Supercomputing
in Nuclear Applications (SNA) and the Monte Carlo (MC) Method,
Nashville, 2015.

[6] W. Boyd, Massively parallel algorithms for Method of Characteristics
neutral particle transport on shared memory computer architectures, M.S.
Thesis, Massachusetts Institute of Technology, Department of Nuclear
Science and Engineering (2014).

[7] R. Sanchez, Prospects in deterministic three-dimensional whole-core
transport calculations, Nuclear Engineering and Technology 44 (2) (2012)
113-150.

[8] S. Shaner, et al., Theoretical Analysis of Track Generation in 3D Method
of Characteristics, International Conference on Mathematics and Com-
putational Methods Applied to Nuclear Science and Engineering (2015).

[9] N. Horelik, B. Herman, B. Forget, K. Smith, Benchmark for evaluation
and validation of reactor simulations (BEAVRS), in: M&C 2013 — In-
ternational Conference on Mathematics and Computational Methods
Applied to Nuclear Science & Engineering, 2013.

[10] J. Tramm, G. Gunow, SimpleMOC: A 3D Method of Characteristics
(MOC) reactor simulation mini-app featuring MPI and OpenMP paral-
lelism, https://github.com/ANL-CESAR/SimpleMOC (2015).

[11] R. Rahaman, D. Medina, A. Lund, J. Tramm, T. Warburton, A. Siegel,
Portability and performance of nuclear reactor simulations on many-core
architectures, in: EASC 2015 — Exascale Applications and Software
Conference, 2015.

[12] J. Tramm, G. Gunow, SimpleMOC-kernel: A 3D Method of Characteris-
tics (MOC) reactor simulation kernel mini-app, https://github.com/
ANL-CESAR/SimpleMOC-kernel (2015).

[13] Innovative Computing Laboratory, PAPI - Performance application
programming interface, http://icl.cs.utk.edu/papi/index.html
(2015).

29

https://github.com/ANL-CESAR/SimpleMOC
https://github.com/ANL-CESAR/SimpleMOC-kernel
https://github.com/ANL-CESAR/SimpleMOC-kernel
http://icl.cs.utk.edu/papi/index.html

[14] J. Dongarra, P. Luszczek, LINPACK benchmark, in: Encyclopedia of
Parallel Computing, Springer US, 2011, pp. 1033-1036. doi:10.1007/
978-0-387-09766-4_155.

30

http://dx.doi.org/10.1007/978-0-387-09766-4_155
http://dx.doi.org/10.1007/978-0-387-09766-4_155

	Introduction
	Reactor Simulation via the Neutron Transport Equation
	3D MOC Basics
	Method of Characteristics with Quadratic Source Regions
	Target Simulation Problem

	Application
	SimpleMOC
	Algorithm
	Data Structures & Access Patterns

	SimpleMOC-kernel
	Algorithm & Data Structures
	Kernel Verification

	Performance & Bottleneck Analysis
	Performance Comparison
	Bottlenecks
	CPU & GPU
	Intel Phi

	Power
	Hardware Dollars

	Conclusions

