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ABSTRACT: High-throughput calculations based on density functional theory
(DFT) methods have been widely implemented in the scientific community.
However, depending on both the properties of interest as well as particular chemical/
structural phase space, accuracy even for correct trends remains a key challenge for
DFT. In this work, we evaluate the use of quantum Monte Carlo (QMC) to calculate
material formation energies in a high-throughput environment. We test the
performance of automated QMC calculations on 21 compounds with high quality reference data from the Committee on
Data for Science and Technology (CODATA) thermodynamic database. We compare our approach to different DFT methods as
well as different pseudopotentials, showing that errors in QMC calculations can be progressively improved especially when
correct pseudopotentials are used. We determine a set of accurate pseudopotentials in QMC via a systematic investigation of
multiple available pseudopotential libraries. We show that using this simple automated recipe, QMC calculations can outperform
DFT calculations over a wide set of materials. Out of 21 compounds tested, chemical accuracy has been obtained in formation
energies of 11 structures using our QMC recipe, compared to none using DFT calculations.

1. INTRODUCTION

The emergence of the field of materials informatics promises to
accelerate the design and development of new materials
through the creation and analysis of large databases of material
properties. Such databases may be searched to identify
promising materials or analyzed to identify important chemical
and structural trends, providing new insights into how to create
materials with desired properties. Material property databases
may also serve as valuable sources of reference data; for
example, databases of material energies may be used to estimate
the thermodynamic stability of a new material by enabling the
rapid comparison of its calculated energy to the precalculated
energies of all known possible decomposition products.1,2

Rapid increases in the speed of computers have made it
possible to populate material property databases using high-
throughput calculations. However, the degree to which such
databases are useful depends on the quality of the underlying
data. One of the most popular methods for high-throughput
calculations of material properties is density functional theory3,4

(DFT) using the generalized gradient approximation (GGA).5

Cancellation of errors makes DFT a useful tool for comparing
materials and molecules in which the chemical environments of
the atoms do not significantly change. However, in some cases,
such as when the oxidation state or local chemical environment
of an element changes, cancellation of errors can break down,
and the error in DFT/GGA can be significant.6−8 Although it
may be possible to correct for these errors by referencing to
empirical data, accurate reference data are not always available.
For example, although there are more than 100,000 material

entries in the ICSD, there are fewer than 1,000 known material
enthalpies of formation in the NIST-JANAF tables.9

To improve upon the accuracy of the computational data
stored in materials databases, researchers have investigated a
number of alternatives to DFT/GGA for high-throughput
calculations, including hybrid DFT, DFT+U, and GW
calculations.10,11 The computational expense of these methods
can be significantly greater than that of DFT/GGA, but this
expense can often be justified if the calculated data is heavily
reused. However, it is important that a method used for the
high-throughput calculation of material properties is scalable
(both with system size and with number of computing
processors) and generally applicable to a wide variety of
materials. With these goals in mind quantum Monte Carlo
(QMC) is one of the most promising methods for high-
throughput, accurate calculations of material properties.12,13

Quantum Monte Carlo refers to a family of statistical
methods for approximating a solution to the many-body
Schrödinger equation in a way that explicitly accounts for both
the antisymmetry of the many-body wave function and electron
correlation. In this paper we have used a form of quantum
Monte Carlo known as diffusion Monte Carlo (DMC),
described in section 2.1. Because it relies on statistical sampling,
diffusion Monte Carlo scales nearly perfectly linearly with the
number of available processing cores up to tens of thousands of
processors, making it very well suited for modern high
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performance computing architectures. For systems containing
up to several hundred atoms the time required to reach a given
error bar scales effectively as N4,14,15 and N3 scaling is often
realized in practice.15 Even better scaling can be realized if local
orbitals are used.16,17 Because the error bars on the calculation
are inversely proportional to the square root of the simulation
time, the time required to achieve a given standard error per
atom effectively scales linearly or better with system size.18 This
scalability with system size sets DMC apart from other highly
accurate quantum chemical methods such as coupled cluster,
which typically scale as N5 to N7.19

There is great promise in the potential use of DMC to
populate databases of highly accurate material formation
energies. Databases of material energies enable the construction
of zero-temperature phase diagrams that provide a baseline for
temperature-dependent phase diagrams.1,2 Such phase diagrams
allow researchers to estimate the thermodynamic stability and
chemical reactivity of a new material before it has been
synthesized, enabling experimental efforts to focus only on
materials that are most likely to exist and be stable in operating
conditions. In such applications the relevant quantity is the
formation energy per atom. Because DMC effectively scales
linearly with system size when calculating energies per atom, it
can be practically used to calculate formation energies for
materials with up to hundreds of atoms per unit cell. Unlike
some highly accurate quantum chemical methods that do not
work well for crystals or metals, DMC has been shown to
provide accurate energies for a variety of molecules20 and
materials including metals, insulators, and semiconductors.21

The use of QMC in automated, high-throughput calculations
is an emerging area of research. Shulenburger and Mattsson12

investigated equilibrium lattice constants and bulk moduli of
several solids. Krogel22 also developed an automated code for
QMC workflows that were used to calculate formation energies
and lattice constants of several binary oxides.23 Here we assess
the use of QMC in high-throughput calculations of material
formation energies, following previous work that demonstrated
DMC is capable of accurately calculating cohesive energies,21,24,
electronic band gaps,25 and accurate phase diagrams under
extreme pressures.26

Despite the accuracy of DMC in material energies, the
degree of automation that can be performed over the DMC
calculations is sometimes unclear. We have used DMC to
calculate the 0 K formation energies for 21 materials for which
highly accurate experimental data exists. There are many
choices to be made when using DMC to calculate the energy of
a material, and it is typically preferable to carefully choose the
settings and algorithms that are expected to work best for a
given system. However, such an approach is not practical for
high-throughput calculations of tens of thousands of materials.
To assess the practicality of using DMC on such a large scale,
we have performed our tests in an automated way that required
minimal manual adjustments. In the following sections we
present the methodology of our approach, the results of our
calculations, and an analysis of the areas that we believe will
require the most additional work.

2. METHODS
2.1. Diffusion Monte Carlo. Here we provide a brief

overview of the diffusion Monte Carlo approach. Additional
details can be found in refs 15, 18, and 27. Diffusion Monte
Carlo solves for the ground state energy of the many-body wave
function by simulating the Schrödinger equation in imaginary

time, where V is the potential energy operator and E is an
energy offset adjusted during the simulation to achieve a
stationary solution when Ψ(R,t) is an eigenfunction. Recogniz-
ing that eq 1 is essentially a diffusion equation, DMC calculates
the energy of the wave function by simulating the dynamic
evolution of a population of electronic configurations until they
reach a steady-state solution.
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Because the wave function can take on both positive and
negative values, ideally the electronic configurations should be
assigned both positive and negative weights. However, doing so
can make diffusion Monte Carlo calculations very inefficient.28

To address this problem, a common approximation is to use a
trial function, ΨT(R,t), and enforce the constraint that the
nodes of Ψ(R,t) must match those of ΨT(R,t) (i.e., Ψ(R,t)
must be zero when ΨT(R,t) is zero). This is known as the
“fixed-node” approximation.29 If the nodal surface of the trial
function is the same as that of the eigenfunction, DMC
converges to the exact ground state energy, and for an
approximate trial nodal surface, it produces a tight upper
bound.

2.2. Test Set. To evaluate the accuracy of DMC for
calculating the formation energies of materials, it is necessary to
have a set of materials for which highly accurate 0 K
experimental data exist. The Committee on Data for Science
and Technology (CODATA)30 has generated accurate
thermodynamic data for 151 different substances, including
51 crystalline materials whose constituents are selected from
different blocks of the periodic table which have likewise
properties, following the ”Standard Order of Arrangement”
procedure. From these data it is possible to calculate
experimental 0 K enthalpies of formation for 26 different
materials. For the present study, we have eliminated one water-
containing compound, CdSO4·8/3H2O, due to the difficulty in
experimentally determining the structure of water inside the
material. We have also eliminated three uranium-containing
materials and one thorium-containing material due to the
challenges in running DFT calculations for such heavy
elements. The enthalpies of formation for the remaining 21
materials were used to benchmark the automated DMC
calculations. To calculate these enthalpies of formation, it was
necessary to use DMC to calculate the energies of 39 materials
and molecules.

2.3. High-Throughput Framework for DMC. There are a
number of choices that must be made when running a diffusion
Monte Carlo (DMC) calculation. For example, it is necessary
to determine how to treat core electrons, generate and
represent a trial wave function, discretize the simulation steps,
and determine when the calculation has converged. In addition,
crystalline materials pose the challenge of determining how to
best use simulations in finite-sized unit cells to calculate the
properties of a system that is effectively infinitely large. For each
of these factors there is the usual trade-off between speed and
accuracy, and the optimal choices are often made on a per-
calculation basis. However, while running high-throughput
approach calculations, it is necessary to automate the process of
making such choices. In this section we describe the automated
procedure we developed for the calculations described in this
paper. Quantum Monte Carlo calculations were performed
using the CASINO software package,31 and density functional
theory calculations were performed using Quantum ESPRES-

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b01179
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.jctc.6b01179


SO (QE) with norm-conserving pseudopotentials (NCPP).32

In Figure 1, we show a schematic of the automated framework
for DMC calculations. Compared to performing high-
throughput DFT calculations, DMC calculations require
additional steps that mainly arise from the errors in finite size
extrapolation and k-point sampling in many-body interacting
systems.
It is necessary to account for finite-size effects when running

QMC calculations on periodic systems. Simulations are run in a
single unit cell, which can introduce two sources of error. The
first source of error is the approximation of continuous integrals
over the Brillouin zone by sampling a discrete set of k-points.
This error can be addressed by increasing the density of
sampled k-points. Unlike DFT calculations, the cost of a DMC
calculation scales better than linearly with the number of
sampled k-points, because the statistical error in a DMC
calculation scales with the total number of samples collected
during the statistics accumulation phase, whether these samples
are taken at a single k-point or spread among several k-points.
The additional cost to sampling different k-points is therefore
primarily due to the cost of running separate DMC
equilibration steps for each k-point. The cost of sampling at
different k-points can be further reduced by sampling only at k-

points that are either multiples or half-multiples of reciprocal
lattice vectors. These k-points represent periodic and
antiperiodic wave functions, respectively, and the resulting
DMC calculation can be executed using only real arithmetic,
which can speed up the calculation by a factor of 4.35

We used a 2 × 2 × 2 k-point grid for our calculations to
maximize the sampling of the Brillouin zone without using
complex arithmetic. However, in order to eliminate any
potential undersampling of the Brillouin zone, we used the
method similar to that proposed by Rajagopal et al.36 Each
DMC energy is calculated using a 2 × 2 × 2 k-point grid
corrected by the difference between a well-converged DFT
energy and the DFT energy calculated using a 2 × 2 × 2 grid.
The well-converged DFT energies were calculated using a k-
point grid with density of at least 8000 k-points per Å−3.
However, a 2 × 2 × 2 k-point grid is generally not sufficient to
ensure reliable convergence of the electronic self-consistency
loop in DFT; therefore, the DFT energy for the 2 × 2 × 2 grid
was calculated by extracting the 2 × 2 × 2 subset of k-points
which is used to perform twist averaging37 in the DMC
calculations.
An additional finite-size error is introduced by the fact that

QMC calculations are run in finite simulation cells that are

Figure 1. Automated DMC calculation scheme. Supercell sizes are only shown as representative. For the equations on the left side of the figure, n
corresponds to an arbitrary size of the supercell used for finite size extrapolation, whereas k corresponds to the collection of grid points used for that
calculation. In this respect, k = i stands for one of the eight reciprocal cell grid points used in the DMC integration, and E(DMC,k=i) is the DMC energy
of a structure integrated at single k-point i. The same notation has also been used for DFT calculations. QE32/NCPP, CASINO,31 and VASP33/
PAW34 indicate the software used in the calculation and the pseudopotential used. NCPP and PAW stand for norm-conserving pseudopotential and
projector augmented wave methods, respectively. J[(ri,rj)] is the Slater-Jastrow factor where ri and rj represent electron and ion coordinates. EDMC(n
= ∞) is the finite size extrapolated DMC energy, which is obtained by performing linear fitting to EDMC(n) values at the reciprocal of the supercell
size, 1/n. Finally, EDMC,0 K corresponds to the formation energy of the structure at 0 K.
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subject to periodic boundary conditions, so each electron
interacts with its periodic images. To correct for this error, we
calculated the energy per formula unit in supercells of three
different sizes and extrapolated the results (after correcting for
k-point sampling) to infinite system size using the extrapolation
formula proposed by Ceperley and Alder38 (eq 10 in their
paper). All supercells were chosen to ensure the total number
of electrons in the simulation cell was an even number. For a
given supercell size N, several possible supercell shapes are
possible. We selected the shape that maximized the minimum
distance between periodic images. The supercells used for
extrapolation were selected by starting with the minimum
possible supercell size and then incrementing N until a
supercell with a larger minimum distance between periodic
images was found.
For each supercell, DFT was used to calculate the single-

particle orbitals (Figure 1). The DFT calculations were
performed in the generalized gradient approximation (GGA)
with the Perdew−Burke−Ernzerhof (PBE) exchange-correla-
tion functional using Quantum Espresso.32 Gaussian smearing
with a width of 0.02 Ry was used for Brillouin zone integration.
All DFT calculations were run spin-polarized. To break
symmetry, the initial magnetic moment was set to 0.7 for one
randomly selected element in each material. The number of
spin-up and spin-down electrons to be included in the QMC
calculations was determined by sorting the DFT eigenvalues
from lowest to highest and selecting the first Nelect orbitals,
where Nelect is the total number of valence electrons in the
simulation. For simulations in supercells, the net spin (# of up
electrons − # of down electrons) was always rounded to a
multiple of the number of primitive cells in the supercell. This
resulted in a consistent net spin per unit cell across all supercell
sizes. Of the compounds included in our test set, only
molecular oxygen and CuSO4 were found to have nonzero net
spin. DFT calculations were performed using the same norm-
conserving pseudopotentials (NCPP) used for DMC. Detailed
information regarding pseudopotential selection can be found
in Section 2.4. The orbitals calculated using DFT were used to
generate the trial wave functions for VMC. The trial wave
function, ΨT(R,t), is expressed in Slater-Jastrow form using a
single determinant

Ψ =t D eR R( , ) ( ) J R( ) (2)

where R represents the positions of the electrons, D(R) is a
Slater determinant of the single-particle DFT orbitals, and J(R),
the Jastrow factor, is a parametrized function that approx-
imately accounts for the effects of electron correlation. It has
been found that compared to using a single determinant from
Hartree−Fock calculations, DFT orbitals yield a better
representation of the nodal surface, therefore leading to more
accurate total and dissociation energies in atoms and diatomic
molecules.39 Using an accurate trial wave function in diffusion
Monte Carlo reduces the localization error21 and improves the
efficiency of diffusion Monte Carlo. In this work, the following
form was used
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where N is the number of electrons, Nions is the number of ions,
rij = ri −rj, riI = ri − rI, ri is the position of electron i, and rI is
the position of ion I. J(ri, rj) is the sum of isotropic electron−

electron terms, u, electron−nucleus term, χ, and plane-wave
expansions of electron−electron separation, p. It was found that
including three-body terms made relatively small improvements
in the final results and made the optimization of Jastrow
parameters less reliable.
The parameters in the Jastrow factor were optimized using

VMC calculations with standard routines available in CASINO.
In each of these calculations, the electronic configurations were
propagated for 10,000 equilibration steps, and then an
additional 150,000 steps were run to generate a sample of
10,000 random configurations. The VMC time step is internally
optimized at every step during equilibration, aiming for 50%
acceptance ratio in the Metropolis algorithm. The samples were
taken every 15 steps to reduce serial correlation between
samples. The parameters of the Jastrow factor were optimized
to minimize the mean absolute deviation of the local energy EL,
defined as

= Ψ
Ψ

E R
H R

R
( )

( )
( )L

(4)

For an eigenstate, the local energy will be constant for all
electronic configurations, and the mean absolute deviation of
the local energy will be zero.29

For large supercell sizes, we found that occasionally the
optimization of the Jastrow factor would converge poorly (e.g.,
resulting in an anomalously high mean absolute deviation of the
local energy), while for the smallest supercell sizes for each
material the Jastrow factor converged reliably in all cases.
Reliable convergence of the Jastrow factor at larger supercell
sizes was achieved by initializing the Jastrow parameters for
each supercell with the converged Jastrow parameters for the
next-smallest supercell. It was found that the same Jastrow
parameters worked nearly equally well at all k-points, so in our
automated formulation the Jastrow parameters were optimized
at a single k-point and used for the remaining seven k-points on
the 2 × 2 × 2 k-point grid.
The VMC-optimized Jastrow factors were used to generate

trial wave functions for the DMC calculations. For the DMC
simulations, a constant time step of 0.01 au was used. Casula’s
T-moves were used to improve the reliability of DMC
calculations, as they make DMC energies variational, although
this choice likely slightly increased the time-step error.40 Using
routines available in CASINO, checkpoints were created for the
DMC calculations every 500 steps, and the calculation was
restarted from the checkpoint if the weight exceeded the target
weight by a factor of more than 8. The total number of samples
collected for statistics was at least 80,000 times the number of
valence electrons in the simulation. This number varied for
different materials, as we explored different approaches and
ensured we had enough samples to reach an acceptable level of
accuracy in the calculated energies. The DMC-calculated
energies were then extrapolated to infinite system size using
the finite size extrapolation formula as proposed by Ceperley
and Alder,38 as discussed above.
For accurate comparisons with experiment, it necessary to

include the zero-point vibrational energies. Zero-point vibra-
tional energies for all structures were calculated using density
functional theory as implemented in the Vienna Ab-initio
Simulation Package (VASP) and settings used by the Materials
Project.6 The dynamical matrix was calculated using density
functional perturbation theory for a supercell in which all
possible lattice vectors were at least 8 Å. The zero-point energy
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was calculated using PHONOPY.41 To evaluate the accuracy of
the calculated energies, the DFT-calculated zero-point energies
were added to the DMC-calculated energies, and the sum was
compared to the experimental formation enthalpies at 0 K. We
neglected the pressure−volume contribution to the exper-
imental formation enthalpy per atom, as this is negligible at a
pressure of 1 atm.
2.4. Choice of Pseudopotentials. All QMC calculations

were performed using norm-conserving or energy consistent
pseudopotentials. Although previous work has shown improved
DMC energies using Hartree−Fock pseudopotentials,42 in our
initial set of calculations we used DFT pseudopotentials
because we found that the DFT/GGA self-consistency loop
more reliably converged when using pseudopotentials
generated for use with DFT/GGA calculations. We identify
several works that perform total energy calculations on
ZnO,43−45 polymorphs of TiO2,

46−48 different magnetic states
of Ti4O7,

49 and superconductivity of several cuprates.50,51 In
these previous calculations, comparisons were made of the
relative energies of different polymorphs, defect structures, or
different magnetic configurations; however calculations for the
Ti, Zn, or Cu metals were not included, preventing us from
comparing formation energies to our present work.
For most elements the norm conserving Rappe-Bennett

pseudopotentials (RB-PP)52 generated by OPIUM53 were used,
but for some we found that the Fritz-Haber Institute
pseudopotentials optimized in PBE (FHI-PP) generated by
Scheffler et al.54 gave more accurate results. For select cases
with very poor accuracy, we tested Burkatzki-Filippi-Dolg
(BFD-PP)55 pseudopotentials and Optimized Troullier Martins
(OPT-PP)43 pseudopotentials, in order to provide additional
comparisons. BFD-PP pseudopotentials are the only Gaussian
basis pseudopotentials that we used among the pseudopotential
sets that we investigated. In BFD-PP calculations, DFT
calculations were performed using a triple-ζ Gaussian basis,
with CRYSTAL code.56 In all other DFT calculations, a plane-
wave basis was used with Quantum Espresso code.32 The cutoff
energy for the plane-wave basis was determined by running a
series of calculations on each of the pure elements, in which the
cutoff energy was increased in increments of 10 Ry. The energy

was considered to have converged with respect to basis size
when the calculated energy per atom changed by less than 1
meV/atom between successive increments. For materials or
molecules containing multiple elements, the largest plane-wave
cutoff energy among the elements was used. The pseudopo-
tentials and cutoff energies used for each of the elements in this
study are listed in the Supporting Information (SI).

3. RESULTS

In Figure 2, we show the results of our DMC calculations using
the RB-PP for all compounds. We use these results as our
reference and first attempt to utilize our DMC recipe. Up to
Hg2Cl2 on the x-axis, DMC calculations are able to provide
chemical accuracy, meaning that the results are within 1 kcal/
mol per atom (4.12 kJ/mol per atom) of the experimental
formation energies. These results are substantially more
accurate than the corresponding DFT with errors ranging
from 5 to 60 kJ/mol per atom for these materials. Continuing
through to MgF2, in Figure 2, DMC calculations showed
improved accuracy compared to QE/NCPP calculations.
However, for HgO, AgCl, Hg2SO4, and ZnO, DMC formation
energy errors are larger than their QE/NCPP counterparts and
in some cases by a considerable amount.
In order to understand these cases with large DMC errors we

investigated several possible causes.57 First was the use of
asymmetric Casula T-move branching factors, which make the
DMC energy variational and prevent population explosion
errors when nonlocal pseudopotentials are used. The T-move
scheme may also increase the localization error due to the
pseudopotentials and yield a slightly larger time-step bias. An
alternative is to use symmetric T-move branching factors, which
have been shown to decrease the time-step bias further to some
extent.40 To evaluate whether large errors originate from time
step extrapolation or our choice of T-move scheme, we
compare the performance of the two Casula T-move schemes
for SiO2 and ZnO structures and perform time-step
extrapolation to zero for total energies and formation energies
of each compound (for additional details, see the SI). We show
that the large error in the formation energy is not a result of the
difference in Casula T-move implementation or choice of the

Figure 2. Absolute error per atom with respect to experimental formation energies for the compounds in the benchmark set using RB-PP. The QE/
NCPP results are shown with orange, and DMC results are shown with blue bar histograms. Black error bar lines on DMC/RB-PP results represent
the statistical error that results from the Monte Carlo algorithm. VASP/PAW results are shown with the black bar histograms. On the y-axis a break
is placed between 60 and 80 kJ/mol and the upper half of the y-axis has larger intervals for better representation.
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time step, as the difference in formation energies at different
time steps is within the error bar of the DMC results at 0.01 au.
Second, we investigate the pseudopotential errors in the

Hamiltonian, as they are found to be rather large and
nonsystematic especially for heavy elements.24 Pseudopoten-
tials can also affect the nodal surface and shape of the trial wave
function, making it challenging to characterize and isolate the
source of error being either the pseudopotential itself or the
nodal surface of the trial wave function. Therefore, we perform
benchmark calculations on select compounds using several
pseudopotentials to understand if these errors can be
controllable.
Among the test set materials considered in this work,

compounds that include Zn, Hg, Ag, F, and Ti atoms tend to
have the largest discrepancy between DMC and experimental
results (Figure 2). To test the BFD-PP and OPT-PP
pseudopotentials, we needed to make slight changes to our
recipe. DFT calculations using BFD-PP were performed using
the CRYSTAL code56 at the PBE level using a double-ζ
Gaussian basis. As OPT-PP are available for only first row
transition metals and they are optimized for the local density
approximation (LDA),58 whenever there is a p-block element in
a compound to be simulated, we combine it with Fritz-Haber
Institute pseudopotentials optimized at the LDA level and
perform DFT calculations to prepare trial wave functions using
LDA. Therefore, only TiO2 and ZnO in our test set could be
simulated using OPT-PP.
We initially calculated the formation energies using RB-PP as

shown in Figure 2. Then in Figure 3, for the problematic cases
of Figure 2, we show that using FHI-PP leads to improved
DMC formation enthalpies for most compounds compared to
using RB-PP. For example, AlF3 and CaO have errors of less
than 5 kJ/mol per atom in the DMC/FHI-PP calculations,
compared to 13.3 ± 2.3 and 18.1 ± 0.3 kJ/mol atoms for the
DMC/RB-PP results. For transition metal containing com-
pounds and MgF2 however, still DMC/FHI-PP results are not
significantly better than VASP/PAW calculations. For TiO2,
both DMC/OPT-PP and DMC/BFD-PP perform substantially
better compared to DMC/RB-PP and VASP/PAW. For MgF2,
we could only perform DMC/FHI, DMC/BFD, and DMC/RB
calculations, since the pseudopotential for Mg does not exist in
the OPT-PP set. For ZnO however, DMC calculations
substantially improve when OPT-PP and BFD-PP are used,

resulting in errors of less than 7.1 kJ/mpmol atom. With this
understanding of the performance of the pseudopotentials, in
Figure 4, we show the combined benchmark results from
Figures 2 and 3. In Figure 4, except for all compounds
containing F, Ca, Ti, Hg and Zn, we used RB-PP (see SI for
details). Eliminating finite size errors in metallic materials can
be especially challenging due to the complex shape of the Fermi
surface, which may require denser k-point sampling. However,
the accurate results obtained for these compounds, using BFD
and OPT-PP, show that for the cases considered here
pseudopotentials are the largest source of error, and our recipe
yields transferable performance given the use of suitable
pseudopotentials.

4. DISCUSSION

We show that an automated, simple recipe to perform QMC
calculations can be used to provide increased accuracy
icompared to DFT, in formation energies of periodic solids.
For a test set of 21 compounds (see Figure 4) with
experimentally known formation energies, chemical accuracy
was obtained with our automated DMC recipe for 11
structures. DFT calculations using either the QE/NCPP or
VASP/DFT methods were not able to provide chemical
accuracy in any of the compounds. Overall, for 18 of the 21
compounds, our DMC recipe provides results with significantly
improved accuracy compared to VASP/PAW. We find that for
the three remaining cases, AgCl, HgO, and Hg2SO4, DMC
performs worse than VASP/PAW. Among these, the DMC
errors are anomalously high for two of the compounds: AgCl
and Hg2SO4. Because there are currently no BFD or OPT
pseudopotentials available for Ag or Hg, we were only able to
generate results for these compounds using the RB and FHI
pseudopotentials. Based on our tests on ZnO, TiO2, and MgF2,
we believe the RB and FHI pseudopotentials for Ag and Hg are
likely the source of the anomalously high error.
We note that the high-throughput DFT recipes make use of

empirical fitting schemes for elemental energies, whereas our
QMC calculations use no empirical fitting parameters. Saal et
al.1 compared the performance of high-throughput DFT recipes
over two of the existing databases: Materials Project6,57 and
Open Quantum Materials Database (OQMD).1 Formation
energies of 1386 compounds found in Materials Project are
compared with respect to experimental energies when two

Figure 3. Absolute error per atom for the compounds which are identified to be problematic when RB-PP is used. Parts a) and b) use the same scale
on the y-axis. However, they are separated as all the calculations in a) use the PBE method in DFT and orbital generation for QMC, whereas
calculations in b) use LDA. Within each figure there are two groups of data for each compound, enclosed with a box if results of more than one
pseudopotentials are compared. The first group, on the left, represents the DFT calculations, whereas the second group represents DMC
calculations. Each color given in the legend shows the pseudopotential used in performing respective calculations. Error bars in DMC calculations are
smaller than the thickness of the associated lines, if not shown explicitly. Tabulated values can be found in the SI.
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recipes are employed yielding 0.133 eV/atom and 0.108 eV/
atom mean absolute errors (MAE). Within the OQMD recipe,
when only binary compounds are investigated, the resulting
MAE is 0.119 eV/atom. In comparison, our QMC recipe yields
a MAE of 0.058(6) eV/atom (when compounds that rely on Ag
and Hg pseudopotentials are excluded, such as AgCl,
Hg2SO4,HgO, Hg2Cl2, MAE is 0.028(5) eV/atom), whereas
pure DFT-GGA calculations we performed with VASP/PAW
yield a MAE of 0.276 ev/atom over the same set.
Although our results show that performing DMC calcu-

lations in a preset scheme on a range of materials can provide
significantly improved accuracy over DFT calculations,
pseudopotential errors are nonsystematic in DMC and can,
for a small number of cases, lead to serious errors. Given that an
improvement over DFT was obtained in 85% of the cases
tested here, the simple, automated approach we present may be
sufficient for a host of applications. We find that pseudopo-
tentials that perform accurately in DFT do not necessarily
perform as well in QMC. In Table 1, we show the differences
between the tested pseudopotentials for the two transition
metals we investigated in detail, Zn and Ti. Both BFD-PP and

OPT-PP use a Ne core for first row transition metals as it was
found that semicore effects can be crucial.43 These PP also have
relatively smaller core radii on the d orbitals. Additionally,
BFD-PP uses an energy consistent scheme rather than norm-
conserving, as they found that energy consistent pseudopoten-
tials can give more accurate results in MP2, CCSD(T), and
DMC calculations.55 On the other hand, OPT-PP uses very
small nonlocal radii, <1 au, to increase its transferability. It has
been suggested that inclusion of higher angular momentum
channels and using them as the local channel for a
pseudopotential can lead to improved energies in QMC
calculations.59 However, in our comparisons between different
pseudopotentials, we see the smaller core radius and larger
number of valence electrons as an important indicator for
accuracy.
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Figure 4. Absolute error per atom for the benchmark set using RB-PP for all atoms except for the compounds containing F, Ca, Ti, Hg, Ag, and Zn.
For the compounds which contain these atoms, results here are taken from the best DMC calculation in Figure 3. Bar histograms are represented in
the same way as Figure 2. The periodic table in the inset represents the atoms that perform with desirable accuracy in green, with slightly worse
accuracy in yellow, and atoms whose pseudopotentials need improvement in red. On the y-axis a break is placed between 60 and 90 kJ/mol for better
representation. Similarly, QE/NCPP values for Hg2SO4 and ZnO are not shown as the graph is truncated at 120 kJ/mol. These values are 147.41
and 237 kJ/mol, respectively. Tabulated values can be found in the SI.

Table 1. Comparison between All Investigated
Pseudopotentials for Zn and Ti for Valence Electrons, d-
Orbital Core Radii, Local and Highest Angular Momentum
(l) Channels

OPT-PP BFD-PP FHI-PP RB-PP

Number of Valence Electrons (Zeff)
Zn 20 20 12 12
Ti 12 12 4 12
d-Orbital Core Radii (in au)
Zn 0.80 1.16 2.37 1.97
Ti 0.80 1.60 2.71 1.70
Local and Highest l Channels
Zn p,d d,d s,d s,d
Ti p,d d,d p,d s,d
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Continuum Cariational and Diffusion Quantum Monte Carlo
Calculations. J. Phys.: Condens. Matter 2010, 22, 023201.

(19) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.;
Brown, S. T.; Gilbert, A. T.; Slipchenko, L. V.; Levchenko, S. V.;
O’Neill, D. P.; DiStasio, R. A., Jr; Lochan, R. C.; Wang, T.; Beran, G.
J.; Besley, N. A.; Herbert, J. M.; Yeh Lin, C.; van Voorhis, T.; Hung
Chien, S.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.;
Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.;
Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.;
Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C.-P.;
Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.;
Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P.
A.; Min Rhee, Y.; Ritchie, J.; Rosta, E.; David Sherrill, C.; Simmonett,
A. C.; Subotnik, J. E.; Lee Woodcock, H., III; Zhang, W.; Bell, A. T.;
Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre,
W. J.; Schaefer, H. F., III; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-
Gordon, M. Advances in Methods and Algorithms in a Modern
Quantum Chemistry Program Package. Phys. Chem. Chem. Phys. 2006,
8, 3172−3191.
(20) Grossman, J. C. Benchmark quantum Monte Carlo calculations.
J. Chem. Phys. 2002, 117, 1434−1440.
(21) Kolorenc, J.; Mitas, L. Applications of quantum Monte Carlo
methods in condensed systems. Rep. Prog. Phys. 2011, 74, 026502.
(22) Krogel, J. T. Nexus: A Modular Workflow Management System
for Quantum Simulation Codes. Comput. Phys. Commun. 2016, 198,
154−168.
(23) Santana, J. A.; Krogel, J. T.; Kent, P. R. C.; Reboredo, F. A.
Cohesive energy and structural parameters of binary oxides of groups
IIA and IIIB from diffusion quantum Monte Carlo. J. Chem. Phys.
2016, 144, 174707.
(24) Nazarov, R.; Shulenburger, L.; Morales, M.; Hood, R. Q.
Benchmarking the Pseudopotential and Fixed Node Approximations
in Diffusion Monte Carlo Calculations of Molecules and Solids. Phys.
Rev. B: Condens. Matter Mater. Phys. 2016, 93, 094111.
(25) Wagner, L. K.; Ceperley, D. M. Discovering Correlated
Fermions Using Quantum Monte Carlo. Rep. Prog. Phys. 2016, 79,
094501.
(26) Kolorenc,̌ J. c. v.; Mitas, L. Quantum Monte Carlo Calculations
of Structural Properties of FeO Under Pressure. Phys. Rev. Lett. 2008,
101, 185502.
(27) Austin, B. M.; Zubarev, D. Y.; Lester, W. A. Quantum Monte
Carlo and related approaches. Chem. Rev. 2012, 112, 263−288.
(28) Berg, E.; Metlitski, M. A.; Sachdev, S. Sign-Problem−Free
Quantum Monte Carlo of the Onset of Antiferromagnetism in Metals.
Science 2012, 338, 1606−1609.
(29) Ceperley, D. M.; Alder, B. J. Ground State of the Electron Gas
by a Stochastic Method. Phys. Rev. Lett. 1980, 45, 566−569.
(30) Franck, E. U. J. D. Cox, D. D. Wagman, V. A. Medvedev:
CODATA Key Values for Thermodynamics, aus der Reihe:
CODATA, Series on Thermodynamic Properties. Hemisphere
Publishing Corporation, New York, Washington, Philadelphia, London
1989. 271 Seiten, Preis: £ 28.00. Ber. der Bunsenges. Phys. Chem. 1990,
94, 93−93.
(31) Towler, M. D. Casino Manual 2015. http://www.tcm.phy.cam.
ac.uk/~mdt26/casino_manual_dir/casino_manual.pdf (accessed
2016-10-17).
(32) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.;
Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.;
Corso, A. D.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.;
Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos,
L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.;
Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.;
Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM
ESPRESSO: a Modular and Open-source Software Project for
Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009,
21, 395502.
(33) Kresse, G.; Hafner, J. Ab initio Molecular Dynamics for Liquid
Metals. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 558−561.
(34) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the
Projector Augmented-wave Method. Phys. Rev. B: Condens. Matter
Mater. Phys. 1999, 59, 1758−1775.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b01179
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

H

http://www.tcm.phy.cam.ac.uk/~mdt26/casino_manual_dir/casino_manual.pdf
http://www.tcm.phy.cam.ac.uk/~mdt26/casino_manual_dir/casino_manual.pdf
http://dx.doi.org/10.1021/acs.jctc.6b01179


(35) Drummond, N. D.; Needs, R. J.; Sorouri, A.; Foulkes, W. M. C.
Finite-size Errors in Continuum Quantum Monte Carlo Calculations.
Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 125106.
(36) Rajagopal, G.; Needs, R. J.; Kenny, S.; Foulkes, W. M. C.; James,
A. Quantum Monte Carlo Calculations for Solids Using Special k
Points Methods. Phys. Rev. Lett. 1994, 73, 1959−1962.
(37) Lin, C.; Zong, F. H.; Ceperley, D. M. Twist-averaged boundary
conditions in continuum quantum Monte Carlo algorithms. Phys. Rev.
E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2001, 64 (1),
016702.
(38) Ceperley, D. M.; Alder, B. J. Ground State of Solid Hydrogen at
High Pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 36,
2092−2106.
(39) Per, M. C.; Walker, K. A.; Russo, S. P. How Important is Orbital
Choice in Single-Determinant Diffusion Quantum Monte Carlo
Calculations? J. Chem. Theory Comput. 2012, 8, 2255−2259.
(40) Casula, M.; Moroni, S.; Sorella, S.; Filippi, C. Size-consistent
Variational Approaches to Nonlocal Pseudopotentials: Standard and
Lattice Regularized Diffusion Monte Carlo Methods Revisited. J.
Chem. Phys. 2010, 132, 154113.
(41) Togo, A.; Tanaka, I. First-principles Phonon Calculations in
Materials Science. Scr. Mater. 2015, 108, 1−5.
(42) Greeff, C. W.; Lester, W. A. A soft Hartree-Fock
pseudopotential for carbon with application to quantum Monte
Carlo. J. Chem. Phys. 1998, 109, 1607−1612.
(43) Krogel, J. T.; Santana, J. A.; Reboredo, F. A. Pseudopotentials
for Quantum Monte Carlo Studies of Transition Metal Oxides. Phys.
Rev. B: Condens. Matter Mater. Phys. 2016, 93, 075143.
(44) Yu, J.; Wagner, L. K.; Ertekin, E. Towards a Systematic
Assessment of Errors in Diffusion Monte Carlo Calculations of
Semiconductors: Case Study of Zinc Selenide and Zinc Oxide. J. Chem.
Phys. 2015, 143, 224707.
(45) Santana, J. A.; Krogel, J. T.; Kim, J.; Kent, P. R. C.; Reboredo, F.
A. Structural Stability and Defect Energetics of ZnO from Diffusion
Quantum Monte Carlo. J. Chem. Phys. 2015, 142, 164705.
(46) Abbasnejad, M.; Shojaee, E.; Mohammadizadeh, M. R.; Alaei,
M.; Maezono, R. Quantum Monte Carlo Study of High Pressure
Cubic TiO2. Appl. Phys. Lett. 2012, 100, 261902.
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