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The importance of including uncertainties in the design process of aerospace systems is
becoming increasingly recognized, leading to the recent development of many techniques
for optimization under uncertainty. Most existing methods represent uncertainties in the
problem probabilistically; however, in many real life design applications it is often difficult
to assign probability distributions to uncertainties without making strong assumptions.
Existing approaches for optimization under different types of uncertainty mostly rely on
treating combinations of statistical moments as separate objectives, but this can give rise
to stochastically dominated designs. Horsetail matching is a flexible approach to optimiza-
tion under any mix of probabilistic and interval uncertainties that overcomes some of the
limitations of existing approaches. The formulation delivers a single, differentiable metric
as the objective function for optimization. It is demonstrated on algebraic test problems
and the design of a flying wing using a coupled aero-structural analysis code.

I. Introduction

Optimization techniques are becoming increasingly integrated within the design process of complex
aerospace systems when a computational simulation of the system is available. Traditionally, an optimiza-
tion considers a quantity of interest of a system q (e.g., efficiency, cost, weight) as a function of controllable
design variables x, and the objective is to find a design x∗ such that

∀x ∈ X , q(x∗) ≤ q(x)

s.t. xL
k < xk < xU

k k = 1, . . . , nx (1)

gj(x) ≤ 0 j = 1, . . . , ng

where xL
k and xU

k are respectively the upper and lower bounds on the kth design variable that make up
the design space X , nx is the number of design variables, gj(x) is the jth inequality constraint, and ng

is the number of constraints. However, in practical problems, estimating the objective q will be subject
to many uncontrollable uncertainties from a variety of sources.1,2 We denote the uncertainties by u ∈ U ,
where U is the uncertainty space. Uncertainty quantification (UQ) has emerged as an important field for
computational analysis, where effective and efficient methods for quantifying the influence of the uncertainties
on the quantity of interest are being developed. Furthermore, the importance of including uncertainties in
the design process is becoming increasingly recognized, since deterministically optimized designs often lie
in extreme regions of design space and see severely degraded performance when realized.3,4 Therefore
effective computational methods of handling uncertainties within the optimization process are needed, this
is addressed by the field of optimization under uncertainty (OUU).

Handling uncertainties in optimization is not a challenge unique to engineering design, and has been
considered extensively in other contexts. The field of operations research has developed mathematically
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rigorous robust optimization techniques for linear problems.5,6 Similarly the field of stochastic programming
has developed methods for probabilistic optimization under uncertainty that preserve mathematical structure
of the underlying problem such as linearity and convexity.7 Engineering design differs from these fields mainly
because the design problems are often non-linear, and so we cannot exploit any underlying structure of the
problem when formulating the OUU problem. Nonetheless, there are important concepts from these fields
for formulating the OUU problem effectively that should not be overlooked in engineering design.

The first step in any quantification of uncertainty, whether for analysis or design, is representing the
uncertainties in u mathematically. A typical approach is to assign a probability distribution to each entry
in the vector u (and so u becomes a multidimensional random variable with independent components).
However, uncertainties arise from a variety of sources and so this is not always the most appropriate choice.
Indeed, various representations of uncertainty are available, giving the designer a richer set of options for
characterizing the differing types of uncertainty that may be present in a given problem.8 A common
alternative to representing uncertainties probabilistically is to use intervals, where bounds on the values that
the uncertainty can take are all that is known. For these uncertainties assigning a probability distribution
assumes structure that is unknown in reality;9,10 an interval representation avoids imposing this extra
structure.

In this paper the uncertainties in u are split into uncertainties that are treated probabilistically, θ, and
uncertainties that are treated with interval analysis, φ; the quantity of interest q is now a function of the
design variables as well as these uncertainties: q = q(x,θ,φ). In general problems, both of these types of
uncertainties can exist and so UQ for mixed probabilistic and interval uncertainties can be used. This mixed
UQ analysis gives rise to a cumulative distribution function (CDF) for every possible value of the interval
uncertainties, and then the envelope gives the interval at every probability level and the upper and lower
bounds on the true CDF.10,11 This uncertainty information is illustrated in Figure 1 (where a small subset
of infinite possible CDFs are plotted), and is referred to as a “horsetail plot” (also known as a p-box), giving
rise to the name of our proposed approach.

Figure 1: Example of a horsetail plot - the envelope of possible CDFs giving the two horsetail curves that
represent the upper and lower bounds on the true CDF.

Other methods of propagating uncertainties beyond just probability and intervals are available, such as
the Dempster-Shafer theory of evidence,12 and possibility theory.13 These methods also result in a horsetail
plot, in that they give upper and lower bounds on the true CDF of the quantity of interest. A horsetail
plot is thus a rather general form of the output of an uncertainty analysis. A probabilistic analysis yields
a special case of a horsetail plot where the upper and lower bounds on the CDF are coincidental. A purely
interval based analysis yields another special case where the bounds are step functions.

The following definition of a horsetail plot is used in this paper (where the functions Fu and Fl are
referred to as the horsetail curves):

Definition I.1. A horsetail plot consists of two non-decreasing functions Fu : Q → [0, 1] and Fl : Q → [0, 1]
that represent the upper and lower bounds on the CDF respectively, where Q is the set of all possible values
of the quantity of interest q.

Much of the previous work into OUU in aerospace applications has considered exclusively probabilistic
uncertainties where most commonly the first two statistical moments of q (namely mean and variance) are
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considered in an optimization. For robust optimization these can be optimized separately in a multi-objective
formulation,14–16 or can be combined into a single objective using a weighted sum approach.17–20 Various
other methods for robust optimization have also been developed.1 A notable alternative to statistical moment
based methods is the “robust regularization” approach,1,21 which is a minimax strategy optimizing the worst
case performance over the uncertainty space (it is referred to as the “robust counterpart” in the context of
convex programming22), so it treats the uncertainties as intervals.

Recently, matching approaches have been developed in order to try and overcome some of the disadvan-
tages (discussed below) of statistical moment based methods. For example, a CDF based matching approach
minimizes the area between a design’s cumulative density function and a step function at the determinis-
tic optimum.23 A PDF matching approach minimizes the distance between a design’s probability density
function and a target, measured by a differentiable squared L2-norm metric.24

Examples of robust optimization under mixed uncertainties to date almost exclusively use a weighted
sum combination of average statistical moments and intervals of statistical moments.25–28 For example,

fobj = w1μ̄+ w2σ̄ + w3δμ (2)

where fobj is the objective function to be minimized, μ̄ is the average mean of the CDFs in the horsetail
plot, σ̄ is the average standard deviation, δμ is the interval of possible μ values, and w1, w2, w3 are weights
specified by the designer. Another suggested approach for robust design under mixed uncertainties is to
minimize the interval of the 50% quantile.11

Under probabilistic uncertainties, methods that consider statistical moments as separate objectives as-
sume it is always worth trading off mean performance for reduced variance (increased robustness), but this
is not the case in many problems if it gives rise to a design that is stochastically dominated by another
design.29 Stochastic dominance indicates that for any given value of the quantity of interest q, a dominated
design is less likely to obtain this value or better than another design; this is a concept the authors argue is
often overlooked in the engineering OUU literature. Stochastic dominance under probabilistic uncertainties
is illustrated in Figure 2, and is defined by Definition I.2; it essentially means that the CDFs for the designs
do not cross at any point.

Figure 2: Stochastic dominance under probabilistic uncertainties (left) and mixed uncertainties (right). In
both cases design xA is stochastically dominated by design xB , according to definitions I.2 and I.3.

Definition I.2. A design xA stochastically dominates a design xB (or design xB is stochastically dominated
by design xA) under probabilistic uncertainties if

∀q ∈ Q, F (q)xA
> F (q)xB

or equivalently
∀h ∈ [0, 1], F−1(h)xA

< F−1(h)xB

where F (q)x : Q → [0, 1] and F−1(h)x : [0, 1] → Q are respectively the CDF and inverse CDF for design x.

The concept of stochastic dominance extends straightforwardly to mixed uncertainties, by defining it as
when each horsetail curve for a design stochastically dominate the corresponding curves for another design
according to Definition I.2. This is illustrated in Figure 2 and defined in Definition I.3:
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Definition I.3. A design xA stochastically dominates a design xB (or design xB is stochastically dominated
by design xA) under mixed uncertainties if

∀q ∈ Q, Fu(q)xA
> Fu(q)xB

AND Fl(q)xA
> Fl(q)xB

or equivalently:
∀h ∈ [0, 1], F−1

u (h)xA
< F−1

u (h)xB
AND F−1

l (h)xA
< F−1

l (h)xB

where Fu and Fl : Q → [0, 1] are respectively the upper and lower bound of the CDF, and F−1
u and

F−1
l : [0, 1] → Q are respectively the corresponding inverses.

Stochastic dominance under mixed uncertainties means that for any value of q, the bounds on the
probability that a dominating design will achieve this performance or better are strictly higher than the
dominated design.

The basic robust optimization philosophy aims to maximize the likelihood of achieving as good perfor-
mance as possible. A stochastically dominated design is less likely to achieve a given value of q or better than
another design, and thus the dominated design is objectively worse than the dominating design. Treating
combinations of statistical moments such as μ̄, σ̄, and δμ as separate objectives in an optimization does
not consider the possibility of obtaining stochastically dominated designs. The implication of this is that,
for some design problems, many of the designs on a Pareto front trading off these objectives are stochasti-
cally dominated by other designs and computational effort has been wasted obtaining them. Similarly if a
weighted sum of these objectives is being optimized, some combinations of weightings will give rise to dom-
inated designs, and since it is difficult to know a priori where on the Pareto front a given set of weightings
will end up, this is a limitation of optimizing under mixed uncertainties using combinations of statistical
moments.

Additionally, alternative approaches for optimization under mixed uncertainties are few; it was noted in
Ref. 1 that optimization under epistemic uncertainty has received relatively little attention in the literature
(epistemic uncertainties are most commonly modeled with intervals). Therefore there is room for significant
improvement in techniques for optimization under different types of uncertainty.

These arguments motivate the development of horsetail matching under mixed uncertainties presented
in this paper. In Section II the general concept is presented, the advantages of the approach compared to
existing methods are discussed, and the numerical implementation is outlined. In Section III, the effectiveness
of the implementation is demonstrated, and in Section IV horsetail matching is applied to a physical design
problem: the low-fidelity aero-structural optimization of a flying wing, where it is compared to alternative
optimization approaches. Finally Section V concludes the paper and proposes future work.

II. Horsetail Matching

This section defines the difference metric underlying our horsetail matching approach, discusses its flexi-
bility and describes its implementation.

II.A. The Difference Metric

The concept of horsetail matching is to minimize the difference between the horsetail plot of the current
design and a target, as illustrated in Figure 3.

The measure of this difference is given by the following horsetail matching metric:

dhm(x) =
(∫ 1

0

(
F−1
u (h)− tu(h)

)2
dh+

∫ 1

0

(
F−1
l (h)− tl(h)

)2
dh

)1/2

(3)

where F−1
u (h) is the inverse of the upper bound of the CDF, F−1

l (h) the inverse of the lower bound (which
both exist because by definition the bounds are non-decreasing), and tu(h) and tl(h) are respectively the
targets for the upper and lower bound horsetail curves. Note that this target does not necessarily have to
consist of the inverse of valid CDFs; it can be any pair of functions of h. The metric dhm is the L2 norm
of the difference between the horsetail curves and their targets integrated over h. In our horsetail matching
formulation, the overall OUU problem becomes finding x∗, such that:

x∗ = argmin
x∈X

dhm(x; tu, tl) (4)
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Figure 3: The horsetail matching concept: minimizing the difference between the horsetail plot of the
quantity of interest q for the current design and a target.

where the design given by x∗ corresponds to the optimal design under uncertainty - its behavior under
uncertainty is as close as possible to that specified in the target. Although this formulation might appear to
be restricting, we show in the next section that it is fact flexible enough to recover more traditional robust
optimization formulations.

Special Cases

Under exclusively probabilistic uncertainties, the metric reduces to:

dhm(x) =
(
2

∫ 1

0

(
F−1
cdf (h)− tcdf (h)

)2
dh

)1/2

(5)

where F−1
cdf (h) is the inverse of the CDF and tcdf (h) is its target. Horsetail matching in the probabilistic case

has been explored in detail by the first two authors.30 Compared to density matching,24 it has been shown
to be superior both in terms of computational efficiency and producing good designs from a robust design
point of view. It has also been shown to give designs that are not stochastically dominated (see Definition
I.2) but which are guaranteed to lie on the mean/variance Pareto front, at a similar computational cost to
the weighted sum of mean and variance approach.30

Under exclusively interval uncertainties, the metric reduces to:

dhm(x) =
((

qmin − tu
)2

+
(
qmax − tl

)2 )1/2

(6)

where qmin and qmax are the minimum and maximum values of q over all possible values of the uncertainties,
and tu and tl are their respective target values.

II.B. Flexibility of the Metric

It might seem that requiring a target places a lot of responsibility on the designer, which was an issue
discussed for the density matching approach.24 However, using horsetail matching, it is straightforward to
provide a target that captures the robust design philosophy of maximizing the likelihood of achieving as
good performance as possible. This is achieved by setting both tu(h) and tl(h) to be the same constant value
of q beyond what is feasible (e.g., zero weight, 100% efficiency). This is the target illustrated in Figure 3,
and is referred to as the “standard target” for horsetail matching. Under this target, the minimizer of dhm
from Eq. 3 will not be stochastically dominated by any other feasible design according to definition I.3, a
property the authors argue is an improvement upon relying on combinations of statistics such as in Eq. 2.

Furthermore, being able to provide a target in the formulation in Eq. 4 adds flexibility to the approach
since we are able to specify more than just the basic robust optimization philosophy. This flexibility is a
result of the metric in Eq. 3 integrating the L2 norm over h, since it allows arbitrary functions of h to be
used as targets. Other possible metrics that integrate the difference between the CDFs as functions of q
(e.g., the Cramer-Von Mises test31) would restrict the targets to being inverses of valid CDFs. Additionally,
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integrating the L2 norm over h as opposed to q penalizes sections of a CDF further from the target more
than it rewards sections closer to the target, giving the metric an intrinsic preference for robust designs and
allowing the target to influence the optimization even when it gives non-feasible values of q; this would not
be the case if the metric was integrated over q. A few uses of the target for different design scenarios are
highlighted here:

• Standard target. To follow the basic robust optimization philosophy of maximizing the likelihood of
achieving as good performance as possible, the targets for both curves should be set to a single value:
tu(h) = tl(h) = qideal, where qideal is a value of the quantity of interest beyond what is achievable (e.g.,
zero weight, 100% efficiency).

• Risk-averse. By modifying the shape of the standard target a designer can specify a preference for
risk-averse designs so that robustness is preferred over possible high performance: skewing the shape
of tl(h) and tu(h) for h close to 1 to lower values of q or shifting the whole of tl to lower values of q
emphasizes minimizing the worst cases of q over the horsetail plot. Figure 4 illustrates examples of
risk averse targets created like this under probabilistic, interval and mixed uncertainties.

Figure 4: Risk-averse targets (dotted) along with typical horsetail plots (solid) under probabilistic (left),
mixed uncertainties (center), and interval uncertainties (right).

• Risk-seeking. A designer can alternatively emphasize possible performance over robustness by mod-
ifying the standard target in the opposite sense to the risk averse targets as illustrated in Figure 5,
instructing the optimization to favor more ambitious designs.

Figure 5: Risk-seeking targets (dotted) along with typical horsetail plots (solid) under probabilistic (left),
mixed uncertainties (center), and interval uncertainties (right).

• Feasible distribution. In some applications, a designer might care more about higher moments of
individual CDFs such as skewness than mean and variance. In this case target distributions over
feasible ranges of q with desirable higher-order moment properties can be provided (this was the main
advantage of the density matching approach24).

6 of 18

American Institute of Aeronautics and Astronautics



• Specific value. In other applications, for example where a component of a larger system is being
designed, pure minimization may not be what is required and instead a target value of qtarg is desired:
this is implemented in the horsetail matching formulation by setting tu(h) = tl(h) = qtarg.

• Worst case optimization. If the risk averse target is taken to the extreme, such that tl(1) → ∞, then
only the worst case value is optimized and the horsetail matching formulation reduces back to the
robust regularization approach.1,21

These possible uses of the target demonstrate the flexibility offered by horsetail matching in that by
varying the target, the optimization under uncertainty problem can be formulated for a variety of scenarios
under any mix of probabilistic and interval uncertainties. This is a powerful feature of the approach, and
it also allows the formulation to recover existing methods of robust optimization by choosing appropriate
targets.

II.C. Implementation

In order to evaluate dhm in Eq. 3, integrals of the form:

D =

∫ 1

0

(
F−1(h)− t(h)

)2
dh (7)

need to be evaluated, where F−1(h) and t(h) are respectively the inverse for either the upper or lower bound
on the CDF (one of the two horsetail curves) and its target. The method used in this paper to numerically
approximate this integral builds upon density matching24 and previous work into horsetail matching under
probabilistic uncertainties,30 where kernels are used to find a differentiable approximation to the CDF. Here
it is extended to mixed uncertainties by making use of differentiable approximations to the minimum and
maximum functions.

The method of obtaining an approximation, D̂, to integrals in the form of Eq. 7 at a given design is
outlined in the following. Recall that we are interested in a quantity of interest, q, that is a function
of probabilistic uncertainties, θ, and interval uncertainties, φ. Note that prior to a horsetail matching
optimization, N fixed points qi are selected for use in the numerical integration, Mθ samples θj are drawn
from the distribution of θ, and Mφ samples φl are drawn from the hyper-rectangle defined by the intervals
of φ. These sets of values {qi : i = 1, ..., N}, {θj : j = 1, ...,Mθ}, and {φl : l = 1, ...,Mφ} are used in the
following algorithms for every design point x throughout the optimization.

First we obtain an expression for the CDF of q over the probabilistic uncertainties and its gradient with
respect to the design variables at each value of φl using Algorithm 1, where K and Φ are kernel functions.

Algorithm 1 Evaluating a single CDF, f , and its gradient at q with φ fixed

1: for j = 1, . . . ,Mθ do

2: qj ← quantity of interest q(x,θj ,φ) from simulation

3: for k = 1, . . . , nx do

4:
∂qj
∂xk

← gradient of quantity of interest q(x,θj ,φ) from simulation.

5: f ← 1
Mθ

∑Mθ

j=1 Φ(q − qj)

6: for k = 1, . . . , nx do

7:
∂f
∂xk

← 1
Mθ

∑Mθ

j=1 K(q − qj) (−1)
∂qj
∂xk

We use a Gaussian kernel such that Φ is the error function for a Gaussian and K is its derivative (which
would be used as the kernel function itself in a Kernel density estimation of the PDF32):

K(r) =
dΦ(r)

dr
=

1√
2πb2

exp
(− r2

2b2
)

Φ(r) =
1

2

(
1 + erf

( r√
2b2

))
(8)

where r ∈ Q is just the argument of the kernel functions, and b is the bandwidth parameter of the kernel
functions, which is fixed throughout the optimization.

Next an expression for the bounds on these CDFs (the horsetail curves) over all samples φl and the
gradients of these bounds are found using Algorithm 2.
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Algorithm 2 Evaluating a horsetail curve, h, and its gradient at q

1: for l = 1, . . . ,Mφ do

2: fl ← value of CDF at q with φ = φl from Algorithm 1.

3: for k = 1, . . . , nx do

4:
∂fl
∂xk

← gradient of CDF at q with φ = φl from Algorithm 1.

5: h ← Sα =
( ∑Mφ

l=1 fle
αfl

)
/
( ∑Mφ

l=1 e
αfl

)
6: for k = 1, . . . , nx do

7: ∂h
∂xk

← ∑Mφ

l=1
∂Sα

∂fl

∂fl
∂xk

=
∑Mφ

l=1

( eαfl∑Mφ

m=1 e
αfm

[
1 + α

(
fl − Sα

)]
∂fl
∂xk

)

In Algorithm 2, Sα is a differentiable approximation to the maximum or minimum of the Mφ values
fl, where α is a fixed parameter whose sign controls which extreme it approximates and whose magnitude
controls the how good the approximation is. Large positive values of α make Sα an approximation to the
maximum function, and large negative values make Sα an approximation to the minimum function: as
α → ∞, Sα → max({fl : l = 1, . . . ,Mφ}) and as α → −∞, Sα → min({fl : l = 1, . . . ,Mφ}).

The function Sα uses exponentials to heavily weight the most extreme values of fl in a normalized sum of
all the values; the approximation becomes better as higher values of α are used since the difference between
the most extreme and next most extreme values in the sum become more exaggerated. In general a value
of α should be chosen to give a good approximation, but if it is too large then the feαf terms can exceed
the largest floating point numbers able to be stored in memory so some caution should be exercised. In this
case since f can only ever take values in the interval [0, 1], fairly large values of α can be used, and this is
explored further in Section III.

Next, quadrature is employed to find an approximation, D̂, of the integral D, as a weighted sum of
(F−1(h)− t(h))2 at N values of h:

D 	 D̂ =

N∑
i=1

(
F−1(hi)− t(hi)

)2
wi (9)

where hi are the quadrature points and wi are the quadrature weights. Algorithm 3 outlines the method used
in horsetail matching to obtain D̂ and its gradient; this is a trapezium rule integration where the quadrature
points hi depend on the function F (q). Note that zeros(N) initializes an array of size N with zeros, and
zeros(N,N) an N ×N matrix.

The overall method of numerically evaluating D̂ is illustrated in Figure 6, where the figures from left
to right outline Algorithms 1 to 3. Algorithm 3 is used to evaluate Du and Dl, the approximation to
the integral in Eq. 7 for each horsetail curves. Then finally the metric and its gradient are evaluated by

dhm 	 (D̂u + D̂l)
1/2 and ∂dhm

∂xk
	 0.5 (∂D̂u

∂xk
+ ∂D̂l

∂xk
) (D̂u + D̂l)

−1/2.

Figure 6: Evaluation of a single CDF at a fixed φl by summing kernel functions centered at Mθ samples qj
(left); differentiable approximation of the maximum of the CDFs h from Mφ values of f (center); trapezium

rule integration of D̂ using N values of qi, hi and ti (right).
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Algorithm 3 Evaluating D̂ and its gradient

1: q ← zeros(N)

2: t ← zeros(N)

3: W ← zeros(N,N)

4: for i = 1, . . . , N do

5: qi ← fixed point qi
6: hi ← horsetail curve at qi from Algorithm 2

7: ti ← t(hi) value of t at hi from the specified target

8: i1 ← min(i+ 1, N)

9: i2 ← max(i− 1, 1)

10: Wi,i ← 0.5( hi1 − hi2 )

11: D̂ ← (q − t)TW (q − t)

12: for k = 1, . . . , nx do

13: ∂t
∂xk

← zeros(N)

14: ∂W
∂xk

← zeros(N,N)

15: for i = 1, . . . , N do

16:
∂hi

∂xk
← gradient of the horsetail curve at qi from Algorithm 2

17: t′ ← derivative of t with respect to the argument, ∂t(h)
∂h , at hi from the specified target

18:
(

∂t
∂xk

)
i
← t′ ∂hi

∂xk

19: i1 ← min(i+ 1, N)

20: i2 ← max(i− 1, 1)

21: (∂W∂xk
)i,i ← 0.5(

∂hi1

∂xk
− ∂hi2

∂xk
)

22: ∂D̂
∂xk

← 2(q − t)TW ∂t
∂xk

+ (q − t)T ∂W
∂xk

(q − t)

Under purely probabilistic uncertainties, since h(q) is the CDF of q(xd,θ) and so D̂1 = D̂2, Algorithm 2
is skipped and the numerical integration in Algorithm 3 is applied directly to the CDF found using Algorithm
1; this is the method used for probabilistic horsetail matching.30

Under purely interval uncertainties, the horsetail curves become step functions and so kernels are not
used to propagate the CDFs and a numerical integration is not performed; Sα in Algorithm 2 is used directly
to obtain qmax (using a large positive value of α) and qmin (using a large negative value of α) and their
gradients from Mφ sampled values of qj = q(xd,φj).

Being able to obtain the metric in a differentiable form means that solving a horsetail matching optimiza-
tion problem using a gradient-based algorithm only requires the ability to obtain values of q and ∂q

∂xk
at given

values of x, θ and φ. If the values of q and ∂q
∂xk

are readily available, horsetail matching can be implemented

as a wrapper treating the available code as a black box. Additionally, in many design problems, ∂q
∂xk

can

be obtained efficiently (e.g., via adjoints in CFD codes33), and so being able to propagate this information
through to the gradient of dhm is important for keeping the computational cost of the optimization under
uncertainty problem low.

It is worth noting that a high number of samples (both of φ and θ) are required to accurately propagate
this metric and the gradient within an optimization, which may be infeasible to do via direct sampling if an
expensive simulation is used to find q and ∂q

∂xk
. Therefore surrogate models can first be fitted to q as well as to

∂q
∂xk

, k = 1, . . . , nx as a function of θ and φ for each design xd. These surrogate models can then be sampled

as many times as required at negligible computational cost (assuming the computational expense of the
simulation vastly outweighs evaluating the surrogate model); propagating mixed uncertainties by sampling
surrogate models has been demonstrated to be effective.11,26 This also means that it is no more expensive to
propagate dhm under mixed uncertainties than probabilistic or interval uncertainties since fitting a surrogate
model for q as a function of the uncertainties is the same cost regardless of how it is sampled afterwards.

The use of Kernels requires the selection of a fixed bandwidth, b, prior to a horsetail matching optimiza-
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tion. This can be done, for example, by using Scott’s rule32 at the initial design, but it is worth noting that
a poor choice of bandwidth can lead to a highly non-smooth gradient (if b is too small) or can give smooth
but erroneous values of dhm and its gradient (if b is too large).

III. Experiments on an Algebraic Test Problem

In order to assess the effectiveness of the numerical implementation of the approach, here horsetail
matching under mixed uncertainties is tested on an algebraic test problem. The test problem in Eq. 10 is
used (an algebraic problem allows many optimizations to be run at low computational cost), where q is a
function of two design variables x1 and x2 that are each bounded by [−5, 5], one probabilistic uncertainty,
θ, which is uniformly distributed over the range [−1, 1], and one interval uncertainty, φ, which is contained
in the interval [−1, 1].

y = x1/2

z = x2/2 + 12

q = 0.25((y2 + z2)/40 + 5yθφ− zφ2) + 0.2(zφ3) + 10

(10)

Figure 7 shows horsetail plots for this test problem at the design point x = (4, 2). The method in Section
II.C is used to propagate the CDF from Mθ = 100 samples of θ for each value of φ (plotted in grey) and then
find the envelope of the Mφ = 30 CDFs at N = 1000 integration points qi evenly spaced between q = −5
and q = 30. To determine an appropriate value of α to use in Sα, Algorithm 2 is performed using different
values of α.
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Figure 7: Propagated horsetail plots of the test problem using α = 100 and α = 10.

It can be seen that the method for α = 100 obtains the envelope of the CDFs to visible accuracy, whereas
α = 10 gives a poor approximation to the envelope. Choosing a higher value α = 1000 resulted in an
overflow error, so α = 100 is used for the horsetail matching optimizations in this section and in Section IV.
Furthermore, for this test problem, the mixed case for α = 0 is equivalent to the purely probabilistic case
where φ is uniformly distributed since the samples of φ are drawn uniformly from the interval [−1, 1], and
these two cases are compared in Figure 8.

Optimization Tests

A gradient-based optimizer (SLSQP, implemented using the NLopt toolboxa) is run on the test problem
from 50 random starting points in design space, where the standard target at q = 0 is used. The propagated
gradient is found from the sensitivity of q to design variables, ∂q

∂xk
, which is obtained from the analytic

ahttp://ab-initio.mit.edu/wiki/index.php/NLopt
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Figure 8: Propagated horsetail plot of the test problem using α = 0 and propagated probabilistic CDF

derivative of Eq. 10 at the sample points. Convergence histories are plotted in Figure 9. Note that the
difference between the HM metric and the best value obtained from all 50 optimizations is plotted, where a
difference of 10−3 is considered converged.
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Figure 9: Horsetail matching optimization convergence histories under mixed uncertainties using the prop-
agated gradient on the algebraic test problem.

It can be observed that the optimizer solves the horsetail matching problem from all 50 starting points,
indicating the effectiveness of the numerical implementation outlined in section II.C.

IV. Application to Physical Aero-Structural Design Problem

In this section, horsetail matching is applied to a physical aero-structural design test problem. The design
problem involves determining the geometry of a flying wing in order to minimize the fuel burn for a given
mission subject to lift and failure constraints. It uses a low fidelity coupled aero-structural analysis codea that
utilizes a vortex lattice method aerodynamics model expanded from a modern lifting line theory, and a linear
6-DOF-per-element spatial beam structural model. The code is built on the OpenMDAO architecture34 to
efficiently analyze the coupled simulation and its gradient. An illustration of a flying wing analyzed using

ahttps://github.com/hwangjt/OpenAeroStruct
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this code is given in Figure 10.

Figure 10: Illustration of the OpenAeroStruct flying wing modela.

For the design problem considered here, the wing mesh is built from a total of 11 evenly spaced spanwise
points and 4 chordwise points. The vehicle design is parametrized by controlling the span, taper ratio, sweep,
and angle attack of the wing, along with the thickness and twist at three spanwise control points for half of
the span (the wing is symmetric), giving a total of nx = 10 design variables. The overall design space, X ,
for this problem is given in Table 1.

Notation Design Variable Lower Bound (xL
k ) Upper Bound (xU

k ) Units

x1 Span 40 70 m

x2 Taper Ratio 0 0.9 -

x3 Sweep 10 40 deg

x4 Nominal Angle of Attack 0 20 deg

x5 Twist at Loc. 1 −5 20 deg

x6 Twist at Loc. 2 −5 20 deg

x7 Twist at Loc. 3 −5 20 deg

x8 Thickness at Loc. 1 0.1 0.3 m

x9 Thickness at Loc. 2 0.1 0.3 m

x10 Thickness at Loc. 3 0.1 0.3 m

Table 1: Design space for the flying wing design problem.

We consider two probabilistic uncertainties, θ1 and θ2, and one interval uncertainty, φ. The probabilistic
uncertainties represent uncertainty in the operating conditions of the flying wing: the Mach number is
uniformly distributed from 0.65 to 0.75, and the actual angle of attack is distributed uniformly over a 4
degree range centered on the nominal angle of attack which is denoted by γnom and given by design variable
x4. The interval uncertainty represents uncertainty in the material properties: the failure stress is in the
interval [15, 25] MPa. The uncertainties are detailed in Table 2.

Notation Uncertain Parameter Type Range Units

θ1 Mach Number Uniform Distribution [0.65, 0.75] m

θ2 Actual Angle of Attack Uniform Distribution [γnom − 2, γnom + 2] deg

φ Failure Stress Interval [15, 25] MPa

Table 2: Uncertainties for the flying wing design problem.

The objective is to minimize the fuel burn for a given mission, subject to the following two constraints:
the lift should be greater than or equal to the total weight, and the maximum Von-mises stress in the wing
should not be greater than the failure stress of the material. These constraints are taken into account in the
optimizations using squared penalty functions so that, denoting the fuel burn as mfuel (in units of kg×106),
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the lift constraint (normalized by the initial weight) as g1, and the failure constraint (normalized by the
failure stress) as g2, the total quantity of interest for this design problem becomes:

q(x, θ1, θ2, φ) = mfuel + 3
(
max(g1, 0)

)2
+ 3

(
max(g2, 0)

)2
(11)

The remaining parameters used to set up the OpenAeroStruct analysis are given in Table 3.

OpenAeroStruct Notation Parameter Value Units

Alt Altitude 30000 feet

E Elastic Modulus 200× 109 Pa

G Shear Modulus 30× 109 Pa

mrho Material Density 3× 103 kg/m3

W0 Base Weight 1.00× 105 kg

CL0 Base Lift Coefficient 0.25 -

CD0 Base Drag Coefficient 0.015 -

SFC Specific Fuel Consumption 17× 106 1/s

chord Chord at Wing Root 12 m

R Range 10× 106 m

Table 3: Parameters used in the OpenAeroStruct analysis of the flying wing.

Optimization Results

We compare designs resulting from different types of optimizations on the design problem to compare horsetail
matching to alternative approaches. For all these optimizations, the gradient-based SLSQP algorithm is used,
implemented with NLopta, and is run for 20 iterations (representing a fixed computational budget) after
which the best design is taken as the optimum. Figures 11 - 15 give a plan view of the mesh and the horsetail
plot of the quantity of interest q from Equation 11 for the optimum design resulting from each optimization
case. The mesh vertices are colored to show the twist at each spanwise location: from red corresponding to
−5◦ to blue corresponding to +15◦. The values of the design variables for the optimum design in each case
are given in Table 4.

First we run a deterministic optimization from an initial design given by sk = 0.5, k = 1, 2, . . . , 10, where
the nominal value of the quantity of interest (with θ1 = θ2 = φ = 0) is minimized:

minimize
x

q(x, θ1 = 0, θ2 = 0, φ = 0) (12)

s.t. xL
k < xk < xU

k k = 1, . . . , 10

The resulting optimum design along with the horsetail plot of q for this design is given in Figure 11.
Now we run horsetail matching optimizations to minimize the horsetail matching metric dhm from Equa-

tion 3, where the value and the gradient are evaluated using the approach outline in Section II.C , given the
specified target functions tu(h) and tl(h):

minimize
x

dhm(q(x, θ1, θ2, φ); tu, tl) (13)

s.t. xL
k < xk < xU

k k = 1, . . . , 10.

For this design problem, a 3 dimensional, 3rd order polynomial surrogate is fitted to the quantity of interest,
q, and each component of its gradient, ∂q

∂xk
, as a function of the uncertainties, θ1, θ2 and φ, at each design

point. This corresponds to 43 = 64 calls of the OpenAeroStruct analysis code at each iteration, giving a
total computational budget of 64× 20 = 1280 calls for each optimization.

First we run a horsetail matching optimization using a standard target by setting tl(h) = tu(h) = 0; the
resulting optimum design and horsetail plot of q for this design are given in Figure 12.

ahttp://ab-initio.mit.edu/wiki/index.php/NLopt
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Figure 11: Wing mesh and horsetail plot for the optimum design of a deterministic optimization
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Figure 12: Wing mesh and horsetail plot for the optimum design of a horsetail matching optimization using
the standard target.

Considering the horsetail plot in Figures 11 we can see that since the deterministic optimization did not
take into account the uncertainties, the bounds on the CDF both have tails at large values of the quantity
of interest (which represents fuel burn plus penalties for constraint violation), indicating a high likelihood
that this design will give degraded performance in reality. In contrast, the horsetail plot for the horsetail
matching optimum design (under the standard target) in Figure 12 gives bounds on the CDFs whose tails do
not reach as large values of q, indicating improved robustness under mixed uncertainties, whilst only taking
a small penalty to the best possible value.

Comparing the meshes for these two designs in Figures 11 and 12 and the design variables themselves in
Table 1, we can see that, when compared to the deterministic optimum, the horsetail matching optimum has
a smaller span, but a larger taper ratio and nominal angle of attack, along with a less aggressive variation
in twist along the wing. These design changes drive the horsetail matching optimum further away from the
constraint boundaries, giving a slightly worse nominal performance but reducing the penalty to q due to
violation of the constraints under variation due to the uncertainties.

We also run horsetail matching optimizations under different targets. Firstly a risk averse target is used,
obtained by skewing the top of the target for the lower bound of the CDF (the right-most horsetail curve)
to a value of -10 from the base standard target at q = 0; the optimum design and its corresponding horsetail
plot are given in Figure 13. Secondly a target at a specific value of q = 1.3 is given to minimize variation
around this value; the optimum design and its corresponding horsetail plot are given in Figure 14.
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Figure 13: Wing mesh and horsetail plot for the final design of a horsetail matching optimization using a
risk averse target.
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Figure 14: Wing mesh and horsetail plot for the final design of a horsetail matching optimization using a
target at a specific value of q = 350.

From Figure 13 and Table 1, we can see that the risk averse design is similar to the standard horsetail
matching optimum design, but it has a slightly better worse-case performance (the highest value of q reached
by the lower bound on the CDF). From Figure 14 and Table 1, we can see that the single value target design
is significantly different to the other optimum designs, since the optimizer is instead looking to minimize the
variation of both bounds around the target value of q = 1.3.

These two cases clearly demonstrate the flexibility of the horsetail matching formulation, as designs with
horsetail plots with different properties, representing optimization under different design scenarios, were
obtained simply by changing the target used in the optimization.

Comparsion to the Weighted Sum Approach

Finally we compare horsetail matching to the method commonly suggested in the literature for optimization
under mixed uncertainties: using a weighted sum of averages and intervals of statistical moments of the
CDFs that make up the horsetail plot.25–28 The following weighted sum of three objectives is optimized:

fobj = w1μ̄+ w2σ̄ + w3δμ (14)

where μ̄ is the average of μmin & μmax and δμ is the difference between μmin & μmax, referring to the
minimum or maximum over all possible values of the interval uncertainties φ (with the same meaning for the
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standard deviation σ). To propagate these three objectives, the method outlined in Ref. 26 is used, where
polynomial chaos expansions of q as a function of the uncertainties are used to find expressions for μ and σ as
functions of the interval uncertainties φ, which are then optimized over φ to obtain μmin, μmax, σmin, and
σmax for use in Eq. 14. Since this method uses a surrogate model at each design point, each optimization
iteration has the same computational cost as the horsetail matching implementation; 3rd order polynomials
in each dimension are used in both cases.

The weights are selected using the method suggested in Refs. 28 and 26: by looking at the relative
magnitudes of the three objectives at the deterministic optimum design and selecting weights so that they
all have the same contribution to fobj for this design. For this design problem, at the deterministic optimum
the three objectives are μ̄ = 1.00, σ̄ = 0.392, and δμ = 0.0745, so the weights are selected as w1 = 1.00,
w2 = 2.55, and w3 = 13.43. Thus the following problem is optimized:

minimize
x

μ̄+ 2.56 σ̄ + 13.43 δμ (15)

s.t. xL
k < xk < xU

k k = 1, . . . , 10

The results of this weighted sum optimization are given in Figure 15, where the horsetail plot (Weighted
Sum) is compared to the plot for the horsetail matching optimum using the standard target (labeled Standard
HM).
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Figure 15: Wing mesh and horsetail plot for the final design of a weighted sum optimization, along with the
horsetail plot from the standard horsetail matching optimum design.

It can be observed from Figure 15 that the optimum design using these weights is close to being stochas-
tically dominated by the standard horsetail matching optimum design: the lower bound on the CDF lies
entirely to the right of the lower bound for the standard HM optimum and the upper bound is only better
for h < 0.1. This highlights the limitations that were discussed in Section I of using a weighted sum of
combinations of statistical moments as the objective to be minimized in an optimization as in Equation 15.

Table 4 gives the design variables for the optimum designs from the deterministic optimization, the
horsetail matching optimizations under the standard target (tl(h) = tu(h) = 0), the risk-averse target, and
the target at a specific feasible value (tl(h) = tu(h) = 1.3) as well as the weighted sum optimization.
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Deterministic Standard Risk Averse Specific Value Weighted Sum

Span 55 53.63 54.14 53.5 52.6

Taper Ratio 0.1 0.118 0.119 0.305 0.118

Sweep 10 10 10 10.9 10.0

Nominal Angle of Attack 9.5 10.2 10.19 10.4 10.2

Twist at Loc. 1 9.20 9.14 8.84 10.0 9.13

Twist at Loc. 2 2.0 2.47 2.72 3.56 2.47

Twist at Loc. 3 -1.0 0.14 -0.21 0.76 0.15

Thickness at Loc. 1 0.1 0.1 0.1 0.13 0.1

Thickness at Loc. 2 0.1 0.1 0.1 0.13 0.1

Thickness at Loc. 3 0.1 0.1 0.1 0.12 0.1

Table 4: Design parameters for the optimum designs from the different optimization cases

V. Conclusion

Horsetail matching is a flexible approach to optimization under any mix of probabilistic and interval
uncertainties, where the difference between a design’s horsetail plot and a target is minimized. The difference
is measured by the total L2 norm integrated over h over both horsetail curves, which represent the upper and
lower bound on the CDF. As well as giving the option to optimize towards a feasible target, since the target
is not required to consist of the inverses of valid CDFs, a designer can also use the target to specify their
preferences for how risk averse/seeking the optimization should be. Further, since the metric intrinsically
favors robust solutions a standard target at a value of q beyond feasible is proposed, for which the optimal
solution will not be stochastically dominated by other possible designs. This is not a feature of the most
commonly proposed approach for robust optimization under mixed uncertainties of minimizing a weighted
sum of combinations of statistical moments.

This paper outlines a numerical implementation that delivers a single objective, differentiable metric that
is shown to accurately capture the envelope of the possible CDFs (the horsetail plot) and propagate both
the metric and its gradient under mixed uncertainties on an algebraic test problem. The approach is applied
to the design of a flying wing analyzed using a low fidelity, coupled aero-structural analysis code; on this
physical problem the flexibility of horsetail matching is demonstrated by using different targets to optimize
for different design scenarios at low computational cost. It was also compared to the weighted sum of
combinations of statistical moments approach and shown to give preferable designs at similar computational
cost. Although in this paper the approach has been demonstrated on a single problem, since the only
requirement for using the formulation is the ability to obtain a quantity of interest and its gradient it can
be applied to any such design problem.

Planned future work into horsetail matching primarily involves investigating and improving the formu-
lation when a high number of uncertainties are involved in the problem, since the effectiveness of using
surrogate models to propagate the uncertainty deteriorates rapidly as the dimensionality of the uncertainty
space increases; this is considered a limitation of the current approach.
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