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Abstract. For a parameterized hyperbolic system du
dt

= f(u, s) the derivative of the ergodic
average 〈J〉 = limT→∞

1
T

∫ T
0 J(u(t), s) to the parameter s can be computed via the least squares

shadowing (LSS) algorithm. We assume that the system is ergodic, which means that 〈J〉 depends
only on s (not on the initial condition of the hyperbolic system). The algorithm solves a constrained
least squares problem and, from the solution to this problem, computes the desired derivative d〈J〉

ds
.

The purpose of this paper is to prove that the value given by the LSS algorithm approaches the exact
derivative when the timespan used to formulate the least squares problem grows to infinity. It then
illustrates the convergence result through a numerical example.
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1. Introduction. Consider the differential equation parameterized by s ∈ R
and governing u(t) ∈ U , where U is a Hilbert space:{ du

dt = f(u, s),
u(0) = u0, u0 ∈ U.

(1)

The differential equation is assumed to be uniformly hyperbolic (details in section 3).
We are also given a C1 cost function J(u, s) : U ×R→ R and assume that the system
is ergodic, i.e., the infinite time average

(2)
〈
J
〉
(s) = lim

T→+∞

1
T

∫ T

0
J(u(t), s)dt

depends on s but does not depend on the initial condition u(0). The differentiability of
〈J〉 with respect to s has been proved by Ruelle [1]. Obtaining an estimation of d〈J〉ds is
crucial in many computational and engineering problems. Indeed, many applications
involve simulations of nonlinear dynamical systems that exhibit a chaotic behavior.
For instance, chaos can be encountered in the following fields: climate and weather
prediction [2], turbulent combustion simulation [3], nuclear reactor physics [4], plasma
dynamics in fusion [5], and multibody problems [6]. The quantities of interest are often
time averages or expected values of some cost function J . Estimating the derivative
of 〈J〉 is particularly valuable in the following:

• Numerical optimization. The derivative of 〈J〉 with respect to a design pa-
rameter s is used by gradient-based algorithms in order to efficiently optimize
the design parameters in high dimensional design spaces (see [7]).

• Uncertainty quantification. The derivative of 〈J〉 with respect to a parameter
s gives some useful information for assessing the error and uncertainty in the
computed 〈J〉 (see [8]).
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For example, we could obtain some useful information about the impact of mankind
on the climate by computing the derivative of the long-time averaged global mean
temperature with respect to the amount of anthropogenic emissions ([9] shows how
sensitivity analysis is used in climate studies). In the simulation of a turbulent airflow
over an aircraft, estimating the derivative of the long-time averaged drag to a shape
design parameter is of extreme importance for engineers, allowing them to improve
their design [10]. It has been shown that in many of these practical examples, the
quantities of interest exhibit ergodic properties, popularly known as chaotic hypothesis
[11], [12]. As opposed to Kalman filter and Bred vector approaches, we do not aim to
infer the state of the system at any particular time. We perform sensitivity analysis
only with respect to the parameters of the system since our objective function only
depends on statistics (long-time averages) of the dynamical system.

When it comes to computing d〈J〉
ds , conventional methods based on linearizing the

initial value problem (1) become ill-conditioned when the system is chaotic. They
compute derivatives that are orders of magnitude too large, and the error grows
exponentially larger as the simulation runs longer [13], [14]. This failure is due to the
so-called butterfly effect, and the explanation has been published by Lea, Allen, and
Haine [13].

Some algorithms have been developed to overcome this failure. Lea and col-
leagues proposed the ensemble adjoint method which applies the adjoint method to
many random trajectories, and then averages the computed derivatives [13], [15].
However, the algorithm is computationally expensive even for small dynamical sys-
tems such as that of Lorenz. Based on the fluctuation dissipation theorem, Abramov
and Majda provided an algorithm that successfully computes the desired derivative
[16]. Nonetheless, this algorithm assumes the dynamical system to have an equilib-
rium distribution similar to the Gaussian distribution, an assumption often violated
in very dissipative systems. Recent work by Cooper and Haynes has alleviated this
limitation by introducing a nonparametric method to estimate the equilibrium distri-
bution [17]. More methods have been developed to compute d〈J〉

ds , in particular, the
least squares shadowing (LSS) algorithm, which computes it by solving a constrained
least squares problem [14]. The big advantage of this method is its simplicity since
the least squares problem can easily be formulated and efficiently solved as a linear
system. Compared to the previously presented methods, LSS is less sensitive to the
dimension of the dynamical system and doesn’t require any explicit knowledge about
its steady-state distribution in phase space.

This paper provides a theoretical foundation for LSS by proving that it gives a
useful estimation of d〈J〉ds when the dynamical system is a uniformly hyperbolic flow.
Compared to the discrete case (uniformly hyperbolic map) for which we already have
a proof of convergence [18], the continuous case is more difficult to deal with due to
the apparition of the neutral subspace (see details in section 3). However, it is very
important to treat the continuous case since most applications and real-life problems
require a continuous description of the physics and involve differential equations.

In section 2, the mathematical formulation of convergence is introduced, as well
as Theorem LSS, which will be proved in the following sections. Section 3 presents the
concept of uniform hyperbolicity for readers who are not familiar with the subject.
Section 4 points out the new behavior and properties that come with continuous
dynamical systems (as opposed to discrete maps). Section 5 defines the shadowing
direction and proves its existence as well as uniqueness. Section 6 shows that the
derivative of 〈J〉 can be computed using the shadowing direction and provides a bound
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for the upper error. Section 7 then demonstrates that the least squares problem gives
a good approximation of the shadowing direction. Then, section 8 uses all the previous
results and concludes the proof of Theorem LSS by showing that the estimation error
vanishes as the least squares problem increases in size. Finally, section 9 presents a
numerical example and illustrates the convergence result.

2. LSS convergence theorem. We begin by presenting the convergence result
for the least squares shadowing (LSS) method. For a trajectory {u(t)}t∈(0,T ) satisfying
the differential equation (1), LSS attempts to compute the derivative d〈J〉

ds via the
following theorem.

Theorem 1 (Theorem LSS). Under ergodicity and hyperbolicity assumptions,

d〈J〉
ds

(s)

= lim
T→∞

∫ T

0

[
(DJ(u(t), s))v{T}(t) + ∂sJ(u(t), s) + η{T}(t)(J(u(t), s)− 〈J〉(s))

]
dt,

where (v{T}, η{T})(t) ∈ U × R, t ∈ (0, T ), is the solution to the constrained least
squares problem

min
∫ T

0
(‖v{T}‖2 + α(η{T})2)dt

s.t.
dv{T}

dt
= (Df(u, s))v{T} + ∂sf(u, s) + η{T}f(u, s),

(3)

where α is any positive constant and ||.|| is the Euclidean norm in U .

Here the linearized operators are defined as

(DJ(u, s))v := (DvJ)(u, s) := lim
ε→0

J(u+ εv, s)− J(u, s)
ε

,

(Df(u, s))v := (Dvf)(u, s) := lim
ε→0

f(u+ εv, s)− f(u, s)
ε

,

∂sJ(u, s) := lim
ε→0

J(u, s+ ε)− J(u, s)
ε

,

∂sf(u, s) := lim
ε→0

f(u, s+ ε)− f(u, s)
ε

.

(4)

(DJ), (∂sJ), (Df), and (∂sf) are a 1×m vector, a scalar, an m×m matrix, and an
m× 1 vector, respectively, representing the partial derivatives.

3. Uniform hyperbolicity. In order to proceed to the presentation of the uni-
form hyperbolicity properties, first we need to derive from (1) the tangent linear
model: { dv

dt = Df(u, s)v,
v(0) = v0, v0 ∈ U,

(5)

where {v}t is the perturbation around the reference trajectory which solves (1) when
the differential equation is linearized locally around this trajectory. Based on the
linearity of (5), we deduce that

v(t) = M(u0, t)v0,(6)
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where M(u0, t) is a linear operator. Intuitively, M should be understood as follows:
the initial perturbation v0 of the reference trajectory becomes v(t) after time lag t.
We can easily derive some general properties for the operator M :

dM

dt
= Df ·M.(7)

We also know that M(u0, 0) is the identity operator for any u0.
We say that the dynamical system (1) has a compact, global, uniformly hyperbolic

attractor Λ ⊂ U at s if the following hold:
1. For all u0 ∈ U , dist(Λ, u(t)) t→∞−−−→ 0, where dist is the distance arising from

the inner product in U .
2. There are a C ∈ (0,+∞) and λ ∈ (0, 1), such that for all u ∈ Λ, there is a

splitting of U representing the space of perturbations around u, i.e.,

(8) U = V +(u)⊕ V −(u)⊕ V 0(u),

where the subspaces are
• V +(u) := {v ∈ U/ ‖M(u, t) · v‖ ≤ Cλ−t‖v‖ for all t < 0} is the unstable
subspace at u;

• V −(u) := {v ∈ U/ ‖M(u, t) · v‖ ≤ Cλ−t‖v‖ for all t > 0} is the stable
subspace at u;

• V 0(u) := {αf(u, s) for all α ∈ R} is the neutral subspace at u.
V −(u), V +(u), and V 0(u) are all continuous with respect to u.

If r = r+ + r− + r0 with r+ ∈ V +(u), r− ∈ V −(u), r0 ∈ V 0(u), and u ∈ Λ, the
continuity of the three subspaces and the compactness of Λ imply that

inf
u,r+,r−,r0

‖r+ + r− + r0‖
max(‖r+‖, ‖r−‖, ‖r0‖)

= β > 0.(9)

This is because if β = 0, then by the continuity of V +(u), V −(u), and V 0(u) and the
compactness of Λ, there must be a (u, r+, r−, r0) such that max(‖r+‖, ‖r−‖, ‖r0‖) = 1
and r+ + r− + r0 = 0, which contradicts assumption (8). Thus,

‖r+‖ ≤ ‖r‖
β
, ‖r−‖ ≤ ‖r‖

β
, ‖r0‖ ≤ ‖r‖

β
.(10)

The stable, unstable, and neutral subspaces are also invariant under M , which
means that for all t and t′,


v ∈ V +(u(t)) ⇔ M(u(t), t′)v ∈ V +(u(t+ t′)),
v ∈ V −(u(t)) ⇔ M(u(t), t′)v ∈ V −(u(t+ t′)),
v ∈ V 0(u(t)) ⇔ M(u(t), t′)v ∈ V 0(u(t+ t′)).

(11)

Because of their relative simplicity, studies of uniformly hyperbolic dynamical
systems (also known as “ideal chaos”) have provided much insight into the properties
of chaotic dynamical systems [19]. Although most real-life dynamical systems are
not uniformly hyperbolic, they can be classified as quasi-hyperbolic: results obtained
on hyperbolic systems can often be generalized to them [20]. This proof covers the
convergence of LSS for uniform hyperbolic flows; nevertheless, numerical results have
shown that the algorithm also works for nonideal chaos [14].
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4. Neutral subspace and time dilation. We introduce time dilation: “run-
ning time” becomes τ(t). The differential equation becomes

du(τ(t))
dt = (1 + η(t))f(u(τ(t)), s),

η(t) = dτ
dt − 1,

u(τ(0)) = u0,

τ(0) = 0.

(12)

The cost function becomes

〈J〉 = lim
t→∞

1
τ(T )

∫ T

0
J(u(τ(t), s), s)(1 + η(t))dt.(13)

The new tangent linear model is
dv(τ(t))

dt = (1 + η(t))Df(u(τ(t)), s) · v(τ(t)) + δ(t)f(u(τ(t)), s),
τ(0) = 0,
u(0) = u0, u0 ∈ U,

(14)

where v is the perturbation of u and δ the perturbation of η. Consequently, if the
parameter s changes infinitesimally and for a reference solution where η = 0 (which
means t = τ), (v, δ) should satisfy the following differential equation:

dv(t)
dt

= Df(u(t), s) · v(t) + δ(t)f(u(t), s) +
∂f

∂s
(t).(15)

The previous equation has many solutions, but we can define and show that one
“canonical” solution exists (v(t) has no component in the neutral subspace).

5. Structural stability and the shadowing direction. In this section, we
will prove a variant of the shadowing lemma for the purpose of defining the shadowing
direction and prove its existence and uniqueness. The hyperbolic structure ensures
the structural stability of the attractor Λ under perturbation in s [21], [22]. Without
loss of generality, we will assume that s = 0 and τ(t) = t (no time dilation).

Theorem 2 (shadowing trajectory). If the system is uniformly hyperbolic and M
is continuously differentiable with respect to s and u, then for all {u0(t), t ∈ R} ⊂ Λ
satisfying the differential equation (12) with s = 0 and τ0(t) = t, there is an L > 0 such
that for all |s| < L there is {(us(τs(t)), τs(t)), t ∈ R} satisfying ||us(τs(t))−u0(t)|| < L,
||dτs(t)dt || = ||1 + ηs(t)|| < L, and dus(τs(t))

dt = (1 + ηs(t))f(us(τs(t)), s) for all t ∈ R.
Furthermore, us and τs are uniformly continuously differentiable with respect to s.

The uniform continuous differentiability of us and τs means that for all s ∈
(−L,L) and ε > 0 there is a δ > 0 such that if |s − s′| < δ, then ‖dus(τs(t))ds −
dus′ (τs′ (t))

ds ‖ < ε and |dτ
s

ds (t)− dτs′
ds (t)| < ε for all t.

To prepare for the proof, let B be the space of C∞ bounded functions in U , and
let Vt be the hyperplane of U defined by Vt = V +(u0(t))⊕ V −(u0(t)). We introduce
V ⊂ L∞ as the space of bounded functions {r(t), t ∈ R} such that r(t) ∈ Vt for all
t ∈ R (r(t) has no components in the neutral subspace). Finally, by considering the
space T of C∞ bounded functions in R, we denote A the product of V and T:

A = V ×T.

D
ow

nl
oa

de
d 

04
/1

2/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LEAST SQUARES SHADOWING FOR SENSITIVITY ANALYSIS 3035

We then introduce the notation (r, τ ) = {(r(t), τ(t)), t ∈ R} ∈ A, where r(t) ∈ V,
τ(t) ∈ T, and define the norm

||(r, τ )||A = sup
t∈R

(
‖r(t)‖

)
+ sup

t∈R

(
|τ(t)|

)
= ‖r‖∞ + ‖τ‖∞.

As defined above, the space A is a Banach space.
We can now define the map F : A× R→ B as

∀(r, τ ) ∈ A, ∀s ∈ R,

F ((r, τ ), s) =
{
d(u0 + r)

dt
(τ(t))− (1 + η(t))f

(
(u0 + r)(τ(t)), s

)
, t ∈ R

}
,

where, as seen previously, 1 + η(t) = dτ(t)
dt .

For a given s, F ((r, τ ), s) = 0 if and only if {(u0 + r)(t), t ∈ R} satisfies the
differential equation (12), where τ is the time dilation function. We use the implicit
function theorem to complete the proof, which requires F to be differentiable with
respect to (r, τ ) and its derivative to be nonsingular at r = 0, τ = Id,1 and s = 0.

Lemma 3. Under the conditions of Theorem 2, F has a Fréchet derivative at all
(r, τ ) ∈ A and |s| < L:

(DF ((r, τ ), s))(w, ε) =
{
dw(τ(t))

dt
− (1 + η(t))Df((u0 + r)(τ(t)), s)(16)

· w(τ(t))− ε(t)f((u0 + r)(τ(t)), s), t ∈ R
}
,

where (w, ε) ∈ A.

The proof is quite straightforward and is based on the fact that Df and f are
uniformly continuous and bounded on the compact set Λ.

Lemma 4. Under conditions of Theorem 2, the Fréchet derivative of F at (r, τ ) =
(0,1) and s = 0 is a bijection.

Proof. The Fréchet derivative of F at (r, τ ) = (0, Id) and s = 0 in the direction
(w, ε) is

(DF ((0, Id), 0))(w, ε) =
{
dw(t)
dt
−Df(u0(t), 0)w − ε(t)f(u0(t), s), t ∈ R

}
.

To prove its bijectivity, we need only show that for any g = {g(t), t ∈ R} ∈ B there
is a unique (w, ε) ∈ A such that (DF ((0, Id), 0))(w, ε) = g.

In this case, we can find an analytical expression for the pre-image of g. Let
(w, ε) be defined as{

w(t) = −
∫ +∞
−∞ M(u0(x), t− x) ·

(
g+(x)1{t<x} + g−(x)1{t>x}

)
dx,

ε(t) = −g0(t) · f(u0(t),0)
||f(u0(t),0)||2 ,

(17)

where g+(x) ∈ V +(u0(x)), g−(x) ∈ V −(u0(x)), and g0(x) ∈ V 0(u0(x)). We can verify
that dw

dt − (Df(u0(t), s))w(t)− ε(t)f(u0(t), s) = g(t) for all t.

1Id is the identity function: τ(t) = t for all t ∈ R.
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We still have to ensure that (w, ε) belongs to A. Based on (11), we notice that
the w(t) we have just defined belongs to Vt = V +(u0(t))⊕ V −(u0(t)). Since V +(u0),
V −(u0), and V 0(u0) are continuous with respect to u0 and Λ is compact,

max(‖g+(t)‖, ‖g−(t)‖, ‖g0(t)‖) ≤ ‖g(t)‖
β

≤ ‖g‖B
β

∀t,(18)

where β > 0.
Consequently, for all i,

‖w(t)‖ ≤
∫ +∞

t

‖M(u0(x), t− x)g+(x)‖dx+
∫ t

−∞
‖M(u0(x), t− x)g−(x)‖dx(19)

≤
∫ +∞

t

Cλx−t
‖g‖∞
β

dx+
∫ t

−∞
Cλt−x

‖g‖∞
β

dx(20)

≤ −2C‖g‖∞
ln(λ)

(21)

thanks to the uniform hyperbolicity properties ofM . Thus, w is bounded and we can
conclude that w ∈ V. On the other hand, we can easily show that for all t,

ε(t) ≤ ‖g0(t)‖
‖f(u0(t), 0)‖

(22)

≤ ‖g‖∞
βm

,(23)

where m = infu∈Λ
{
‖f(u, 0)‖

}
> 0. Consequently, ε is uniformly bounded, which

leads to ε ∈ T and (w, ε) ∈ A.
Because of linearity, uniqueness of (w, ε) such that (DF ((0, Id), 0))(w, ε) = g

needs to be proved only for g = 0. Since U = V +(u0) ⊕ V −(u0) ⊕ V 0(u0), g(t) = 0
is equivalent to g+(t) = g−(t) = g0(t) = 0. Thanks to property (11), by splitting
w(t) = w+(t) + w−(t) and knowing that ε(t)f(u0(t), s) ∈ V 0(u0), we have

0 = g+(t) + g−(t) =
(
dw+

dt
− (Df(u0(t), 0))w+(t)

)
+
(
dw−

dt
− (Df(u0(t), 0))w−(t)

)
,

(24)

where the two parentheses are in V +(u0(t)) and V −(u0(t)), respectively. Again know-
ing that U = V +(u0)⊕ V −(u0)⊕ V 0(u0), both parentheses should be equal to zero.
This is true for all t, so we obtain the following two differential equations:

dw+

dt
= (Df(u0(t), 0))w+(t),(25)

dw−

dt
= (Df(u0(t), 0))w−(t).(26)

We notice that these differential equations are very similar to the linear tangent model
(5). Their solution is explosive unless w(t) = 0 for all t. Showing that ε(t) = 0 is
trivial:

0 = g0(t) = −ε(t)f(u0(t), s).(27)
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Since ‖f(u0(t), s)‖ ≥ m > 0,2 then ε = 0. This proves the uniqueness of (w, ε) for
g = 0.

Proof of Theorem 2. Since F ((0, Id), 0) = {du0
dt (t) − f(u0(t), 0), t ∈ R} = 0,

(0, Id) is a zero point of F at s = 0. Based on this information and on the two previ-
ous lemmas, the implicit function theorem states that there exists L > 0 such that for
all |s| < L there is a unique (rs, τ s) satisfying ‖(rs, τ s)‖A < L and F ((rs, τ s), s) = 0.
Furthermore, this (rs, τ s) is continuously differentiable to s; i.e., d(rs,τs)

ds ∈ A is con-
tinuous with respect to s in the A norm. By the definition of derivatives (in A),
d(rs,τs)

ds =
{

(dr
s

ds (t), dτ
s

ds (t)), t ∈ R
}
. Continuity of d(rs,τs)

ds in A then implies that drsi
ds

and dτsi
ds are uniformly continuous with respect to s. By defining

{(us(t), τs(t)), t ∈ R} = {(u0(t) + rs(t), τs(t)), t ∈ R},(28)

we finally obtain the results of Theorem 2.

This theorem states that for a trajectory {u0(t), t ∈ R} satisfying (1) for s = 0,
there is {(us(t), τs(t)), t ∈ R} satisfying the time dilated differential equation (12) at
nearby values of s. In addition, (us, τ s) shadows (u0, Id), meaning that (us, τ s) is
close to (u0, Id) when s is close to 0. Also, d(us,τs)

ds exists and is uniformly bounded.
The shadowing direction (v{∞}(t), η{∞}(t), t ∈ R) is defined as the uniformly

bounded series

{
(v{∞}(t), η{∞}(t))

}
:=
{(

dus{∞}

ds

∣∣∣∣
s=0

(t),
d2τs{∞}

dsdt

∣∣∣∣
s=0

(t)
)}
∈ A.(29)

In addition, we can find two constants ‖v{∞}‖ and ‖η{∞}‖ such that for all t,

v{∞}(t) ≤ ‖v{∞}‖ and η{∞}(t) ≤ ‖η{∞}‖.(30)

We know the explicit expression of the shadowing direction: we just need to replace
g by ∂f

∂s in (17), and the bounds found earlier are still valid (‖∂f∂s ‖ is bounded on the
compact Λ).

6. A simpler result. In this section, we prove an easier version of Theorem
LSS in which we replace the solution

{
(v{T},η{T})} to the constrained least squares

problem (3) by the shadowing direction we found earlier
{

(v{∞},η{∞})}.
Theorem 5. If uniform hyperbolicity holds, M is continuously differentiable, and

for all continuously differentiable functions J : Rm × R → R whose infinite time
average

(31) 〈J〉(s) = lim
T→+∞

1
T

∫ T

0
J(u(t), s)dt, where

du

dt
= f(u, s) and u(0) = u0,

is independent of the initial state u0, then the shadowing direction is well-defined and
we have

d〈J〉
ds

= lim
T→∞

1
T

∫ T

0

[
(DJ(u, 0))v{∞} + ∂sJ(u, 0) + η{∞}

(
J(u, 0)− 〈J〉(0)

)]
dt.(32)

2We assume that this inequality holds almost everywhere; otherwise our dynamical system would
allow many degenerate trajectories.
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Proof. The proof is essentially an exchange of limits through uniform convergence.
Since 〈J〉 is independent of u0, we set u0 = us(0) as defined in the previous section,
and we know that dus(τs(t))

dt = (1 + ηs)f(us(t), s). We can write

d〈J〉
ds

∣∣∣∣
s=0

= lim
s→0

〈J〉(s)− 〈J〉(0)
s

= lim
s→0

lim
T→+∞

(
1

τs(T )× s

∫ T

0
J(us(τs(t)), s)(1 + η

s(t))dt−
1

T × s

∫ T

0
J(u0(t), 0)dt

)
= lim
s→0

lim
T→+∞

(
1
s

∫ T

0

J(us(τs(t)), s)(1 + ηs(t))
τs(T )

+
J(u0(t), 0)
τs(T )

−
J(u0(t), 0)
τs(T )

−
J0(u(t), 0)

T
dt

)
= lim
s→0

lim
T→+∞

(
1
s

∫ T

0

J(us(τs(t)), s)− J0(u(t, 0)) + ηs(t)Js(u(τs(t)), s)
τs(T )

+
TJ(u0(t), 0)− τs(T )J(u0(t), 0)

Tτs(T )
dt

)
= lim
s→0

lim
T→+∞

(
1
s

∫ T

0

J(us(τs(t)), s)− J(u0(t), 0) + ηs(t)J(us(τs(t)), s)
τs(T )

+
TJ(u0(t), 0)−

∫ T
0 (1 + ηs(t′))dt′J(u0(t), 0)

Tτs(T )
dt

)

= lim
s→0

lim
T→+∞

(
1
s

∫ T

0

J(us(τs(t)), s)− J(u0(t), 0) + ηs(t)J(us(τs(t)), s)
τs(T )

−
∫ T
0 (ηs(t′))dt′J(u0(t), 0)

Tτs(T )
dt

)

= lim
s→0

lim
T→+∞

1
τs(T )

∫ T

0

J(us(τs(t)), s)− J(u0(t), 0)
s

+
ηs(t)

(
J(us(τs(t)), s)−

∫T
0 J(u0(x),0)dx

T

)
s

dt.

Let us eliminate lims→0 in the first term. We define

(33) γs(t) =
dJ(us, s)

ds
(t) = (DJ(us(t), s))

dus(t)
ds

+ ∂sJ(us(t), s).

Then, thanks to the mean value theorem, for all t there exists an ξt(s) ∈ [0, s] such
that

(34)
J(us(t), s)− J(u0(t), 0)

s
= γξt(s)(t).

Consequently,

lim
s→0

lim
T→+∞

(
1

τ(T )

∫ T

0

J(us(t), s)− J(u0(t), 0)
s

dt

)
= lim
s→0

lim
T→+∞

(
1

τ(T )

∫ T

0
γξt(s)(t)dt

)
.(35)

We can choose a neighborhood of Λ×{0} that contains (us(t), s) for all t (for s suffi-
ciently small) and in which both (DJ(u, s)) and ∂sJ(u, s) are uniformly continuous.
Since the dus

ds (t) are uniformly continuous and bounded, for all ε > 0 there exists
L > 0 such that for all |ξ| < L,

‖γξ(t)− γ0(t)‖ < ε ∀t.

Thus, for all |s| < L, |ξ(s)| ≤ |s| < L for all t; therefore for all T ,∥∥∥∥∥ 1
τs(T )

∫ T

0
γξt(s)(t)− 1

τs(T )

∫ T

0
γ0(t)dt

∥∥∥∥∥ ≤ 1
τ(T )

∫ T

0
‖γξt(s)(t)− γ0(t)dt‖(36)

≤ T

τs(T )
ε ≤ (1 + ‖η‖∞)ε.
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Hence,

(37)

∥∥∥∥∥ lim
T→+∞

(
1

τs(T )

∫ T

0
γξt(s)(t)

)
− lim
T→+∞

(
1

τs(T )

∫ T

0
γ0(t)

)∥∥∥∥∥ ≤ (1 + ‖η‖∞)ε.

Finally,

(38) lim
s→0

lim
T→+∞

(
1

τs(T )

∫ T

0
γξt(s)(t)dt

)
= lim
T→+∞

(
1
T

∫ T

0
γ0(t)dt

)
,

which grants us the desired result for the first term via the definition of γ0
i .

For the second term, J is continuously differentiable and thus continuous, and
the (usi , τ

s
i ) are i-uniformly continuously differentiable and bounded. Based on that,

for s sufficiently small, we can find a compact neighborhood of Λ× {0} that contains
(usi , s) for all i ∈ Z and in which J(u, s) will be uniformly continuous. Consequently,

{η
s

s J(us(τs(t)), s), t ∈ R+}, which can be written
{ dτs(t)

dt −
dτ0(t)
dt

s J(us(τs(t)), s), t ∈
R+
}
converges uniformly to

{
dτs{∞}

dsdt

∣∣
s=0(t)J(us(τs(t)), s), t ∈ R+

}
when s goes to 0.

Because the term
∫ T
0 J(u0(x),0)dx

T does not depend on s at all, we finally have

lim
s→0

lim
T→+∞

1
τs(T )

∫ T

0

ηs(t)
(
J(us(τs(t)), s)−

∫ T
0 J(u0(x),0)dx

T

)
s

= lim
T→+∞

1
T

∫ T

0

[
η{∞}(t)

(
J(u0(t), 0)− 〈J〉(0)

)]
dt,

which concludes the proof.

7. Computational approximation of the shadowing direction. The main
task of this section is to provide a bound for

e{T}(t) = v{T}(t)− v{∞}(t)(39)

for t ∈ (0, T ). (v{T},η{T}) is the solution to the least squares problem

min
∫ T

0

(
‖v{T}(t)‖2 + α(η{T}(t))2)dt(40)

s.t.
dv{T}(t)

dt
= Df(u(t), s)v{T}(t) + η{T}(t)f(u(t), s) +

∂f

∂s
(t).(41)

The shadowing lemma guarantees the existence of a shadowing trajectory but provides
no clear way to compute {(v{∞}(t), η{∞}(t))}. This section suggests that the solution
to the least squares problem gives a useful approximation of the shadowing trajectory
allowing us to computed〈J〉ds . Without loss of generality, we consider that s = 0 in
(41). By definition, the shadowing trajectory satisfies

dus(τs(t))
dt

= (1 + ηs(t))f(us(τs(t)), s).(42)

After taking the derivative to s on both sides for s = 0, we obtain

dv{∞}(t)
dt

= Df(u(t), s)v{∞}(t) + η{∞}(t)f(u(t), s) +
∂f

∂s
(t).(43)

D
ow

nl
oa

de
d 

04
/1

2/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3040 M. CHATER, A. NI, P. J. BLONIGAN, AND Q. WANG

Thus, the shadowing direction satisfies the constraint (41) and

∫ T

0

(
‖v{T}(t)‖2 + α(η{T}(t))2)dt ≤ ∫ T

0

(
‖v{∞}(t)‖2 + α(η{∞}(t))2)dt(44)

≤ T (||v{∞}||2 + α||η{∞}||2).

Combining the constraint equation (41) and (43), we obtain
de{T}+(t)

dt = Df(u(t), s)e{T}+(t),
de{T}−(t)

dt = Df(u(t), s)e{T}−(t).

Consequently, {
e{T}+(t) = M(u(0), T − t)e{T}+(T ),
e{T}−(t) = M(u(0), t)e{T}−(0),

where M is the operator we defined in the first section. Since M(u, 0) = Id and
knowing that ∂tM(u, .) is continuous, we can find a positive constant K such that for
t sufficiently small,

‖∂tM(u, t)‖ ≤ K,(45)

and for a t such that tK < 1,

‖M(u(0), t)v‖ ≥ (1− tK)‖v‖(46)

for all v ∈ U . Knowing that M(u(0), t + t′)v = M(u(t), t′)(M(u(0), t)v), for tK and
t′K less than 1, we deduce that

‖M(u(0), t+ t′)v‖ ≥ (1− t′K)(1− tK)‖v‖.(47)

We can iterate this process and refine the timesteps to obtain

‖M(u(0), t)v‖ ≥ e−Kt‖v‖(48)

for any t.
Consequently, ∫ T

0
‖e{T}−(t)‖2dt ≥

∫ T

0
e−Kt‖e{T}−(0)‖2dt(49)

≥ ‖e{T}−(0)‖2 × 1− e−KT

K
.(50)

On the other hand, since e{T}−(t) = v{T}−(t)− v{∞}−(t), then

‖e{T}−(t)‖2 ≤ 2
(
‖v{T}−(t)‖2 + ‖v{∞}−(t)‖2

)
≤ 2
γ

(
‖v{T}(t)‖2 + ‖v{∞}(t)‖2

)
.(51)

Combining (50), (51), and (44), we obtain

‖e{T}−(0)‖2 ≤ K

1− e−KT

∫ T

0

2
γ

(
‖v{T}(t)‖2 + ‖v{∞}(t)‖2

)
dt(52)

≤ 2K
γ(1− e−KT )

(
‖η{∞}(t)‖2 + 2‖v{∞}(t)‖2

)
× T.(53)
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For T sufficiently large, this means that we can find a constant E such that

sup
t∈(0,T )

‖e{T}−(t)‖2 ≤ E
√
T(54)

because ‖e{T}−(t)‖ ≤ Cλt‖e{T}−(0)‖ with 0 < λ < 1 (uniform hyperbolicity). In the
same way we obtain

max
i
||e{h,T}+i || ≤ E

√
T .(55)

8. Convergence of least squares shadowing. In this section, we use the
results obtained previously to prove our initial theorem.

Theorem 6 (Theorem LSS, restated). For a sufficiently smooth uniformly hy-
perbolic dynamical system and a C1 cost function J , the following limit exists:

d〈J〉
ds

= lim
T→∞

1
T

∫ T

0

[
(DJ(u, 0))v{T} + ∂sJ(u, 0) + η{T}

(
J(u, 0)− 〈J〉(0)

)]
dt.

Proof. Because J is C1 and Λ is compact, there exists a constant A such that
‖DJ(u(t), 0)‖ < A for all t. Let e{T} be defined as in the previous section; then∣∣∣∣∣ 1

T

∫ T

0

[
(DJ(u, 0))v{T} + ∂sJ(u, 0) + η{T}

(
J(u, 0)− 〈J〉(0)

)]
dt(56)

− 1
T

∫ T

0

[
(DJ(u, 0))v{∞} + ∂sJ(u, 0) + η{∞}

(
J(u, 0)− 〈J〉(0)

)]
dt

∣∣∣∣∣(57)

=

∣∣∣∣∣ 1
T

∫ T

0

[
(DJ(u, 0))e{T} + ε{T}

(
J(u, 0)− 〈J〉(0)

)]
dt

∣∣∣∣∣(58)

=

∣∣∣∣∣ 1
T

∫ T

0

[
(DJ(u, 0))(e{T}+ + e{T}− + e{T}0) + ε{T}

(
J(u, 0)− 〈J〉(0)

)]
dt

∣∣∣∣∣(59)

<

∣∣∣∣∣ 1
T

∫ T

0

[
(DJ(u, 0))(e{T}+ + e{T}−)

]
dt

∣∣∣∣∣(60)

+

∣∣∣∣∣ 1
T

∫ T

0

[
(DJ(u, 0))e{T}0 + ε{T}

(
J(u, 0)− 〈J〉(0)

)]
dt

∣∣∣∣∣.
For the first term,∣∣∣∣∣ 1

T

∫ T

0

[
(DJ(u, 0))(e{T}+ + e{T}−)

]
dt

∣∣∣∣∣ < 1
T

∫ T

0
‖DJ(u, 0)e{T}+‖dt(61)

+
1
T

∫ T

0
‖DJ(u, 0)e{T}+‖dt(62)

≤ 1
T

(∫ T

0
CλT−t‖e{T}+(T )‖dt+

∫ T

0
Cλt‖e{T}−(0)‖dt

)
(63)

≤ 1
T

2C(1− λT )
− ln(λ)

× E
√
T(64)

≤ 1√
T
× 2CE
− ln(λ)

,(65)
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which goes to 0 when T increases. Thus, we notice that the differences e{T}+ and
e{T}− between the v{∞}+ and v{∞}− components of the shadowing direction and their
approximations v{T}+ and v{T}− decrease extremely quickly so that the whole term∣∣ h
T

∑[Th ]
i=1

[
(DJ(ui, s))(e

{h,T}+
i + e

{h,T}−
i )

]∣∣ tends to 0 as O( 1√
T

).
On the other hand, there is no reason for e{T}0(t) and ε{T}(t) to decrease when T

increases. The cancellation of the second term is the result of the mutual cancellation
of the elements in the summation, as we shall see. Based on the shadowing trajectory
{(us(t), τs(t), t ∈ R+)} found in section 5, we consider the new trajectory and time
dilation {(u′s(t), τs + s

∫ t
0 ε
{T})(t), t ∈ R+} which satisfy the following relation:

lim
s→0

u
′s(τs + s

∫ t
0 ε
{T})− us(τs(t))
s

= e{T}0(t)(66)

for all t. We can notice that the new trajectory describes exactly the same continuous
trajectory as the old one (we have just made a change in the time variable). By
following the same operations we did in section 6 (but upside down this time), we
obtain

lim
T→∞

1
T

∫ T

0

[
(DJ(u, 0))e{T}0 +

∫ t

0
ε{T}

(
J(u, 0)− 〈J〉(0)

)]
dt

(67)

= lim
T→+∞

lim
s→0

1
τs(T ) + s

∫ t

0 ε
{T}(T )

∫ T

0

J(u
′s(τs + s

∫ t

0 ε
{T}), s)− J(us(τs), s)
s

(68)

+
sε{T}(t)

(
J(u

′s(τs + sε{T}), s)−
∫ T
0 J(us(x),s)dx

T

)
s

dt

(69)

= lim
T→+∞

lim
s→0

(
1(

τs(T ) + s
∫ t

0 ε
{T}(T )

)
× s

∫ T

0
J

(
u
′s
(
τs + s

∫ t

0
ε{T}

)
, s

)
(1 + ηs(t) + sε{T})dt

(70)

− 1
τs(T )× s

∫ T

0
J(us(τs(t)), s)(1 + ηs(t))dt

)

= 0.
(71)

This happens because both integrals are the same up to a change of time variable.
This concludes the proof.

The fact of approximating an ergodic mean by an average over a finite trajectory
is also a source of error in our method. If the dynamical system is mixing, the central
limit theorem implies that this error decreases as O(

√
T ).

9. Practicable algorithm. Based on Theorem LSS we can derive the following
algorithm:3

1. Fix a timestep h and compute a discrete reference trajectory u0, u1, u2, . . . , un.4
In what follows, we use a standard RK4 scheme to obtain this trajectory.

3An adjoint version of the algorithm can be found in [14].
4We discard the first points u−n0 , . . . , u−1 for n0 sufficiently large so that we are sure to be on

the attractor.
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2. Compute {vi, ηi} by discretizing and solving the KKT set of equations
dv
dt − (Df)v − ∂sf − ηf = 0,
dw
dt + (Df)Tw − v = 0,
w(0) = w(T ) = 0,
αη − wT f = 0,

(72)

where w is the Lagrange multiplier function. For the detailed derivation of
the KKT equations from the least squares formulation and how to solve it
efficiently, the reader can consult [14]. This system is well conditioned, as
shown in [23]. In this example, we discretized the system as follows:

vi+1−vi
h − 1

2

(
(Df(ui, s))vi + (Df(ui+1, s))vi+1

)
− 1

2 (∂sf(ui, s) + ∂sf(ui+1, s))− ηi ui+1−ui
h = 0,

wi+1−wi
h + 1

2

(
(Df(ui, s))Twi + (Df(ui+1, s))Twi+1

)
− vi = 0,

αηi − wTi
ui+1−ui

h = 0,
w0 = wn = 0.

(73)

3. Finally, compute the desired derivative:

d〈J〉
ds
≈ 1
n+ 1

n∑
i=0

(
(DJ(ui, s))vi + ∂sJ(ui, s) + ηi

(
J(ui, s)− 〈J〉

))
.(74)

We apply this algorithm to the three-dimensional Lorenz 63 dynamical system intro-
duced by Edward Lorenz to model the atmospheric convection:

dx
dt = σ(y − x),
dy
dt = x(ρ− (z − z0))− y,
dz
dt = xy − β(z − z0).

This is an autonomous ODE parameterized by σ, β, ρ, and z0, and the quantity of
interest is 〈J〉 = limT→∞

1
T

∫ T
t=0 z(t)dt, the time average of the component z. While

fixing σ = 10, β = 8
3 , ρ = 25, and z0 = 0, we will compute d〈J〉

dz0
which is clearly equal

to 1 (when z0 increases, the attractor translates in the z direction). We also have an
analytical expression for the shadowing direction: {v∞i = (0, 0, 1), η∞i = 0} for all i.
We set h = 0.02 and compute d〈J〉

dz0
for different integration lengths T . We notice

that the algorithm gives a very good estimate of the sensitivity and that this estimate
improves as T increases (Figure 1). As expected, the error decreases as O(

√
T ). Then,

we fix T = 100 and compare the computed shadowing direction with the theoretical
one for two different values of α (Figure 2). First, both computations give a good
approximation of d〈J〉

dz0
: 0.99 for α = 1016 and 0.96 for α = 100. For α = 1016,

as we approach the “middle” of the integration length, the difference between the
theoretical and the approximated shadowing direction decreases and reaches machine
precision. This comes from the expanding/contracting properties of the stable and
unstable subspaces presented in section 3. As for a lower penalty α = 100 which
allows a higher value for the time dilation factors, the stable and unstable components
of the approximated shadowing direction are also very close to the theoretical ones
(otherwise log(‖vapprox−v∞‖) would grow exponentially), but the neutral component
can be significantly different from η∞i = 0. In fact, this bigger gap is compensated
by the high-valued time dilation factors ηi. Either way, both values of α give an
acceptable estimation of the sensitivity.
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Fig. 1. log(| d〈z〉
dz0
− 1|) for h = 0.02, α = 100, and different integration time lengths.
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(a) α = 100.
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(b) α = 1016.

Fig. 2. log(‖vapprox− v∞‖) in blue and log(|ηapprox− η∞|) in red for two different values of α
(color available online).

10. Conclusion. As we have shown through this paper, LSS gives us a good
estimation for d〈J〉ds when the dynamical system is uniformly hyperbolic. After running
a simulation for a given s and an arbitrary initial condition u0, we obtain a reference
trajectory

{
us(t), t ∈ (0, T )

}
. If we had access to the shadowing direction, we would

easily compute

d〈J〉
ds
≈ 1
T

∫ T

0

[
(DJ(us, s))v{∞} + ∂sJ(us, s) + η{∞}

(
J(us, s)− 〈J〉(s)

)]
dt.(75)

However, in real-life problems we usually do not have access to the stable and unstable
subspaces around each us(t), prohibiting the usage of the closed form expression of
v{∞} and η{∞}. Thus, we have no other choice than computing an approximation
of the shadowing direction. This approximation is given by the solution to the least
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squares problem:

min
∫ T

0
(‖v{T}‖2 + α(η{T})2)dt

s.t.
dv{T}

dt
= (Df(u, s))v{T} + ∂sf(u, s) + η{T}f(u, s).

(76)

After solving this quadratic optimization problem, we estimate d〈J〉
ds using expression

(75) again, where the (v{∞}, η{∞}) are replaced by (v{T}, η{T}). As we have seen
previously, this estimation converges to the real value of d〈J〉

ds when the integration
lapse T increases.
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