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Abstract—Humans first visited another world nearly 50 years
ago and are poised to return to the Moon and visit Mars in the
coming decade(s). Developing a space suit that supports safe,
efficient, and effective exploration despite the extremes of tem-
perature, pressure, radiation, and environmental hazards like
dust and topography remains a critical challenge. Space suits
impose restrictions on movement that increase metabolic rate
and limit the intensity and duration of extravehicular activity.
In this study, a lower body exoskeleton was used to test a simple
model that predicts the energy cost of locomotion across gait
and gravity. Energetic cost and other variables were measured
during treadmill locomotion, with and without a lower body
exoskeleton, in simulated reduced gravity and in Earth gravity.
Six subjects walked and ran at constant Froude numbers, non-
dimensional parameters used to characterize gait. The spring-
like energy recovery of the exoskeleton legs was estimated using
energetics data in combination with the model. Model predic-
tions agreed with the observed results (no statistical difference).
High spring-like energy recovery of the exoskeleton legs lowered
measures of the energetic cost of locomotion. For planetary
extravehicular activity, our work reveals potential approaches
to optimizing space suits for efficient locomotion, for example,
tuning the stiffness and spring-like energy recovery of space suit
legs.
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1. INTRODUCTION
NASA’s long term Mars exploration goals include humans
exploring the surface of that planet [1]. SpaceX has painted
an expansive vision for human exploration of Mars [2].
Future visitors or inhabitants there are not going with the
intention to stay safely inside their habitats, but to explore–
and build–a new world: for example, to search for life beyond

978-1-5090-1613-6/17/31.00 c©2017 IEEE

Earth [3], and to find the resources required for continued
human habitation [4].

Space suits adversely impact the achievable mechanical ef-
ficiency of work, limit mobility, and increase the metabolic
costs of locomotion relative to unsuited conditions [5]. Prior
regression modeling of historical unsuited and suited energet-
ics data suggested that space suits may act as springs during
running [6].

We previously characterized a lower-body exoskeleton that
induces joint-torques similar in form and magnitude [7] to
the knees of the extravehicular mobility unit (EMU), NASA’s
current space suit for orbital operations. The legs of this
exoskeleton function as non-linear springs, similar to how
space suit legs function during running. However, loco-
motion performance in the exoskeleton is likely to differ
from performance in otherwise similar conditions in a space
suit because of the substantial differences between the two.
While space suits significantly impair hip mobility [8], the
exoskeleton has generally good hip mobility [7]. These
differences are beneficial, because they permit the isolation
and study of different contributions to the effect of space suits
on locomotion energetics.

Objectives

Here we:

(1) Test a simple model of locomotion energetics that pre-
dicts the energy cost of locomotion across gait and gravity;

(2) Use this model to characterize how a lower-body exo-
skeleton modifies the energetics of walking and running; and

(3) Apply our findings to understand the implications for
space suits in the context of planetary extravehicular activity
(EVA).

Overview

We first develop the locomotion energetics model and de-
scribe our experimental procedures in Section 2. Next,
we describe experimental results, model validation, and the
energetic impacts of exoskeleton locomotion in Section 3.
We then explore the caveats and implications of our results
in Section 4. Finally, we summarize our contributions in
Section 5. Mathematical derivations underlying our modeling
of human muscle efficiency are found in the appendices, and
additional details can be found in [9].
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2. METHODS
Model Development

We have previously shown [5] that the net metabolic rate,

Q̇loco [W], during locomotion can be represented as

Q̇loco = Q̇m − Q̇B =
Ẇ (1− η)

E
, (1)

with total metabolic rate Q̇m, basal metabolic rate Q̇B , total
rate of forward and vertical work done on the center of
mass Ẇ [W], and the two non-dimensional quantities energy
recovery η, and muscle efficiency E. We briefly describe each
parameter.

The metabolic rate Q̇m represents the total rate of enthalpy

change during locomotion, whereas Q̇B represents the rate

of enthalpy change required during rest. Thus Q̇loco is the

change in enthalpy associated with locomotion. Q̇m and Q̇B
can be measured on a breath-to-breath basis by simultane-
ously monitoring oxygen consumption and carbon dioxide

production, during locomotion and at rest, respectively. Ẇ
can be measured from kinematic analysis to estimate center

of mass movements. As is customary, we normalize Q̇m by

mass m to give mass-specific metabolic rate Q̇m,kg [W/kg],
and further normalize by velocity to give mass-specific cost

of transport Cm = Q̇m,kg/v [J/(m · kg)]. Finally, we nor-
malize by gravitational acceleration to give specific resistance
S = Cm/g [J/(N · m)]. This non-dimensional parameter
represents the amount of energy required to transport a load
of unit weight a unit distance.

Energy recovery η quantifies the reversibility of work being
done on the center of mass. For example, imagine a mass
on a perfect spring (no damping) oscillating up and down;
once set in motion, this mass would oscillate forever, because
any work done on the spring, e.g., through converting gravi-
tational potential to spring compression, would be recovered
through spring extension. This corresponds to η = 1. In
contrast, compressing a “spring” that has no rebound force
corresponds to η = 0. Griffin et al. [10] report data for η
for walking as a function of velocity and G-level. Using data
from Kaneko [11], we previously derived that η = 0.55 for
human running near the run-walk transition, and declines at
high speeds [5].

Muscle efficiency E is defined as the rate of mechanical
work to enthalpy change, or equivalently, the mechanical
power produced by a fully activated muscle compared to the
metabolic power consumption. In classic studies of muscular
efficiency, Margaria [12] estimated peak E = 0.25, although
the modern validated Hill muscle model, which reflects the
molecular basis of muscle activation and has been validated
across multiple vertebrate species, gives peak E = 0.23
(derivation in Appendix A).

We assume human muscles operate near peak efficiency, a
reasonable assumption given that similar (within 2 − 3%)
estimates for efficiency have been obtained for walking [12]
or cycling [13].

Hypotheses

We hypothesized that our model (Equation 1) would be able
to explain changes in locomotion energetics across G-levels
and across gait {walking, running}. We further hypothesized
that the addition of exoskeleton legs, which act as high energy
recovery springs, would elevate the energy recovery in both
walking and running. As a result, we expected this to reduce
the cost of transport [J/(kg · m)] and specific resistance
[J/(N · m)] relative to the unsuited condition in reduced
gravity conditions, whereas in Earth-gravity conditions we
expected the increase in recovery might come at the expense
of total metabolic rate, just as it does in space suits. We
now describe the experimental protocol used to test these
hypotheses.

Experimental Protocol

Six subjects, three men and three women, participated in
the experiment after giving informed consent. Each subject
attended an introductory session involving anthropometric
measurements, fitting of an exoskeleton (Figure 1A-B, [7]),
and an exoskeleton familiarization period. Subjects com-
pleted the primary session on a separate day.

For the primary session, all subjects completed the same
sequence of three trials over a several hour period in a single
day (Figure 1C). Subjects ran and walked during the first
trial in an unsuited condition, wearing normal athletic shoes.
In the second trial, denoted as the ExoControl condition,
subjects wore the lower-body exoskeleton with fiberglass
bars (springs) of intermediate thickness (0.3175 cm or 0.125
in). In the ExoControl condition, the intermediate thickness
springs were used with the intention to simulate the restric-
tions of motion of the exoskeleton without the effect of stiff
legs. In the third trial, denoted as the Exoskeleton condition,
subjects wore the lower-body exoskeleton with springs of
thickness 0.635 cm (0.250 in), intended to simulate the knee
torques of the EMU.

Trials included ten three-minute stages: an initial basal
metabolic measurement stage, and three gravity conditions
(GMoon, GMars, GEarth) each with three stages. For the
first and last stages during each gravity condition, subjects
walked or ran for the entire three-minute stage at a specified
Froude number, a non-dimensional velocity given by

Fr =
v2

gL
, (2)

where Fr is the Froude number, v is the treadmill velocity,
L is the leg length, and g is the simulated gravity level given
by g = gearth · G, with Earth relative gravity G and Earth
gravity taken as gearth = 9.81m/s2 (Gearth = 1). Froude
numbers prescribed for walking and running conditions were
0.25 and 0.60, respectively.

In the middle stage during each gravity condition, subjects
walked or ran at a self-selected run-walk transition, also
called the preferred transition speed (PTS). To select this
speed, subjects switched gaits several times in a consistent
controlled fashion (Figure 1C).

Moon and Mars conditions were simulated using the Moon-
walker, a spring-based partial body-weight suspension sys-
tem (Figure 1D) [9]. The {Moon, Mars, Earth} order of
simulated gravity levels was intended to increase workload
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over time (limit fatigue), provide experience before operating
the exoskeleton at G = 1 (safety), and improve subject
comfort over time [9].

While the G-level was adjusted, the subject stood flat-footed
on the treadmill, occasionally making small hops at the
indication of the experiment conductor who monitoring the
real-time G-level. These hops helped to eliminate the effects
of stiction on the observed G-level, which was estimated for
display as,

G = 1− F

mtotal · gearth , (3)

where F is the net upward force on the total transported mass
mtotal. The total transported mass mtotal was determined
by weighing the subject along with shoes, harness, and if
applicable, the exoskeleton, using the Moonwalker load cell
during the first gravity adjustment session in each trial. All
masses except body mass were already known, and body
mass was computed as the difference between total mass and
known masses.

Treadmill (Trotter CXTPlus, Cybex Corporation, Medway,
MA) velocities for each prescribed Froude number stage
were calculated in real-time based on the actual G-level
(obtained during G-level adjustment) and the subject leg
length (measured during a prior introductory session). The
test conductor adjusted the velocity of the treadmill, and the
treadmill velocity display was obscured from the subject’s
view.

Data Collection

A metabolic analyzer (VO2000, MedGraphics, St. Paul,
Minnesota), auto-calibrated on room air before each trial,
recorded O2 consumption and CO2 production rates through-
out each trial by sampling expired air from a special face-
mask system with flow-sensing capability. Data from the
last minute of each stage was analyzed based on prior val-
idation of this time period as approximating quasi-steady-
state conditions. Subjects wore a heart rate monitor, and an
accelerometer (CXL10LP3, Crossbow Technology, San Jose,
California) mounted near the center of mass (lower back).

Analog signals from the treadmill (rotations of the rear roller
as a measure of velocity), moonwalker load cell, and gait
accelerometer were simultaneously sampled and digitized
at 1 kHz (PMD-1608FS, Measurement Computing, Middle-
boro, MA) and logged via custom scripts implemented in
MATLAB (The Mathworks, Natick, Massachusetts).

Gait Analysis

Due to the lack of kinematic (motion tracking) or kinetic
(force plate) measurements; gait analysis consisted of com-
puting the Froude number and cadence for each sub-stage
condition.

The actual Froude number achieved in each condition was
computed using the measured treadmill velocity, the subject
leg length, and the actual mean G-level achieved over the sub-
stage condition.

Cadence (step frequency), denoted by f , was calculated using
a combination of accelerometer and moonwalker load-cell
data depending upon which had better quality [9].

Non-dimensional cadence was computed as

Λ =
fL

v
, (4)

where Λ is the non-dimensional cadence, L is subject leg
length and v is the treadmill velocity. If ψ is the excursion
angle swept out by the leg during a single stance period
(Appendix C), then the non-dimensional cadence is related
to the excursion angle during an idealized compass gait (with
no double support and no aerial phase) by

Λ =
1

2sin
(

ψ
2

) . (5)

Because actual gait normally involves either a double support
phase (in walking) or an aerial phase (in running1), Equation
5 can be adjusted to read

Λ ≥ 1

2sin(ψ2 )
for walking, or

Λ ≤ 1

2sin(ψ2 )
for running.

(6)

If one compared Λ values for walking and running, one would
expect the observed differences to originate from differences
in the excursion angle or the magnitudes of the double sup-
port phase (in walking) or aerial phase (in running). Non-
divergence would imply either similar excursion angles, or a
change in the excursion angle that counteracts the effects of
the double support and/or aerial phase.

Energetic Analysis

Metabolic rate Q̇m [W] was estimated by multiplying the O2
consumption rate by the conversion factor, k [W ]/[mlO2/s],

k = 4.33 ·RQ+ 16.6, (7)

where RQ is the respiration quotient, the ratio of moles of
oxygen consumed to carbon dioxide expelled. The constants
in Equation 7 are standard values for the free energy re-
leased from metabolism of oxygen and food at the specified

respiration quotient. Mass-specific metabolic rate Q̇m,kg ,

mass-specific cost of transport Cm = Q̇m,kg/v, and specific
resistance S = Cm/g were estimated using the total mass
transported, mtotal.

To test the model of locomotion energetics across gravity
levels, specific resistance for {reduced gravity, unsuited} con-
ditions was estimated based on the {Earth gravity, unsuited}
condition.

First, we computed the net cost of locomotion, Q̇loco = Q̇m−
Q̇b. Recovery, η was estimated as a function of v and G using
data from [10] for walking, or taken as η = 0.55 for running,
while muscle efficiency, Emusc was estimated as a function
of G using the Hill model (see Appendix B for details on the
gravitational dependence of Emusc).

1Groucho running [15] excepted.
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Figure 1. Experiment Apparatus and Design. A) Lower body exoskeleton. The exoskeleton is donned via a waist
harness and adjustable hip cage. Exoskeleton legs are connected between a 2 degree of freedom (DOF) hip joint and a
one DOF joint on the lateral forefoot of a modified cycling shoe [7]. B) Each exoskeleton leg is made of two fiberglass

bars connected via knee joint. Different length bars and knee angles can be selected to accommodate a range of subject
sizes and approximate the joint torques of the EMU knee joints. These selections were made during the exoskeleton
familiarization period. C) Experiment Design (see text for details). D) The Moonwalker [14] is a partial body-weight

suspension device with three DOF: front-rear translation, vertical translation, and yaw rotation. Subjects used a
centrally-located treadmill. Suspension was via a winch driven cable that controlled the displacement of coil springs

connected via a load cell to the subject’s harness.

The total positive work rate of the locomotion muscles was
then estimated as

Ẇin = Q̇loco · Emusc

1− η
. (8)

where Ẇin is the total positive work rate of the locomotion
muscles. The total rate of positive work done on the center
of mass in a different condition (indicated with a prime, ′),
assuming similar kinematics and kinetics that scale directly
with mass and gravity, can be estimated as

Ẇ ′
in = Ẇin · G

′

G
· m

′

m
. (9)

From this result, Equation 8 can be used to solve for the new
net cost of locomotion,

Q̇′
loco = Ẇ ′

in ·
1− η′

E′
musc

, (10)

which gives

Q̇′
m = Q̇′

loco + Q̇b, (11)

and finally

S′ =
Q̇′

m

m′ · g′ · v′ . (12)

In order to estimate the impact of the ExoControl and Ex-
oskeleton conditions on recovery, we performed a related

procedure. First, Ẇin was estimated from the measured

metabolic data at each G-level in the unsuited condition. Ẇ ′
in

was then calculated for each corresponding ExoControl or

Exoskeleton condition. This Ẇ ′
in value, taken together with

the measured S in each condition, was used to estimate the
net energy recovery of the hybrid human-exoskeleton system
according to

η′ = 1− Q̇′
loco · E′

musc

Ẇ ′
in

. (13)
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3. RESULTS
Subject, exoskeleton, and experiment characteristics are
given in Table 1. Individual subject characteristics, ex-
oskeleton customization data, and other individual results and
details are reported in [9]. Except as otherwise described,
p-values are two-sided and based on regression with effects
coding of categories, treating subjects as a random intercept.

The mean EMU-relative stiffness for the exoskeletons used
by the subjects was unity, implying that on average the
exoskeletons were excellent matches for EMU knee joints.

While basal metabolism measurements were highly variable,
the mean mass-specific basal metabolic rates observed under
the ExoControl and Exoskeleton conditions were not signif-
icantly different than the unsuited condition. The overall

mass-specific basal metabolism was Q̇b,kg was 1.51 ± 0.15
[W/kg] across all conditions and subjects.

In general, slightly lower G-levels were achieved than de-
sired, averaging 5% below the target. In contrast, actual
walking speed (Fr) errors increased at lower G-levels. At
Mars and Lunar G-levels, the 0.045 (0.1 mph) resolution
of the Treadmill velocity can generate errors as high as
5.0% and 7.6% respectively in the target Fr (Lunar RMS
error is expected to be 4.5%). Thus, one component of the
errors observed for {Mars, Walking} and {Moon, Running}
conditions is due to the limited treadmill velocity resolution.

Exolocomotion Gait

Cadence values, shown in Figure 2A, decline with reductions
in gravity (p < 0.0005), and have a significant spread be-
tween the walking and running cadence values (p < 0.0005).
Non-dimensional cadence values, shown in Figure 2B, still
have a significant spread between the walking and running
cadence values (p < 0.0005), but the spread is opposite
in sign and half the magnitude of the dimensional cadence
spread, with Λ values for running lower than Λ values for
walking. Unlike f , the Λ values increase with reductions in
gravity (p < 0.0005).

Self-selected run-walk Froude numbers increased as G−level
decreased (p < 0.0005), reaching a median value of 0.81
in the Lunar condition (Figure 2C). Median and mean self-
selected run-walk Froude numbers were lower for the Exo-
Control and Exoskeleton conditions (p < 0.0005) as com-
pared to the Unsuited condition.

Exolocomotion Energetics

Mass-specific metabolic cost [W/kg], shown in Figure
3 (top), increased with G-level and Froude number, and
was significantly lower for ExoControl and Exoskeleton
conditions in comparison to the Unsuited condition (all
p < 0.0005). However, the highest absolute mass-
specific metabolic cost occurred in the {Exoskeleton, run-
ning, Earth gravity} condition, which also had the highest
mean metabolic cost.

During unsuited walking, cost of transport [J/(kg ·m)] was
found to increase with reductions in gravity (Figure 3, center,
p = 0.001). In the running and run/walk unsuited conditions,
changes in gravity did not lead to a significant change in the
cost of transport. In the ExoControl and Exoskeleton walking
conditions, changes in gravity also did not lead to significant
changes in cost of transport. However, during the run/walk
and running conditions, cost of transport declined as gravity

was reduced for both ExoControl and Exoskeleton conditions
(p ≤ 0.014).

Specific resistance [J/(N · m)] (Figure 3, bottom) signifi-
cantly increased with G-level reduction across all three ex-
oskeleton conditions (Unsuited, ExoControl, Excoskeleton;
p < 0.0005). Specific resistance was, on average, higher
in the unsuited condition and lower in the ExoControl and
Exoskeleton conditions. There was also a negative associa-
tion with increases in the Froude number (p = 0.023), and
a significant cross effect with the exoskeleton configuration
and the G-level (Figure 3B).

Evaluating the Model

The measured and theoretical S values for the Unsuited
condition, shown in Figure 4A, are in excellent agreement. In
the walking (Fr = 0.25) condition, the theoretical estimates
differ from the measured estimates by −17% and 4.5% for
Lunar and Mars conditions, respectively. In the running
(Fr = 0.60) condition, the estimates differ by only 8.7%
and 3.4%. These error are comparable in size to the errors
in controlling the Froude number or the errors in setting the
G-level. None of these differences were significant (Table 2).

Impact of Exoskeleton on Energy Recovery

Unsuited values for energy recovery, shown in Figure 4B,
represent input values based on the literature [10], [11], used
to estimate the positive work done on the center of mass in
each G-level condition. Presence of the exoskeleton, either
in the ExoControl or Exoskeleton conditions, elevated the
computed net energy recovery substantially, and more than
counteracted the decline in energy recovery associated with
unsuited walking as gravity is reduced. Walking recovery
was elevated more than running recovery in Earth- and Mars-
gravity conditions.

4. DISCUSSION
General Considerations

Our repeated measures experiment design prevented order ef-
fects from being analyzed, yet was a reasonable compromise
to limit subject fatigue and achieve a low subject drop-out
rate; despite a few cases where subjects were not able to
maintain 1-g running, no subjects dropped out.

Basal metabolic rate measurements were variable, in part due
to low flow with use of a high-flow pneumotach required for
subsequent measurements. However, the basal metabolic rate
averaged across all trials and subjects (1.51 ± 0.15 (SE))
compares favorably with [16], who found basal metabolic
rate to be independent of gravity and equal to 1.47 ± 0.112
(SE) W/kg (N = 4).

Specified Froude numbers were significantly different from
their target values; the non-constant force nature of the
moonwalker springs made the moonwalker applied load vary
significantly with body position, directly contributing to the
larger Froude numbers errors at greater reductions in gravity.
In G = 1 conditions, the Froude number errors are largely
explained by the quantization error of the indicated treadmill
velocity. While greater uniformity in setting G-levels and
locomotion velocities (Fr) would be desirable for comparing
between conditions, it does not impact our interpretation of
the model because that utilized actual G-levels achieved, not
imposed categories.
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Table 1. Subject and Experiment Characteristics

Parameter Mean Std. Dev. Na Std. Err. Notes

Subjects
Age [years] 23.1 2.5 5 1.1 Excluding one 40 year old subject
Height [cm] 171 5.6 6 2.3
Leg Length [cm] 88.6 3.4 6 1.4
Ratio 1.93 0.09 6 0.04 Height / Leg Length
Body Mass [kg] 64.60 5.60 6 2.29 Light athletic clothing, no shoes

Exoskeleton
Spring Length [cm] 43.2 5 One subject used 49.5 cm springs
Forward offset [cm] 12.7 1.4 6 0.6 See [7] Figure 3
Vertical offset [cm] 7.58 1.39 6 0.57 See [7] Figure 3
Knee angle [◦] 40.0 1.7 6 0.7 See [7] Figure 3
Stiffness 1.00 0.10 6 0.04 Relative to EMU
Mass, ExoControl [kg] 6.78 0.14 6 0.06 Variation: spring length, shoe size
Mass, Exoskeleton [kg] 7.13 0.14 6 0.06 Variation: spring length, shoe size

Total Transported Mass [kg]
Unsuited 66.20 5.70 6 2.33 Including shoes
ExoControl 72.30 5.70 6 2.33 Subject and Exoskeleton
ExoSkeleton 72.70 5.80 6 2.37 Subject and Exoskeleton

Basal Metabolic Rate [W/kg] P-value vs. Unsuitedb

Unsuited 2.39 1.64 6 0.67
ExoControl 0.82 0.31 5 0.14 0.067
Exoskeleton 1.23 0.59 6 0.24 0.153
Overall 1.51 0.37 6 0.15

Partial Gravity Simulation Fidelity % Error Relative to Target
Lunar (Target G=0.165) 0.156 0.03 108 0.003 -5.5
Mars (Target G=0.378) 0.361 0.026 108 0.003 -4.5

Walking Speeds Achieved (Target Fr=0.25) % Error Relative to Target
All 0.281 0.05 54 0.007 12.4
Moon 0.330 0.06 18 0.014 32.0
Mars 0.267 0.01 18 0.002 6.8
Earth 0.246 0.004 18 0.001 -1.6

Running Speeds Achieved (Target Fr = 0.6) % Error Relative to Target
All 0.595 0.101 54 0.014 -0.8
Moon 0.647 0.125 18 0.029 7.8
Mars 0.599 0.038 18 0.009 -0.2
Earth 0.592 0.011 13c 0.003 -1.3

aNumber of parameter values, e.g., number of subjects or number of conditions.
bEquality of means t-test assuming unequal variance

cAfter removal of 5 conditions in which subjects did not reach or maintain the assigned speed

Exolocomotion Gait

A more significant limitation of the study was the lack of
kinematic (motion tracking) and kinetic (force plate) mea-
surements, which could have been used to estimate center of
mass motion and therefore Ẇin. As a result, estimation of
this parameter under non-1g-unsuited conditions required the
assumption of dynamic similarity.

Dynamic similarity would strictly require that all non-
dimensional parameters associated with gait remain the same.
While non-dimensional cadence does not change dramati-

cally with changes in the simulated gravity level, lower g-
level was associated with higher Froude numbers at the PTS.
This elevation in the Froude number at the PTS for the lunar
unsuited condition implies a violation of dynamic similarity
at low g-levels.

The observed increase in the median self-selected Froude
number with reduced G-level is consistent with the findings
of Kram et al. [17], who measured the run-walk transi-
tion at a range of simulated gravity levels using a detailed
‘titration’ procedure to determine the velocity of transition.
We used a much more simple procedure due to subject time
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Figure 2. Quartiles for Exoskeleton Gait Parameters as a function of G-level. A) Cadence (steps/s) for walking
(Fr = 0.25, unfilled boxes) and running (Fr = 0.60, filled boxes) conditions. B) Non-dimensional cadence for

walking and running as in A. C) Froude Number at the Preferred Transition Speed. In all panels, U = Unsuited, C =
ExoControl, E = Exoskeleton. Symbols ∗ and ◦ indicate outliers.

Table 2. Specific Resistance Comparison

Condition Ḡ S̄actual Sactual (Conf. Int.)a Stheory % Difference p-valueb

Walking
Moon 0.140 5.00 3.64− 6.37 5.86 17.2 0.167
Mars 0.348 1.84 1.12− 2.57 1.61 -12.2 0.458
Earth 1.00 0.518 0.370− 0.665 − − −

Run/Walk
Moon 0.168 2.86 2.13− 3.59 2.77 -3.0 0.777
Mars 0.356 1.30 0.862− 1.75 1.21 7.4 0.596
Earth 1.00 0.50 0.432− 0.571 − − −

Running
Moon 0.192 2.78 2.07− 3.48 2.53 -8.7 0.418
Mars 0.367 1.24 0.917− 1.56 1.14 -7.6 0.488
Earth 1 0.46 0.388− 0.535 − − −

a Confidence interval for the observed values Sactual.
b One sample equality of means t-test relative to theoretical value (df = 5). A p-value < 0.05 would

indicate that the mean S value is significantly different than the theoretical value.

Table 3. Mean Unsuited Froude Number at the
Preferred Transition Speed

G-Level This Study Kram et al.a %Difference

Moon 0.84 0.91 -7.4

Mars 0.62 0.57 8.4

Earth 0.41 0.45 -9.9
a Linear interpolation using data from Kram et al. [17].

considerations, and therefore expect less consistent results;
the magnitude of the difference between the values observed
and the findings of [17] was less than 10% in all gravity
conditions (Table 3), and the average difference was only
−3%.

Even higher Froude numbers at the PTS were observed in
lunar unsuited walking in simulated and actual (parabolic
flight) reduced gravity by DeWitt et al. [18]; our lower values,
and those of Kram et al. [17] may reflect the approximate
nature of our respective partial bodyweight suspension plat-
forms.

Measured cadence values in the G = 1 running condition are
near optimal for running in Earth gravity [11], supporting the
use of η = 0.55 for running. Walking cadence values are
not greatly lower than running cadence values because the
Fr = 0.25 and Fr = 0.60 conditions have a relative velocity
ratio of only 0.65. The decline in cadence with reduced G-
level is consistent with data reported by [19].

As expected, non-dimensional cadence values for running
are slightly less than those for walking. The similarity of
non-dimensional cadence values across walking and running,
and as a function of the G-level, is an indirect indicator that
kinematics may not have changed substantially over the range
of conditions studied. The more modest rise in Λ values as
gravity is reduced suggests a slight change in the excursion
angle, calculated using the Equation 5 approximation as 45-
50◦ for G = 1 to 33-40◦ for G = 0.165.

On a whole, there is evidence that dynamic similarity is a
reasonable approximation over a range of reduced G-levels
but breaks down at low (lunar) G-levels. This can be expected

to lead to increasing errors in Ẇin at low G-levels, and errors

in Ẇin would be expected to lead to commensurate errors in
recovery, η (see Equation 13). In practice it would be better

to measure Ẇin directly.
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Figure 3. Energetics of Exoskeleton Locomotion. A) Top row: Mass-specific metabolic cost [W/kg]. Center row: Cost
of transport [J/(kg · m)]. Bottom row: Specific resistance. In all panels, unfilled symbols represent the walking

(Fr = 0.25) condition, gray-filled symbols represent the run-walk condition (Fr = 0.50), and black-filled symbols
represent the running (Fr = 0.60) condition. B) Specific resistance values, averaged across all subjects and all Froude
number conditions within each combination of exoskeleton configuration and G-level, reveal the significant cross-effect

between the exoskeleton conditions and the G level.

8



Figure 4. Model and Energy Recovery Comparison. A) Unsuited specific resistance as a function of G-level: Unfilled
symbols represent values computed directly from metabolic data. Filled symbols, the theoretical values, were estimated
based on the G = 1 data using the approach described in the methods. Thus, theoretical results are shown only for the
reduced gravity conditions. Error bars, one per actual measurement, are m ± SE. B) Computed net energy recovery
ratio as a function of G-level and exoskeleton condition: Exoskeleton conditions are denoted by U (Unsuited, unfilled

symbols), C (ExoControl, grey symbols), and E (Exoskeleton, black symbols).

Exolocomotion Energetics

One surprising feature of the energetics results was that
cost of transport at constant Froude numbers was relatively
independent of G-level in the unsuited condition. This is
different, but does not contradict, the relatively linear declines
observed in the constant velocity reduced gravity walking and
running measurements by Farley and McMahon [16].

The success of the theoretical predictions of specific resis-
tance values across all Froude number conditions, without
any statistical differences between the observed and predicted
values, suggests that the mathematical form of the model is
reasonable, and that reasonable parameter values have been
chosen. The goodness of fit (Adjusted R2 of 0.98 for mea-
sured versus theoretical S) is somewhat surprising, because
of the nature and extent of the assumptions that went into the
estimates: First, they assume a very crude derivation of the
gravitational dependence of muscle efficiency (see Appendix
B). Second, the model as implemented to date is based on an
assumption of 55% energy recovery during running, with no
compensation for G or velocity; the data on walking energy
recovery from [10] is much more extensive. Third, when the

total positive work rate by locomotion muscles (Ẇin) was

transformed from one state to another, Ẇin was assumed
to scale directly with the gravity and mass ratios of the
two conditions, making an implicit assumption of dynamic
similarity, which is clearly an approximation. Nevertheless, a
single equation,

Q̇m − Q̇b = Ẇin · 1− η

Emusc

successfully predicted the observed metabolic cost across G
and v, and across both walking and running gaits.

Perhaps the most surprising energetics results was the large
impact of the low-stiffness springs used in the ExoControl
condition. It was not anticipated that they would affect
cost of transport and other variables to the extent that they
did. The ExoControl springs were not calibrated to measure

EMU-relative stiffness, but by basic beam theory should be
approximately 2−3 as stiff as the Exoskeleton springs, which
on average approximate the EMU knee joints and have peak
stiffness values of 1-5 kN/m, depending on the leg geometry.
The ExoControl exoskeleton legs appear to have very high
energy recovery, and several subjects commented on their
relative easy of movement in reduced gravity; one subject de-
scribed wearing these legs while walking in reduced gravity
as ‘effortless...I forgot they were there.’

It is possible that net energy recovery ratios are overestimated

due to increases in Ẇin relative to the similar unsuited
condition. However, [10] found that vertical displacements of
the center of mass changed by less than 10% during simulated
reduced gravity walking in the range 0.25 ≤ G ≤ 1.0. While
the observed net energy recovery ratios are high, they are con-
sistent with the measured recovery values for the exoskeleton
legs [7]. An open question is whether each exoskeleton leg
can store enough energy to account for a significant fraction

of Ẇin during reduced gravity locomotion; this value has not
been computed, but could be estimated if reliable kinemat-
ics data were available. It is possible that the ExoControl
exoskelton legs have appropriate stiffness to simultaneously
improve recovery and permit normal kinematics.

Why does the unsuited run-walk transition occurs at higher
Froude numbers at low (Lunar) gravity? Or equivalently,
why does dynamic similarity fail? One explanation is that at

low gravity, for similar Ẇin, the normal exchange of kinetic
and potential energy during pendular walking is impaired.
Another component is inertial forces: The swinging of arms
and legs creates a downward force that helps keep the body
on the ground during reduced gravity walking, and this
effect is magnified in a center-of-mass partial-body-weight
suspension system in which the arms and legs are acted upon
by normal levels of gravity. Kram et al. [17] estimated the
size of this effect for humans locomoting in reduced gravity,
and used it to compute corrected run-walk transition Froude
numbers, which were nearly constant (≈ 0.5) over a ten-fold
range of gravity.
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How do these findings relate to space suit energetics? All the
same mechanisms at work in exoskeleton locomotion apply
to (soft-goods) space suit legs. For example, space suit legs
have high energy recovery and similar knee joint stiffness.
In addition, extensive analysis of gait events during Project
Apollo reveals that the walk or lope to run transition by space-
suited astronauts on the Lunar surface is estimated to be Fr =
0.36 ± 0.11 [20]. Just as the exoskeleton lowered the PTS
(Figure 2C), space suits lower the PTS.

Major differences between the exoskeleton and space suits
include the much higher mass, impaired hip, ankle, and upper
body mobility, and the presence of longitudinal pressure
forces; these and other differences between space suits and
the lower-body exoskeleton are reviewed and summarized
in [7]. Space suits are likely to improve recovery during
locomotion, but to do so in an unbalanced way with respect to
walking and running: while running energy recovery may be
enhanced, the impaired hip and ankle mobility may greatly
impair energy recovery during walking [5], [6], making a
transition to running favorable at lower Fr than under un-
suited conditions.

The Tuned Space Suit

The current study has an important implication for future
space suit design: it provides a new start to answering the
question: What is the optimal space suit joint torque? One
of the mantras of space suit design for more than the last
forty years has been to ‘eliminate joint-torques,’ based on
the assumption that the best joint-torque is no joint torque.
However, as Figure 5 illustrates, this is not necessarily the
case when one considers lowering the metabolic cost of
locomotion as an objective.

Consider an ideal space suit with lower legs whose stiffness
can be adjusted from zero to beyond the value achieved in the
Exoskeleton condition. With zero ‘suit’ (or exoskeleton) leg
stiffness, the unsuited specific resistance is achieved. As the
stiffness increases, some energy is stored in and released by
the high-recovery exoskeleton or suit leg, slightly improving
overall recovery and lowering S. Stiffness must decline
because the observed S in the ExoControl condition is lower
than the unsuited S. At some stiffness level, a minimum is
achieved, but the available constraints make it impossible to
determine whether the optimal stiffness is smaller or larger
in magnitude than the effective stiffness of the ExoControl
exoskeleton legs. For this reason, two representative gray
curves are shown in Figure 5. It is likely the optimal stiff-
ness is greater than the ExoControl exoskeleton leg stiffness
(solid gray curve), based on subjective feel and the ∼8-fold
difference in stiffness between the ExoControl condition and
the Exoskeleton condition. As stiffness increases further, S
must increase because under the Exoskeleton condition the
exoskeleton legs are approximately eight times more stiff
than under the ExoControl condition, and the observed S
under the Exoskeleton condition is larger than the ExoControl
condition. As the stiffness increases further, the greater
stiffness of the suit or exoskeleton legs will disrupt normal
kinematics more and more, until recovery and/or biome-
chanical advantage is impaired, resulting in a higher specific
resistance. The extent to which the ideal stiffness would
change with the G-level is unknown.

How would one go about creating a Tuned Space Suit?
Modifying the thickness of the exoskeleton fiberglass bars
and making additional measurements of specific resistance
is one possibility. Another is to address the general problem
of how springs in parallel with the legs change leg stiffness

(Figure 5B), kleg , what changes this implies to regulation of
effective total leg stiffness, keff = kleg + ksuit, and how
these changes might effect the metabolic cost of locomotion.

Human leg stiffness, based on a mass-spring model of run-
ning [21], [22], changes little with velocity [22], but does
accommodate changes in surface stiffness [23], [24]. Ferris
and Farley [23] found that humans maintained similar vertical
center of mass displacement despite a > 1000 fold change in
surface stiffness ksurf .

What happens if regulation of kleg is intentionally disrupted?
McMahon et al. [15] had subjects run with their knees bent
(‘Groucho’ style, something they wouldn’t normally do on
their own), thereby reducing their leg stiffness to 82% of
normal. This incurred a oxygen consumption penalty of up to
50% above ‘normal’ running, presumably because the lower
leg stiffness led to larger oscillations of the center of mass

(Ẇin increased, resulting in a higher Q̇m − Q̇b for the same
Emusc and η).

Like Ferris and Farley [23], Kerdok et al. [25] found that
effective leg stiffness, keff , was the same despite variations
in the surface stiffness. As surface stiffness decreased, leg
stiffness increased, resulting in a similar effective leg stiffness
(1/keff = 1/kleg + 1/ksurf , because the leg and surface
are in series, e.g., Figure 5C). Over the range of ksurf tested
(75.4-946 kN/m) Kerdok et al. [25] found a drop in metabolic
rate of 12% as ksurf was decreased.

Constant keff in the McMahon and Cheng [22] running
model implies similar magnitude oscillations of the center of
mass (similar Win per step), suggesting that the metabolic
cost reduction found by Kerdok et al. [25] results from
increased recovery (η); Kerdok et al. [25] computed energy
delivery by the compliant surface, and found that for every
watt delivered by the surface, the metabolic rate decreased
by 1.8W. This same calculation could be performed for
exoskeleton legs using data from trials for which kinematic
data are available.

It is not known how humans modify leg stiffness in response
to springs in parallel with the legs; however, to maintain the
same center of mass motion, one would expect the response
to be a reduction in kleg that results in the ‘normal’ keff at the
current G level. Donelan and Kram [26] reported leg stiffness
values for 2-5 m/s running: Earth-gravity stiffness values
of 8-10 kN/m had declined to approximately 5.0-6.5 kN/m
in G = 0.25. Because the EMU-like exoskeleton springs
have stiffnesses in the range of several kN/m, they could
be expected to have a significant effect on kleg. Studying
changes in kleg in response to springs in parallel with the legs
might lead to a better understanding of human leg stiffness
regulation, in addition to determining whether it is feasible or
desirable to build a tuned space suit.

McMahon et al. [15] and Kerdok et al. [25] have connected
regulation of leg stiffness to the metabolic cost of locomotion,
but the definitive theoretical and experimental link between
leg stiffness, recovery, and metabolic cost has yet to be
made. While such a link is beyond the scope of this work,
further discussion about recovery and its impact beyond the
exoskeleton experiment is in order.
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Figure 5. The Tuned Space Suit. A) The mean specific resistance values (averaged across F r and subject) observed in
the Lunar (G = 0.165) condition show a non-linear relationship with EMU relative stiffness k/kEMU . Unsuited

specific resistance was observed to be higher than both exoskeleton configurations, with the ExoControl specific
resistance lower than the Exoskeleton specific resistance. This implies that an exoskeleton leg stiffness exists, below the
leg stiffness of the Exoskeleton configuration, which has minimum specific resistance. A similar finding may apply to
space suits; at this point such as ‘Tuned Space Suit’ would be energetically optimal. B) Spring-mass model of human
interaction with an exoskeleton or space-suit. C) Spring-mass model of human interaction with a compliant surface.

5. CONCLUSIONS
Here we have presented a simple model of locomotion en-
ergetics, for which our predictions based on dynamic sim-
ilarity match measured energetics across gravity and gait,
with errors higher at low gravity where dynamic similarity
is violated. While dynamic similarity is a useful assumption
to enable estimation of certain parameters in our model,
future work will benefit from direct kinematic and kinetic
measurements.

We then used this model to characterize how a lower-body
exoskeleton modifies the energetics of walking and running,
in particular through changing the energy recovery, a measure
of the reversibility of work done on the center of mass during
locomotion. In keeping with our hypothesis, we found that
springs in parallel with human legs, as represented by a lower
body exoskeleton, can improve energy recovery and decrease
the metabolic cost of transport. This led to the notion of a
tuned space suit, where the exoskeleton or space suit stiffness
could be adjusted to achieve a local minima in the cost of
transport.

We note that while gas pressure space suit legs inherently
function like springs, mechanical counter-pressure space
suits, which apply pressure directly to the body surface,
could be augmented with an external exoskeleton. Thus, our
findings apply to both types of space suits. Lower body
hard suits, in contrast, are likely to have effective spring
stiffness beyond the optimal range for human locomotion.
Energy efficient locomotion is a key requirement for future
planetary exploration; ultimately, many factors will need to
be considered in the design and development of space suits
for future human planetary exploration.

APPENDICES

A. HILL MUSCLE MODEL
In the same year in which he received the Nobel Prize “for his
discovery relating to the production of heat in the muscle”2,

2See http://www.nobel.se/medicine/laureates/1922/

A.V. Hill demonstrated that muscles are most efficient for
a particular range of the muscle velocity of shortening, v
[27]. Hill later related the tension (force) produced by muscle
undergoing an isotonic contraction, T , to the velocity of
shortening [28] as:

(T + a) · (T + b) = (T0 + a) · b, (14)

where T0 is isometric muscle tension, and a and b are con-
stants. Geometrically, this equation represents a rectangular
hyperbola with asymptotes of T = −a and T = −b [29].
With no load (T = 0) the maximum shortening velocity vmax
is achieved. Rewriting Equation 14 in terms of normalized
velocity v/vmax and normalized tension T/T0 gives:

v

vmax
=

1− T/T0

1 + (T/T0) · k−1
, (15)

where k = a/T0 = b/vmax. Equations 14 and 15 apply to
nearly all types of muscles in non-insects, including skeletal,
cardiac, and smooth muscle [29].

The load-dependence of the myosin stroke relative to its actin
fiber is the primary molecular determinant of the mechanical
performance and efficiency of skeletal muscle [30]. This
provides a molecular basis for the observation that 0.15 <
k ≤ 0.25 for most vertebrate muscles [29], although Alexan-
der [31] recommends k = 0.25 as a good average value for
vertebrate muscles.

Because muscles share a common architecture within and
across organisms and species, but differ in the types and
proportions of protein isoforms upon which the common
architecture depends, it seems reasonable that Equations 14
and 15 are so widely applicable. Leeuwen and Spoor [32]
expressed Equation 15 in a different form and developed
a related expression that takes into account the possibility
of negative shortening velocities (muscle lengthening, or
eccentric motion):
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T

T0
=

{ vmax−v
vmax+Gv 0 ≤ v ≤ vmax

1.8− 0.8 ·
[

vmax+v
vmax−rGv

]
−vmax < v < 0

(16)

where G = 1/k, and r = 7.56 is a factor that reflects the
mechanics of eccentric motion.

For an isotonic (constant tension) contraction of a muscle in
which all muscle fibers are oriented uniformly, so that the ve-
locity of shortening and the tension are collinear, mechanical

power output, Ẇ , can be computed as

Ẇ =
d

dt

∫
�T · �dl

= T
d

dt

∫
dl

= T
dl

dt
= Tv (17)

where l is muscle length and t is time. In order to evaluate
how the efficiency of muscle is linked to the parameters of the
Hill equation (Equation 14), Alexander [33] defined muscle
efficiency as the ratio of mechanical power to metabolic
power consumption of a fully activated muscle, Pmetab, as-
suming adenosine tri-phosphate (ATP) as the energy source.
The efficiency of production of ATP from aerobic respiration
and foodstuffs, ηATP , is only about 50% efficient [31], so
that the net efficiency from the rate of enthalpy change to
muscular work is given by

Emusc = ηATP
Ẇ

Pmetab
. (18)

Alexander [33] expressed Pmetab as:

Pmetab = T0vmaxΦ(v/vmax), (19)

and then derived empirical expressions for Φ based on the
data of Ma and Zahalak [34]:

Φ(
v

vmax
) =

⎧⎪⎪⎨
⎪⎪⎩

0.23− 0.16 · e(−8· v
vmax

)

0.01− 0.11 · v
vmax

+0.06 · e(23· v
vmax

)

(20)

where, as in Equation 16, the top expression applies for
0 ≤ v ≤ vmax and the bottom expression applies for
−vmax < v < 0. Using Equations 17 and 19, Equation 18
can be rewritten as

Emusc = ηATP · T
T0
· v

vmax
· 1

Φ(v/vmax)
. (21)

Figure 6. Parameters of the Hill muscle model as a function
of v/vmax, the ratio of muscle contraction velocity to

maximum muscle contraction velocity. T/T0 is the ratio of
muscle tension to isometric tension, Φ is a cost function
describing cellular energetics, and Emusc is the muscle

efficiency.

Using G = 4 (k = 0.25) and r = 7.56 gives maximum
Emusc = 0.225 for v/vmax = 0.227 and maximum nor-

malized power Ẇ/(T0vmax) = 0.096 for v/vmax = 0.311.
The hill muscle model as computed using these parameters
is shown in Figure 6. The peak efficiency and peak power
values are best visualized in a plot restricted to positive
contraction velocities, as illustrated in Figure 7.

B. MUSCLE EFFICIENCY & GRAVITY
Here we describe a derivation for the dependence of muscle
efficiency Emusc on gravity.

We assume that muscles operate at near peak efficiency under
G = 1 conditions. This is a reasonable assumption, as
illustrated by the agreement, to within 2-3%, between the
maximum muscular efficiency observed during slope walking
[12] or cycling [13] and the peak efficiency predicted by the
above-implemented Hill Muscle Model.

In addition, this model assumes that no substantial shifts
in muscle mass or remodeling (change in fiber type) have
occurred. This is a reasonable assumption for our experiment,
where subjects only briefly encountered simulated reduced
gravity, but would not hold during spaceflight or on Mars,
where long exposure to weightlessness or reduced gravity
would produce shifts in the types of muscle fibers present and
in total muscle mass. Indeed, reductions in muscle mass seen
in spaceflight can be seen as an adaptive response to achieve
more efficient muscle activation.

To simulate the effects of reduced gravity on muscle, the
T/T0 value at the G = 1 peak efficiency condition can be
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Figure 7. Hill muscle model for positive muscle contraction
velocities. v/vmax is the ratio of muscle contraction velocity
to maximum muscle contraction velocity, T/T0 is the ratio
of muscle tension to isometric tension, Φ is a cost function

describing cellular energetics, and Emusc is the muscle
efficiency. Peak efficiency is 0.23 for v/vmax = 0.23. Peak

power occurs at v/vmax = 0.31 and Emusc = 0.22.

scaled so that the new ‘reduced gravity’ tension ratio is

T ′
T0

= G ·
(

T

T0

)
1G,EPeak

. (22)

From T ′/T0 a new v/vmax can be estimated using Equation
15, allowing Emusc to be computed as a function of G (Figure
8).

Why might the muscle efficiency vary with G but not vary
substantially with locomotion velocity?3 McMahon and oth-
ers have shown that leg stiffness, but not vertical stiffness [22]
is relatively constant as a function of velocity. Leg stiffness
is related to contraction velocity, and therefore muscle effi-
ciency can be maintained across a wide range of velocities.

C. NON-DIMENSIONAL CADENCE
Here we describe a derivation for the non-dimensional ca-
dence Λ = fL/v (Eq. 4), with step frequency f , subject
leg length L, and gait velocity v. In idealized compass gait
(Figure 9), ψ is the excursion angle swept out by the leg
during a single stance period. The horizontal movement of
the center of mass, equivalent to the distance per step, is
given by v/f = 2L ·sin(ψ/2), and thus the non-dimensional
cadence is given by Λ = 1/(2 · sin(ψ/2)) (Eq. 4).

3Assuming that velocity is not too small.

Figure 8. Gravitational dependency of muscle efficiency
derived from the Hill Model.

Figure 9. Excursion angle in idealized compass gait. In
inverted pendulum walking, with no double support and no

aerial phase, a leg with length L traces out an excursion
angle ψ during a single stance period.
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