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Abstract

We study broadcast capacity and minimum delay scaling laws for highly mobile wireless networks,

in which each node has to disseminate or broadcast packets to all other nodes in the network. In

particular, we consider a cell partitioned network under the simplified independent and identically

distributed (IID) mobility model, in which each node chooses a new cell at random every time slot.

We derive scaling laws for broadcast capacity and minimum delay as a function of the cell size. We

propose a simple first-come-first-serve (FCFS) flooding scheme that nearly achieves both capacity and

minimum delay scaling. Our results show that high mobility does not improve broadcast capacity, and

that both capacity and delay improve with increasing cell sizes. In contrast to what has been speculated

in the literature we show that there is (nearly) no tradeoff between capacity and delay. Our analysis

makes use of the theory of Markov Evolving Graphs (MEGs) and develops two new bounds on flooding

time in MEGs by relaxing the previously required expander property assumption.

I. INTRODUCTION

We study all-to-all broadcast capacity and delay scaling behavior in mobile wireless networks.

Interest in mobile wireless networks has increased in recent years due to the emergence of

autonomous aerial vehicle (UAV) networks. Dense networks of small UAVs are being used in

a wide range of applications including product delivery, disaster and environmental monitoring,

surveillance, and more [1]–[5]. Our work is motivated by the need to disseminate timely control

information in such networks [4]–[7]. An important communication operation that needs to be

performed in exchanging safety critical information is that of all-to-all broadcast, where each

vehicle or node broadcasts its current state or location information to all other vehicles in its

vicinity.
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Fig. 1. Network partitioned into C = 1
aN

cells. Each cell of area aN .

We consider a cell partitioned network with N nodes, shown in Figure 1, in which a unit

square is partitioned into C cells. Due to interference, only a single packet transmission can

take place in the cell at a given time, and all other nodes in the cell can correctly receive the

packet. Different cells can have simultaneous packet transmissions. This simple model captures

the essential features of interference and helps obtain key insights into its impact on throughput

and delay [8]–[10]. We consider IID mobility, where, at the end of every slot, each node chooses

a new cell uniformly at random. This mobility model was used in [8], [11] to capture the impact

of high mobility, and the resultant intermittent network connectivity, on throughput and delay.

Moreover, this model serves as a good model for UAV networks where rapid mobility and

intermittent connectivity are common [4]–[6].

We study all-to-all broadcast capacity and delay scaling as a function of node density. Here,

capacity is defined as the maximum rate at which each node can transmit packets to all other

nodes in the system and delay as the average time taken by a packet to reach every node in the

system. We say that a network is dense if the number of vehicles or nodes per cell is increasing

with N , and sparse otherwise. Thus, if the cell size grows as cN−α, for some c > 0, then the

network is dense for 0 < α < 1 and sparse for α ≥ 1.

We show that as the network gets more dense the all-to-all broadcast capacity increases to
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TABLE I

CAPACITY AND AVERAGE DELAY

Capacity

Upper bound FCFS flooding

(Theorem 1) (Eqn. (54))

Sparse: α ≥ 1 1
Nα

1
Nα

1
logN

Dense: 0 < α < 1 1
N

1
N

1
log logN

Average Delay

Lower bound FCFS flooding

(Theorem 2) (Eqns. (53) and (52))

Sparse: α ≥ 1 Nα−1 logN Nα−1 logN

Dense: 0 < α < 1 1 log logN

reach a maximum scaling of 1/N . Interestingly, delay decreases as the network gets denser. In

fact, both, capacity and delay attain their best scaling in N when the cell size is just smaller than

order 1/N , i.e., when α = 1 − ε for a small positive ε. We further note that the best per-node

capacity scaling of 1/N is the same as that can be achieved in a static wireless network, thus,

mobility does not improve network capacity. This is in contrast to the unicast case where it was

shown in [12] that mobility improves capacity. Our scaling results are summarized in Table I.

We propose a simple first-come-first-serve (FCFS) flooding scheme that achieves capacity

scaling, up to a logN factor from the optimal when the network is sparse and up to a log logN

factor from the optimal when the network is dense. The FCFS flooding scheme also achieves

the minimum delay scaling when the network is sparse, and up to a factor of log logN from

minimum delay when the network is dense. Thus, nearly optimal throughput and delay scaling

is achieved simultaneously.

The IID mobility model was analyzed for unicast and multicast operations in [8] and [11],

respectively, using standard probabilistic arguments. In contrast, we use the abstraction of Markov

evolving graphs (MEG), and flooding time bounds for MEGs [13]. An MEG is a discrete time

Markov chain with state space being a collection of graphs with N nodes. An MEG of the IID

mobility model can be constructed by drawing an edge between two nodes in the same cell and

viewing the network as a graph at each time step. Flooding time, is then, the time it takes for
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a single packet to reach all nodes from a single source node.

A flooding time bound for MEGs was derived in [13]. It relied on an expander property which

states that whenever m nodes have the packet then in the next slot at least km new nodes will

receive the packet with high probability, for some k > 0. However, this strong requirement does

not always hold. For example, when the IID mobility model is sparse, this expander property

cannot be guaranteed. We derive two new bounds on flooding time in MEGs by relaxing the

strong expander property requirements imposed in [13]. These new bounds are of independent

theoretical interest.

A. Previous Work

In [7], we considered the impact of wireless interference constraints on the ability to exchange

timely control information in UAV networks. We showed that, in guaranteeing location awareness

of other vehicles in the networks, wireless interference constraints can limit mobility of aerial

vehicles in such networks. This result motivates us to study the delay and capacity scalings of

all-to-all broadcast in mobile wireless networks.

Broadcast has been studied before in the contexts of disseminating data packets in wireless ad-

hoc networks [14], [15], sensor information in sensor networks, and in exchanging intermediate

variables in distributed computing [16]. Scaling laws for capacity and delay in wireless networks

have received significant attention in the literature. Capacity scaling for unicast traffic, in which

each node sends packets to only one other destination node, was analyzed in [17], [18]. It was

shown that the capacity scales as 1/
√
N logN with increasing N . Minimum delay scaling for

the static unicast network was analyzed in [9], where it was also shown that it is not possible to

simultaneously achieve minimum delay and capacity. This implied a tradeoff between capacity

and delay. In [12], it was shown that if the nodes were mobile, then a constant per node capacity

that does not diminish with N can be achieved. The seminal works of [17] and [12] led to

the analysis of capacity and delay scaling under various mobility models including IID [8],

Markov [9], Brownian motion [19], and Random Waypoint [20]. Capacity-delay tradeoffs were

observed in each of these settings.

Broadcast has been studied in static wireless networks in [14], [15], [21], [22]. It was shown

that the per-node broadcast capacity scales as 1/N in static wireless networks [15]. However,

to the best of our knowledge, optimal delay scalings for static broadcast has not been analyzed.
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In [11], the authors conjectured a capacity-delay tradeoff for multicast, and by implication for

broadcast as a special case, under IID mobility. However, in this paper, we show that there is

nearly no capacity-delay tradeoff for broadcast. In particular, we propose a scheme that (nearly)

achieves both capacity and minimum delay, which is up to a log logN factor when the network

is dense and up a logN factor when the network is sparse. Moreover, we show that the capacity

scaling does not improve with mobility, unlike in the unicast case [12].

Although, throughput and delay scalings have been investigated under various communication

operations and mobility models for the past 15 years, the same problem under broadcast has

not been thoroughly analyzed even for the simplest IID mobility model. In [11], delay bounds

were obtained for multicast, however, these bounds are very weak when applied to the all-to-all

broadcast operation. By using and extending the theory of MEGs developed in [13] we are able

to obtain tight bounds on delay.

Flooding time bounds on MEG have been used for various network models in [13], [23],

[24]. To the best of our knowledge, this is the first time that these techniques are being used in

the mobility setting. Moreover, the new bounds derived in Section III could be of independent

interests and can also be applied to models considered in [13], [23], [24].

B. Organization

The paper is organized as follows. In Section II we derive bounds on capacity and minimum

delay. In Section III, we summarize the flooding time upper bound result of [13], and derive

two new upper bounds on flooding time for MEGs. In Section IV, we apply these results to

our setting and, in Section V, we use it to analyse the FCFS flooding scheme. We propose a

single-hop scheme in Section VI that achieves capacity for a sparse network. We conclude in

Section VII.

II. FUNDAMENTAL LIMITS: CAPACITY AND MINIMUM DELAY

Consider the network of Figure 1 with N nodes that are uniformly distributed over a unit

square. The size of each cell is aN = 1
C

= cN−α, for some α > 0 and c > 0.1 We consider

1We restrict aN to be of the form cN−α only for clarity of presentation. The results, and their proofs, can be easily generalized

to any other aN .
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a slotted time system. The duration of each slot is sufficient to complete the transmission of a

single packet. We use the IID mobility model of [8] in which, at the end of every slot, each node

chooses a new cell/location uniformly at random and independent of other node’s locations.

In this paper we make extensive use of order notation. For infinite sequences {aN} and {bN},

aN = O (bN) implies limN→∞
aN
bN
≤ c1 for some c1 > 0 and aN = Θ (bN) implies aN = O (bN)

and bN = O (aN). We write aN ≤N bN if there exists a N0 ≥ 1 such that for all N ≥ N0 we

have aN ≤ bN . Positive constants are denoted by c1, c2 . . ..

A. Capacity

Each node receives an inflow of packets at rate λ, and each of these packets have to be

broadcast to all other nodes in the network. A communication scheme is said to achieve a rate

of λ if at this arrival rate the average number of backlogged packets in the network does not

increase to infinity. The capacity of the network is the maximum achievable rate. We start with

a simple upper-bound on the capacity.

Theorem 1: The achievable rate λ is bounded by

λ ≤ 1

2(N − 1)

(
1− (1− aN)N−1

)
(1)

=

 Θ
(

1
Nα

)
if α ≥ 1 (sparse)

Θ
(

1
N

)
if 0 < α < 1 (dense)

. (2)

Proof: For an intuitive argument, consider a scheme that achieves a rate of λ. Then the

average number of packet receptions per slot must be at least N(N − 1)λ under this scheme,

because there are (N − 1) destinations for each of the N sources. However, the total number

of receptions per slot cannot be more than the average number of nodes in each cell, across all

cells. Thus,

N(N − 1)λ ≤ average no. receptions in each slot (3)

≈ C
N∑
k=2

kP [k nodes in a cell] (4)

=
1

aN

N∑
k=2

k

(
N

k

)
akN (1− aN)N−k (5)

= N
{

1− (1− aN)N−1
}
. (6)

January 17, 2017 DRAFT



7

In (4), the summation starts from k = 2 as there must be at least two nodes in a cell to have a

transmission. The above intuition turns out to be true. Scaling law of the upper bound is then

obtained by substituting aN = cN−α. The complete proof is given in Appendix A.

This capacity upper bound is in fact achievable. The single-hop scheme in Section VI achieves

capacity when the network is sparse and the FCFS flooding scheme in Section V achieves

capacity, up to a log logN factor, when the network is dense. Typically, one expects to have

larger broadcast capacity with increasing cell sizes, i.e., with decreasing α. A larger cell size

implies more nodes in a given cell, and hence, more receptions per slot can occur by exploiting

the broadcast nature of the wireless medium. Theorem 1, however, shows that the capacity

remains constant at Θ
(

1
N

)
for 0 < α < 1. This is because, larger cell sizes also result in fewer

transmission opportunities in every slot due to interference. As a result capacity remains constant

when 0 < α < 1.

B. Minimum Delay

Another important performance measure is the delay. The delay of a packet is defined as the

time from the arrival of the packet to the time the packet reaches all its N−1 destination nodes.

The delay of a communication scheme is the average delay, averaged over all packets in the

network. To obtain a lower-bound on the network’s delay performance we define a single packet

flooding scheme that transmits a single packet to all other nodes in the network. As we show

later, this lower-bound provides a fundamental limit on delay.

Single packet flooding scheme: At the beginning of the first slot, only a single node has the

packet.

1) In every cell, randomly select one packet carrying node to be the transmitter in that slot.

If no such node exists in a cell no transmission occurs in that particular cell.

2) In each cell, the transmitter node (if present) transmits the packet to all other nodes in the

cell.

3) If all nodes have the packet then terminate the process, otherwise repeat from step 1.

The single packet flooding scheme is clearly the fastest way to disseminate a packet to all nodes

in the network. Hence, a lower-bounded is given by the time it takes for a single packet to reach

all other nodes under the single packet flooding scheme.
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The analysis of the single packet flooding scheme relies on the following observation: if h

nodes have the packet at a given time slot then the number of nodes that will receive the packet

in the next slot, N(h), is a binomial random variable Bin(N − h, 1− (1− aN)h).

To see this, let H = {1, 2, . . . h} and H = {h+ 1, h+ 2, . . . N} denote the set of nodes that

have and do not have the packet at a given time slot, respectively. For the node i that has not

received the packet, i.e. i ∈ H , let Xi be a binary valued random variable that is 1 if node i

receives the packet in the next slot and 0 otherwise. The probability that the node i does not

receive the packet in the next slot is the probability that no node of H lies in the same cell

as node i. This happens with probability (1− aN)h as locations of node’s are independent and

identically distributed (i.i.d.). Hence, P [Xi = 0] = (1− aN)h. Also, the Xis are independent

across i ∈ H as, again, the node locations are i.i.d. and uniform. Since N(h) =
∑

i∈H Xi the

result follows. We use this to obtain a lower-bound on delay.

Theorem 2: Any achievable average delay D is lower-bounded by

D ≥

 Θ (Nα−1 logN) if α ≥ 1 (sparse)

Θ (1) if 0 < α < 1 (dense)
. (7)

Proof: As a lower-bound we compute the time it takes for the single packet flooding scheme

to terminate. Let Kt denote the number of nodes that have the packet after t slots; where K1 = 1.

Let TN be the flooding time, i.e., the first time when Kt = N . Let Ai, for 1 ≤ i ≤ Kt, be the

number of new nodes to which node i transmits the packet in slot t+ 1. We then have

Kt+1 = Kt +
Kt∑
i=1

Ai. (8)

Since E [Ai|Kt] ≤ (N − 1)aN , we have

E [Kt+1|Kt] = E

[
Kt +

Kt∑
i=1

Ai|Kt

]
, (9)

≤ Kt (1 + (N − 1)aN) , (10)

for all t ≥ 1. Applying this recursively, we obtain

E [Kt] ≤ (1 + (N − 1)aN)t . (11)

Now, using Markov inequality we have

E [TN ] ≥ tP [TN > t] . (12)
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Fig. 2. Lower bound on achievable average delay D as a function of α.

The event {TN > t} is same as {Kt < N}. Hence, we have

E [TN ] ≥ tP [Kt < N ] , (13)

= t (1− P [Kt ≥ N ]) , (14)

≥ t

(
1− E [Kt]

N

)
, (15)

where the last inequality follows from Markov inequality. Using (11), we obtain

E [TN ] ≥ t

(
1− 1

N
(1 + (N − 1)aN)t

)
, (16)

for all t ≥ 1. Since (16) is a valid lower-bound for all values of t ≥ 1, setting t = 1/2 logN
log(1+(N−1)aN )

for α ≥ 1 and t = 1/2 logNα

log(1+(N−1)aN )
for 0 < α < 1 yields the result.

In Figure 2, we plot the lower-bound on average delay D as a function of α. We observe that

as the network gets sparser the number of nodes receiving the flooded packet per cell decreases,

thereby, increasing the broadcast delay. Thus, the lower-bound is a non-decreasing function of

α. However, for 0 < α < 1 the delay bound is a constant O(1), and remains unchanged. Clearly,

if C = 1, i.e. if the entire network is a single cell, then the broadcast delay will be 1 as the

packet can reach all other nodes in a single transmission. In the next two sections we show that

this lower-bound on average delay is in fact achievable, up to log logN factor.
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III. FLOODING TIME IN MARKOV EVOLVING GRAPHS

In order to gains further insights into the flooding time of the packet flooding scheme we use

the theory of Markov evolving graphs (MEG), to help us derive the necessary upper bound on

the flooding time. We start with a brief introduction to MEG and a review of pertinent results.

Let G be a family of graphs with node set [N ] = {1, 2, . . . N}. The Markov chain M =

(Gt)t∈N, where Gt ∈ G, with state space G is called a MEG. Note that G is a finite set. For

our network model of Figure 1, if we draw edge between i and j whenever both nodes i and

j lie in the same cell, the resulting time evolving graph is an MEG. When the MEG has a

unique stationary distribution we call it a stationary MEG.2 In this work, we assume that a

stationary MEG starts from it’s stationary distribution. The IID mobility model results in one

such stationary MEG, as every graph formation can follow any other in G. We now describe the

single packet flooding scheme in MEG.

Single packet flooding for a MEG: In the first slot only a single node s has the packet, i.e.

I1 = {s}. Here, It ⊂ [N ] denotes the set of nodes that have the packet at time t. In every slot

t ≥ 1:

1) Identify the neighbors of It that are not in It:

N(It) = {neighbours of It in Gt\It} . (17)

2) Transmit the packet to each node in N(It). We, thus, have

It+1 = It
⋃

N(It). (18)

3) If It = [N ] then stop, else start again from Step 1.

Let TN be the flooding time, i.e., the time it takes for this process to terminate. Note that, this

scheme reduces to the single packet flooding scheme of Section II for our network model. An

upper bound on flooding time was derived in [13]. This bound depended on the MEG satisfying

certain expander properties. We summarize this result in Theorem 3, and provide two new bounds

on flooding time in Theorem 4 and Theorem 5.

The expander property of MEG is defined in terms of the expander property of a static

graph [13].

2Since the state space G is finite, it always has at least one stationary distribution.
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Definition 1: A graph G = ([N ], E) is said to be ([h0, h1], k)-expander if for every I ⊂ [N ]

such that h0 < |I| ≤ h1 we have

|N(I)| ≥ k|I|, (19)

where N(I) is the set of all neighbours of nodes in I that are not already in I .

We now use this to define the expander property of MEG.

Definition 2: Stationary MEG M = (Gt)t∈N is ([h0, h1], k)-expander with probability p if

P [G0 is ([h0, h1], k) -expander] ≥ p. (20)

If the graph is ([h − 1, h], k)-expander then for notational simplicity we say that it is (h, k)-

expander. To show that a stationary MEG is (h, k)-expander we have to evaluate the probability

P

 ⋂
|I|=h

{|N(I)| ≥ k|I|}

 . (21)

The following upper bound on flooding time was derived in [13].

Theorem 3: [13] For a stationary MEG, if

P

[
s⋂
i=1

{G0 is an ([hi−1, hi], ki) -expander}

]
≥N 1− c1

N2
(22)

for some c1 > 0, 1 = h0 ≤ h1 < h2 < · · · < hs = N
2

, a non-increasing sequence k1 ≥ k2 ≥

· · · ≥ ks > 0, and s ∈ {2, 3, . . . N
2
} then the flooding time

TN = O

(
s∑
i=1

log (hi/hi−1)

log(1 + ki)

)
, (23)

with probability at least 1− c2
N

for some c2 > 0.

A stationary MEG may not always satisfy the expander property required by (22). In such a

case, we provide the following two bounds for flooding time for a stationary MEG

Theorem 4: If for every h ∈ 1, 2, . . . N − 1 and for all I ⊂ [N ] with |I| = h, there exists a

function p(h) such that P [N(I) = 1] ≥N p(h) > 0 then the flooding time

TN = O

(
N−1∑
h=1

1

p(h)

)
, (24)

with probability at least 1− e−c1N for some c1 > 0.

Proof: We denote X ∼ Geo(p) when X is a geometrically distributed random variable

with parameter p, that is, P [X = k] = p (1− p)k−1 for all k ≥ 1. Let Xh ∼ Geo (P [N(h) = 1])
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and Zh ∼ Geo (p(h)) for all h ∈ {1, 2, . . . N − 1}. It is clear that Xh ≤N Zh a.s. for all

1 ≤ h ≤ N − 1. If the packet transmissions were to take place only at the occurrences of the

events {N(h) = 1}, the flooding time would be much larger, and would equal
∑N−1

h=1 Xh. This

implies

TN ≤
N−1∑
h=1

Xh (25)

Further, since P [N(h) = 1] ≥N p(h) we have Xh ≤N Zh a.s. for all h. This implies

TN ≤
N−1∑
h=1

Xh ≤N
N−1∑
h=1

Zh. (26)

Now, using the concentration bound given in Lemma 6 of Appendix E on {Z1, . . . ZN−1} and

substituting t = µ =
∑N−1

h=1
1

p(h)
we obtain

P

[
N−1∑
h=1

Zh > 2c1µ

]
≤ (1− p∗)µ exp

{
−2c1 − 3

4
(N − 1)

}
, (27)

for some c1 ≥ 2, where p∗ = minh∈{1,2,...N−1} p(h). Note that (1− p∗)µ ≤ 1. We, thus, have

P

[
N−1∑
h=1

Zh > 2c1µ

]
≤ exp

{
−2c1 − 3

4
(N − 1)

}
(28)

= Θ (exp{−c2N}) , (29)

for some positive constant c2. From (26) and (29) we have

P

[
TN ≤ 2c1

N−1∑
h=1

1

p(h)

]
≥N 1− exp{−c2N}. (30)

Notice that instead of P [N(I) = 1] ≥N p(h) > 0 if we have the condition P [N(I) ≥ 1] ≥N
p(h) > 0 the same result holds, using an identical proof.

Theorem 4, does not use any expander properties of the MEG. It can happen that a stationary

MEG satisfies the expander property for some subsets I ⊂ [N ] but not all. In this case Theorem 4

may not give a very tight bound. We can combine the ideas of Theorem 3 and 4 to establish

the following result.

Theorem 5: For a stationary MEG if
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1) there exists a s ∈ {2, 3, . . . N
2
}, strictly increasing sequence 1 < h1 < h2 < · · · < hs = N

2
,

and a non-increasing sequence k2 ≥ k3 ≥ · · · ≥ ks > 0 such that

P

[
s⋂
i=2

{G0 is ([hi−1, hi], ki) -expander}

]
≥N 1− c1

N2
, (31)

for some c1 > 0,

2) for 1 ≤ h ≤ h1, for all I ⊂ [N ] such that |I| = h we have

P [N(I) = 1] ≥N p(h) > 0, (32)

and

3) h1 ≥ c2 logN is such that

lim
N→∞

h1
logN

=∞, (33)

then

TN = O

(
h1∑
h=1

1

p(h)
+

s∑
i=2

log (hi/hi−1)

log (1 + ki)

)
, (34)

with probability at least 1− c2/N for some c2 > 0.

Proof: It ⊂ [N ] denotes the number of nodes that have the packet at time t ≥ 1. Let T1 be

the first time at which at least h1 nodes get the packet, i.e.,

T1 = min {t ≥ 1||It| ≥ h1 and |I1| = 1} , (35)

and T2:N = TN − T1. Clearly, T2:N will be less than the time it takes for the packet to reach all

nodes if the system were to start with exactly h1 nodes carrying the packet, i.e.,

T2:N ≤ T
′

2:N = min {t ≥ 1||It| = N and |I1| = h1} . (36)

Following the same arguments listed in [13] for the proof of Theorem 3, while using the expander

property (31), we have

T
′

2:N = O

(
s∑
i=2

log (hi/hi−1)

log (1 + ki)

)
, (37)

with probability at least 1− c1/N for some c1 > 0.

Following the same arguments in the proof of Theorem 4, while using (32), yields

T1 = O

(
h1∑
h=1

1

p(h)

)
, (38)
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with probability at least 1−exp {−c2h1} for some c2 > 0. From (33), it is clear that h1 > γ logN

for any γ > 0. This implies

1− exp {−c2h1} ≥ 1− exp {−c2γ logN} , (39)

≥ 1− 1

N c2γ
, (40)

for any γ > 0. Choosing any γ ≥ 1/c2 yields

T1 = O

(
h1∑
h=1

1

p(h)

)
, (41)

with probability at least 1− c3/N for some c3 > 0. We know that TN ≤ T1 + T
′
2:N . Using (37)

and (41) we obtain the desired result.

The results also hold if we replace the condition P [N(I) = 1] ≥N p(h) > 0 with

P [N(I) ≥ 1] ≥N p(h) > 0. (42)

Theorems 3, 4, and 5 give a high probability upper bound on flooding time, and not an upper

bound on average flooding time. In the next section we apply these results to obtain a high

probability upper bound on flooding time for our network model, and show that it nearly scales

as the lower bound on average flooding time obtained in Theorem 2 of Section II. In Section V,

we use this fact to propose a FCFS flooding scheme that achieves the high probability upper

bound as its average delay.

IV. FLOODING TIME FOR THE IID MOBILITY MODEL

We now apply the high probability upper bounds on flooding time from Theorems 3, 4, and 5

of Section III to our network model. As to which of the three results we use depends on whether

the network is sparse or dense. Let M denote the stationary MEG for our network model of

Figure 1, and let G0 be it’s stationary distribution.

Theorem 6: The flooding time is

TN =

 O (Nα−1 logN) if α ≥ 1 (sparse)

O (log logN) if 0 < α < 1 (dense)
, (43)

with probability at least 1− c1
N

for some c1 > 0.

Proof: We derive this by showing the expander properties of the network M. We split the

proof into three cases: 0 < α < 1, 1 ≤ α < 2, and α ≥ 2.
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1) 0 < α < 1: In this case, the expander properties of Theorem 3 hold. Note that

E [N(h)] = (N − h)
[
1− (1− c/Nα)h

]
. (44)

It is also easy to see that 1−(1− c/Nα)h = Θ (h/Nα) if h/Nα → 0, and 1−(1− c/Nα)h =

Θ(1) if h/Nα →∞. When h/Nα = Θ(1), both are true. We, therefore, have

E [N(h)] =

 Θ (Nh/Nα) for 1 ≤ h ≤ Nα

Θ(N) for Nα + 1 ≤ h ≤ N/2
. (45)

Since, in both cases we have E [N(h)] → ∞, we can use Lemma 5, the concentration

bound on the binomial distribution, to show that the event {N(h) ≥ c1E [N(h)]} occurs

with high probability for some 0 < c1 < 1. This proves that the graph is (h, k(h))-expander

where k(h) = c1
E[N(h)]

h
, i.e.,

P

N/2⋂
h=2

{G0 is (h, k(h))-expander}

 ≥N 1− c2
N2

, (46)

for some c2 > 0 where

k(h) =

 c3N
1−α for 1 ≤ h ≤ Nα

c4
N
h

for Nα + 1 ≤ h ≤ N/2
, (47)

for some c3, c4 > 0. See Appendix B for a detailed proof. This satisfies the expander

property requirements of Theorem 3. Applying Theorem 3, we obtain

TN = O (log logN) , (48)

with probability at least 1− c5
N

for some c5 > 0. We prove this in Appendix B.

2) 1 ≤ α < 2: In this case, the expander properties of Theorem 5 hold. Note that h
Nα → 0 for

all 1 ≤ h ≤ N/2. We, thus, have
(

1− (1− c/Nα)h
)

= Θ (h/Nα). Using the expression

for E [N(h)] in (44) we have N(h) = Θ (Nh/Nα) = Θ (h/Nα−1).

Here, E [N(h)] does not always go infinity in N . However, we observe that, for all

βNα−1 logN + 1 ≤ h ≤ N/2 and for any β > 0, E [N(h)] → ∞ as N → ∞. We

can then use Lemma 5, the concentration bounds for binomial distribution, to derive the

following expander property for βNα−1 logN + 1 ≤ h ≤ N/2:

P

 N/2⋂
h>βNα−1logN

{
G0 is

(
h,

c1
Nα−1

)
-expander

}
≥N 1− c2

N2
, (49)
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for some c1, c2 > 0 and provided β > c3 for some c3 > 0.

For 1 ≤ h ≤ βNα−1 logN , E [N(h)] need not always go to infinity, and can in fact go

to zero. Due to this, the network M does not satisfy any expander property for all 1 ≤

h ≤ βNα−1 logN . Therefore, we derive a lower-bound on the probability P [N(h) ≥ 1].

In particular, there exists c3 > 0 such that

P [N(h) ≥ 1] ≥N c3
(
1− exp

{
−h/Nα−1}) , (50)

for all h ∈ {1, 2, . . . βNα−1 logN}. See Appendix C for a detailed proof. This satisfies

the conditions of Theorem 5. From this, one can obtain

TN = O
(
Nα−1 logN

)
,

with probability at least 1− c4
N

for some c4 > 0. We prove this in Appendix C.

3) α ≥ 2: In this case, the conditions of Theorem 4 hold. Since α ≥ 2, we have h/Nα → 0 for

all 1 ≤ h ≤ N/2. This implies 1− (1− c/Nα)h = Θ (h/Nα). Thus, using (44), we have

E [N(h)] = Θ (Nh/Nα)→ 0 for all 1 ≤ h ≤ N/2. This shows that the network M does

not satisfy any expander property. We, therefore, derive a lower-bound on P [N(h) = 1].

There exists a c1 > 0 such that

P [N(h) = 1] ≥N c1
(N − h)h

Nα
, (51)

for all 1 ≤ h ≤ N − 1. See Appendix D for a detailed proof. This satisfies the condition

of Theorem 4, using which one can obtain

TN = O
(
Nα−1 logN

)
,

with probability at least 1− c2
N

for some c2 > 0. We prove this in Appendix D.

Figure 3 compares the high probability upper bound with the average lower-bound on flooding

time TN from Theorem 2. We observe a gap of at most O (log logN) when 0 < α < 1. For

all other values of α the upper and lower-bounds are of the same order. The lower-bound on

flooding time was derived in Theorem 2, which was also the lower-bound on the achievable

average delay. In the next section, we show that a simple FCFS flooding scheme achieves the

high probability upper bound on flooding time as its achievable average delay.
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Fig. 3. High probability upper bound and the average lower-bound on flooding time TN as a function of α.

V. FCFS FLOODING SCHEME

We propose a scheme that is based on the idea of single packet flooding described in Section II.

In this scheme, only a single packet is transmitted over the entire network at any given time.

Packets are served sequentially by the network on a FCFS basis. Each packet gets served for a

fixed duration of UN . The packet is dropped if within this duration it is not received by all the

other (N − 1) nodes. We call this the FCFS packet flooding scheme.

FCFS Packet Flooding: Packets arrive at each of the N nodes at rate λ.

1) Among all the packets that have arrived, select the one that had arrived the earliest. At

this time only one node, i.e. the source node, has this packet.

2) In every cell, randomly select one packet carrying node (if it exists) as a transmitter.

3) Selected nodes transmit in each cell during the slot while all other nodes in the corre-

sponding cells receive the packet.

4) Repeat Steps 2 and 3 for UN time slots.

5) After UN slots, remove the current packet from the transmission queue and go to Step 1.

Since we abruptly terminate the process in Step 5 after UN slots, it can happen that the packet

has not reached all the (N − 1) destination nodes. To ensure that this happens rarely let

UN =

 c1N
α−1 logN if α ≥ 1 (sparse)

c2 log logN if 0 < α < 1 (dense)
, (52)

for some positive constants c1 and c2 such that TN < UN with probability 1− 1
N

. Such constants

exists by Theorem 6. This leads to a vanishingly small packet drop rates.
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The network under the FCFS packet flooding scheme can be thought of as a M/D/1 queue

with an arrival rate of Nλ and service time of UN . The waiting time for such a system is given

by [25] as

W̃ = UN + UN
ρ

2(1− ρ)
, (53)

for any arrival rate Nλ < 1
UN

, where ρ = NUNλ < 1 is the queue utilization. Selecting any

ρ < 1, we obtain W̃ = Θ(UN) and λ = Θ
(

1
NUN

)
. This implies that the delay lower-bound of

Theorem 2 is achieved, up to a gap of O (log logN), when the network is dense, i.e. 0 < α < 1.

Also, substituting (52), the rate λ is

λ =

 Θ
(

1
Nα logN

)
if α ≥ 1 (sparse)

Θ
(

1
N log logN

)
if 0 < α < 1 (dense)

. (54)

This shows that λ is less than the capacity upper bound of Theorem 1 by a factor of log logN

when 0 < α < 1 and by a factor of logN when α ≥ 1. The log logN gap appears due to

the exact same gap between the flooding time upper and lower bounds when 0 < α < 1. The

logN factor gap for α ≥ 1 occurs even though the flooding time upper and lower bounds

are asymptotically tight. This, we conjuncture, is because the FCFS flooding scheme does not

allow simultaneous transmissions of different packets, which leads to inefficient utilization of

available transmission opportunities. We summarize these results in Table I. Unlike the unicast

case, where a capacity-delay tradeoff has been observed [8], [9], [20], nearly no such tradeoff

exists for the broadcast problem, and both capacity and minimum delay can be nearly achieved

simultaneously.

VI. SINGLE HOP SCHEME

We now propose a single-hop scheme that achieves the capacity upper-bound of Theorem 1

when the network is sparse, i.e. α ≥ 1. In this scheme, a packet reaches it’s destination from a

source in a single hop, i.e. by direct source to destination transmission. This scheme only allows

for a single receiver in each cell, thus, ignores the broadcast nature of the wireless medium. The

scheme still achieves the upper-bound capacity as the number of nodes in a cell tends to be very

small in the sparse case.

Single-Hop Scheme: Each node makes (N − 1) copies of an arrival packet, one for each

receiving node. Figure 4 illustrates this for node 1, where a copy of an arriving packet at node

1 is transferred to each of the queues Q1,j for all 2 ≤ j ≤ N .
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1) In each cell, select a pair of nodes at random. If a cell contains fewer than 2 nodes no

transmissions occur in that cell.

2) For the selected pair in every cell, assign, uniformly and randomly, one node as a transmitter

and the other as receiver.

3) For each transmitter-receiver pair, if the transmitter node has a packet for the receiver

node, transmit it, else remain idle.

4) Wait for the next slot to begin, and restart the process from Step 1.

The scheme is opaque to which node pairs are chosen as the source-destination pairs. Thus,

every queue Qi,j is activated at the same rate. This implies that all the queues Qi,j have identical

service rates. Hence, ∑
i 6=j

ri,j = N(N − 1)r1,2. (55)

The left hand side of (55) corresponds to the total tate of service opportunities across the

network, which is given by Cp, where p is the probability that there are at least two nodes in a

cell: p = 1− (1− aN)N −NaN (1− aN)N−1. Thus, N(N − 1)r1,2 = Cp, which gives,

r1,2 =
Cp

N(N − 1)
. (56)

Hence, any arrival rate λ < r1,2 will yield a stable network under the single-hop scheme. The

delay achieved by this scheme is lower-bounded by the delay in the single queue. Since each

queue is Bernoulli arrival and Bernoulli service, the waiting time in each queue is given by

W̄ = 1−λ
r1,2−λ . Setting λ = 1

2
r1,2 we obtain W̄ = Θ (1/r1,2). We summarize this in the following

result.

Theorem 7: The single hop scheme achieves a capacity of

λSH =

 Θ
(

1
Nα

)
if α ≥ 1 (sparse)

Θ
(

1
N2−α

)
if 0 < α < 1 (dense)

, (57)

Furthermore, the delay achieved at this rate is

DSH ≥

 Θ (Nα) if α ≥ 1 (sparse)

Θ (N2−α) if 0 < α < 1 (dense)
. (58)

Hence, the single hop scheme achieves the capacity upper-bound for α ≥ 1. Thus, the capacity

upper bound in Theorem 1 is indeed achievable.
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Fig. 4. Node 1 makes (N − 1) copies of every arriving packet, one for each queue Q1,j for 2 ≤ j ≤ N . Service rate of Q1,j

is denoted by r1,j .

VII. CONCLUSION

We derived the broadcast capacity and minimum delay scaling in number of vehicles N for

highly mobile networks. We observed that the capacity and minimum delay scalings can be nearly

achieved simultaneously. We showed that the capacity cannot scale better than 1/N . This, in

conjunction with earlier known results for static network [15], proves that the broadcast capacity

does not improve with high mobility. This is in contrast with the unicast case for which mobility

improves network capacity [12].

We show that a simple FCFS flooding scheme (nearly) achieves both capacity and minimum

delay scalings. The flooding time bound for Markov evolving graphs (MEG), proposed in [13],

was used to analyze the FCFS flooding scheme. Moreover, we derive two new bounds on flooding

time for MEG that don’t satisfy the expander property. These new bounds allows us to analyze

FCFS flooding scheme when the network is sparse, and are of independent theoretical interest.
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APPENDIX

A. Proof of Theorem 1

Let λ be the rate achieved by a scheme. If Xh(T ) is the number of packets delivered to the

destination in exactly h hops by time T then for an ε > 0 we have

1

T

∑
h≥1

Xh(T ) > N(N − 1)λ− ε (59)

for all T > Tε, for some Tε > 0.

If Zk
i (t) is a binary random variable which equals 1 if there are k nodes in cell i in slot t

then the total number of packet receptions by time T is at most
∑C

i=1

∑N
k=2

∑T
t=1(k− 1)Zk

i (t).

Hence, ∑
h≥1

hXh(T ) ≤
C∑
i=1

N∑
k=2

T∑
t=1

(k − 1)Zk
i (t). (60)

Combining (59) and (60) we obtain
C∑
i=1

N∑
k=2

1

T

T∑
t=1

(k − 1)Zk
i (t) ≥ 1

T

∑
h≥1

hXh(T ), (61)

=
1

T
X1(T ) +

1

T

∑
h≥2

hXh(T ), (62)

≥ 1

T
X1(T ) +

2

T

∑
h≥2

Xh(T ). (63)

Using (59) we obtain
C∑
i=1

N∑
k=2

1

T

T∑
t=1

(k − 1)Zk
i (t) ≥ 1

T
X1(T ) + 2

(
N(N − 1)λ− ε− 1

T
X1(T )

)
. (64)

Taking T → +∞ we have
C∑
i=1

N∑
k=2

(k − 1)p(k) ≥ Cp+ 2 (N(N − 1)λ− ε− Cp) , (65)

= 2N(N − 1)− 2ε− Cp, (66)
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where p(k) is the probability that there are k nodes in a cell and p is the probability that there

are at least two nodes in a cell; we use the fact that lim supT→+∞
X1(T )
T
≤ Cp. Taking ε → 0,

we obtain

2N(N − 1)λ ≤ Cp+ C

N∑
k=2

(k − 1)p(k). (67)

Substituting p(k) =
(
n
k

)
akN (1− aN)N−k and computing the binomial sum we obtain

2N(N − 1)λ = N
(

1− (1− aN)N−1
)
. (68)

Therefore,

(N − 1)λ ≤ 1

2

(
1− (1− aN)N−1

)
, (69)

=
1

2

(
1−

(
1− c

Nα

)N−1)
. (70)

When 0 < α < 1, N/Nα →∞. In which case we have

(N − 1)λ ≤ 1

2

(
1−

(
1− c

Nα

)N−1)
= Θ(1). (71)

Hence, λ = O (1/N). When α ≥ 1, either N/Nα → 0 or N/Nα → c1 for some c1 > 0. This

implies

(N − 1)λ ≤ 1

2

(
1−

(
1− c

Nα

)N−1)
= Θ (N/Nα) . (72)

Hence, λ = O (1/Nα).

B. Proof of Expander Property and Flooding Time when 0 < α < 1

Lemma 1: For 1 ≤ h ≤ Nα

E [N(h)] = Θ
(
hN1−α) , (73)

and for all Nα + 1 ≤ h ≤ N/2

E [N(h)] = Θ(N). (74)

Proof: We know that N(h) ∼ Bin
(
N − h, 1−

(
1− c

Nα

)h). Therefore,

E [N(h)] = (N − h)

[
1−

(
1− c

Nα

)h]
. (75)

If h/Nα → 0 then
1− (1− c/Nα)h

ch/Nα
→ 1, (76)
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and if h/Nα → c5, for some c5 > 0, then

1− (1− c/Nα)h

ch/Nα
→ 1− exp{−cc5}

cc5
. (77)

Since f(x) = 1−exp{−cx}
cx

is a decreasing function in x, from (76) and (77)

1− e−c

c
≤ lim

N→∞

1− (1− c/Nα)h

ch/Nα
≤ 1, (78)

for all 1 ≤ h ≤ Nα. This implies

1− e−c

c
≤ lim

N→∞

E [N(h)]

cNh/Nα
≤ 1, (79)

for all 1 ≤ h ≤ Nα. This proves (73).

If h/Nα →∞ then

lim
N→∞

1− (1− c/Nα)h = 1, (80)

and if h/Nα → c6, for some c6 > 0, then

lim
N→∞

1− (1− c/Nα)h = 1− e−cc6 . (81)

Since f(x) = 1− e−cx is an increasing function of x, from (80) and (81) we have

1− e−c ≤ lim
N→∞

1− (1− c/Nα)h ≤ 1, (82)

for all Nα+1 ≤ h ≤ N/2. This implies

1− e−c ≤ lim
N→∞

E [N(h)]

N
≤ 1, (83)

for all Nα+1 ≤ h ≤ N/2. This proves (74).

Lemma 1 implies that for all h, E [N(h)] → ∞ as N → ∞. Using Lemma 5 of Appendix E,

we have

P
[
N(h) < η1c1N

1−αh
]
≤N exp

{
−c5N1−αh

}
, (84)
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for some η1 ∈ (0, 1), c5 > 0, and for all 1 ≤ h ≤ Nα.3 Using this and union bound, we obtain

P

[
Nα⋃
h=1

{
N(h) < η1c1N

1−αh
}]
≤

Nα∑
h=1

P
[
N(h) < η1c1N

1−αh
]
, (85)

≤
Nα∑
h=1

exp
{
−c5N1−αh

}
, (86)

≤
Nα∑
h=1

exp
{
−c5N1−α} , (87)

= Nα exp
{
−c5N1−α} ≤N c6

N2
, (88)

for some c6 > 0. This implies

P

[
Nα⋂
h=1

{
N(h) ≥ η1c1N

1−αh
}]
≥N 1− c6

N2
. (89)

This proves the expander property for 1 ≤ h ≤ Nα. Similarly, we obtain

P

[
Nα⋂
h=1

{N(h) ≥ η2c3N}

]
≥N 1− c7

N2
, (90)

for some η2 ∈ (0, 1) and c7 > 0, which is the expander property for Nα + 1 ≤ h ≤ N/2. To

prove (46) we observe that if P [A] ≥N 1− c8/N2 and P [B] ≥N 1− c9/N2, for some positive

constants c8 and c9, we have P [A ∩B] ≥N 1− c10/N2 for some positive constant c10.

1) Computing Flooding Time: We now apply Theorem 3 to obtain an upper bound on flooding

time.
N/2−1∑
h=1

log
(
h+1
h

)
log (1 + k(h))

=
Nα−1∑
h=1

log
(
h+1
h

)
log (1 + c1N1−α)

+

N/2−1∑
h=Nα

log
(
h+1
h

)
log (1 + c2N/h)

, (91)

for some c1 > 0 and c2 > 0. The first term in the expression can be simplified as

Nα−1∑
h=1

log
(
h+1
h

)
log (1 + c1N1−α)

=
log
(∏Nα−1

h=1
h+1
h

)
log (1 + c1N1−α)

, (92)

=
logNα

log (1 + c1N1−α)
, (93)

= Θ

(
logNα

logN1−α

)
= Θ(1). (94)

3Note that the constant c5 > 0 does not depend on h; see Lemma 5 in Appendix E.
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The second term in (91) can be simplified as
N/2−1∑
h=Nα

log
(
h+1
h

)
log (1 + c2N/h)

≤
N/2−1∑
h=Nα

1

h log (1 + c2N/h)
, (95)

= Θ

(∫ N/2

Nα

dh

h log (1 + c2N/h)

)
, (96)

where the first inequality is because log
(
1 + 1

h

)
≤ 1

h
. To evaluate the integral, substitute y =

c2N/h to obtain∫ N/2

Nα

dh

h log (1 + c2N/h)
=

∫ c2N1−α

2c2

dy

y log(1 + y)
, (97)

=

∫ c2N1−α

2c2

1

(1 + y)

dy

log(1 + y)
+

∫ c2N1−α

2c2

1

y(1 + y)

dy

log(1 + y)
, (98)

≤
(

1 +
1

2c2

)∫ c2N1−α

2c2

1

(1 + y)

dy

log(1 + y)
, (99)

=

(
1 +

1

2c2

)[
log log

(
1 + c2N

1−α)− log log(2c2)
]
, (100)

= Θ (log logN) . (101)

This implies
N/2−1∑
h=Nα

log
(
h+1
h

)
log (1 + c2N/h)

= Θ (log logN) . (102)

Hence, from (91), (94), and (102), the flooding time is upper bounded by O(log logN).

C. Proof of Expander Property and Flooding Time when 1 ≤ α < 2

Let β > 0. We show that the network has expander property for βNα−1 logN +1 ≤ h ≤ N/2

for some β > 0, and prove a lower-bound on probability P [N(h) ≥ 1] for 1 ≤ h ≤ βNα−1 logN .

Lemma 2: For every ε > 0 we have

P [N(h) ≥ 1] ≥N 1− (1 + ε) exp
{
−h/Nα−1} , (103)

for all 1 ≤ h ≤ βNα−1 logN .

Proof: Since P [N(h) ≥ 1] = 1 − P [N(h) = 0], we evaluate P [N(h) = 0]. We know that

N(h) ∼ Bin
(
N − h, 1− (1− c/Nα)h

)
. We thus have

P [N(h) = 0] = (1− c/Nα)h(N−h) . (104)
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This implies

lim
N→∞

P [N(h) = 0]

exp
{
−ch(N−h)

Nα

} = 1. (105)

Note that h(N−h)
Nα = h

Nα−1 − h2

Nα , and the first term in the expression dominates the scaling with

N for 1 ≤ h ≤ βNα−1 logN . Hence,

lim
N→∞

P [N(h) = 0]

exp {−cNh/Nα}
= 1, (106)

for all 1 ≤ h ≤ βNα−1 logN . This implies that for every ε > 0

P [N(h) = 0] ≤N (1 + ε) exp
{
−ch/Nα−1} , (107)

all 1 ≤ h ≤ βNα−1 logN . This proves that for every ε > 0

P [N(h) ≥ 1] = 1− P [N(h) = 0] ≥N 1− (1 + ε) exp
{
−h/Nα−1} , (108)

all h ∈ {1, 2, . . . βNα−1 logN}.

Lemma 3: For every ε > 0 we have

(1− ε) h

Nα−1 ≤N E [N(h)] ≤N (1 + ε)
h

Nα−1 , (109)

for all βNα−1 logN + 1 ≤ h ≤ N/2.

Proof: We know that N(h) ∼ Bin
(
N − h, 1−

(
1− c

Nα

)h). Therefore,

E [N(h)] = (N − h)

[
1−

(
1− c

Nα

)h]
. (110)

Note that if h/Nα → 0 then
1− (1− c/Nα)h

ch/Nα
→ 1, (111)

and h/Nα → 0 for all βNα−1 logN + 1 ≤ h ≤ N/2. This implies

lim
N→∞

E [N(h)]

cNh/Nα
= 1, (112)

for all βNα−1 logN + 1 ≤ h ≤ N/2. This proves the result.

From Lemma 3, we note that E [N(h)] → ∞ as N → ∞ for all βNα−1 logN ≤ h ≤ N/2.

Using Lemma 5 of Appendix E, we obtain for a given ε > 0

P
[
N(h) < η(1− ε) ch

Nα−1

]
≤N exp

{
−c1

ch

Nα−1

}
, (113)
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for some η ∈ (0, 1), c1 > 0, and all h ∈ {βNα−1 logN + 1, . . . N
2
}.4 This, with union bound,

implies

P

 N/2⋃
h=βNα−1 logN+1

{
N(h) < η(1− ε) ch

Nα−1

} (114)

≤
N/2∑

h=βNα−1 logN+1

P
[
N(h) < η(1− ε) ch

Nα−1

]
, (115)

≤N
N/2∑

h=βNα−1 logN+1

exp

{
−c1

ch

Nα−1

}
, (116)

≤ N exp

{
−c1c

βNα−1 logN + 1

Nα−1

}
, (117)

= Θ (N exp {−c2β logN}) , (118)

= Θ

(
1

N c2β−1

)
, (119)

for some c2 > 0. Choosing β > 3/c2 we have

P

 N/2⋃
h=βNα−1 logN+1

{
N(h) < η(1− ε) ch

Nα−1

} ≤N c3
N2

, (120)

for some c3 > 0. This implies

P

 N/2⋂
h=βNα−1 logN+1

{
N(h) ≥ η(1− ε) ch

Nα−1

} ≥N 1− c3
N2

, (121)

which proves the expander properties of (49).

1) Computing the Flooding Time: Set

p(h) = 1− c4 exp
{
−ch/Nα−1} , (122)

for all h ∈ {1, 2, . . . βNα−1 logN} and some c4 > 0. We know from Theorem 5 that the flooding

time is upper bounded by

βNα−1 logN∑
h=1

1

p(h)
+

βNα−1 logN−1∑
h=1

log
(
h+1
h

)
log (1 + c5/Nα−1)

, (123)

4Note that c1 does not depend on h; see Lemma 5 in Appendix E.
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where c5 = η(1− ε)c. Computing the first term we get

βNα−1 logN∑
h=1

1

p(h)
=

βNα−1 logN∑
h=1

1

1− c4 exp {−ch/Nα−1}
, (124)

=

βNα−1 logN∑
h=1

exp {ch/Nα−1}
exp {ch/Nα−1} − c4

, (125)

= Θ

(∫ βNα−1 logN

1

exp {ch/Nα−1}
exp {ch/Nα−1} − c4

dh

)
. (126)

(127)

The integral equals∫
exp {ch/Nα−1}

exp {ch/Nα−1} − c4
dh =

1

c
Nα−1 log

(
exp

{
ch/Nα−1}− c4) . (128)

We, thus, have
βNα−1 logN∑

h=1

1

p(h)
= Θ

(
Nα−1 log (exp {β logN} − c4)

)
, (129)

= Θ
(
Nα−1 log

(
Nβ − c4

))
, (130)

= Θ
(
Nα−1 logN

)
. (131)

Computing the second term in the expression (123) we have

βNα−1 logN−1∑
h=1

log
(
h+1
h

)
log (1 + c5/Nα−1)

=
log
(∏βNα−1 logN−1

h=1
h+1
h

)
log (1 + c5/Nα−1)

, (132)

=
log (βNα−1 logN)

log (1 + c5/Nα−1)
, (133)

= Θ

(
logN

log (1 + c5/Nα−1)

)
, (134)

= Θ
(
Nα−1 logN

)
, (135)

where the last equality follows because log (1 + c5/N
α−1) = Θ (1/Nα−1). Therefore, from (131),

(135), and (123) the flooding time is TN = O (Nα−1 logN) with probability at least 1− c6/N2

for some c6 > 0.
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D. Proof of Expander Property and Flooding Time when α ≥ 2

In this case, distribution of N(h) is concentrated at N(h) = 0. We, therefore, seek a lower-

bound on P [N(h) = 1] in order to apply Theorem 4. Since N(h) ∼ Bin
(
N − h, 1− (1− c/Nα)h

)
,

we have

P [N(h) = 1] = (N − h)

[
1−

(
1− c

Nα

)h](
1− c

Nα

)h(N−h−1)
, . (136)

Note that h
Nα → 0 for all h ∈ {1, 2, . . . , N − 1} since α ≥ 2. This implies

lim
N→∞

1−
(
1− c

Nα

)h
ch/Nα

= 1, (137)

for all h ∈ {1, 2, . . . N/2}. Also, since

max
h∈{1,2,...N−1}

h(N − h− 1) ≤ N2

4
, (138)

and

min
h∈{1,2,...N−1}

h(N − h− 1) ≥ N

2
, (139)

we have

e−c/4 ≤ lim
N→∞

(
1− 1

Nα

)h(N−h−1)
≤ 1. (140)

Then, (136), (137), and (140) imply

e−c/4 ≤ lim
N→∞

P [N(h) = 1]

(N − h)h/Nα
≤ 1. (141)

for all 1 ≤ h ≤ N − 1. Thus, there exists a positive constant c1 such that

P [N(h) = 1] ≥N c1
(N − h)h

Nα
, (142)

for all 1 ≤ h ≤ N − 1. This proves the property of (51) for

p(h) = c1
(N − h)h

Nα
, (143)

for all 1 ≤ h ≤ N − 1.

1) Computing the Flooding Time: Then the upper bound on flooding time given in Theorem 4

equals
N−1∑
h=1

1

p(h)
=

N−1∑
h=1

Nα/c1
(N − h)h

, (144)

=
1

c1

Nα

N

N−1∑
h=1

[
1

h
+

1

N − h

]
, (145)

= Θ
(
Nα−1 logN

)
. (146)

January 17, 2017 DRAFT



31

E. Concentration Bounds

We list here some concentration bounds that we use in our proofs. The following Lemma is

from Chap. 1 in [26].

Lemma 4: If X ∼ Bin (n, p) for some p ∈ (0, 1) and µ = np then for all k ≥ µ

P [X ≥ k] ≤ exp

{
−µH

(
k

µ

)}
, (147)

and for all k ≤ µ

P [X ≤ k] ≤ exp

{
−µH

(
k

µ

)}
, (148)

where H(a) = 1− a+ a log a for all a > 0.

We now extend this result to the following

Lemma 5: If X1, X2, . . . Xg(n) are binomial random variables such that

c1f(n) ≤N E [Xh] ≤N c2f(n), (149)

for some positive constants c1 and c2, where g(n) and f(n) are increasing functions of n. Then

there exists an η ∈ (0, 1) and a positive constant c3 such that

P [Xh < ηc1f(n)] ≤N e−c3f(n), (150)

for all h ∈ {1, 2, . . . g(n)}.

Proof: For every h ∈ {1, 2, . . . g(n)}, Xh is a binomial random variable. Lemma 4 gives

P [Xh < ηc1f(n)] ≤ exp

{
−E [Xh]H

(
ηc1f(n)

E [Xh]

)}
. (151)

Evaluating the exponent of the right hand side, we get

E [Xh]H

(
ηc1f(n)

E [Xh]

)
(152)

= E [Xh]− ηc1f(n) + ηc1f(n) log

(
ηc1f(n)

E [Xh]

)
, (153)

≥N c1f(n)− ηc1f(n) + ηc1f(n) log (c1/c2) , (154)

=

[
1− η
η
− log (c2/c1)

]
ηc1f(n). (155)

where the second inequality follows from the fact that c1f(n) ≤n E [Xh] ≤n c2f(n). Now, since
1−η
η

can take any positive real values for η ∈ (0, 1), we have

E [Xh]H

(
ηc1f(n)

E [Xh]

)
≥ c3f(n), (156)
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for some η ∈ (0, 1) and c3 =
[
1−η
η
− log (c2/c1)

]
ηc1 > 0 for the corresponding η. Notice that

c3 does not depend on h, and hence, (156) holds for all h ∈ {1, 2, . . . g(n)}. Combining (151)

and (156) we obtain

P [Xh < ηc1f(n)] ≤n exp {−c3f(n)} , (157)

for all h ∈ {1, 2, . . . g(n)}.

Lemma 6: Let X1, X2, . . . Xn be independent geometrically distributed random variables with

parameters 0 < p1 ≤ p2 ≤ · · · ≤ pn, i.e., P [Xi = t] = pi(1 − pi)
t−1 for all t ≥ 1. Let

Sn =
∑n

i=1Xi and

µ = E [Sn] =
1

p1
+

1

p2
+ · · ·+ 1

pn
. (158)

Then, for some c ≥ 2,

P [Sn > c(µ+ t)] ≤ (1− p1)t exp {−(2c− 3)n/4} . (159)

Proof: The proof is given in [27].
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