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Abstract— Many robotic applications require repeated, on-
demand motion planning in mapped environments. In addition,
the presence of other dynamic agents, such as people, often
induces frequent, dynamic changes in the environment. Having
a potential function that encodes pairwise cost-to-go can be
useful for improving the computational speed of finding feasible
paths, and for guiding local searches around dynamic obstacles.
However, since storing pairwise potential can be impractical
given the O(|V |2) memory requirement, existing work often
needs to compute a potential function for each query to a new
goal, which would require a substantial online computation.
This work addresses the problem by using diffusion maps, a
machine learning algorithm, to learn the map’s geometry and
develop a memory-efficient parametrization (O(|V |)) of pair-
wise potentials. Specially, each state in the map is transformed
to a diffusion coordinate, in which pairwise Euclidean distance
is shown to be a meaningful similarity metric. We develop
diffusion-based motion planning algorithms and, through exten-
sive numerical evaluation, show that the proposed algorithms
find feasible paths of similar quality with orders of magnitude
improvement in computational speed compared with single-
query methods. The proposed algorithms are implemented on
hardware to enable real-time autonomous navigation in an
indoor environment with frequent interactions with pedestrians.

I. INTRODUCTION

Planning feasible, collision-free paths in a previously
mapped environment is fundamental to many robotic ap-
plications, such as indoor service robots [1], campus-wide
shuttle systems [2], and robotic manipulators [3]. Although a
map is often provided, there can be frequent changes in the
environment due to the presence of other mobile agents. For
example, in office buildings, furniture is often shifted due to
people’s daily activities. To navigate efficiently and safely in
such environments, a robot needs to leverage the knowledge
of the map to find good paths quickly, and to replan locally
when changes are detected.

A common strategy is to use single-query motion planning
algorithms for finding feasible paths (e.g. A*), and then
adapt to local changes in the dynamic environment (e.g.
D*) [2], [4]–[6]. However, planning from scratch for each new
query can be inefficient for applications that require repeated,
on-demand motion planning. Multi-query methods seek to
improve computational speed by doing pre-computation on
the map or learning from experience. For instance, sampling-
based roadmap methods [7], [8] pre-compute a topological
graph for a more concise representation of the map. In
addition, using previously planned paths, experience-based
methods can pre-compute a better heuristic [9], [10] or
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Fig. 1: A robotic vehicle navigates autonomously in a dynamic
indoor environment. The vehicle uses a SICK Lidar for localization,
and a Velodyne for obstacle detection.

construct a path library [3] to solve for new queries more
efficiently. However, these methods tend to bias toward
previously sampled points or explored paths, and do not
explicitly consider uncertainties in the environment.

An alternative to experience-based methods is to learn from
the map a potential function that estimates pairwise cost-to-
go. A good cost-to-go estimate can serve as a heuristic for
speeding up single-query search algorithms. While efficient
to query, classical potential field methods can suffer from
having many local minima [7], thus limiting their usefulness
for motion planing in complex environments. Researchers
have proposed potential functions that do not have local
minima [11], such as by solving a steady-state heat equation
on the map [12]. However, these potential functions need
to be solved individually for each query to a different goal.
Computing a potential function is often much more expensive
than finding a feasible path, because the former solves
for every state with respect to a goal. Yet, a good cost-
to-go function can be valuable for purposes beyond just
finding a feasible path. For instance, a cost-to-go function
can help guide a safe local exploration strategy [13] in an
unknown environment. More generally, motion planning in
the vicinity (i.e. perception range) of a robot often requires
more sophisticated models, such as accounting for interaction
with pedestrians [14] and modulating the robot’s speed [2],
[15]. Having a potential function could be useful for guiding
such local search methods.

This work seeks to pre-compute and store a potential
function by learning the map’s geometry. A naive approach
would be to solve the all-pairs-shortest-path problem (e.g.
with the Floyd-Warshall algorithm [16]). However, doing so
would require O(|V |2) storage, which could be formidable
for complex environments. For instance, a map with a million



states would require more than 1TB of storage space. This
work finds a novel application of diffusion maps [17] to
address the issue. Rather than directly encoding pairwise
potentials, the diffusion map method transforms each state
into a new coordinate, and retrieves a meaningful pairwise
similarity measure by calculating the Euclidean distances in
the new coordinate space. Furthermore, a diffusion map can
be pre-computed in a reasonable amount of time, and stored
efficiently in memory (on the same order of magnitude as
the map).

The main contributions of this work are 1) development
of an efficient motion planning algorithm based on a novel
application of diffusion maps, 2) integration of the diffusion
potential with a local planner to handle dynamic changes in
the environment, 3) empirical results that show significant
improvement in computational speed for finding good-quality
feasible paths, and 4) hardware demonstrations of a robot
navigating autonomously in a dynamic environment.

II. PRELIMINARIES

This section reviews the construction of diffusion maps
and summarizes key properties of the mapping in relation
to motion planning. A diffusion map is a graph-based
nonlinear dimensionality reduction technique [18] that has
many applications in data processing, such as clustering [17]
and image inpainting [19]. For a high dimensional dataset,
a diffusion map seeks to find a lower dimensional manifold
that captures major structures in the dataset. For instance,
in [18], the diffusion map approach finds a two dimensional
parametrization that captures rotational motion on a high
dimensional (in pixel count) image dataset.

For clarity, the following notations are used in the exposi-
tion below. For a given graph G, each node ni is associated
with a coordinate xi in the original space X . Diffusion map
finds an alternative parametrization xi 7→ yi in a diffusion
space Y . Let dX , dY , dG denote Euclidean distance in the
original space, Euclidean distance in the diffusion space, and
geodesic distance on the graph, respectively.

The key idea of diffusion maps is that local distances (dX )
captured by edge weights in the graph are reliable, but large
distances in the original coordinates (dX ) can be misleading
as a similarity metric. For instance, little can be inferred about
the relationship between two images – either the same object
viewed at different angles or two distinct objects – if every
pair of pixels differs substantially. This work is motivated by
the insight that, for motion planning, local distances (e.g. dX
between adjacent nodes) are reliable and easy to compute, but
large distances (dX ) between non-neighboring nodes are often
uninformative. For example, a pair of non-neighboring nodes
with a small dX could be separated by a wall, thus having
a large geodesic distance dG . The diffusion map algorithm
addresses this problem by solving for a diffusion process
to learn the geometry of the graph in the original space
X [20]. In particular, the following exposition will show
that diffusion distance dY is a meaningful similarity metric
relating to geodesic distance dG .

Algorithm 1: Diffusion maps

1 Input: distance matrix W, time step t, truncation k
2 Output: diffusion matrix Y
3 similarity matrix A ← ker(W)
4 diagonal degree matrix D ← rowSum(A)
5 A1 ← 1

2A + 1
2D // lazy Markov chain

6 A2 ← D−1A1D
−1 // anisotropic scaling

7 D2 ← rowSum(A2), M2 ← D−12 A2

8 (V,Λ) ← eigs(D−
1
2

2 A2D
− 1

2
2 , k + 1)

9 Φ ← D
− 1

2
2 V

10 Y ← [λt2φ2, λ
t
3φ3, . . . , λ

t
k+1φk+1]

11 return Y

The construction of a diffusion map for motion planning
is outlined in Algorithm 1. Given the map of an environment
represented as a graph G, the first step is to construct a sparse
distance matrix W (line 1), where Wij is the Euclidean
distance between node i and j if they are adjacent, and
infinity otherwise. Then, a similarity matrix A is computed
by applying a kernel (line 3) that maps each entry in the
distance matrix to a similarity score. This work uses the
Gaussian kernel g(x) = exp(− x2

2w ), where w is a length
scale parameter 1. The similarity matrix can be interpreted as
the transition probabilities of a Markov chain. In particular,
Aij/Dii is the transition probability from node i to j, where
Dii =

∑
j Aij is the degree of node i (line 4). To avoid

potential issues with aperiodicity, the Markov chain is made
lazy in line 5. The transition probabilities are scaled using the
degree, Dii, of each node for reasons to be explained later
this section. The last step computes a transition matrix M2

(line 7), its k + 1 largest eigenvalues {λ1, . . . , λk+1}, and
the associated right eigenvectors {φ1, . . . , φk+1}, in lines 8-9.
Diffusion map associates the i-th node in the original graph
with the i-th entry of each eigenvector; more precisely, it
defines the following mapping (line 10) 2

xi 7→ yi = [λt2φ2(i), λ
t
3φ3(i), . . . , λ

t
k+1φk+1(i)]. (1)

The new space Y is called the k-truncated diffusion space,
and the distance ||yi − yj ||2 is known as the k-truncated
diffusion distance [17]. The choice of parameter t in (1) will
be explored in greater details in Section III-A.

We make a few remarks regarding the process of computing
this mapping. First, coordinate xi in the original space is
not needed in computing the diffusion map. The procedure
finds structures (e.g. eigenvectors) in the graph only using
the distance matrix W, which captures local distances
and connectivities. Second, for motion planning problems,
W is typically sparse since each node in the graph has
only a few neighbors. The sparse structure is maintained
throughout Algorithm 1, thus making it memory efficient.

1For example, if the graph is constructed from a discretized gridmap, w
can be set to the width of a grid.

2φ1 is a constant vector, so it cannot differentiate between different
nodes [17].



Third, if W ∈ Rn×n is symmetric, the full set of eigenvectors
{vi} (line 8 Algorithm 1) would form an orthonormal basis
of Rn [17], and the eigenvalues λi’s are shown to be in [0, 1].
Fourth, a graph with r components would have precisely r
eigenvalues equal to one, and the corresponding eigenvectors
would reveal the r connected components. For simplicity, the
graph is assumed to be connected.

The following facts illustrate that diffusion distance is a
meaningful similarity metric.
Fact 1 [17]: Consider a random walk on a graph G with
n nodes. Let st ∈ {1, . . . , n} denote the state of the walk
after t iterations, and deg(h) denote the degree of node h in
G. When keeping the full set of eigenvectors (k = n− 1 in
Algorithm 1), the diffusion distance is equal to a weighted
distance between two probability clouds after t steps. More
precisely, let P t

hi
denote P(st = h|s0 = i), it is shown

||yi − yj ||22 =
∑
h

1

deg(h)

[
P t
hi
− P t

hj

]2
. (2)

Fact 2 [17]: The k-truncated diffusion map is the best k-
dimensional approximation of the full diffusion map, in
the sense of the average approximation error of diffusion
distance (2).

Intuitively, nodes with smaller geodesic distance on the
graph are expected to have more overlap in densities after a
t-step diffusion process. Facts 1 and 2 indicate that diffusion
distance is an appropriate measure of the similarity between
the probability densities.

In light of the algebraic form of λti in (1) and the fact that
λi ∈ [0, 1], the diffusion distance (2) can be approximated by
keeping the first k eigenvectors, where k � n. Further, there
often exists a spectral gap for real world problems [21], so
a small value of k is typically sufficient to achieve a good
approximation of (2). It is found empirically that k ≈ 10
is sufficient for the complex planning domains considered
in Section IV. An interesting perspective is that finding the
full diffusion coordinate (i.e. k = n− 1) is as expensive as
solving the all-pairs-shortest-path problem, because finding
all n eigenvectors requires O(|V |3) computation and O(|V |2)
storage. Yet, a diffusion map’s explicit eigenvalue formulation
permits an efficient approximation that leads to substantial
savings on both computational time and memory usage,
because finding the first k eigenvectors requires O(k|V |2)
computation and O(k|V |) storage.

Finally, it can be shown that the eigenvectors are related
to geometric structures in the original domain. Without the
anisotropic scaling step (line 6 Algorithm 1), {vi}′s would
also be the eigenvectors of the graph Laplacian matrix [18],
which can be seen as a discrete approximation of Laplace-
Beltrami operator plus a density term [18], [22]. The density
term is undesirable because the diffusion process is biased
toward regions of high connectivity (i.e. nodes with a large
degree). The anisotropic scaling step removes the effect
of the density term [18]. Hence, finding diffusion maps
is related to solving the heat equation. For instance, the
{vi}′s of a line graph resemble sinusoidal functions, which
are the eigenfunctions of 1D heat equation. Thus, the first

(a) 2D gridmap (b) diffusion space

Fig. 2: Diffusion map as coordinate transformation. Each node is
associated with a unique color showing the correspondence between
the 2D space and the diffusion space. Euclidean distance between
every pair of states in the diffusion space is called the diffusion
distance, and is shown to be a meaningful similarity measure.

few eigenvectors capture the low frequency components,
which can be interpreted as long range structures in the
original domain [20]. Researchers have investigated using
the eigenvectors {vi}′s as basis functions for solving rein-
forcement learning problems [23], but have not used pairwise
relationship as revealed in diffusion maps for motion planning.

In short, diffusion coordinates reveal geometric structures
of the original domain, and diffusion distance dY is a
meaningful similarity metric that relates to geodesic distance
dG . Furthermore, diffusion coordinates can be computed and
stored efficiently. It will be shown in Section III that diffusion
distance can be used to improve computational speed in
motion planning applications.

III. APPROACH

The following explores the effects of varying the time
scale parameter t in (1) on diffusion distance for motion
planning. Further, diffusion-based motion planning algorithms
are developed for both static and dynamic environments. A
gridmap of an office space is created using the ROS gmapping
package, as shown in Fig. 2a. The width of each grid cell is
set to be 0.1m, and grid cells within 0.25m are considered
neighbors if a line connecting their centers does not intersect
any obstacle. When converted to a graph representation, this
domain contains 20,666 nodes, and an average of 18.7 con-
nections per node. This work uses a gridmap representation
to help elucidate coordinate transformation using diffusion
maps; yet, the proposed approach is applicable to any graph
structure (see input to Algorithm 1), such as sparse graphs
constructed by roadmap-based methods. This domain is used
as a running example to illustrate various aspects of the
proposed algorithms.

The first three dimensions of the diffusion coordinates3 (2)
are shown in Fig. 2b. The color shows the correspondence
between the original 2D space and the diffusion space. For
example, the lime color shows that the top right region in
the 2D space is being mapped to the top middle region in
the diffusion space. This diffusion map captures long range

3For numerical reasons, the diffusion coordinates are scaled by a factor
of n (number of vertices in the graph) in this work.
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(c) t = 10,000 (d) diffusion dist. at t = 10,000

Fig. 3: Diffusion distance as a function of time scale parameter t.
Subfigures a-c show geodesic distance versus diffusion distance to
goal on the optimal paths for a set of randomly generated test cases.
Subfigures a,b,c show when the time scale parameter t is set too
small, too big, or well tuned, respectively. Subfigure d shows the
diffusion distance from every node to the red node at (20.1, 12.5).

structures – the corner rooms are being mapped to tips of a
roughly tetrahedron-shaped object in the diffusion space.

A. Diffusion Distance

Recall that the time scale parameter t is the number of
steps of a random walk as shown in (2). Given the form of
scaling term λti in (1), when t is set too small, approximation
of diffusion distance would be poor because the truncated
coordinates have non-negligible weight; when t is set too
large, a lot of information would be lost because the diffusion
space would collapse to the first dimension. To empirically
determine a good value of t, we find the optimal paths for
several randomly generated test cases (e.g. use A*), and plot
geodesic distance versus diffusion distance to goal (each path
shown in a different color in Fig. 3a-c). Ideally, there would
be a monotonic linear relationship, because diffusion distance
decreases as the vehicle moves closer to the goal. Figures 3a
and 3b show when t is set too small or too big, respectively.
It is found empirically that setting t ≈ 50wG (Fig. 3c), where
wG is the width of a graph, leads to good performance.
Figure 3d visualizes the diffusion distance with respect to the
node at (20.1, 12.5). The tuning procedure does not lead to
a substantial increase in computational time, because the full
diffusion map does not need to be computed repeatedly. In
particular, only the scaling step (line 10 of Algorithm 1) needs
to be run for several times, which is inexpensive compared
with computing the eigenvectors (line 8).

B. Motion Planning in Static Environments

Diffusion search is developed in Algorithm 2, which finds
paths by steepest descent on diffusion distance surface (e.g.
Fig. 3d). Using terminology common to graph-based search
algorithms, a priority queue OPEN is used for choosing the

Algorithm 2: Diffusion search

1 Input: diffusion matrix Y, diffusion threshold η
2 Output: path p from sstart to sgoal
3 OPEN ← ∅, CLOSED ← ∅
4 insert sstart into OPEN with value ||ystart − ygoal||2
5 while sgoal not expanded do
6 s ← pop(OPEN)
7 for each neighbor s′ of s do
8 if s′ not in CLOSED then
9 insert s′ into OPEN with value

||ys′ − ygoal||2

10 insert s into CLOSED
11 if ||ys − ygoal||2 < η then
12 p′ ← retrievePath(sstart, s)
13 return p ← p′ ∪ findPath(s, sgoal)

next state to be expanded, and a list CLOSED is used for
keeping track of the expanded states (line 3). The OPEN
queue is sorted by diffusion distance to goal (line 4). The main
loop is shown in lines 5-10, which proceeds by repeatedly
expanding the node with minimum diffusion distance to goal
(line 6) and adding its unexplored neighbors to the queue
(lines 7-9). As explained in Section III-A, a problem with
keeping only the first k coordinates in computing diffusion
distance is that short scale structures would be lost. It is found
that the diffusion distance surface (e.g. Fig. 3d) is typically
very flat in the vicinity of the goal, leading the diffusion
search algorithm to visit many more states than necessary
near the goal state. This behavior can be observed in Fig. 3c,
in which the lines becomes more flat when diffusion distance
is below 20. In practice, this problem can be handled by
noting that the vehicle is typically very close to the goal
(e.g. less than 2m) when diffusion distance falls below a
certain threshold. At this point, a simple analytical solution,
such as computing a Dubins curve, is usually sufficient to
reach the goal. For a fair comparison with other graph-based
search algorithms, the diffusion search algorithm switches to
A* after the diffusion distance falls below a threshold η, as
shown in lines 11-13.

An example of diffusion search is shown in Fig. 4b.
Compared with the A* in Fig. 4a, diffusion search finds a path
that is 10.2% longer than optimal but expands many fewer
states (≤ 2% the number in this case). Since computational
time is linear in the number of expanded states, diffusion
search is more than an order of magnitude faster than
A*. More detailed performance comparison is presented in
Section IV. A major source of sub-optimality is choosing the
next state greedily (line 9 Algorithm 2), which is analogous
to the steepest descent algorithm. It is possible to improve the
solution quality by using post-processing methods [24], [25].
A method to address this issue is developed in Section III-C.

Further, diffusion distance can be used to prune states that
are unlikely to be on the optimal path. Thereby, diffusion



(a) A* (b) diffusion search

(c) Weighted A* (d) Weighted A* with diffusion

Fig. 4: Path planning in a static environment. Four algorithms are
applied to find a path from (20, 22) to (20, 12). Red curve shows
the planned path with the red dot being the goal state. Blue shows
the set of expanded states. Diffusion maps can be either used by
itself for finding a feasible path (subfigure b), or be integrated with
an existing algorithm (subfigure d).

search can be easily integrated into an existing graph-based
motion planner to improve computational speed. In particular,
Weighted A* [5] is considered. Using an inadmissible
heuristic h(x1,x2) = c · ||x1 − x2||2 (for c > 1), Weighted
A* achieves better computational speed at the expense of
losing optimality4. An example of using Weighted A* for path
planning is shown in Fig. 4c. The problem with Weighted A*
is that similar to A*, a substantial amount of computation can
be spent on exploring dead-ends. This problem is addressed
by using diffusion distance to prune states whose diffusion
distance to goal are higher than that of their parents. In
particular, nodes being pushed onto the OPEN queue are
penalized (i.e. adding a large constant to their cost) if their
diffusion distance is larger than that of their parent. An
example of Weighted A* with diffusion metric is shown in
Fig. 4d. Note that Weighted A* with diffusion metric attains
a slightly better path while expands half as many nodes.

C. Motion Planning in Dynamic Environments

In many real world applications, there can be frequent
small changes in the environment. For instance, for indoor
navigation, obstacles’ position (e.g. chairs) might be shifted
in relation to the map and there might be other dynamic
agents in the environment. Assuming no major changes to
the underlying geometry (e.g. blocking an entire corridor),
the pre-computed diffusion map can be used to guide a local
motion planner. This enables the planning system to focus the
computational resources within the robot’s perception range,
without needing to compute a complete feasible path to goal.

4Weighted A* reduces to A* with c = 1. This work uses c = 3.

Algorithm 3: Diffusion search with motion primitives

1 motion primitives MP ← computeMP()
2 while xcur not sufficiently close to goal do
3 (xcur, Obs) ← sensorUpdate()
4 MP′ ← pruneWithObs(xcur + MP, Obs)
5 // find motion primitive segments that reduce

diffusion distance to goal
6 MP′′ ← pruneWithDiffusionDist(MP′,Y)
7 p′′ ← chooseBestLocalPath(MP′′)
8 move along p′′

Algorithm 3 proposes a motion planner that combines
diffusion search with motion primitives. A set of motion
primitives, shown in Fig. 5a, is pre-computed based on the
Dubins car model [13] (line 1). The main loop is repeated
until the vehicle reaches the goal (line 2). At every time step,
the vehicle updates its pose and obstacle information within
its perception range (line 3). Then, the set of motion primitives
is translated and rotated with respect to the vehicle’s pose to
form a set of local paths. Each local path is pruned up to the
first point that it collides with any obstacle (line 4). Each path
is further pruned up to the point with the smallest diffusion
distance to goal (line 5-6). At this stage, what remains is a
set of traversable paths that lead to positions closer to the
goal than the vehicle’s current position. The last step is to
choose the best (i.e., leading to lowest diffusion distance to
goal) local path within this set (line 7), and the vehicle is
then presumed to move along the chosen path until the next
sensor update (line 8). An example is shown in Fig. 5b-d.
New obstacles shown in purple are generated at random to
simulate dynamic changes in the environment. The vehicle is
assumed to have a perception radius of 3m, within which it
can observe the newly added obstacles. Following diffusion
distance pre-computed from the static map, and planning
locally using the pre-computed motion primitives, the vehicle
finds a path that is within 2% of the optimal.

IV. RESULTS

The following presents simulation and hardware results on
path planning with diffusion maps in two additional domains.
The performance of the diffusion-based algorithms is assessed
on randomly generated test cases.

A. Path Planning for a Nonholonomic Vehicle

Consider motion planning for a nonholonomic vehicle in
the map shown in Fig. 2a. Following [24], a heading angle
dimension discretized at 5◦ increments is included in addition
to the 2D position to account for vehicle dynamics. When
converted to a graph representation, this domain contains
≈1.4 million nodes. The connectivity (number of neighbors
per node) of this domain is lower than that of the 2D map
because the vehicle is constrained by a 0.5m minimum turning
radius. An example is shown in Fig. 6 in which diffusion
search finds a feasible path within 15% of the optimal path



(a) motion primitives (b) step 20

(c) step 120 (d) step 212

Fig. 5: Path planning in a dynamic environment. Subfigure a shows a
set of motion primitives based on the Dubins car model. Subfigures
b-d show path planning using Algorithm 3. Grey shows the map,
purple shows the newly added obstacles that are visible within
vehicle’s perception range. Red shows the path traveled, and green
shows the chosen local path as described in line 7 Algorithm 3.

TABLE I: Computing diffusion maps with k = 10.

2D 3D-nh mlt-flr
number of states 20,666 1,485,912 311,890

avg. number neighbors per node 18.7 11.9 19.1
computational time (sec) 1.7 181 381

but explored three orders of magnitude fewer nodes than A*
(using the Euclidean distance heuristic).

B. Path Planning on Multiple Floor Levels

Next consider motion planning on three floors connected
by multiple elevators, as shown in Fig. 8. Each floor is
mapped using the ROS gmapping package and discretized to
build a gridmap with the same resolution as Fig. 2a. When
converted to a graph representation, the three floors combined
have more than 300,000 states. Another challenge with this
domain is that there are often multiple routes connecting
nodes on different floors. An example is shown in Fig. 7,
in which diffusion search finds a feasible path within 12%
of the optimal path but explored two orders of magnitude
fewer nodes than A* (with the Euclidean distance heuristic).
Connections between floor levels and diffusion distance with
respect to the goal are shown in Fig. 8.

C. Performance Comparison

The domains illustrated in Fig. 2a, Fig. 6, and Fig. 7 are
denoted as 2D gridmap (2D), 3D gridmap with nonholonomic
constraints (3D-nh), and multiple connected floor levels
(mlt-flr), respectively. The complexity of each domain in
graph representation and the corresponding time required for
computing diffusion maps is summarized in Table I. The

(a) A* (b) diffusion search

Fig. 6: Path planning for a nonholonomic vehicle. The shaded colors
(yellow to blue) show the number of expanded states at each 2D
position. Recall this is a 3D domain, so the heading angle dimension
is collapsed for plotting the number of expanded states.

(a) A* (b) diffusion search

Fig. 7: Path planning on multiple floors. Grey, pink and lime green
show three floor levels, and gray vertical lines are connecting
elevators. Blue denotes expanded states; red shows planned path.

algorithms are run on a computer with an Intel i7-2600K
CPU and 16GB of memory.

Diffusion-based motion planning algorithms are being eval-
uated on 100 randomly generated test cases on each domain.
In particular, Fig. 9 shows a comparison of solution quality
as measured by path length and run time as measured by the
number of expanded states. Run time is also computed and
shown in Table II. To account for variability among different
test cases, we normalized the performance statistics by that
of A*. The average performance statistics is summarized in
Table II.

Diffusion search finds paths that are about 20% longer
than the optimal paths. A major cause is that greedy search
leads to some local oscillations along the path, as shown in
Figs. 6b and 7b. In practice, the use of a larger look-ahead
distance, as in Algorithm 3, mitigates this issue to a large
extent. Diffusion search often finds a feasible path two orders
of magnitude faster than A* and one order of magnitude
faster than Weighted A*. Moreover, diffusion distance can be
integrated into A*-based algorithms for pruning states that are
unlikely to be on the optimal path. In particular, a factor of
two speedup (and slight improvement in solution quality) was
achieved by augmenting Weighted A* with diffusion distance,
as shown in the bottom two rows of Table II. In addition,
while Table II compares the run time to find a feasible path,
the availability of a pre-computed diffusion map allows the
vehicle to move towards its goal without needing to first find
a feasible path, such as described in Algorithm 3.

D. Hardware Experiment

An autonomous vehicle is developed using the Pioneer 3-
AT rover platform Fig. 1. The vehicle is equipped with a SICK
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Fig. 9: Performance statistics on a set of randomly generated test cases. A* always finds the optimal solution but needs to explore a
large number of states. Diffusion search finds feasible paths that are about 20% longer than the optimal paths, but explores two orders of
magnitude fewer states than A*. Further, augmenting Weighted A* with diffusion distance metric leads to a 3% improvement in solution
quality and two fold reduction in the number of expanded states.

Lidar for mapping and localization, and a Velodyne sensor for
obstacle detection. The vehicle navigated fully autonomously
in a dynamic environment (Fig. 8) using Algorithm 3. A
hardware demonstration video is available at https://
www.youtube.com/watch?v=3s9gswbhWSU.

Figure 10a illustrates the vehicle navigating through a busy
indoor environment that results in frequent interactions with
pedestrians – an average of 11.3 people came within 2m of the
vehicle per minute. The ROS costmap 2d package is used to
process Velodyne point clouds for detecting obstacles within
a 5m × 5m region around the vehicle. The size of the region
is chosen to achieve a 10Hz update rate for enabling fast
local replanning in Algorithm 3. Figure 10b shows the vehicle
detecting and navigating around a person. Despite the person
standing in the direct path to the goal, the vehicle quickly finds
a safe local path (green) from its motion primitives library
(line 4-7 Algorithm 3), and navigates behind the person. In
short, our experiment shows that pre-computing a diffusion

map is an effective method for reducing computational time.
Recall in Algorithm 3, when assigned a new goal, a vehicle
does not need to wait for a feasible path to be found.

V. CONCLUSION

This paper developed a multi-query motion planning
algorithm for dynamic environments. In particular, given
a previously generated map, the proposed algorithm would
learn the map’s geometry and find a parametrization that
encodes pairwise similarity. This similarity metric, called
diffusion distance, was used as a potential function to guide
local searches. The proposed algorithms were applied to
three real-world domains, and achieved orders of magnitude
improvement in computational speed compared with single-
query methods. Moreover, a hardware experiment demon-

5In this work, grids within 0.25m are considered neighbors if the line
connecting their centers does not intersect any obstacle. Thus, a feasible
path can have fewer states on its path than that of the optimal path.



TABLE II: Average performance on the random test cases shown in Fig. 9. Path quality is measured by the ratio of (path length)/(optimal
path length). Number of visited states is normalized by the number of states on the optimal path. Run time is normalized by that of A*.
Second row shows that diffusion search finds feasible paths of comparable quality to other approaches while expanding many fewer nodes.
Third and fourth rows show augmenting diffusion distance to a graph-based method leads to more than two fold reduction in the number
of expanded states and run time.

Path Length Ratio Expanded States Ratio Run Time Ratio
2D 3D-nh mlt-flr 2D 3D-nh mlt-flr 2D 3D-nh mlt-flr

A* 1 1 1 36.8 2844.5 108.6 1 1 1
diffusion search 1.14 1.26 1.25 0.875 13.2 2.09 0.038 0.011 0.019

Weighted A* 1.11 1.33 1.14 6.27 286.4 27.5 0.172 0.102 0.231
Weighted A* w/ diffusion 1.07 1.27 1.12 2.23 89.4 18.83 0.070 0.035 0.162

(a) on-board camera view (b) navigating around obs.

Fig. 10: Autonomous navigation in a dynamic environment using
Algorithm 3. Subfigure a shows the vehicle comes in frequent
interaction with pedestrians. Subfigure b illustrates the vehicle
detecting obstacles (black regions) within its perception range (white
patch). A set of motion primitives (blue) is pruned by the detected
obstacles. The feasible motion primitive (green) that leads to the
smallest diffusion distance to goal is chosen.

strated autonomous navigation in an indoor environment
that requires frequent interaction with pedestrians. Future
work will consider integrating more sophisticated local
motion planners, such as accounting for interaction with
pedestrians [14], with diffusion distance.
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