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Abstract— Finding feasible, collision-free paths for mul-
tiagent systems can be challenging, particularly in non-
communicating scenarios where each agent’s intent (e.g. goal) is
unobservable to the others. In particular, finding time efficient
paths often requires anticipating interaction with neighboring
agents, the process of which can be computationally prohibitive.
This work presents a decentralized multiagent collision avoid-
ance algorithm based on a novel application of deep reinforce-
ment learning, which effectively offloads the online computation
(for predicting interaction patterns) to an offline learning
procedure. Specifically, the proposed approach develops a value
network that encodes the estimated time to the goal given an
agent’s joint configuration (positions and velocities) with its
neighbors. Use of the value network not only admits efficient
(i.e., real-time implementable) queries for finding a collision-
free velocity vector, but also considers the uncertainty in the
other agents’ motion. Simulation results show more than 26%
improvement in paths quality (i.e., time to reach the goal) when
compared with optimal reciprocal collision avoidance (ORCA),
a state-of-the-art collision avoidance strategy.

I. INTRODUCTION

Collision avoidance is central to many robotics applications,
such as multiagent coordination [1], autonomous navigation
through human crowds [2], pedestrian motion prediction [3],
and computer crowd simulation [4]. Yet, finding collision-free,
time efficient paths around other agents remains challenging,
because it may require predicting other agents’ motion and
anticipating interaction patterns, through a process that needs
to be computationally tractable for real-time implementation.

If there is a reliable communication network for agents
to broadcast their intents (e.g. goals, planned paths), then
collision avoidance can be enforced through a centralized
planner. For instance, collision avoidance requirements can
be formulated as separation constraints in an optimization
framework for finding a set of jointly feasible and collision-
free paths [1], [5], [6]. However, centralized path plan-
ning methods can be computationally prohibitive for large
teams [1]. To attain better scalability, researchers have also
proposed distributed algorithms based on message-passing
schemes [7], [8], which resolve local (e.g. pairwise) conflicts
without needing to form a joint optimization problem between
all members of the team.

This work focuses on scenarios where communication
cannot be reliably established, which naturally arises when
considering human-robot interactions and can also be caused
by hardware constraints or failures. This limitation poses
additional challenges for collision avoidance, because mobile
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Fig. 1: Autonomous ground vehicles navigating alongside pedes-
trians. Collision avoidance is essential for coordinating multiagent
systems and modeling interactions between mobile agents.

agents would need to cooperate without necessarily hav-
ing knowledge of the other agent’s intents. Existing work
on non-communicating collision avoidance can be broadly
classified into two categories, reaction-based and trajectory-
based. Reaction-based methods [9]–[11] specify one-step
interaction rules for the current geometric configuration. For
example, reciprocal velocity obstacle (RVO) [12] is a reaction-
based method that adjusts each agent’s velocity vector to
ensure collision-free navigation. However, since reaction-
based methods do not consider evolution of the neighboring
agents’ future states, they are short-sighted in time and have
been found to create oscillatory and unnatural behaviors in
certain situations [10], [13].

In contrast, trajectory-based methods explicitly account
for evolution of the joint (agent and neighbors) future states
by anticipating other agents’ motion. A subclass of non-
cooperative approaches [14], [15] propagates the other agents’
dynamics forward in time, and then plans a collision-free path
with respect to the other agents’ predicted paths. However,
in crowded environments, the set of predicted paths often
marks a large portion of the space untraversable/unsafe, which
leads to the freezing robot problem [13]. A key to resolving
this issue is to account for interactions, such that each
agent’s motion can affect one another. Thereby, a subclass of
cooperative approaches [16]–[18] has been proposed, which
first infers the other agents’ intents (e.g. goals), then plans
a set of jointly feasible paths for all neighboring agents
in the environment. Cooperative trajectory-based methods
often produce paths with better quality (e.g. shorter time for
all agents to reach their goal) than that of reaction-based
methods [16]. However, planning paths for all other agents
is computationally expensive, and such cooperative approach
typically requires more information than is readily available
(e.g. other agent’s intended goal). Moreover, due to model
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and measurement uncertainty, the other agents’ actual paths
might not conform to the planned/predicted paths, particularly
beyond a few seconds into the future. Thus, trajectory-based
methods also need to be run at a high (sensor update) rate,
which exacerbates the computational problem.

The major difficulty in multiagent collision avoidance is
that anticipating evolution of joint states (paths) is desirable
but computationally prohibitive. This work seeks to address
this issue through reinforcement learning – to offload the
expensive online computation to an offline training procedure.
Specifically, this work develops a computationally efficient
(i.e., real-time implementable) interaction rule by learning a
value function that implicitly encodes cooperative behaviors.

The main contributions of this work are (i) a two-agent
collision avoidance algorithm based on a novel application of
deep reinforcement learning, (ii) a principled way for general-
izing to more (n > 2) agents, (iii) an extended formulation to
capture kinematic constraints, and (iv) simulation results that
show significant improvement in solution quality compared
with existing reaction-based methods.

II. PROBLEM FORMULATION

A. Sequential Decision Making

A non-communicating multiagent collision avoidance prob-
lem can be formulated as a partially-observable sequential
decision making problem. Let st, at denote an agent’s
state and action at time t. The agent’s state vector can
be divided into two parts, that is st = [sot , s

h
t ], where sot

denotes the observable part that can be measured by all
other agents, and sht denotes the hidden part that is only
known to the agent itself. In this work, let position and
velocity vectors in 2D be denoted by p and v, respectively;
let action be the agent’s velocity, a = v; let the observable
states be the agent’s position, velocity, and radius (size),
so = [px, py, vx, vy, r] ∈ R5; and let the hidden states
be the agent’s intended goal position, preferred speed, and
heading angle, sh = [pgx, pgy, vpref , θ] ∈ R4.

The following presents a two-agent1 collision avoidance
problem formulation, where an agent’s own state and the
other agent’s state are denoted by s and s̃, respectively. The
objective is to minimize the expected time, E[tg], of an agent
to reach its goal by developing a policy, π : (s0:t, s̃

o
0:t) 7→ at,

that selects an action given the observed state trajectories,

argmin
π(s, s̃o)

E [tg|s0, s̃
o
0, π, π̃] (1)

s.t. ||pt − p̃t||2 ≥ r + r̃ ∀t (2)
ptg = pg (3)
pt = pt−1 + ∆t · π(s0:t, s̃

o
0:t)

p̃t = p̃t−1 + ∆t · π̃(s̃0:t, s
o
0:t), (4)

where (2) is the collision avoidance constraint, (3) is the goal
constraint, (4) is the agents’ kinematics, and the expectation
in (1) is with respect to the other agent’s policy and hidden

1This formulation can be generalized to multiagent (n > 2) scenarios
by replacing the other agent’s state s̃ot with all other agents’ states S̃o

t =
[ ˜so1,t, . . . ,

˜son,t], and expand (2) to include all pairwise collision constraints.

states (intents). Note that static obstacles can be modeled as
stationary agents, which will be discussed in more details in
Section IV-D.

Although it is difficult to solve for the optimal solution of
(1)-(4), this problem formulation can be useful for understand-
ing the limitations of the existing methods. In particular, it
provides insights into the approximations/assumptions made
by existing works. A common assumption is reciprocity,
that is π = π̃, such that each agent would follow the same
policy [11], [16]. Thereby, the main difficulty is in handling
the uncertainty in the other agent’s hidden intents (e.g. goals).

Reaction-based methods [10], [11] often specify a Marko-
vian policy, π(s0:t, s̃

o
0:t) = π(st, s̃

o
t ), that optimizes a one-

step cost while satisfying collision avoidance constraints.
For instance, in velocity obstacle approaches [11], an agent
chooses a collision-free velocity that is closest to its preferred
velocity (i.e., directed toward its goal). Given this one-
step nature, reaction-based methods do not anticipate the
other agent’s hidden intent, but rather rely on a fast update
rate to react quickly to the other agent’s motion. Although
computationally efficient given these simplifications, reaction-
based methods are myopic in time, which can sometimes
lead to generating unnatural trajectories [17] (e.g., Fig. 4a).

Trajectory-based methods [16]–[18] solve (1)-(4) in two
steps. First, the other agent’s hidden state is inferred from its
observed trajectory, ˆ̃sht = f(s̃o0:t), where f(·) is a inference
function. Second, a centralized path planning algorithm,
π(s0:t, s̃

o
0:t) = πcentral(st, s̃

o
t , ˆ̃sht ), is employed to find

jointly feasible paths. By planning/anticipating complete paths,
trajectory-based methods are no longer myopic. However,
both the inference and the planning steps are computationally
expensive, and need to be carried out online at each new
observation (sensor update s̃ot ).

Our approach uses a reinforcement learning framework
to solve (1)-(4) by pre-computing a value function V (s, s̃o)
that estimates the expected time to the goal. As a result,
the proposed method offloads computation from the online
planning step (as in trajectory-based methods) to an offline
learning procedure. The learned value function enables the use
of a computationally efficient one-step lookahead operation,
which will be defined in (11) and explained in Section III.
Repeating this one-step lookahead operation at each sensor
update leads to generating better paths, as shown later in
Fig. 4d.

B. Reinforcement Learning

Reinforcement learning (RL) [19] is a class of machine
learning methods for solving sequential decision making
problems with unknown state-transition dynamics. Typically,
a sequential decision making problem can be formulated as a
Markov decision process (MDP), which is defined by a tuple
M = 〈S,A, P,R, γ〉, where S is the state space, A is the
action space, P is the state-transition model, R is the reward
function, and γ is a discount factor. By detailing each of these
elements and relating to (1)-(4), the following provides a RL
formulation of the two-agent collision avoidance problem.



(a) Input joint state (b) Value function

Fig. 2: RL policy. (a) shows a joint state of the system (geometric
configuration) in the red agent’s reference frame, with its goal
aligned with the x-axis and marked as a star. (b) shows the red
agent’s value function at taking each possible action (velocity vector).
Given the presence of the blue agent, ORCA [11] would choose an
action close to the current heading angle (black vector), whereas
the RL policy chooses to cut behind (green vector) the blue agent,
leading to generating better paths similar to that in Fig. 4.

State space: The system’s state is constructed by concatenat-
ing the two agents’ individual states, sjn = [s, s̃o] ∈ R14.
Action space: The action space is the set of permissible
velocity vectors. Here, it is assumed that an agent can travel in
any direction at any time, that is a(s) = v for ||v||2 < vpref .
It is also straightforward to impose kinematic constraints,
which will be explored in Section III-D.
Reward function: A reward function is specified to award
the agent for reaching its goal (3), and penalize the agent for
getting too close or colliding with the other agent (2),

R(sjn,a) =


−0.25 if dmin < 0

−0.1− dmin/2 else if dmin < 0.2

1 else if p = pg

0 o.w.

, (5)

where dmin is the minimum separation distance between
the two agents within a duration of ∆t, assuming the agent
travels at velocity v = a, and the other agent continues to
travel at its observed velocity ṽ. Note that the separation
dmin can be calculated analytically through simple geometry.
State transition model: A probabilistic state transition model,
P (sjnt+1, s

jn
t |at), is determined by the agents’ kinematics as

defined in (4). Since the other agent’s choice of action also
depends on its policy and hidden intents (e.g. goal), the
system’s state transition model is unknown. As in existing
work [11], this work also assumes reciprocity π = π̃, which
leads to the interesting observation that the state transition
model depends on the agent’s learned policy.
Value function: The objective is to find the optimal value
function

V ∗(sjn0 ) =

T∑
t=0

γt·vpref R(sjnt , π
∗(sjnt )), (6)

where γ ∈ [0, 1) is a discount factor. Recall vpref is an
agent’s preferred speed and is typically time invariant. It is
used here as a normalization factor for numerical reasons,
because otherwise the value function of a slow moving agent

could be very small. The optimal policy can be retrieved
from the value function, that is

π∗(sjn0 ) = argmax
a

R(s0,a)+

γ∆t·vpref
∫
sjn1

P (sjn0 , sjn1 |a)V ∗(sjn1 )dsjn1 .

(7)

This work chooses to optimize V (sjn) rather than the more
common choice Q(sjn,a), because unlike previous works
that focus on discrete, finite action spaces [20], [21], the
action space here is continuous and the set of permissible
velocity vectors depends on the agent’s state (preferred speed).

III. APPROACH

The following presents an algorithm for solving the two-
agent RL problem formulated in Section II-B, and then gen-
eralizes its solution (policy) to multiagent collision avoidance.
While applications of RL are typically limited to discrete,
low-dimensional domains, recent advances in Deep RL [20]–
[22] have demonstrated human-level performance in complex,
high-dimensional spaces. Since the joined state vector sjn is
in a continuous 14 dimensional space, and because a large
amount of training data can be easily generated in a simulator,
this work employs a fully connected deep neural network
with ReLU nonlinearities to parametrize the value function, as
shown in Fig. 3a. This value network is denoted by V (·;w),
where w is the set of weights in the neural network.

A. Parametrization

From a geometric perspective, there is some redundancy in
the parameterization of the system’s joint state sjn, because
the optimal policy should be invariant to any coordinate
transformation (rotation and translation). To remove this
ambiguity, an agent-centric frame is defined, with the origin
at the agent’s position, and the x-axis pointing toward the
agent’s goal, that is,

s′ = rotate
(
sjn
)

= [dg, vpref , v
′
x, v

′
y, r, θ

′, ṽ′x, ṽ
′
y, p̃

′
x, p̃

′
y, r̃,

r + r̃, cos(θ′), sin(θ′), da], (8)

where dg = ||pg − p||2 is the agent’s distance to goal,
and da = ||p − p̃||2 is the distance to the other agent. An
illustration of this parametrization is shown in Fig. 2a. Note
that this agent-centric parametrization is only used when
querying the neural network.

B. Generating Paths Using a Value Network

Given a value network V , an RL agent can generate a path
to its goal by repeatedly maximizing an one-step lookahead
value (7), as outlined in Algorithm 1. This corresponds to
choosing the action that on average, leads to the joint state
with the highest value. However, the integral in (7) is difficult
to evaluate, because the other agent’s next state s̃ot+1 has an
unknown distribution (depends on its unobservable intent).
We approximate this integral by assuming that the other agent
would be traveling at a filtered velocity for a short duration



Algorithm 1: CADRL (Coll. Avoidance with Deep RL)

1 Input: value network V(·;w)
2 Output: trajectory s0:tf

3 while not reached goal do
4 update t, receive new measurements st, s̃

o
t

5 ˆ̃vt ← filter(ṽ0:t)
6 ˆ̃sot+1 ← propagate(s̃ot ,∆t · ˆ̃vt)
7 A ← sampleActions()
8 at ← argmaxat∈AR(sjnt ,at) + γ̄V (ŝt+1, ˆ̃s

o
t+1)

where γ̄ ← γ∆t·vpref , ŝt+1 ← propagate(st,∆t ·at)
9 return s0:tf

(a) Value network (b) Convergence

Fig. 3: Convergence of a Deep RL policy. (a) shows a neural network
used to parameterize the value function. (b) shows the values of three
distinct test cases converge as a function of RL training episodes.
For example, the blue line corresponds to the test case shown in
the bottom row of Fig. 4.

∆t (line 5-6)2. The use of a filtered velocity addresses a subtle
oscillation problem as discussed in [12]. This propagation
step amounts to predicting the other agent’s motion with
a simple linear model, which has been shown to produce
good accuracy over small time scales [23]. It is important
to point out that this approximation is not assuming a linear
motion model for t > ∆t; uncertainty in the other agent’s
future motion is captured in the projected next state’s value,
V (ŝt+1, ˆ̃sot+1). Furthermore, the best action is chosen from
a set of permissible3 velocity vectors (line 8). An example
of this one-step lookahead operation is visualized in Fig. 2a,
in which the red agent chooses the green velocity vector to
cut behind the blue agent, because this action maximizes the
value of the projected state shown in Fig. 2b.

C. Training a Value Network

The training procedure, outlined in Algorithm 2, consists
of two major steps. First, the value network is initialized by
supervised training on a set of trajectories generated by a
baseline policy (line 3).

Specifically, each training trajectory is processed to gen-
erate a set of state-value pairs, {(sjn, y)k}Nk=1, where y =
γtg·vpref and tg is the time to reach goal. The value network
is trained by back-propagation to minimize a quadratic

2This work calculates the average velocity of the past 0.5 seconds and
sets ∆t to 1.0 second.

3This work uses 25 pre-computed actions (e.g. directed toward an agent’s
goal or current heading) and 10 randomly sampled actions.

Algorithm 2: Deep V-learning

1 Input: trajectory training set D
2 Output: value network V (·;w)
3 V (·;w) ← train nn(D) //step 1: initialization
4 duplicate value net V ′ ← V //step 2: RL
5 initialize experience set E ← D
6 for episode=1, . . . , Neps do
7 for m times do
8 s0, s̃0 ← randomTestcase()
9 s0:tf ← CADRL(V ), s̃0:t̃f

← CADRL(V )
10 y0:T , ỹ0:t̃f

← findValues(V ′, s0:tf , s̃0:t̃f
)

11 E ← assimilate
(
E, (y, sjn)0:tf , (ỹ, s̃

jn)0:t̃f

)
12 e ← randSubset(E)
13 w ← backprop(e)
14 for every C episodes do
15 Evaluate(V ), V ′ ← V

16 return V

regression error, argminw

∑N
k=1

(
yk − V (sjnk ;w)

)2

. This
work uses optimal reciprocal collision avoidance (ORCA) [11]
to generate a training set of 500 trajectories, which contains
approximately 20,000 state-value pairs.

We make a few remarks about this initialization step. First,
the training trajectories do not have to be optimal. For instance,
two of the training trajectories generated by ORCA [11] are
shown in Fig. 4a. The red agent was pushed away by the
blue agent and followed a large arc before reaching its goal.
Second, the initialization training step is not simply emulating
the ORCA policy. Rather, it learns a time to goal estimate
(value function), which can then be used to generate new
trajectories following Algorithm 1. Evidently, this learned
value function sometimes generates better (i.e. shorter time to
goal) trajectories than ORCA, as shown in Fig. 4b. Third, this
learned value function is likely to be suboptimal. For instance,
the minimum separation dmin between the two agents should
be around 0.2m by (5), but dmin is greater than 0.4m (too
much slack) in Fig. 4b.

The second training step refines the policy through rein-
forcement learning. Specifically, a few random test cases
are generated in each episode (line 8), and two agents are
simulated to navigate around each other using an ε-greedy
policy, which selects a random action with probability ε
and follows the value network greedily otherwise (line 9).
The simulated trajectories are then processed to generate a
set of state-value pairs (line 10). For convergence reasons,
as explained in [20], rather than being used to update the
value network immediately, the newly generated state-value
pairs are assimilated (replacing older entries) into a large
experience set E (line 11). Then, a set of training points is
randomly sampled from the experience set, which contains
state-value pairs from many different simulated trajectories
(line 12). The value network is finally updated by stochastic
gradient descent (back-propagation) on the sampled subset.



To monitor convergence of the training process, the value
network is tested regularly on a few pre-defined evaluation
test cases (line 15), two of which are shown in Fig. 4. Note
that the generated paths become tighter as a function of
the number of training episodes (i.e. dmin reduces from
0.4m to 0.2m). A plot of the test cases’ values V (sjn0 )
shows that the value network has converged in approximately
800 episodes (Fig. 3b). It is important to point out that
training/learning is performed on randomly generated test
cases (line 8), but not on the evaluation test cases.

In addition to the standard Q-learning update [19], an
important modification is introduced when calculating the
state-value pairs (line 10). In particular, cooperation is encour-
aged by adding a penalty term based on a comparison of the
two agents’ extra time to reach the goal, te = tg − dg/vpref .
If te < el and t̃e > eu

4, which corresponds to a scenario
where the agent reached its goal quickly but the other agent
took a long time, an penalty of 0.1 would be subtracted from
the training value. Albeit simple, this modification is crucial
for discouraging aggressive behaviors such as exhibited by
the blue agent in Fig. 4a. Without this modification, an agent
would frequently travel straight toward its goal, expecting the
other agent to yield.

D. Incorporating Kinematic Constraints

Kinematics constraints need to be considered for operating
physical robots. Yet, in many existing works, such constraints
can be difficult to encode and might lead to a substantial
increase in computational complexity [5], [12]. In contrast,
it is straightforward to incorporate kinematic constraints in
the RL framework. We impose rotational constraints,

a(s) = [vs, φ] for vs < vpref , |φ− θ| < π/6 (9)
|θt+1 − θt| < ∆t · vpref , (10)

where (9) limits the direction that an agent can travel, and
(10) specifies a maximum turning rate that corresponds to
a minimum turning radius of 1.0m. Figure 5a illustrates the
application of these rotational constraints to the same test
case in Fig. 2a. Here, the red agent chooses to slow down
given the set of more constrained actions. Notice the agent
is allowed to spin on the spot, which leads to an interesting
optimal control problem when an agent’s current heading
angle is not perfectly aligned with its goal. In this case, an
agent can either travel at its full speed while turning toward
its goal, or first spin on the spot before traveling in a straight
line. Figure 5b shows that CADRL has learned a policy that
balances between these two options to minimize the time
to goal. With the thin lines showing its heading angle, the
red agent chooses to initially turn on the spot, and then start
moving before its heading angle is perfectly aligned with its
goal.

E. Multiagent Collision Avoidance

The two-agent value network can also be used for multia-
gent collision avoidance. Let s̃oi denote the observable part

4This work uses el = 1.0 and eu = 2.0.

(a) Constrained action (b) Sample trajectories

Fig. 5: Rotational kinematic constraint. Top left shows the same
test case as in Fig. 2a, but here the red agent chooses to slow down
due to a rotational kinematic constraint (9). Bottom left shows the
set of permissible velocity vectors for the red agent. Right shows
a pair of sample trajectories generated by CADRL with rotational
constraints, where the thin lines show the agents’ heading angles.
To minimize the time to goal, the red agent initially turns on the
spot, and then starts moving (while continuing to turn) before its
heading angle is aligned with its goal.

of the ith neighbor’s state, and sjni = [s, s̃oi ] denote the joint
state with the ith neighbor. CADRL (Algorithm 1) can be
extended to n > 2 agents by propagating every neighbor’s
state one step forward (line 5-6), and then selecting the action
that has the highest value with respect to any neighbor’s
projected state; that is, replace line 8 with

argmax
at∈A

min
i

R(sjni,t , at) + γ∆t·vprefV (ŝt+1, ˆ̃soi,t+1).

(11)

Note that the agent’s projected next state ŝt+1 also depends
on the selected action at. Although using a two-agent value
network, CADRL can produce multiagent trajectories that
exhibit complex interaction patterns. Figure 6a shows six
agents each moving to the opposite side of a circle. The
agents veer more than the two-agent case (bottom row of
Fig. 4), which makes more room in the center to allow
every agent to pass smoothly. Figure 6b shows three pairs of
agents swapping position horizontally. The pair in the center
slows down near the origin so the outer agents can pass first.
Both cases demonstrate that CADRL can produce smooth,
natural looking trajectories for multiagent systems, which
will be explored in further detail in Section IV. However,
we acknowledge that (11) is only an approximation to a true
multiagent RL value function – an n-agent value network by
simulating n agents navigating around each other – which
will be studied for future work.

IV. RESULTS

A. Computational Complexity

This work uses a neural network with three hidden layers
of width (150, 100, 100), which is the size chosen to achieve
real-time performance.5 In particular, on a computer with
an i7-5820K CPU, a Python implementation of CADRL

5We also experimented with other network structures. For example, a
network with three hidden layers of width (300, 200, 200) produced similar
results (paths) but was twice as slow.



(a) ORCA (b) Episode 0 (c) Episode 50 (d) Episode 1000

Fig. 4: Training the value network. Circles show each agent’s position at the labeled time, and stars mark the goals. (a) illustrates trajectories
generated by the two agents each following ORCA [11], and (b-d) illustrate trajectories generated by following the value network at
various training episodes. Top (a) shows a test case which ORCA results in unnatural trajectories, where the red agent has traversed a large
arc before reaching its goal. Top (b-d) show CADRL has learned to produce cooperative behaviors, as the blue agent slows down and cuts
behind the red agent. Bottom (b-d) show the trajectories become more tight (better performing) during the training process, since the
minimum separation dmin reduces from 0.4m to 0.2m, as specified in (5).

(a) (b)

Fig. 6: Multiagent trajectories produced by CADRL. Circles show
each agent’s position at the labeled time, and stars mark the goals.
Although CADRL uses a two-agent value network for multiagent
scenarios (11), more complex interaction patterns have emerged.
In particular, although both test cases involve three pairs of agents
swapping position, each agent follows a path much different from
the two agent case shown in the bottom row of Fig. 4.

(Algorithm 1), on average, takes 5.7ms per iteration on two-
agent collision avoidance problems. By inspection of (11),
computational time scales linearly in the number of neigh-
boring agents for a decentralized implementation where each
agent runs CADRL individually; and scales quadratically in a
centralized implementation where one computer controls all
agents. For decentralized control on ten agents, each iteration
of CADRL is observed to take 62ms. Moreover, CADRL
is parallelizable because it consists of a large number of
independent queries of the value network (11).

Furthermore, offline training (Algorithm 2) took less than
three hours and is found to be quite robust. In particular, using
mini-batches of size 500, the initialization step (line 3) took
9.6 minutes to complete 10,000 iterations of back-propagation.
The RL step used an ε-greedy policy, where ε decays linearly
from 0.5 to 0.1 in the first 400 training episodes, and

remains 0.1 thereafter. The RL step took approximately 2.5
hours to complete 1,000 training episodes. The entire training
process was repeated on three sets of training trajectories
generated by ORCA, and the value network converged in
all three trials. The paths generated by the value networks
from the three trials were very similar, as indicated by a less
than 5% difference in time to reach goal on all test cases in
the evaluation set.

B. Performance Comparison on a Crossing Scenario

To evaluate the performance of CADRL over a variety of
test cases, we compute the average extra time spent to reach
goals, that is

t̄e =
1

n

n∑
i=1

[
ti,g −

||pi,0 − pi,g||2
vi,pref

]
, (12)

where ti,g is the ith agent’s time to reach its goal, and the
second term is a lower bound of ti,g (to go straight toward
goal at the preferred speed). This metric removes the effects
due to variability in the number of agents and the nominal
distance to goals.

A crossing scenario is shown in Fig. 7a, where two identical
agents with goals along collision courses are run into each
other at different angles. Thus, cooperation is required for
avoiding collision at the origin. Figure 7a shows that over a
wide range of angles (α ∈ [90, 150] deg), agents following
CADRL reached their goals much faster than that of ORCA.
Recall a minimum separation of 0.2m is specified for CADRL
in the reward function (5). For this reason, similar to the
bottom row of Fig. 4, CADRL finds paths that are slightly
slower than ORCA around α = 0. It is also interesting to
note that CADRL with rotational constraints (CADRL w/
cstr) performs slightly better than the unconstrained. This is



α

(-2,0)
(2,0)

(a) Crossing configuration (b) Time to reach goal

Fig. 7: Performance comparison on a crossing scenario. (a) shows
the crossing configuration, where a red agent travels from left to
right, and a blue agent travels at a diagonal angled at α. Both
agents have a radius of 0.3m and a preferred speed of 1.0m/s, and
they would collide at the origin if both travel in a straight line. (b)
compares the extra time spent to reach goal (12) using different
collision avoidance strategies. CADRL performs significantly better
than ORCA on a wide range of angles α ∈ [90, 150] deg.

because CADRL w/ cstr is more conservative (yielding) early
on, which is coincidentally good for the crossing scenario.
More specifically, if the other agent has stopped (reached
goal) or turned before it reached the origin, unconstrained
CADRL would have performed better. In short, as will be
shown later in Fig. 9, unconstrained CADRL is better on
average (randomized test cases), but can be slightly worse
than CADRL w/ cstr on particular test cases.

C. Performance Comparison on Random Test Cases

In addition to showing that CADRL can handle some
difficult test cases that fared poorly for ORCA (Figs. 4
and 7), a more thorough evaluation is performed on randomly
generated test cases. In particular, within square shaped
domains specified in Table I, agents are generated with
randomly sampled speed, radius, initial positions and goal
positions. This work chooses vpref ∈ [0.5, 1.5]m/s, r ∈
[0.3, 0.5]m, which are parameters similar to that of typical
pedestrian motion. Also, the agents’ goals are projected to
the boundary of the room to avoid accidentally creating a
trap formed by multiple stationary agents. A sample four-
agent test case is illustrated in Fig. 8, where agents following
CADRL were able to reach their goal much faster than that
of ORCA. For each configuration in Table I, one hundred
test cases are generated as described above. ORCA, CADRL,
and CADRL w/cstr are employed to solve for these test cases.
The average extra time to reach goal, t̄e, is computed for
each set of generated trajectories and plotted in Fig. 9. Key
statistics are computed and listed in Table I, and it can be seen
that CADRL performs similarly (slightly better) than ORCA
on the easier test cases (median), and more than 26% better
on the hard test cases (>75 percentile). Also, performance
difference is more clear on test cases with more agents, which
could be a result of more frequent interactions.

D. Navigating around Non-cooperative Agents

Recall CADRL’s value network is trained with both agents
following the same collision avoidance strategy, which is the
reciprocity assumption common to many existing works [11],

(a) ORCA (b) CADRL

Fig. 8: Four-agent test case. (a) shows agents following ORCA
traversed long arcs before reaching their goals, which reflects the
similar two-agent problem shown in Fig. 4a. (b) shows agents
following CADRL were able to reach their goal much faster.

(a) 2 agents (b) 4 agents

(c) Box-and-whisker plot

Fig. 9: Performance comparison on randomly generated test cases.
The extra time to goal te is computed on one hundred random
test cases for each configuration listed in Table I. (a) and (b) show
scatter plots of the raw data, and (c) shows a box whisker plot.
CADRL is seen to perform similarly (slightly better) to ORCA on
the easier test cases (median), and significantly better on the more
difficult test cases (>75 percentile).

[12]. Figure 10 shows that the proposed method can also
navigate efficiently around non-CADRL agents. Figure 10a
shows a CADRL agent navigating static obstacles modeled
as stationary agents (ṽi = 0). We acknowledge that CADRL
could get stuck in a dense obstacle field, where traps/dead-
ends could form due to positioning of multiple obstacles.
Recall CADRL is a collision avoidance (not path planning)
algorithm not designed for such scenarios. Figure 10b shows
a CADRL agent navigating around a non-cooperative agent
(black), who traveled in a straight line from right to left. In
comparison with the cooperative case shown in Fig. 4d, here
the red CADRL agent chooses to veer more to its left to
avoid collision.

V. CONCLUSION

This work developed a decentralized multiagent collision
avoidance algorithm based on a novel application of deep



TABLE I: Extra time to reach goal (t̄e) statistics on the random test cases shown in Fig. 9. CADRL finds paths that on average, reach
goals much faster than that of ORCA. The improvement is more clear on hard test cases (>75 percentile) and in multiagent (n > 2)
scenarios that require more interactions.

Test case configuration Extra time to goal t̄e (s) [Avg / 75th / 90th percentile] Average min separation dist. (m)
num agents domain size (m) ORCA CADRL CADRL w/ cstr OCRA CADRL CADRL w/ cstr

2 4.0 × 4.0 0.46 / 0.45 / 0.73 0.27 / 0.33 / 0.56 0.31 / 0.42 / 0.60 0.122 0.199 0.198
4 5.0 × 5.0 0.69 / 0.85 / 1.85 0.31 / 0.40 / 0.76 0.39 / 0.53 / 0.86 0.120 0.192 0.191
6 6.0 × 6.0 0.65 / 0.83 / 1.50 0.44 / 0.56 / 0.87 0.48 / 0.63 / 1.02 0.118 0.117 0.180
8 7.0 × 7.0 0.96 / 1.33 / 1.84 0.54 / 0.70 / 1.01 0.59 / 0.77 / 1.09 0.110 0.171 0.170

(a) Static obstacles (b) Non-cooperative agent

Fig. 10: Navigating around non-CADRL agents. (a) shows a red
agent navigating around a series of static obstacles. (b) shows a red
CADRL agent avoids collision with a non-cooperative black agent,
who traveled in a straight line from right to left.

reinforcement learning. In particular, a pair of agents were
simulated to navigate around each other to learn a value
network that encodes the expected time to goal. The solution
(value network) to the two-agent collision avoidance RL
problem was generalized in a principled way to handle
multiagent (n > 2) scenarios. The proposed method was
shown to be real-time implementable for a decentralized
ten-agent system. Simulation results show more than 26%
improvement in paths quality when compared with ORCA.
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