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ABSTRACT 

The water end-use segment (WES), consisting of activities that utilize water in homes and buildings, has been 

identified as a major component of energy use in the urban water supply system. In this paper, we present an 

analytical framework that can be used at the planning stages of new urban developments to assess future building-

level water demands and associated energy requirements. The framework is applied to Masdar City, a new urban area 

in the United Arab Emirates, which has been targeted in its design to be a future zero-carbon and zero-waste city.  

Our results show that the energy intensity (in electric kWh) in WES for Masdar may range from 2.6 – 4 kWh/m3. The 

dominant use of energy in this segment is attributed to water heating requirements, and the total energy use for 

obtaining hot water is estimated to range from approximately 20 – 50 Million kWh annually. It is found that the 

residential sector in the city can have the greatest impact in affecting energy requirements associated with water use. 

We estimate that for every unit reduction (in litres/person/day) of in-door residential water use, up to 225 kWh may 

be saved annually. 

 

INTRODUCTION 

Urban water supply systems, historically planned and designed on least-cost approaches (Haimes, 1977), are now 

increasingly evaluated on factors related to environmental sustainability (Lundie et al., 2004). In particular, energy 

consumption has been studied in operational (Cohen et al., 2004) and full lifecycle stages (Racoviceanu and Kamey, 

2010; Sharma et al., 2009; Stokes and Horvath, 2009; Arpke and Hutzler, 2006) of the water infrastructure. In the US, it 
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has been reported that up to 80% of municipal water and wastewater costs are solely for electricity (Gay and Sinha, 

2011). In Australia, it has been estimated that by 2030 there maybe a 200% – 400% increase in energy use (as 

compared to 2007 levels) by water utilities due to increased adoption of desalination and other energy intensive 

sources (Kenway et. al 2008). The growing attention to energy use in water systems has been motivated by rising cost of 

energy (EnergyPrices, 2012) as well as an increasing desire to reduce the energy footprint for long-term environmental 

sustainability (Lundie et al. 2004; Sharma et al., 2009). Motivated by this wider context, this work describes a quantitative 

framework that has been developed to investigate energy requirements for building-level water use in urban areas. The 

framework is applied to Masdar City, a new urban area planned in the United Arab Emirates (UAE) and one that 

represents an emerging trend of urban development designed upfront with high environmental sustainability goals 

(Alfaris et. al. 2010). We present an in-depth analysis of water-use related energy in buildings (as planned – and mostly 

yet to be built - for Masdar City), and include the energy assessment of the new decentralized configurations of water 

supply.  

 

In general, there are five key segments in the urban water system infrastructure: Provision (abstraction), Treatment 

(purification), Distribution, End-Use and Wastewater Disposal (after treatment). Each segment has some associated 

energy requirement. Energy is needed to abstract raw water from a source (such as a river, lake, sea or aquifer) and then 

to convey it (by pumping) to a site of treatment.  In water treatment, energy is expended for purifying the raw water 

(through filtration, flocculation and disinfection, or desalination in case of seawater) to drinking water quality standards 

(Jimenez and Asano, 2008). The purified water is distributed through pumping and pressurization – that require energy - 

and transported to end-users (Filion, 2008). In water end-use (water consumption at the building, facility, or lot scale) in 

a city, energy is consumed for on-site pumping (e.g. in the case of high rise buildings), and water heating (Cheng, 2002). 

Water is usually heated in homes in gas-fired or electric heaters that supply hot water for use in faucets, showers, and 

appliances such as dishwashers and clothes washers (Plappally and Lienhard, 2012). In landscaping applications in homes 

and buildings, some additional pumps and electrical control equipment (such as motors and valves) may be used that add 

to the energy associated with water use. In Industrial facilities, various processes may use water for operations and have 

associated energy requirements typically in terms of pumping, pressurization, heating, cooling and treatment of the water. 

Once the water has been used in homes and buildings, the wastewater is typically collected by a sewerage system, treated 

and then discharged to a receiving water body – all of these steps use energy (Jimenez and Asano, 2008). With increasing 
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scarcity of water in many cities around the world, there is a growing trend towards partially reclaiming wastewater 

for further use. This is done by treating greywater (i.e. water with no human wastes e.g. from laundry, dish washing, 

etc.), and reusing it in the city for non-potable applications (Gikas and Tchobanoglous, 2009). For a particular region, 

the energy intensity in the various segments can vary due to differences in topography, regional climate, water quality, 

extent of residential and industrial mix, distribution architecture, usage patterns, and wastewater treatment technologies.  

 

A number of studies have attempted to quantify the energy intensity of urban water use (Cohen et al. 2004; deMonsabert 

and Liner, 1998; Kenway et al. 2008; Racoviceanu and Kamey, 2010). Of the different segments, the water end-use 

segment (abbreviated as WES in the remainder of this paper) in particular has been found to be the most energy intensive. 

This is typically considered to encompass the set of water-using activities at the end use level in homes, and commercial 

and industrial buildings, before it is discharged to wastewater collection and disposal segment. In past studies, it has been 

found that energy associated with final use of water in these activities adds up to be an appreciable fraction of total energy 

use in buildings.  For instance, in Australia it has been found that residential hot water uses several times more energy 

than that is used to deliver urban water services, with the ratio ranging from 4.7 in Adelaide to 11.2 in Melbourne 

(Kenway et. al, 2008). In the UK, it has been reported that 89% emissions associated with the supply-use-treatment 

cycle of water in the domestic sector is during the ‘use’ phase within homes (Clarke, et. al. 2009). In a study focused 

on San Diego County in the US, it was found that the energy for urban water end-use was highest (at 3.16 kWh/m3) as 

compared to other segments such distribution and treatment (Cohen et al, 2004). Findings such as these have spurred 

development of online tools that residents can use to estimate water-related energy in their homes (Wecalc, 2012). 

 

While water-related energy use has been estimated in prior studies, it has typically been computed at an annual, aggregate 

city-level basis using fixed parameter assumptions (Kenway et al, 2011). In this work, we present a more detailed 

estimation of energy requirements for WES on finer temporal and spatial levels. Additionally, we expand the notion of 

WES to not only encompass energy use associated with water use alone, but also include the provisioning, treatment and 

reuse elements that are likely to be adopted at the building-level in many existing and future cities. Water system planners 

and designers have been re-visiting traditional urban centralized architecture of supply and disposal (Gikas and 

Tchobanoglous, 2009; Nolde, 2005; Sharma et al. 2010) and increasingly considering a shift towards new supply, use 

and disposal architectures. The new configurations are hybrid-systems where reticulated municipal supply is augmented 
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with building-level water provisioning (e.g. through rainwater harvesting) and wastewater treatment (through on-site 

greywater treating and reuse) particularly in water scarce regions that have growing urban demands (Friedler and Hadari, 

2006; Nolde, 2005; Sharma et al., 2009). While the shift towards these architectures is motivated by water availability and 

limits to expansion of centralized systems, the associated energy impacts of the new hybrid configurations are still under 

investigation (Racoviceanu and Kamey, 2010; Retamal et al. 2010).  The framework we describe in this paper has been 

created for furthering this research and allows for estimating building-level energy use not just related to water utilization 

but also for on-site sourcing and on-site treatment.  

 

In this paper, using Masdar City as a reference case, we focus on the question of energy intensity of water use in 

buildings. We consider the new hybrid-configurations of building-level water supply and reuse, and explore the impact on 

energy use through water conservation and usage patterns. This work while focused on Masdar, builds a quantitative 

understanding of water use energy in buildings, and at a more general level serves as an illustrative analysis that may be 

undertaken for other areas where new urban development schemes are being planned with emphasis on long term 

environmental sustainability. 

 

Overall, we expect this work to be useful for planners seeking to create new developments sensitive towards water and 

energy use. However, we also note that water and energy use at the building-level is of direct concern to the occupants 

who pay utility bills. Water conservation can be effectively incentivized for the users through messaging campaigns that 

convey quantitative energy costs in buildings associated with water use. Thus, in addition to urban planners and 

developers, this work can also be of interest to environmental protection agencies or municipalities aiming to reduce 

water and energy demands within their jurisdictions. 

 

MODELLING FRAMEWORK 

The framework has been created in MATLABTM (Mathworks, 2012) for computing energy requirements related to 

water use in buildings. It is meant for upfront estimation of inside water use during early planning stages of an urban 

area, and produces estimates based on input data of buildings, water demand type, and local temperature and 

precipitation.  
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The framework consists of several modules. Fig. 1 shows a schematic of the computational architecture with key 

modules, inputs and outputs. The smallest spatial-scale considered is the building or plot-level, and the time 

resolution (daily, weekly, monthly etc.) in the computation is set based on the purpose of the analysis. The 

computation is carried out for each building and for each time step and then aggregated appropriately for cluster level 

(collection or group of buildings) and city-level information. The details of the assumptions, inputs, and key 

equations used in some of the major modules are described in the following sub-sections. 

 

 

Figure 1: Modelling framework with key computation modules (shown as boxes) and inputs and outputs (shown in 

brackets).  

 

Inputs 

The required inputs include time-series data of regional temperature and precipitation, building-level definition of the 

urban area, water source options for each building, and a ranking matrix between source types and use applications.  

 

Each plot (building) is defined with a number of parameters, a sample of which is shown in Table 1. The data in the 

table is a partial sample of a database of buildings that serves as input for the analysis.  

 

Table 1: Sample input database of building-level parameters used in analysis 

 

The Plot Number is a unique identifier for the plot in the city; Plot Area is its total area; Floors is total number of 

stories in the building; Total Floor Area is the summed area of all floors in the building; Roof Area is the open area 

(available for solar panels, rain water collection etc) on the building’s roof; Usage Type is the utilization purpose 

(e.g. residential, commercial, industrial); Floor Area is the area allocated to a particular Usage Type; Number of 

Occupants is the estimated number of occupants for each usage type in the building. 
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The level of detail, such as shown in Table 1, is available once a master plan has been drafted. The approach used in 

this study is thus useful at that stage of the planning process where sufficient details are available for making 

estimates of water and energy use at building-level scale. 

 

Demand Module 

This module computes water demand for each building based on its usage type (e.g. residential, commercial etc.), 

number of occupants (where applicable), or floor area. The default demand coefficients (litres/person/day or litres 

/m2/day) for different applications are shown in Table A in the Appendix. For each usage type, three kinds of 

coefficients for low, average and high demand levels have been encoded that can be specified to generate a range of 

water demands. The water demand for a building is computed as shown in Eq. (1): 

 

wb c i pb cc
jac
b ci

kai
b

        (1) 

where wb is the water demand for building ‘b’ in litres /day , pb is the number of occupants expected in building b, 

ac
b  is the commercial/office area in building b, ai

b  is the industrial area in building b, c i is the per person demand 

coefficient at level i, cc
j  is the commercial demand coefficient at level j and c r

k  is the industrial demand coefficient 

at level k. The values of coefficients are selected based on the specific kind of building. For instance, for a hotel 

building, the value of c i  ranges from 200 to 400 L/person/day, while for a residence building the value for c i ranges 

from 100 to 250 L/person/day for low to high levels respectively (see Table A). The coefficients can be changed as 

needed for different geographical regions. Note, we do not specifically characterize uncertainty in the calculations, 

and deal with variations in a simple way by using ranges for the data that are provided in standard handbooks for 

estimating demand (Mays, 2000). Since the results are primarily intended for use in planning and high-level analysis, 

we consider this approach sufficient for such purpose. 

 

Building Water Allocation Module 

In this module, various water source options available to the building are allocated to each application (kitchen, 

showers, taps etc.).  The default source is reticulated municipal supply for each building. Additionally, each building 

can be specified to use water from a rainwater tank, on-site recycled (grey) water tank, or recycled water from a 
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cluster-level treatment and supply tank. The cluster definitions (if using cluster-level recycling) also need to be 

provided in which the buildings comprising a cluster are specified.  

 

The water sources rankings for applications are used to appropriately allocate available water supplies to specific use 

(application) demands. For instance, a building may have the following scheme: water for cooking and human 

consumption is derived only from the municipal supply, rain water if available can be used for showers, faucets 

(taps), laundry and toilets (i.e. non-potable uses only), and grey water if available can be used only for toilets and 

laundry. Grey water may also be used for industrial usage and so on. Consider the sample case shown in Fig. 2 where 

demands for a residential building are shown. Suppose this building was specified as having no rainwater harvesting 

system, but connected to a cluster-based recycled water supply line (in addition to the default municipal supply). 

Using the source rankings (as described earlier), the demand volume for the kitchen, showers and taps are associated 

with the municipal supply, while the demand volume for toilets and laundry is associated with recycled water supply 

for the building. 

Building Energy Consumption related to Water Use 

In this module, we model three elements for computing energy consumption related to water use at the building-

level: heating, pumping, and on-site recycling (Cheng, 2002; Friedler and Hadari, 2006). The energy consumption of 

water use associated with the operation of various appliances such as dishwashers, laundry machines etc. is factored 

indirectly in our computation through inclusion of their hot water use. 

 

We assume that at the building-level, three types of water sources maybe available: reticulated supply from the city, 

rainwater harvested from the roof top, and recycled water produced from on-site treatment units that use wastewater 

generated within the building. This provision is made to enable the assessment of new hybrid architectures of urban 

water supply that are increasingly being adopted in many new developments around the globe (Sharma et al. 2009). 

 

Fig. 2 shows a schematic representation of a building with on-site grey water recycling and a rainwater harvesting 

system. The municipal supply is shown with an additional pump to illustrate the on-site booster pumping that is 

needed for tall buildings. 

 

Journal of Infrastructure Systems. Submitted December 29, 2011; February 26, 2013; 
posted ahead of print February 28, 2013. doi:10.1061/(ASCE)IS.1943-555X.0000153

Copyright 2013 by the American Society of Civil Engineers

J. Infrastruct. Syst. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
A

SS
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

03
/1

9/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

 8 

 

Figure 2: Water source options of municipal supply, on-site recycling and rainwater harvesting and usage of these 

water different sources (represented through coloured bars on each floor) in a multi-storey building. 

 

Energy for Heating 

Energy used for heating water depends on ambient temperature, hot water temperature, and the heater efficiency. In 

residential uses, hot water is used in kitchen dishwashers, faucets, showers and laundry machines. The energy used 

for heating water was computed as (Kenway et. al, 2008): 

 

EH
VH c T

h

     (2) 

where, VH is the volume of water heated in the building,  is the density of water (1000 kg/m3), c is the specific heat 

capacity of water (4185 J/kg-K) and T is the temperature difference between ambient and heated water. The 

temperature to which water is heated in residential hot water heaters is typically 45o C – 70o C (Cohen et al. 2004; 

Kenway et al. 2008). The parameter h is the efficiency of the water heater. For gas heaters, the efficiency typically 

ranges from 50%-70% and for electric heaters from 75-95% (CECCEC, 2013). In our work we have used a baseline 

assumption of 70%.   

 

The volume of heated water in a building, VH, can be computed as: 

VH hi
vi

i 1

A

                (3) 

where, vi is the total volume of water used in application i, hi  is the fraction of hot water used in application i, and A 

is the total number of applications in which water is used in the building.  

 

In residential use, we have modelled four applications that use hot water: kitchen, shower, faucets and laundry. In the 

default case, we use the following fractions based on reported data (Kenway et al. 2008; Racoviceanu and Kamey, 

2010): kitchen ( hi = 0.6), shower ( hi = 0.5), faucets ( hi = 0.5) and laundry ( hi = 0.5). More detailed analysis can 

be done by varying these fractions to see the impact on water heating energy requirements. Also note, that the 
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assumption here is that all buildings have their own water heaters (and there is no provision of hot water from a 

centralized source to different buildings). 

 

Energy for On-site Pumping 

The reticulated water supply, provided by a utility, is typically at a pressure that is sufficient for providing water up 

to a certain number of stories in a building. Tall buildings require additional pumping to boost the water supply to the 

upper floors. This additional pumping is done on-site. There are also additional pumping requirements if 

supplementary water sources such as rain-water harvesting systems (with storage tanks located on ground-level) or 

on-site water recycling units are installed in the building (Retamal and Turner, 2010).  

 

The total energy required for pumping water in the building, EP, is computed in the model as: 

Ep ep VM max F 1 fM , 0
building height

1 2 4 4 4 4 3 4 4 4 4 
VRWF
rainwater
1 2 3 VWWF

recycledwastewater
1 2 3     (4) 

where (Cheng, 2002): 

 

ep
hF 1 l

p

.        (5) 

F is the number of floors in the building; fM is the number of floors to which the municipal supplied water can reach 

without on-site pumping in the building and is typically equal to four. The parameter  is the specific weight of 

water, i.e. weight of one unit volume of water. For 1 m3 of water (with a mass of 1000 kg), it is:  = mg = 9800 N (g 

is acceleration due to gravity) (Cheng, 2002). 

 

The variable ep is the energy (in J) needed to pump one cubic meter of water over one floor of the building with floor 

height hF , frictional pipe losses l and pumping efficiency P (Cheng, 2002). This pumping energy factor is then 

multiplied with the volume of municipal water supplied VM, volume of rainwater harvested and supplied VRW, and 

volume of on-site recycled wastewater VWW along with the number of floors, F, over which the water is pumped. 

 

Energy for On-site Recycling 
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The energy used for recycling grey water in a building, Er, depends on the technology used in the recycling units 

such as membrane bioreactor systems, rotating biological contractor systems etc. (Nolde, 2005) and total volume of 

water that is treated for re-use. In the framework module, it is computed as:  

 

Er er vi
i 1

Ag

 (6) 

 

where er is the energy intensity of the building recycling unit (in J/m3), vi is the volume discharged from application i 

that produces grey water, and Ag is the number of all grey water producing applications (that typically include 

kitchen, showers, faucets, and laundry).  

 

The total energy consumed for using water in a building is then given by: 

 

ET EH EP Er          (7) 

 

Model Outputs 

Fig. 3 shows sample results for plot A-01 (described in Table 1) in which it is assumed that rainwater harvesting and 

on-site grey water recycling is available. A notional time-series (weekly time-step) data of precipitation and 

temperature were provided as inputs. The weekly water requirement for this plot (as computed by the demand 

module) is estimated to be approximately 225 m3 (based on its usage type and a constant occupancy level). The 

fluctuations in the municipal supply arise due to rainwater utilization (when available) as shown in the top right chart 

that then reduces the demand for municipal water (as shown in the top left chart). The time horizon used in this 

example is of 52 weeks (one-year). 

 

Figure 3: Sample results of water and associated energy use in mixed-use (commercial and industrial) building with 

rainwater harvesting and on-site grey water recycling systems. Top left plot shows estimated water demand for 

building. Top right plot shows rainwater used in building (based on precipitation data). Bottom left plot shows 
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volume of recycled water used. Bottom right shows estimated energy (in electric kWh) associated with water heating 

(red line), water pumping (blue line) and water recycling (grey line) within the building. 

CASE STUDY: MASDAR CITY 

Masdar City is a planned urban development located 17 km South-East of Abu Dhabi in the United Arab Emirates 

(UAE). The city master plan has been designed by the British architectural firm Foster + Partners and is targeted to 

be a sustainable, zero-carbon, zero waste community (Foster and Partners, 2007). Given the strong upfront focus on 

environmental sustainability in its planning, we considered Masdar City to be an interesting case to study in detail. 

 

Masdar has a planned area of 6 km2, and will house 50,000 people, 1,500 businesses, and a technical university. It is 

expected that more than 60,000 additional workers will commute daily from neighbouring areas. The project was 

estimated (in 2007) to cost US$22 billion and is targeted for completion by about 2020 (Locke, 2009). The design of 

the city includes a mix of residential, commercial/institutional and industrial zones, and some of the individual 

buildings have been designated for mixed (residential and commercial) use. The city has a grid-based plan and 

consists of two squares. The larger square houses most of the buildings, facilities, and the university. For this case 

study we have focused only on the larger square. In the study, we used plot-level information from a database 

provided in the Master plan (Foster and Partners, 2007).  

Demand Model Benchmarking  

Using the water system description provided in the planning documents (Foster and Partners, 2007), we evaluated the 

demand model built in our framework. We used the same coefficients for the usage types that had been specified in 

the plan. For instance, for residential indoor demand, we used 180 litres/person/day as has been assumed in the 

master plan. Fig. 4 shows a comparison of the computed daily water demand by major building types (shown along 

the x-axis) as obtained from our model along with data provided in the baseline Masdar water system plan (Foster 

and Partners, 2007).  

 

Figure 4: Comparison of water demand estimates (for types of buildings shown along x-axis) computed with 

framework against data in Masdar master plan. SEZ is abbreviation for Special Economic Zone. 

 

Journal of Infrastructure Systems. Submitted December 29, 2011; February 26, 2013; 
posted ahead of print February 28, 2013. doi:10.1061/(ASCE)IS.1943-555X.0000153

Copyright 2013 by the American Society of Civil Engineers

J. Infrastruct. Syst. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
A

SS
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

03
/1

9/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

 12 

Overall, the computed data (in black bars in Fig. 4) matches reasonably well with the provided data (in grey bars in 

Fig. 4). In some building types however there are some larger discrepancies, e.g. for the University and for the 

commercial offices. The total computed indoor demand from our model was 13,537 m3/day while the estimate 

provided in the city plan document is 11,500 m3/day. This discrepancy is due to not all the coefficients for all types 

of buildings being given in the master plan (in which case we used data shown in Table A for calculating water 

demand).  

 

The demand model not only computes total water requirements, but also breaks down the required water by 

application type. The breakdown is done for residential and commercial categories for which average data are well 

known (Cheng, 2002; Mays, 2000) and is provided in Table B in the Appendix. For the industrial case and for certain 

building types (e.g. Hospital), however, only an aggregate demand was computed.  

Water Demand Scenarios 

In order to investigate the energy consumption in the WES in Masdar, we first created a number of water demand 

scenarios. There are different building types defined in the Masdar master plan (Foster and Partners, 2007). We 

aggregated these types into three broad categories: residential, commercial and industrial as shown in Table 2. 

  

 

Table 2. Masdar Building Types Aggregation into three general categories 

 

1 SEZ –Special Economic Zone,  

2 ADFEC – Abu Dhabi Future Energy Company 

 

Demand levels were varied between low, average and high for the three aggregated building types (residential, 

office/commercial, and industrial). For three levels and three types, 33 = 27 combinations were possible, and all the 

27 possibilities were generated for analysis (see Fig. 5). Table A in the appendix provides details of the demand 

coefficients used for the different levels.  
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Figure 5: Indoor water demand scenarios (shown in blue bars) for Masdar. The letters in the x-axis labels, L, A, and 

H, indicate demand levels of Low, Average and High for residential, commercial, and industrial sector respectively.  

 

The total daily demand that corresponds closest to the 11500 m3/day estimate for Masdar in the baseline master plan 

is associated with the AHA scenario here. The AHA scenario yields a daily water requirement of 11,200 m3 and 

corresponds to the average residential, high office/commercial, and average industrial demand case. 

RESULTS: ENERGY COSUMPTION FOR WATER USE  

For the 27 different water demand scenarios, we estimated the associated energy requirement in the WES. The water 

supply/source architecture was based on the baseline plan for the city in each scenario. In the baseline plan, it is 

assumed that buildings receive municipal water (obtained through desalination), and can also use cluster-level 

recycled grey water. There is no rainwater harvesting system due to extremely low precipitation in the area (WRAB, 

2009). At the building level, the energy associated with water use in Masdar as modeled in our framework, is thus 

only due to water heating in residential and commercial use and booster pumping if the building is higher than four 

floors. 

 

Furtheremore, in this study, no assumptions of water heating (or cooling) have been made for the industrial sector 

due to lack of details and data regarding the specific water applications/processes in that sector in Masdar. Masdar is 

intended to be focused on clean/renewable energy technologies such as photovoltaics and wind power, and therefore 

we do not expect high water usage as in some industries (such as paper mills, petrochemical plants etc.) As a result, it 

can be expected that the residential sector will constitute a larger share of the energy use due to its water heating 

applications (that have been factored in this study). 

 

 

Figure 6: Estimated annual energy requirement for water heating and pumping across all buildings in Masdar for 

different water demand scenarios. 
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Fig. 6 shows the estimated energy required annually for heating water (in thermal kWh) and for pumping municipal 

water and recycled grey water (in kWh electric) from cluster-level treatment units. It is assumed that the hot water is 

heated from given ambient temperature (as defined by mean monthly temperature data shown in Table C in the 

appendix) to a temperature of 50oC. The diurnal patterns and insulation effects have been neglected here.  

 

It can be seen that the pumping energy is two orders of magnitude less than the heating energy. This is because of the 

high heat capacity of water and also due to the urban form of Masdar in which only low rise buildings, mostly having 

four or less floors. The maximum number of floors in any building in the city is eight (Foster and Partners, 2007). 

 

We combine the energy for heating and pumping requirements to compute the total WES energy intensity, end-use 

using Equation 8 as follows:  

End Use

EH C Ep
Vbuildings

          (8) 

The electric pumping energy, Ep, is multiplied with a factor C to convert it from electrical to thermal (or primary) 

energy based on the efficiency of energy conversion in power plants. This conversion factor is typically equal to 

three, i.e. it takes three units of thermal energy to produce one unit of electrical energy (Cohen et al. 2004; Plappally 

and Lienhard, 2012). Vbuildings is the total indoor water demand (which is assumed to be fully met) across all 

buildings. Fig. 5 shows the computed energy intensity of the WES for the different water demand scenarios in the red 

line plot. The values vary between ~ 7.8 kWh/m3 to 12 kWh/m3. In electrical equivalent (using a factor of 3), this 

translates to 2.6 – 4 kWh/m3. 

 

The oscillating pattern can be explained as follows: Consider the first three scenarios: LLL, LLA and LLH. The 

intensity progressively decreases across the three cases because the total volume of water (Vbuildings in Eq. 8) goes up 

(see Fig. 5). Since no water heating component is modeled for the industrial case, EH does not increase 

proportionately with Vbuildings, as a result end-use decreases. It can be noted that the three lowest points in the plot all 

correspond to cases in which the residential sector has low demand (LLH, LAH and LHH), and the three highest 

points in the plot are for HLL, ALL, and HAL – all cases in which the residential sector has high or average demand. 

This indicates the dominance of the residential sector in driving the WES energy intensity for Masdar.  
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Monthly Variation of WES Energy  

In general, monthly variation of the WES can occur due to change in water demand (driven by seasonal effects), 

availability and use of rainwater and changes in hot water usage levels. For the case of Masdar, the precipitation is 

negligible (WRAB, 2009), so rainwater harvesting is not considered as a feasible option here. In the study, we 

assumed the water demand to be constant (which is a reasonable first order assumption for indoor water use). The 

energy for heating water, however, does vary due to temporal changes in ambient temperature (see Eq. 1). As 

mentioned previously, we do no account for pipe insulation, and do not include diurnal temperature changes. For a 

first order estimate, only mean monthly data (shown in Table C) are used. The results from these simplified 

assumptions can be used for relativistic comparisons across the monthly time-scale and are shown in Fig. 7.  

 

Figure 7: Monthly Energy Requirement for Water Use in Buildings in Masdar 

 

It can be seen that there are appreciable differences in WES energy on a month to month to basis. The line-plots in 

the figure correspond to different water demand scenarios. It can be seen that the amplitude of the plot across the 

months (for any particular demand scenario) ranges in magnitudue from ~ 1 GWh to ~ 2.5  GWh. Conservation of 

water at different times of the year thus has significantly different energy impacts.  

 

Energy savings through hot water use have been subject of discussion in the context of countries with colder climates 

(Kenway et al. 2008; Racoviceanu and Kamey, 2010), it can be seen that even in hotter regions, such as the UAE, 

there can be appreciable energy savings with improved building hot water mangement. An interesting possibility for 

locations with warmer climates is to heat the water using solar-thermal rooftop systems. Such systems are being 

increasingly adopted (EmiratesNews, 2012) and even mandated (JordanTimes, 2012). However, analysis such as the 

one presented here can be used for quantifying and evaluating the costs and benefits for installing such systems. 

 

Impact of Water Heating on WES Energy Requirements 

Since the water heating energy dominates the WES energy requirement (as shown in Fig. 6), the impact of hot water 

is investigated in detail. For that purpose, a range of hot water fractions for each of the four applications (kitchen, 
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shower, faucets and laundry), hi, modelled in the framework were used. For each case, the fraction varied from 10% 

to 70%, and a total of 81 combinations with different levels of hot water use in the four modelled applications were 

used to obtain a range of associated energy use for hot water.  

 

Figure 8: Monthly variation in water heating energy for varying hot water use levels. The baseline water demand 

scenario AHA was used.  

 

Fig. 8 shows the variation in heating energy required for water on a monthly basis for different hot water use levels. 

There are 81 data points for each month, and the results are computed with the assumption of 50oC temperature for 

hot water. The lowest data points (along the y-axis) correspond to smallest hot water fractions. Note that the impact 

of reducing the hot water fraction can be significant in the colder winter months of (December though February).  

 

Building-Level Variation in WES Energy  

 

In addition to temporal variation of WES we also explored the spatial variation. In that regard, the computed annual 

WES energy requirements for each individual building along with its computed water demand was evaluated. Fig. 9 

shows the results. Each point in the plot represents computed data for a particular building. The variation in water 

demand (and primary energy for water use) spans a few order of magnitudes across the buildings (due to the 

variation in lot sizes, occupancy levels, water use application types etc.) The lines of constant WES energy intensity 

are drawn to show how the buildings compare on the basis of per unit water use. From Fig. 9 it can be seen that the 

variation is from 2 kWh/m3 to 14 kWh/m3. This type of up front analysis, based on baseline development plans, can 

be useful in identifying initial targets for improving efficiency and focusing conservation efforts once the buildings 

have been constructed and operationalized. 

 

 

Figure 9: Energy intensity of water use in individual buildings computed using building parameters in planning 

document for Masdar. Identifying high energy intensity buildings upfront can aid in focusing efficiency plans.  
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Energy Consumption Across All Water Segments  

For comparative purposes, we also evaluated other major segments of the water system of Masdar City. The energy 

requirements in the water production, distribution, recycling and sewerage treatment segments were modeled in an 

aggregate basis using water volume estimates and enegy intensity data from the basline system design as reported in 

(Locke, 2009) for consistency, and using other published sources as needed.  

 

Using the building demands (for each scenario), the required volume of water for distribution, and desalination was 

determined. A leakage factor (of 20% as provided in the baseline plan) in the distribution system was also assumed. 

The grey water volume that is reused along with black water (i.e. water from toilets containing human wastes) 

volume that would be treated for disposal was also determined. In the production segment, desalination through a 

Reverse Osmosis (RO) system was assumed (as discussed in the master plan) in which the lower range of the 

electrical energy consumption is 4 kWh/m3. The distribution system energy intensity is obtained from empirical data 

of an urban area with flat topography (which is also the case for Masdar) (Kenway et al., 2008). The energy intensity 

of greywater recycling is based on data provided in (Friedler and Hadari, 2006), and of waste water treatment in 

(Gleick, 1994).  Fig. 10 shows the results (all electrical energy has been converted into primary thermal equivalent).  

 

Figure 10: Energy Required Annually in the Water Segments in Masdar City 

 

It can be seen that the total water-related energy from production to disposal for Masdar City can range from 35 

GWh to 93 GWh for various water demand scenarios. For the case in which the water demand matched with the 

baseline demand in the master plan (AHA scenario), the total annual energy requirement is 76.3 GWh. Compared 

with the lowest demand scenario, the energy difference is 41.5 GWh or ~14 GWhe.  Fig. 10 also shows that the 

buildings use (end-use) segment has the highest annual energy requirement fraction.  This illustrates the potential for 

energy savings through reduced water use in buildings (particularly in the residential sector). 

 

For a broader perspective of energy intensity in urban water systems, the computed data for Masdar (using our 

framework) and published data for other cities around the globe is shown in Table 3. 
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Table 3. Energy Intensity of Urban Water Segments in Different Cities 

 

a: For Masdar, the End-Use intensity corresponds to the AHA demand scenario 

b: based on reported data in (Cohen et al. 2004), table 9 

c: based on reported data in (Kenway et al. 2008), Fig 4  

d: based on reported data in (Cheng, 2002), pp 264 

 

For the case of Masdar, the End-Use intensity corresponds to the AHA demand scenario (converted into kWhe from 

Fig. 5) and is based on our computed results. The intensities for the other segments for Masdar (Supply & Treatment, 

Distribution and Wastewater Treatment) are based on information in the master plan and other published literature 

described earlier. For the other cities, the data corresponds to information provided by regional utilities.  

 

Table 3 shows that the energy intensity associated with supply and treatment (production) of water for Masdar (at 4 

kWh/m3) is high. Thus it is imperative for Masdar City that this energy for use by the water system be generated by 

renewable sources such as wind, solar or geothermal power if it is to live up to its environmental sustainability goals. 

Also, it should be noted that we have focused on quantifying the energy intensity (and not emissions since that is 

beyond the scope of this paper). At the most fundamental level, for long-term sustainability it is important to seek a 

lower energy footprint (no matter whether it comes from fossil fuel or solar power).  

 

Effect of Per Capita Water Demand Reduction 

The daily per capita indoor residential demand of 180 litres assumed in the baseline plan for the city (Foster and 

Partners, 2007) can be considered to be generous if data from other water scarce regions is considered. For instance, 

in Brisbane, Australia it is 120 L/person/day, whereas 100 and even 60 litres per capita daily demand is reported in 

literature for some water scarce urban areas (Friedler and Hadari, 2006). It therefore seems reasonable to assume that 

it maybe possible to achieve lower indoor water use (than what has been planned) for Masdar. The energy impact of 

reduced per capita water demand in the residential sector was examined, and the results are shown in Fig. 11. The 

demand was considered from 60 L/person/day to 180 L/person/day, and low levels were assumed for commercial and 

industrial sectors.  
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Figure 11: Energy savings possible (in Masdar City across all buildings) with reduction in daily per capita use. Low 

level of industrial and commercial water use is assumed here. The slope of the trend is 0.225 GWh/litre, i.e. a one 

litre reduction of per person per day in water use would result in ~ 225 kWh reduction in annual energy consumption 

in the city. 

 

Compared with the 180 L/person/day demand scenario, the total energy difference with the 120 L/person/day case is 

~13 GWh. The results also show that for every unit reduction in residential water use (i.e. 1 L/person/day), there can 

be annual energy savings of 225 kWh. A reduction in end-use water will impact energy used at building-level and 

therefore energy bill savings for the customers (particularly if water heating is based on electric or gas-fired heaters). 

 

As noted earlier, this analysis, based on draft plans provides estimates to planners. The results can be used to 

potentially set new baselines (such as shifting to 120 L/person/day from 180 L/person/day) by providing a 

quantitative basis of the benefits. This can also inform trading and sizing of other inter-dependent design elements 

such as roof-top photovoltaic systems that are to provide on-site power generation in buildings in Masdar. More 

importantly, it potentially provides a basis for messaging to future occupants about the impact of their water use on 

energy consumption and helping to alter consumption patterns. Understanding who enjoys the savings is important 

for effective messaging and directing appropriate efforts to relevant stakeholders (Sharma et al. 2009). In the interest 

of lowering energy use and improving environmental sustainability, planners and city water managers can use these 

types of results to encourage water conservation.   

CONCLUSIONS AND FUTURE WORK 

A shift from traditional least-cost designs for urban water systems to new solutions that can perform well over their 

life cycle for multiple objectives (motivated by environmental sustainability) is occurring (Lundie et al., 2004). This 

work furthers the research on the topic of energy requirements for water end-use in an urban context and is connected 

to the broader research effort of integrated planning and design of urban infrastructure (Alfaris et al., 2010; de Weck et 

al. 2011; Siddiqi and Anadon, 2011). The analysis presented here serves as an illustrative example of how water and 

energy use can be considered in an integrated fashion to inform planning decisions as well as guide policies for water 

management in future cities. 
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For the case study focused on Masdar City – a planned urban area in a region of the Middle East that is under going 

rapid urbanization – results show that the end-use segment can be expected to be comparable in its energy intensity 

with the more well known energy intense water production segment (based on desalination). Results summarized in 

Table 3 and in Fig. 12 collectively showcase the importance of the end-use segment in water-related energy and the 

impact of residential water use on energy requirements.  

 

At a more general level, the analytical approach described here can serve as an illustrative example for similar 

evaluation for other areas.  Some key insights that can be drawn from this work are that the energy intensity in the 

WES can be significant as compared to the other segments of the urban water system. When compared with on-site 

booster pumping and greywater recycling, water heating energy dominates the energy requirements in the WES. 

While this has been known to be true for cities in colder regions (Clarke, et. al. 2009; Kenway et. al. 2008), we find 

that even in the warm regions such as the UAE the heating energy for water use can be comparatively large. The 

importance for solar water heating is thus highlighted here.  

 

We note that the results of this work are based on computations (using building plans data and water demand ranges). 

A key next step in our future work would be to use actual measurements of water and energy use in buildings for 

comparison against the predictive results. Some recent work has begun to characterize energy use in buildings 

(Martani et. al. 2012) using estimated occupancy data of buildings and actual water and energy consumption.   

 

In this study, we accounted for pumping requirements for recycled grey water supplied from cluster-level recycling 

systems, however in analysis for other planned areas where building-level greywater cycling may be employed, one 

should include the possibility of energy recovery from the waste water streams. 

  

In this paper, we focused on energy requirements alone and did not include cost considerations. In future work, we 

plan to incorporate cost assessments so that the trade-offs between centralized municipal supply versus the new 

hybrid configurations of on-site recycling (and rain water harvesting where applicable), solar water heating versus 

the more common electric or gas-fired heaters etc. can be analyzed. Ultimately, both cost as well as environmental 

Journal of Infrastructure Systems. Submitted December 29, 2011; February 26, 2013; 
posted ahead of print February 28, 2013. doi:10.1061/(ASCE)IS.1943-555X.0000153

Copyright 2013 by the American Society of Civil Engineers

J. Infrastruct. Syst. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
A

SS
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

03
/1

9/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

 21 

performance data are needed for informing urban planning and design choices.  

 

In the future, we also aim to expand the scope of analysis to investigate issues such as the impact of climate change 

(manifested through changed precipitation and rainwater availability, ambient temperature change etc.), adoption of 

new building-level technologies, and expected behavioural shifts in future usage (e.g. reduction in per capita use, 

extent of hot water use etc.). The goal for such analytical effort would be to obtain insights relevant for planners who 

are re-visiting traditional architectures and are seeking to develop new areas that adhere to higher standards of 

resource conservation, and strive towards long-term environmental sustainability. 

 

NOMENCLATURE 

ac
b : area in building b to be used for commercial/office space [m2] 

ai
b : area in building b to be used for industrial space [m2] 

c:  specific heat capacity of water, 4185 [J/kg-K] 

c i : coefficient of per capita water demand for residential use at level i [litres/person/day] 

cc
j : coefficient of water demand for commercial space at level j [litres /m2/day] 

c i
k: coefficient of water demand for industrial space at level k [litres /m2/day] 

EH:  energy for water heating in a building [J] 

EP:  energy for water pumping in a building [J] 

er:  energy intensity of wastewater recycling [J/m3] 

Er:  energy for wastewater recycling in a building [J] 

F:  number of floors in a building 

hf :  height of a building floor [m] 

pb : number of occupants expected for building b 

VH:  volume of heated water [m3] 

wb :  in-door water demand for building ‘b’[litres/day] 

hi: fraction of hot water use for application i [%] 
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l:  water pipe losses in a building 

 :  specific weight of water [N] 

end-use :  water end-use energy intensity [kWh/m3] 

h:  water heater efficiency [%] 

p :  building pumping efficiency [%] 

:  density of water, 1000 [kg/m3] 
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Table A. Indoor Water Demand Coefficients* 
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*Based on data provided in Table 3.2 and 3.3 in (Mays, 2000). 

1 SEZ –Special Economic Zone,  

2 ADFEC – Abu Dhabi Future Energy Company 

 

Table B. Water Fractions by Application*  

 

*Based on data provided in Section 5.2.3 in (Fosters and Partners, 2007). 

 

Table C: Abu Dhabi Mean Monthly Temperature*  

*Source: (UAEClimate, 2012). 
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Figure Captions List 

 
 
Figure 1: Modelling framework with key computation modules (shown as boxes) and inputs 
and outputs (shown in brackets).  
 
Figure 2: Water source options of municipal supply, on-site recycling, and rainwater 
harvesting and usage of these water different sources (represented through coloured bars 
on each floor) in a multi-storey building. 
 
Figure 3: Sample results of water and associated energy use in mixed-use (commercial and 
industrial) building with rainwater harvesting and on-site grey water recycling systems. 
Top left plot shows estimated water demand for building. Top right plot shows rainwater 
used in building (based on precipitation data). Bottom left plot shows volume of recycled 
water used. Bottom right shows estimated energy (in electric kWh) associated with water 
heating (red line), water pumping (blue line) and water recycling (grey line) within the 
building. 
 
Figure 4: Comparison of water demand estimates (for types of buildings shown along x-
axis) computed with framework against data in Masdar master plan. SEZ is abbreviation for 
Special Economic Zone. 
 

Figure 5: Indoor water demand scenarios (shown in blue bars) for Masdar. The letters in the 
x-axis labels, L, A, and H, indicate demand levels of Low, Average and High for residential, 
commercial, and industrial sector respectively.  
 

Figure 6: Estimated annual energy requirement for water heating and pumping across all 
buildings in Masdar for different water demand scenarios. 
 

Figure 7: Monthly Energy Requirement for Water Use in Buildings in Masdar 
 

Figure 8: Monthly variation in water heating energy for varying hot water use levels. The 
baseline water demand scenario AHA was used.  
 
Figure 9: Energy intensity of water use in individual buildings computed using building 
parameters in planning document for Masdar. Identifying high energy intensity buildings 
upfront can aid in focusing efficiency plans.  
 
Figure 10: Energy Required Annually in the Water Segments in Masdar City 
 

Figure Captions List
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Figure 11: Energy savings possible (in Masdar City across all buildings) with reduction in 
daily per capita use. Low level of industrial and commercial water use is assumed here. The 
slope of the trend is 0.225 GWh/litre, i.e. a one litre reduction of per person per day in 
water use would result in ~ 225 kWh reduction in annual energy consumption in the city. 
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1

Table 1: Sample input database of building-level parameters used in analysis 

Plot No. Plot area 
[m2]

Floors Total Floor 
Area [m2]

Roof Area
[m2]

Usage Type Floor Area 
[m2]

Number of 
Occupants

A-01 19,766 5 44,474 14,627 Offices 4,447 222
Industrial 17,789 198
Car park 22,237

A-02 31,844 6 143,298 31,844 Residential 50,154 1,003
Car park 93,144

: : : : : : : :

Table 2. Masdar Building Types Aggregation into three general categories 

Aggregate Category Masdar Building Type

Residential Residential
Office/Commercial SEZ1-Offices, ADFEC2 Headquarters, Commercial, Retail, Retail 

Plaza, SEZ-Local Center, Railway Station, Catering, University, Hotel
Industrial SEZ-Technology Park, SEZ-Research Labs 

1 SEZ –Special Economic Zone,  
2 ADFEC – Abu Dhabi Future Energy Company 

Table 3. Energy Intensity of Urban Water Segments in Different Cities 

Segment Intensity 
[kWhe /m3]

Masdara San Diegob Sydneyc Melbournec Taipeid

Supply & Treatment 4 1.70 0.03 0.01 0.21
Distribution 0.14 0.27 0.92 0.11 0.17
Urban Indoor End-Use 3.26 3.16
Wastewater Treatment 0.41 0.46 0.5 1.14 0.41

a: For Masdar, the End-Use intensity corresponds to the AHA demand scenario 
b: based on reported data in (Cohen et al. 2004), table 9 
c: based on reported data in (Kenway et al. 2008), Fig 4  
d: based on reported data in (Cheng, 2002), pp 264 

Table A. Indoor Water Demand Coefficients* 

Building Use Type Units Low Avg. High
Residential L/person/day 100 180 250
Retail, Retail Plaza, SEZ-Local Centre, Railway Station, 
SEZ1-Offices, ADFEC2 Headquarters, Commercial

L/m2/day 1 1.9 4.8

Catering L/person/day 10 15 20
Hotel, Service Apartments L/person/day 200 300 400
University L/person/day 60 70 80
SEZ-Technology Park, SEZ-Research Labs L/m2/day 0.2 1.5 4.4

*Based on data provided in Table 3.2 and 3.3 in (Mays, 2000). 
1 SEZ –Special Economic Zone,  
2 ADFEC – Abu Dhabi Future Energy Company 
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 2 

Table B. Water Fractions by Application*  
 

Indoor Applications Residential Commercial Industrial 
Kitchen 0.15 0.09  
Showers 0.2   
Faucets 0.1 0.28  
Toilets 0.34 0.63  
Laundry 0.21   
Industrial Processes   1 

 
*Based on data provided in Section 5.2.3 in (Fosters and Partners, 2007). 
 

 
Table C: Abu Dhabi Mean Monthly Temperature*  

Month Temperature (C) Month Temperature (C) 

January 17.9 July 34.3 
February 19 August 34.4 
March 22 September 34.4 
April 26.1 October 28.4 
May 30.4 November 24 
June 32.1 December 19.9 

*Source: (UAEClimate, 2012). 
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