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Abstract

Background: Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell
line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either
enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is
of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also
captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site
study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa
Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples.

Results: We find that all of the kits are capable of performing significant ribosomal depletion, though there are
differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify
~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially
detected genes between kits suggests that transcript length may be a key factor in library production efficiency.

Conclusions: These results provide a roadmap for labs on the strengths of each of these methods and how best to
utilize them.

Keywords: RNAseq, rRNA depletion, Illumina, NGS, ABRF, Transcriptomics

Background
Ribosomal depletion is a critical method in transcripto-
mics that allows for efficient detection of functionally
relevant coding as well as non-coding transcripts
through removal of highly abundant rRNA species. Use
of oligo dT primer to capture the polyadenylated 3′ end
of the transcripts and isolate mRNA is routine in many
RNA sequencing preparations; however this method
lacks the ability to handle degraded samples where most
of the RNA is separated from the 3′ tail, or to isolate
non-polyadenylated transcripts such as lncRNAs. Ribo-
somal removal methods address these issues by directly

depleting the rRNA while leaving other transcripts in-
tact. This technique is widely utilized and is a basic
component of many large datasets [1–3].
The current generation of rRNA removal kits employs

three distinct strategies to deplete these transcripts. In
the first method, rRNA is captured by complimentary
oligonucleotides that are coupled to paramagnetic beads,
after which the bound rRNA is precipitated and re-
moved from the reaction. Kits utilizing this method in-
clude Illumina’s RiboZero, Qiagen GeneRead rRNA
depletion, and Lexogen RiboCop. The second method
uses an alternative strategy, hybridizing the rRNA to
DNA oligos and degrading the RNA:DNA hybrids using
RNAseH. These kits include NEBNext rRNA depletion,
Kapa RiboErase, and Takara/Clontech’s RiboGone. A
third method that is specifically aimed at low-input
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samples using the Takara/Clontech SMARTer Pico kit,
targets the ribosomal RNA sequences after conversion
to cDNA and library prep using the ZapR enzyme. Add-
itional high abundance transcripts such as globin and
mitochondrial RNA (mtRNA) can be targeted by each
method. Despite the availability of many different kits
utilizing these methods, the efficiency of rRNA removal
and possible off-target effects of these different method-
ologies on the resulting RNAseq data remains unclear.
With an increasing number of ribosomal RNA deple-

tion kits available, understanding the relative strengths
of these methods is critical for improving experimental
design. To address this challenge, we have conducted a
cross-site study comparing seven rRNA depletion kits
against a standard sample both as intact and degraded
RNA. We find that about half of the kits are likely to re-
quire significant care in implementation and note that
the Lexogen RiboCop and Qiagen GeneRead kits worked
poorly with heavily degraded samples. The different kits
also appear to be affected by relative lengths of the tran-
scripts as well as the degradation of the input RNA.
These results suggest that different methodologies may
be appropriate depending on the experimental question
and quality of input material.

Results
To better understand the strengths of the different ribo-
somal depletion methodologies available, we utilized a
set of controlled samples that could be broadly distrib-
uted in order to provide a consistent biological back-
ground for each kit and site (Fig. 1). All experiments
utilized the well characterized Universal Human
Reference RNA (UHR) from Agilent, either in its intact

state, or following heat degradation (Additional file 1:
Figure S1). Two control spike-ins were added to this
sample, the Lexogen Spike-In RNA Variant Controls
(SIRVs) which were added before degradation and co-
degraded with the sample, and the External RNA
Controls Consortium (ERCC) from Ambion, which was
added after degradation and thus remained intact and
served as an additional control. It should be noted that
while heat degraded RNA is a proxy for difficult to iso-
late samples (eg, brain microdissections or tumors), the
samples are not formalin fixed and so lack the base
modifications often observed in FFPE samples [4].
Consequently, the degraded sample in this study should
be considered a best case scenario for how the kits
would perform with challenging sample types that yield
poor quality RNA. For each experiment, 100 ng of RNA
input was used with the exception of the Takara/Clon-
tech SMARTer pico kit which used 1 ng input as recom-
mended by the manufacturer.
The study tested seven rRNA depletion kits (Fig. 1),

each tested at four sites. The kits tested include Illumina
RiboZero Gold (RZ), Lexogen RiboCop (LX), Qiagen
GeneRead rRNA Depletion (Q), all of which use bead
capture for ribosomal depletion, the New England
Biolabs NEBNext rRNA Depletion (NE), Kapa RiboErase
(K), and Takara/Clontech Ribogone (CR) kits that are
based on RNAseH degradation of the rRNA, and
SMARTer Pico (CZ) which uses the ZapR enzyme to re-
move rRNA after library prep. The Lexogen, Qiagen,
Ribogone, and NEBNext kits all utilized the NEB Next
Ultra II directional library generation kit to convert the
RNA to Illumina libraries while the other kits used RNA
library generation kits from the manufacturer of the

Fig. 1 Design of the ribosomal depletion study: Schematic of the sample processing is shown. A single sample of UHR RNA with SIRV spike-ins
was kept intact or heat degraded followed by addition of the ERCC spike-in. The two samples were then distributed to the participating sites
where they were run as technical duplicates for each kit. All graphics were either produced by the authors or are public domain images that are
no longer under copyright
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depletion chemistry. A total of 11 sites participated in
the study with each site handling no more than four kits.
Sites were selected from genomic core facilities that are
members of the Association of Biomedical Research
Facilities (ABRF) who routinely preform RNA library
preparation for academic labs. For each vendor, a con-
sultation conference call was held between the vendor
and the participating sites to review the protocol in de-
tail before the experiment was performed with the goal
of standardizing and clarifying the protocol, thereby
minimizing the chance for confusion about the method-
ology. Full details of alterations to the standard protocols
agreed on by the vendor and the participating sites can
be found in the Additional file 2. Technical duplicates of
both the degraded and intact RNA were run at each site
for each kit. The total 106 samples after dropouts were
pooled and sequenced on three NextSeq500 runs at a
single site to eliminate bias due to sequencing.
The different methodologies were first evaluated for

their ability to perform their primary objective, the re-
moval of rRNA from the samples before sequencing.
rRNA reads in each sample were identified by aligning
to known rRNA sequences using BWA. A cutoff of 50%
nuclear rRNA was chosen to indicate ribosomal deple-
tion failure. Illumina’s RiboZero Gold kit showed ~ 5%
rRNA with the intact sample at all sites (excluding a sin-
gle point failure) but slightly higher rRNA fractions for
the degraded sample. This kit was used as a baseline for
the other kits due to its long-standing reputation in the
sequencing community (Fig. 2a). The other kits that
used the capture method for depletion were less

consistent than RiboZero Gold with one failed site for
Lexogen RiboCop and three failed sites for the Qiagen
GeneRead rRNA depletion kit. For both the Lexogen and
Qiagen kits, the intact samples performed significantly
better than the degraded sample and caution should be
used when using these kits on highly degraded RNA.
By comparison, the kits that degraded the rRNAs by

either RNase H treatment or using ZapR showed more
consistent results. Excluding single sites that failed with
the NEBNext Ultra rRNA and SMARTer Pico kits, those
two kits as well as the Takara/Clontech RiboGone and
Kapa RiboErase kits performed very well with no differ-
ences observed between intact and degraded RNA. The
RNaseH methods all showed very low rRNA fractions
overall with the noted exception to the NEB kit. The
SMARTer Pico kit had a slightly higher rRNA level,
similar to that observed with Illumina Ribozero Gold de-
graded samples.
For those samples with successful rRNA depletion, we

next ascertained the quality of the RNA sequencing data.
Samples with greater than 50% rRNA were excluded
from further analysis to eliminate artifacts that may be
caused by improper implementation of the protocol. All
the kits showed strong strand bias as expected by the
protocols (Fig. 2b). Notably, SMARTer Pico reads
mapped to the sense strand, which is the opposite strand
from the other methods. While this is expected, care
should be taken in adapting existing informatics pipe-
lines to this kit. Differences were observed among the
kits in how they handled mtRNAs. These were a major
contaminant in the Clontech kits, particularly the

a b

c

Fig. 2 Properties of the rRNA depleted libraries: a) Fraction of reads mapping to nuclear rRNA shown. Site number indicated by color. Intact samples
are shown as circles, degraded samples are shown as diamonds. Kit abbreviations: RZ = RiboZero Gold, LX = Lexogen RiboCop, Q = Qiagen GeneRead
rRNA Depletion, NE = NEBNext rRNA Depletion, K=Kapa RiboErase, CR = Clontech Ribogone, CZ = SMARTer Pico total RNA. b) Reads were mapped to
exons in UCSC known gene and scored based on strand of alignment. c) Fraction of reads mapping to mt rRNA shown as in A. *- RiboZero site 3 used
standard RiboZero instead of RiboZero Gold
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RiboGone method that only targets the 12 s mtRNA and
not the 16 s mtRNA. The other methods that addressed
all mtRNA reads, such as Illumina Ribozero Gold, sig-
nificantly reduced the fraction of reads from mtRNAs
(Fig. 2c). This is especially noticeable in the RiboZero
samples where site3 utilized a standard Human/Mouse/
Rat kit instead of the RiboZero Gold.
Looking at the non-rRNA reads in each sample, the

vast majority align to protein coding genes based on the
ENSEMBL annotation. All samples show > 60% protein
coding with most over 80% and the Clontech RiboGone
kit having the largest fraction mapping (Fig. 3a). Most of
the samples identified ~ 14,000 genes expressed at
greater than one RPKM and ~ 16,000 at over 0.1 RPKM
(Fig. 3b). A single site using the Takara/Clontech SMAR-
Ter Pico kit did show a somewhat reduced number of
genes, which was associated with a lower library com-
plexity observed from that site. Antisense mapped reads
and reads mapping to the signal recognition particle
RNAs (SRPs) were the most variable aspect of each sam-
ple though the source of these differences were unclear
as they varied widely from site to site.

While the total number of protein coding genes de-
tected was quite similar, many genes appear to be de-
tected at significantly different rates. To better
understand this observation, we performed differential
gene expression analysis on the intact RNA samples that
passed our QC metrics, comparing each preparation
back to Illumina RiboZero Gold (Fig. 3c). The Qiagen
rRNA depletion kit was excluded as only two replicates
passed these criteria. Hierarchical clustering of the dif-
ferentially detected genes, clusters the kits first by their
RNAseq library prep methodology, with all three kits
prepared using the NEB Ultra II Directional RNA
Library kit clustering together, followed by the Kapa
RiboErase kit and finally the low input Takara/Clontech
SMARTer pico. Generally, several hundred genes could
be easily observed as differentially detected between
each of the kits and Illumina’s RiboZero (fold changes
> 2, Benjamini corrected p-values < 0.001, Fig. 3d).
Testing the physical properties of these differentially
detected genes found that gene length appears to be a
large contributor to the direction of the bias with
shorter transcripts better detected by RiboZero and

a b

c d e

f

Fig. 3 Protein Coding Gene Detection in rRNA Depleted Libraries: a) Non-mtRNA reads were mapped to the ENSENBL annotation and grouped
by transcript type. Fraction of reads associated with transcript types > 1% shown. Data sets ordered by site then intact/degraded status within
each kit top to bottom. b) Number of genes detected at >1RPKM (dark blue) and > 0.1RPKM (light blue) shown for each replicate. Genes ordered
the same as in A but left to right. c) Changes in RNA detection compared to Illumina RiboZero. Hierarchical clustering genes with fold changes
> 2 and Benjamini corrected p-values < 0.001 are shown (union of all comparisons). d) Count of genes with fold changes > 2 and Benjamini
corrected p-values < 0.001 are shown for each kit as compared to Illumina RiboZero. Increased detection shown in red, decreased detection
shown in green. e) Distribution of read lengths for transcripts detected at higher (red) or lower (green) rate relative to RiboZero. f) Distribution
of GC% for transcripts detected at higher (red) or lower (green) rate relative to RiboZero
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longer transcripts better detected by the other kits
(Fig. 3e). Many of the most variably detected genes
across the data set are quite small, such as mitochon-
drial proteins and ribosomal proteins (Additional file 3:
Figure S2). The libraries themselves did not display any
particular size bias with the RiboZero samples having
an average length distribution similar to the other kits
(Additional file 4: Figure S3). Bias in GC percentage
was also observed in a few samples, with the Kapa
RiboErase kit having the strongest bias against high GC
transcripts (though the underlying gene list is quite
small, Fig. 3f ).
Ribosomal depletion is a key methodology used in

studying noncoding RNAs as many of these transcripts
lack polyadenylation sites [5]. We focused on lincRNAs
(long intervening noncoding RNAs), one type of non-
coding RNAs, since they do not overlap with any protein
coding or other long non-coding RNA genes. Using the
ENSEMBL annotation, approximately 4% of the non
rRNA reads map to lincRNAs using RiboZero (Fig. 4a).
Similar numbers are observed with the SMARTer Pico
kit and Kapa RiboErase. The other kits, all of which were
prepared with NEB Ultra II directional RNA library kit,

show less than 3% of reads mapping to lincRNAs. This
global decrease in number of lincRNA reads appears to
reflect a general decrease in the number of mapping
reads rather than a specific bias against a subset of
lincRNAs. Two lines of evidence support this conclu-
sion. First, the number of lincRNAs detected at > = 0.01
RPM remains ~ 3500 for all of the different kits tested
and no bias is seen against the NEB prepped kits
(Fig. 4b). Second, while the majority of lincRNAs de-
tected can be assigned to 4 specific lincRNAs (MALAT1,
SNORD3A, RNRP and NEAT1), the remaining fraction
remains constant among the different kits, suggesting a
global decrease in mapping (Fig. 4c). The precise set of
lincRNAs detected varies somewhat but the core of 3200
lincRNAs are detected by all of the kits (Fig. 4d).
While comparison of different detection rates of

mRNAs in UHR can point to possible differences be-
tween the kits’ chemistries, the spike-in controls provide
an absolute metric to evaluate their effectiveness. Both
SIRV (co-degraded with the RNA) and ERCC (not de-
graded) control spike-ins were added to the sample be-
fore library preparation and should give an unbiased
look at the behavior of the different kits. As an initial

a b

c d

Fig. 4 LincRNA Detection in rRNA Depleted Libraries: a) Mean fraction of non-rRNA reads assigned to lincRNAs based on the ENSEMBL annotation.
b) Number of lincRNAs detected over specified RPM levels. c) Fraction of lincRNA mapped reads assigned to the top 4 lincRNAs detected for each
sample. Data sets ordered by site then intact/degraded status within each kit left to right. Average RPM counts for each lincRNA was calculated and
the top four lincRNAs were shown keeping remaining lincRNAs in ‘Others’ category. d) Overlap of lincRNAs detected by the three core library prep
methodologies: ribosomal pulldown (RLQ), RNAse H (NCK), and ZapR (CZ). Average RPM counts for each lincRNA for all samples in each of the three core
library methods (RLQ = RZ, LX, Q; NCK = NE, CR, K; CZ = CZ) was calculated and lincRNAs with average RPM> 0 were compared among the methods
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test, we examined the ratio between the two spike-in
types to model the impact of degradation on efficiency
of library formation. Importantly, the kits do treat de-
graded RNA differently in their protocols and the not
degraded ERCCs in the degraded samples were proc-
essed along the path proscribed for the bulk RNA,
suggesting they are under-fragmented relative to the
bulk population. Examining the ratios between the
ERCC and SIRVs, we find that all the intact samples
show ~ 60% SIRV reads (Fig. 5a). By comparison, the
degraded samples show significant bias between the
ERCCs and SIRV, generally favoring the intact ERCC.
The RiboZero Gold and Kapa RiboErase kits show the
least bias based on degradation, while the kits using
the NEB stranded RNAseq kits showed a bias against
shorter RNA fragments, which is similar to what was
observed for protein coding genes (Fig. 3e). The
SMARTer Pico kit is biased against the intact ERCC
spike-ins in the degraded sample, which is likely due
to not pre-degrading the ERCCs in the context of the
degraded total RNA, emphasizing the importance of
this step. Inserting not degraded spike-in controls into
variably degraded experimental samples may confound
the ability of these spike-ins to serve as a
normalization tool, as previously observed [6, 7].

Distinct transcripts are present at defined ratios in the
spike-in control allowing direct visualization of over and
under-representation of transcripts. Within the SIRV
spike-ins, the distinct transcripts were largely at equal
ratios between kits and sites, though deviation from the
expected values is observed (Fig. 5b). The SMARTer
Pico kit was particularly susceptible to variation, possibly
due to the low total input (1:100th of the other kits), and
some transcripts (e.g. purple at 1/4×) show loss of signal
in the degraded sample. By comparison, the ERCC
spike-ins showed significantly more variability across
sites, even within the intact RNA samples
(Additional file 5: Figure S4). Overall, the Lexogen and
Takara/Clontech RiboGone kits generally had the most
consistent and even performance on both the ERCC and
SIRV spike-in controls across their test sites for intact
samples.
Using the transcript diversity within the SIRV spike-in

control, we further examined the general trends ob-
served with respect to transcript length, GC content,
and abundance. The 50 highest expressed SIRV tran-
scripts from the intact samples were individually quanti-
fied using STAR/RSEM and the TPMs normalized to the
expected frequency of the transcripts. We then com-
pared the normalized frequencies for all of the

a

b

c

d

e

f

Fig. 5 Effect of rRNA Depletion Chemistry on Spike-In Controls: a) Effect of degradation of SIRVs on the ratio of SIRV reads to ERCC reads in each
replicate. Percent of reads mapping to SIRVs out of total reads mapping to Spike-ins in shown. Data sets ordered by intact/degraded status
followed by site within each kit left to right. b) Relative ratio of reads mapping to SIRV1. Fraction of reads mapping to each isoform of SIRV1
are shown for each replicate. Expected fractions shown as dark horizontal lines. Light horizontal lines show 2-fold changes in fraction observed
(log scale). Each SIRV1 isoform is shown in a different color. Replicates ordered as in a. c) Boxplot of normalized transcripts per million (TPM) for
subsets of SIRVs. SIRVs present at 4×, 1× and 1/4× in the pool were randomized and normalized TPM scores for all sites for two sets of 10 SIRVs
were plotted across different chemistries using intact samples. 5th, 25th,Median, 75th and 95th percentile are shown. d) Boxplot as in c except red
boxplot highlights shortest quintile (len < 480 nt) and green includes longest quintile (len > 2200). e) Boxplot as in c except red boxplot
highlights lowest GC quintile (< 36% GC) and green includes highest quintile (> 44.5% GC). f) Boxplot as in c except red highlights random set
of 10 transcripts included at 4× while green includes set of 10 transcripts at 1/4×
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transcripts highest and lowest quintile for different param-
eters to look for differences. Randomly selected transcripts
show minimal differences (Fig. 5c), nor do we observe
biases when the transcripts are sorted by GC percentage
or amount of expected transcript (Fig. 5e, f ). Transcript
length does appear to show a bias, with the longest 10
transcripts (len > 2200 nt) showing lower levels of detec-
tion than the shortest transcripts (len < 480 nt, Fig. 5d)
and three of the poorest detected transcripts in the SIRVs
are in the set of longest transcripts. However, the overall
distribution remains very broad and size alone is not
predictive of the behavior of the transcript.

Discussion
rRNA depletion methodologies have expanded signifi-
cantly in the last year. While differences exist between
the rRNA depletion chemistries tested, all of the kits
tested were able to successfully remove a significant
amount of the rRNA in library preparations. The bead
depletion chemistries were the most challenging to con-
sistently implement successfully and struggled to remove
rRNAs in the degraded RNA samples, possibly due to
inefficiencies in hybridization with the degraded mater-
ial. All of the kits, including the low-input ZapR based
kit from Takara/Clontech, detected ~ 14,000 transcripts
at > 1 RPKM.
With the broad success of the different chemistries,

other aspects of library preparation, such as cost and
ease of use, can be considered. Participating sites were
surveyed to collect feedback regarding ease of use and
previous experience with each kit that was tested
(Table 1).
While all sites were familiar with the RiboZero deple-

tion kit, the majority of sites had no prior experience
with the other kits. The participating sites generally re-
ported high comfort levels with all the kits. Interestingly,
the comfort level with the different kits did not correlate
with success as the sites with the lowest comfort levels
for the NEB kit and ZapR based kit from Takara/Clon-
tech both showed very good performance. This may be
due to the robustness of the specific methods or the
quality of the written protocols.
While we did observe differences in the efficiency of

library preparation, analytics remains a key caveat. For
this study we used STAR/RSEM/DESEQ [8–10] for the
analysis of the transcript levels, but different informatics
tools may have more or less ability to handle the varia-
tions between the different chemistries and to model the
spike-in controls. The combination of defined control
samples with single transcript and spliced spike-ins pro-
vides an opportunity to use this data in the evaluation of
different algorithmic approaches without overfitting to a
single site or single type of chemistry. The number of
RNAseq algorithms continues to multiply and finding

the most appropriate methodology remains challenging.
We believe this data set will provide a unique opportun-
ity to better characterize the strengths and challenges of
not only the depletion chemistries, but the RNAseq ana-
lysis algorithms as well.

Conclusions
We evaluated the performance of seven different com-
mercially available rRNA depletion kits. While all kits
were able to successfully remove rRNA in at least in
some instances, there were marked differences in cross-
site reproducibility, ease of use, and biases associate with
sample quality. These results will provide important
guidance for researchers when selecting the most appro-
priate rRNA depletion kit for their specific project aims.

Table 1 User Experience with Different rRNA Depletion
Chemistries: Study participants were surveyed for their opinions
on the ease of use of each kit they tested

Kit Site Used kit before Comfort levela

RZ 1 Yes 3-4

2 Yes 5

3 Yes 5

4 Yes 5

LX 1 No 5

2 No 5

3 No 3

4 No 3

Q 1 No 5

2 No 4

3 No 4

4 No 5

NE 1 No 2-3

2 Yes 4

3 No 4

4 No 5

CR 1 No 4

2 No 4

3 No 3-4

4 No 5

K 1 No 4

2 Yes 3-4

3 No 5

4 No 3-4

CZ 1 No 4

2 No 4

3 Yes 3-4

4 No 2
aOn a scale of 1-5 with 1 being not at all comfortable and 5 being
very comfortable
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Methods
Input RNA preparation
Intact and degraded input RNA was prepared and ali-
quoted at a single site. The Universal Human Reference
RNA (Agilent) was diluted to 500 ng/ μL in 200 μl of
RNase-free water and 3.94 μl of the Spike-in RNA Vari-
ant Control E2 Mix (Lexogen) were added. The sample
was split into two aliquots, one of which was then
heated at 94° C on an Eppendorf™Thermomixer for 1 h
and 27 min. 1 μl of ERCC RNA Spike-In Mix 1 (Ther-
moFisher Scientific) was added to both the intact and
degraded samples before running on a Bioanalyzer 2100
RNA Nano chip (Agilent) (Additional file 1: Figure S1).
The final intact and degraded RNA samples were then
diluted to 25 ng/μl and were distributed to each site on
dry ice for rRNA-depletion and library preparation.

Site selection and index allocation
Eleven genomics core facilities were selected from
among the members of the Association of Biomedical
Research Facilities membership who volunteered to take
part in this study. All of the participating cores routinely
perform RNAseq library preparation for laboratories at
their institutes and each site prepared between one and
four library types. Kits were assigned to each site to
minimize overlapping sets with the exception of the
Takara/Clontech and Illumina kits. All four Takara/
Clontech sites preformed both the Ribogone (CR) and
SMARTer Pico (CZ) kit to minimize shipping costs.
Similarly, Illumina RiboZero (RZ) sites were selected to
minimize shipping of the donated reagents. Sites were
not selected based on prior experience with specific
chemistries. Each chemistry was tested by four sites,
named 1-4. The same library creation site will not neces-
sary have the same site number for different chemistries.
Indices were assigned by the group to prevent overlap-
ping among libraries. Note the Qiagen chemistry is no
longer available for purchase.

Protocol normalization
For each chemistry, a conference call was arranged for
each of the participating sites and a vendor representa-
tive to review the protocol in detail prior to library prep-
aration. During the course of the phone call, the
protocol was reviewed in detail and any required modifi-
cations or variables (eg., cycle number) were discussed
and agreed on by all users. These details are reported in
the Additional file 2.

rRNA depletion and library construction
Each site performed rRNA depletion and subsequent
library prep following the vendor protocols
(Additional file 2: Table S1). Kits, excluding Illumina,
were supplied from a single manufacturer lot. Input

RNA concentrations, fragmentation conditions and PCR
cycles for intact and degraded RNA samples for each kit
were discussed with the vendors and can be found in
Additional file 2: Table S2 for each kit. Completed librar-
ies were quantified by Qubit or equivalent and run on a
Bioanalyzer or equivalent for size determination. Librar-
ies were pooled and sent to a single site for final quanti-
fication by Qubit fluorometer (ThermoFisher Scientific),
TapeStation 2200 (Agilent), and RT-qPCR using the
Kapa Biosystems Illumina library quantification kit.
Libraries were pooled for each run on a NextSeq 500.

Sequencing
Sites were instructed to make an equimolar pool of li-
braries from each kit using site-specific quantification
and pooling SOPs and return each pool along with indi-
vidual un-pooled libraries to the designated sequencing
site. The sequencing site quantified each pool by Qubit
fluorometer, Agilent TapeStation, and qPCR using the
Kapa Illumina quant assay. Library pools were multi-
plexed and sequenced over three high output paired-end
75 bp runs on the Illumina NextSeq 500 to achieve suffi-
cient read depth for analysis (See Additional file 2).

Alignment and quality control
Reads were aligned against hg19 using bwa-mem v.
0.7.12-r1039 with flags –t 16 –f [11]. Mapping rates,
fraction of multiply-mapping reads, strandedness
(Fig. 2b), number of unique 20-mers at the 5′ end of
the reads, insert size distributions (Additional file 4:
Figure S3) and fraction of nuclear ribosomal RNAs
(Fig. 2a) were calculated using dedicated perl scripts
and bedtools v. 2.25.0 [12]. In addition, each resulting
bam file was randomly down-sampled to one million
aligned reads and read density across genomic features
were estimated for RNA-Seq-specific quality control
metrics. Samples with < 10 reads or > 50% rRNA were
eliminated from additional analysis and were not in-
cluded in later sequencing pools. 50% rRNA was se-
lected as the threshold as for samples with less than
50% rRNA, achieving sufficient read depth is faster and
less expensive by providing additional sequencing depth
rather than repreparation of the library. This number,
however, is significantly higher than most participating
sites would consider successful. Sample reads from all
runs were concatenated before final RNA analysis.

RNA-Seq mapping and quantitation
Reads were aligned against hg19 / ENSEMBL 75 annota-
tion using STAR v. 2.5.1b [8]. with the following flags
-runThreadN 8 –runMode alignReads –outFilterType
BySJout –outFilterMultimapNmax 20 –alignSJoverhang-
Min 8 –alignSJDBoverhangMin 1 –outFilterMismatchN-
max 999 –alignIntronMin 10 –alignIntronMax
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1,000,000 –alignMatesGapMax 1,000,000 –outSAMtype
BAM SortedByCoordinate –quantMode Transcriptome-
SAM with –genomeDir pointing to a low-memory foot-
print, 75 nt-junction hg19 STAR suffix array. Gene
expression was quantitated using RSEM v. 1.2.30 [10]
with the following flags for all libraries: rsem-calculate-
expression –paired-end –calc-pme –alignments -p 8
–forward-prob 0 against an annotation matching the
STAR SA reference, with the exception of the positively-
stranded CZ libraries, for which –forward-prob was set
to 1. Posterior mean estimates (pme) of counts were
retrieved, ribosomal RNA counts removed and
expression in reads per kilobase of modeled exon per
million mapped reads (RPKM, Fig. 3b, Additional file 3:
Figure S2) or transcripts per million (TPM, Fig. 3a) were
computed on the remaining count matrices. Similar
scripts and pipelines were used for ERCC and SIRV
mapping and quantitation. For both ERCCs and SIRVs,
counts were retrieved from the RSEM gene output, as
well as fractional isoform usage for SIRVs. SIRVs were
normalized by dividing by the expected frequency from
https://www.lexogen.com/wp-content/uploads/2017/06/
SIRV_Set1_sequence-design-overview-170612a.xlsx.

Differential representation analysis
Libraries and kits were compared against RiboZero
samples using a standard differential expression frame-
work to identify genes with differential representation
by the various chemistries. Briefly, intact samples from
different sites were treated as replicates and differential
expression was performed in the R statistical environ-
ment (R v. 3.2.3) using Bioconductor’s DESeq2 package
on the protein-coding genes only [9]. Dataset parame-
ters were estimated using the estimateSizeFactors(), and
estimateDispersions() functions, and differential expres-
sion based on a negative binomial distribution/Wald
test was performed using nbinomWaldtest() (all pack-
aged into the DESeq() function), using the kit type as a
contrast. Fold-changes, p-values and Benjamin-
Hochberg-adjusted p-values (BH) were reported for
each gene. Genes with BH < 0.001 and absolute fold-
changes greater than 2 were considered for downstream
analyses (Fig. 3c-d).

lincRNA analysis
After removing lincRNAs that were not assigned to
chromosomes, 7251 lincRNAs were identified from the
ENSEMBL annotation for further analysis. The lincR-
NAs with mean RPM > =0.01 were retained for each kit.
To examine the distribution of different lincRNAs in
each of the samples, the percentage RPM was calculated.
Except the top 4 lincRNAs, rest of the lincRNAs were
classified as ‘Others’ category. The figures were gener-
ated using a custom python script. Based on the ribo-

depletion methods, the seven kits were grouped into three
sets: RLQ (includes RZ, LX, and Q), NCK (includes NE,
CR, K) and CZ. The lincRNAs detected in three sets were
compared using an Euler diagram created using Venny
(http://bioinfogp.cnb.csic.es/tools/venny/).

Genomic features analysis and visualization
Gene lengths were retrieved from RSEM outputs. GC
content was calculated on the longest annotated isoform
of each protein-coding gene. Box-plots were generated
using Spotfire (Tibco) and TreeView (Fig. 3e-f ).

Additional files

Additional file 1: Figure S1. BioAnalyzer traces for samples used in the
study. Left: Intact UHR, Right: Heat degraded UHR RNA. (PPTX 127 kb)

Additional file 2: Contains the following: Describes normalization of kit
protocols and any individual site deviations from this normalization.
Figure S1. – BioAnalyzer traces for samples used in the study. Left: Intact
UHR, Right: Heat degraded UHR RNA. Figure S2. – Clustering of
differentially detected genes. Top 50 most differentially detected genes,
as measured by variance of log2RPKM across all samples, were clustered
based on their differential expression. TOP: Hierarchical tree of clustering
based on a complete linkage function using Euclidean distance. 2ND
LINE: Intact/Degraded status is shown. Intact samples are indicated in
white while degraded samples are indicated in grey. 3RD LINE: Kit.
Dark Blue = RZ|RiboZero Gold, Yellow = LX|Lexogen RiboCop, Aqua =
NE|NEBNext rRNA Depletion, Green = Q|Qiagen, Grey = K|Kapa RiboErase,
Blue = CR|Clontech Ribogone, Orange = CZ|SMARTer Pico total RNA. HEAT
MAP: Red indicate higher level of absolute expression. Scale shown to
right. White lines indicate the highest branches within the hierarchical
tree. Figure S3. – Insert size distribution for RNAseq libraries from intact
RNA. The insert size for each library passing the 50% rRNA filter was
calculated for reads with convergent reads that were separated by
< 1000 bp. Kit abbreviations: RZ = RiboZero Gold, LX = Lexogen RiboCop,
NE = NEBNext rRNA Depletion, K=Kapa RiboErase, CR = Clontech
Ribogone, CZ = SMARTer Pico total RNA. Top: length of the 90th
percentile of inserts reads. Middle: length of the median insert read.
Bottom: length of the 10th percentile of inserts read. Figure S4.
- Relative ratio of reads mapping to ERCCs. Fraction of reads mapping to
each ERCC mRNA is shown for each replicate. Light horizontal lines show
2-fold changes in fraction observed (log scale). Each expected
concentration is shown in a different color. Data sets ordered by intact/
degraded status followed by site within each kit left to right. Table S1.
Catalog numbers and manual versions for protocols used. Table S2.
Comparison of RNA library preparation chemistry variables. (DOCX 21 kb)

Additional file 3: Figure S2. Clustering of differentially detected genes.
Top 50 most differentially detected genes, as measured by variance of
log2RPKM across all samples, were clustered based on their differential
expression. TOP: Hierarchical tree of clustering based on a complete
linkage function using Euclidean distance. 2ND LINE: Intact/Degraded
status is shown. Intact samples are indicated in white while degraded
samples are indicated in grey. 3RD LINE: Kit. Dark Blue = RZ|RiboZero
Gold, Yellow = LX|Lexogen RiboCop, Aqua = NE|NEBNext rRNA Depletion,
Green = Q|Qiagen, Grey = K|Kapa RiboErase, Blue = CR|Clontech Ribogone,
Orange = CZ|SMARTer Pico total RNA. HEAT MAP: Red indicate higher
level of absolute expression. Scale shown to right. White lines indicate
the highest branches within the hierarchical tree. (PPTX 179 kb)

Additional file 4: Figure S3. Insert size distribution for RNAseq libraries
from intact RNA. The insert size for each library passing the 50% rRNA
filter was calculated for reads with convergent reads that were separated
by < 1000 bp. Kit abbreviations: RZ = RiboZero Gold, LX = Lexogen
RiboCop, NE = NEBNext rRNA Depletion, K=Kapa RiboErase, CR = Clontech
Ribogone, CZ = SMARTer Pico total RNA. Top: length of the 90th
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percentile of inserts reads. Middle: length of the median insert read.
Bottom: length of the 10th percentile of inserts read. (PPTX 82 kb)

Additional file 5: Figure S4. Fraction of reads mapping to each ERCC
mRNA is shown for each replicate. Light horizontal lines show 2-fold
changes in fraction observed (log scale). Each expected concentration is
shown in a different color. Data sets ordered by intact/degraded status
followed by site within each kit left to right. (PPTX 165 kb)

Abbreviations
ABRF: Association of Biomolecular Resource Facilities; BWA: Burrows-Wheeler
Aligner; CR: Takara/Clontech RiboGone; CZ: Takara/Clontech Pico Input;
ERCC: External RNA Controls Consortium; FFPE: Fromalin Fixed Parafin
Embedded; FPKM: Fragments per Kilobase per Million; K: Kapa Biosystems
RiboErase; lncRNA: Long Non-Coding RNA; LX: Lexogen RiboCop;
mRNA: Messenger RNA; mtRNA: Mitochondrial RNA; NE: New England
Biolabs rRNA removal; PCR: Polymerase Chain Reaction; Q: Qiagen rRNA
removal; RPKM: Reads per Kilobase per Million; RPM: Reads per Milllion;
rRNA: ribosomal RNA; RT-qPCR: Real-Time Quantitative Polymerase Chain
Reaction; RZ: Illumin Ribo-zero; SIRV: Spike-in RNA Variant Controls;
SOP: Standard Operating Procedure; SRPs: Signal Recognition Particle RNA;
UHR: Universal Human Reference RNA

Acknowledgements
This study is a product of the DNA Sequencing Research Group (DSRG) of
the Association of Biomedical Research Facilities (ABRF, www.abrf.org). The
authors are grateful to the participating vendors: Illumina, New England
Biolabs, Lexogen, Takara/Clontech, Qiagen and Kapa/Roche who donated
library preparation reagents, spike-in controls and sequencing reagents as
well as to the ABRF executive board for funding. We also thank the many
member labs within the ABRF who volunteered to test kits.

Funding
This work is supported by NCI award P30-CA14051 (VB, SL), NIEHS award
P30-ES002109 (VB, SL) and the Harvard University Center for Aids Research
NIH award P30 AI060354 (ZTH,MB,GS,LG). The funding bodies have not had a
role in the design of the study and collection, analysis, and interpretation of
data and in writing the manuscript.

Availability of data and materials
The dataset supporting the conclusions of this article is available in the NCBI
Gene Expression Omnibus repository, accession number GSE100127
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100127).

Authors’ contributions
MA,SL,ZH conceived of study; ZH,JK,YA,JF,JP,MA,SL coordinated rRNA
depletion method protocols and directed sites;
JK,YA,JF,JP,EW,JG,AG,KJ,SBD,KM,MB,AL,SS,GS,LG,MA generated data; JT,VB,SC,
and SL analyzed data; JK,ZH,JT,MA, and SL wrote the manuscript. All authors
read and approved the final manuscript for publication.

Ethics approval and consent to participate
Study does not involve human or animal subjects.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Molecular Biology Core Facilities at Dana-Farber Cancer Institute, Boston,
MA, USA. 2BioFrontiers Institute, Next-Gen Sequencing Facility, University of
Colorado Boulder, Boulder, CO, USA. 3MIT BioMicro Center, Massachusetts
Institute of Technology, Cambridge, MA, USA. 4Bioinformatics Core, Purdue
University, West Lafayette, IN, USA. 5Microarray and Sequencing Resource

Core Facility, Boston University, Boston, MA, USA. 6Department of Pathology
and Laboratory Medicine, Boston University, Boston, MA, USA. 7Genomic
Core Facility, Department of Biomedical Sciences, Joan C. Edwards School of
Medicine, Marshall University, Huntington, WV, USA. 8Genomic Sequencing
and Analysis Facility, University of Texas, Austin, TX, USA. 9DNA Sequencing
Center, Brigham Young University, Provo, UT, USA. 10Laboratory for Molecular
Biology and Cytometry, University of Oklahoma Health Sciences Center,
Oklahoma City, OK, USA. 11IGM Genomics Center, University of California, San
Diego, La Jolla, CA, USA. 12UW Biotechnology Center, Gene Expression
Center, University of Wisconsin-Madison, Madison, WI, USA. 13Hubbard
Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
14Genomics Core Facility, Van Andel Institute, Grand Rapids, MI, USA.

Received: 13 September 2017 Accepted: 8 March 2018

References
1. Cui P, Lin Q, Ding F, Xin C, Gong W, Zhang L, et al. A comparison between

ribo-minus RNA-sequencing and polyA-selected RNA-sequencing.
Genomics. 2010;96:259–65.

2. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of
RNA-Seq by poly (a) capture, ribosomal RNA depletion, and DNA microarray
for expression profiling. BMC genomics. BioMed Central. 2014;15:419.

3. Guo Y, Zhao S, Sheng Q, Guo M, Lehmann B, Pietenpol J, et al. RNAseq by
Total RNA library identifies additional RNAs compared to poly(a) RNA library.
Biomed Res. 2015;2015:1–9.

4. Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K. Analysis of
chemical modification of RNA from formalin-fixed samples and optimization
of molecular biology applications for such samples. Nucleic Acids Res
Oxford University Press. 1999;27(22):4436–43.

5. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms.
Cell. 2013;154:26–46.

6. Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, et al. Synthetic
spike-in standards for RNA-seq experiments. Genome Res. 2011;21:1543–51.

7. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using
factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896–902.

8. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

9. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

10. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics. 2011;12:323.

11. Li H, Durbin R. Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics. 2009;25:1754–60.

12. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26:841–2.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Herbert et al. BMC Genomics  (2018) 19:199 Page 10 of 10

https://doi.org/10.1186/s12864-018-4585-1
http://www.abrf.org
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100127

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Discussion
	Conclusions
	Methods
	Input RNA preparation
	Site selection and index allocation
	Protocol normalization
	rRNA depletion and library construction
	Sequencing
	Alignment and quality control
	RNA-Seq mapping and quantitation
	Differential representation analysis
	lincRNA analysis
	Genomic features analysis and visualization

	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

