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Abstract: Recent research has found a high spatial and temporal correlation between certain baleen
whale vocalizations and peak herring spawning processes in the Gulf of Maine. These vocalizations
are apparently related to feeding activities with suggested functions that include communication,
prey manipulation, and echolocation. Here, the feasibility of the echolocation function is investigated.
Physical limitations on the ability to detect large herring shoals and the seafloor by acoustic remote
sensing are determined with ocean acoustic propagation, scattering, and statistical theories given
baleen whale auditory parameters. Detection is found to be highly dependent on ambient noise
conditions, herring shoal distributions, baleen whale time-frequency vocalization spectra, and
geophysical parameters of the ocean waveguide. Detections of large herring shoals are found to be
physically feasible in common Gulf of Maine herring spawning scenarios at up to 10 ± 6 km in range
for humpback parameters and 1 ± 1 km for minke parameters but not for blue and fin parameters
even at zero horizontal range. Detections of the seafloor are found to be feasible up to 2 ± 1 km for
blue and humpback parameters and roughly 1 km for fin and minke parameters, suggesting that the
whales share a common acoustic sensation of rudimentary features of the geophysical environment.
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1. Introduction

Recent research has found a high spatial and temporal correlation between certain baleen whale
vocalizations and peak annual spawning processes of Atlantic herring (Clupea harengus) in the Gulf of
Maine [1,2], indicating an apparent relationship between these vocalizations and feeding activities
of baleen whales. Suggested functions of the vocalizations include communication [3–6], prey
manipulation [7], and echolocation [8–11], given the fact that Atlantic herring is a keystone prey
species common in the diets of many marine animals including large whales in the Gulf of Maine
region [12–14]. Here, feasibility of the possible echolocation function is investigated for large and
dense herring aggregations. This differs substantially from the possible ability of baleen whales to
detect other whales by active acoustics, which has been previously discussed [15–20].

The approach is to first determine parameters relevant to possible active acoustic sensing in baleen
whales, including source and receiver characteristics such as time-frequency vocalization spectra and
auditory system aperture. Detection of large herring shoals and the seafloor is then investigated
using theoretical and numerical methods developed for analyzing Ocean Acoustic Waveguide Remote
Sensing (OAWRS) of fish shoals [21–25] given these active sensing parameters. Sensing resolution in
cross-range is determined by spatial array theory and in range by incoherent energy analysis [1,2,21–26],
since evidence suggests temporally coherent auditory processing is unlikely [27,28].

Typical well documented scenarios during the herring spawning season on Georges
Bank [1,2,22,24,25] are investigated to determine ranges up to which detection of large herring shoals
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and the seafloor is feasible for given whale acoustic parameters. Detection of large herring shoals and
the seafloor is found to be highly dependent on local ambient noise conditions at whale locations,
herring shoal distribution, baleen whale vocalization parameters such as time duration and source
spectra, as well as oceanographic conditions including sound speed structure, bathymetry, and seafloor
scattering amplitudes along the acoustic propagation path.

2. Materials and Methods

2.1. Acoustic Parameters Relevant to Potential Active Acoustic Sensing in Baleen Whales and Corresponding
Spatial Resolution

Baleen whale vocalization for potential active sensing is parameterized by call source level SL,
time duration T, center frequency f̄ , and one-third octave frequency bandwidth BW1/3 with center
frequency f̄ (Table 1) following conventions for measuring these parameters in References [1–4].

For potential active sensing, a baleen whale’s acoustic receiver is parameterized as a two-element
spatially coherent array of omni-directional receivers of aperture L corresponding to the separation
between ears, which is consistent with the small ear-dimensions to wavelength ratio of vocalizations
and the low impedance contrast between tissue and sea water. The corresponding far-field beam
pattern is obtained by spatial array theory (Figure 1) as:

B(sin θ) = cos
(

π f L
c

sin θ

)
(1)

where θ is the angle from array broadside, f is the frequency, and c is the sound speed. The aperture
and frequency are taken from Table 1 for the baleen whales considered. The angular resolution of this
two element array is best for broadside steering and is given by equivalent beamwidth:

dθ = 2 sin−1(ψ/2) (2)

where

ψ =
∫ 1

−1
|B(sin θ)|2d(sin θ) = 1 +

c
2π f L
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(
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c

)
(3)
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Figure 1. Beam patterns of two-element coherent array steered at broadside given baleen whale
acoustic parameters given in Table 1.

Cross-range resolution is then determined as ρdθ at array broadside, at horizontal range ρ, for
an effectively monostatic active sensing system. No ambiguity in directional sensing due to grating
lobes [29] is expected because the grating lobes are located outside real space for given whale acoustic
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parameters (Table 1). Assuming incoherent energy analysis, range resolution dρ is cT
2 , where the active

signal duration T is given in Table 1 for the various baleen whales considered. The areal resolution of
the parameterized active sensing system or the smallest area distinguishable by the sensing system,
typically referred to as the resolution footprint, is then given by ρdρdθ for monostatic geometries
(Figure 2).

Figure 2. Top view (A) and side view (B) of the geometry for possible acoustic remote sensing in a
continental shelf environment by baleen whales. The resolution footprint given baleen whale acoustic
parameters is an annular sector with range extent dρ and cross-range extent ρdθ.

2.2. Detection of Scattered Returns from Herring Shoals and the Seafloor

The expected magnitude square of the scattered field,
〈
|ΦF|2

〉
, received at location r from N

omni-directional targets randomly distributed with uniform probability in a vertical layer of thickness
H centered at z = z0 within a resolution footprint AR(ρC) centered at horizontal location ρC can be
determined from [23,30]:

10 log10

〈∣∣∣∣∣ ΦF
Φre f

∣∣∣∣∣
2〉
≈ SL + TLA + TS + 10 log10

〈nA〉
nA,re f

(4)

In Equation (4), Φre f = 1 µPa is the reference acoustic pressure in water, SL is the whale call source
level with mean and standard deviation [1,2] given in Table 1 consistent with circular complex Gaussian
random fields fluctuations [26], TLA is the depth-averaged two-way transmission loss to individual

targets integrated over one resolution footprint area [23] given in Equation (5), TS = 10 log10

〈∣∣∣ S
rre f k

∣∣∣2〉
is the expected target strength of a single herring, S is the plane wave scatter function of a single herring,
k is the acoustic wavenumber, rre f = 1 m is the reference length, nA,re f = 1 fish/m2 is the reference areal
fish population density, and 〈nA〉 = N/AR(ρC) is the expected areal density of the targets within a
spatially varying resolution cell centered at horizontal location ρC . When the instantaneous bandwidth
BW of baleen whale vocalizations [1,2] is greater than the one-third octave bandwidth BW1/3 given in



Remote Sens. 2016, 8, 693 4 of 14

Table 1, an adjusted whale call source level SLadj = SL + 10 log10
BW1/3

BW is used. The expected target
strength of a single herring in a vertical layer is determined by parameters such as mean layer depth,
shoal thickness, neutral buoyancy depth, and herring length. With mean and standard deviation of the
parameters empirically determined in Reference [24] (Table 2), TS is determined using a swimbladder
resonance model [31] for deep shoals as described in Appendix A. Similar analysis is performed for
shallow shoals given measured constraints. The TLA term in Equation (4) can be written [23] for
monostatic sensing as:

TLA = 10 log10

(∫
AR(ρC)

1
H

∫ z0+H/2

z0−H/2
(4π)4〈|G(r|ρS, zS; f , c(rw), d(rw))|4|ρS, zS〉dzSdρS

2/r−2
re f

)
(5)

where G(r|ρS, zS; f , c(rw), d(rw)) is the Green function between the target location rS = (ρS, zS) and
the receiver location r, and c(rw) and d(rw) are the sound speed and the density in the water column
at any point rw in the propagation path, respectively. The areal integration in Equation (5) should
be taken over the intersection between resolution footprint and the area occupied by herring when
the herring distribution does not fully overlap with the resolution footprint. A parabolic equation
model [32] is used to calculate the Green function from the whale location to the herring shoal in a
range-dependent Gulf of Maine environment. The conditional expectation over the sound speed and
the density in Equation (5) is determined by averaging 10 Monte-Carlo realizations, where the Green
functions are calculated along the entire propagation path in range and depth for each realization.
Each Monte-Carlo realization employs a different sound speed profile measured during the OAWRS
2006 experiment [24] every 500 m [33,34] along the propagation path.

Table 1. Parameters of baleen whale’s auditory reception and signal detection used for detection range
estimation in the Gulf of Maine scenario.

Baleen SL T f̄ BW1/3 DT AG L α β n
Whale Species (dB re 1 µPa 1 m) (s) (Hz) (Hz) (dB) (dB) (m)

(
Pa2

(1 µPa)2(m/s)n

) (
Pa2

(1 µPa)2

)
Fin 189 ± 5.6 0.8 20 5 3 0 3 1.88 × 108 6.68 × 105 0.6

Blue 189 ± 5.6 2 40 10 3 0 3 1.19 × 108 2.51 × 106 0.4

Minke 179 ± 5.6 0.1 315 72.5 3 1.4 1.5 5.96 × 106 3.76 × 105 0.6

Humpback 180 ± 5.6 1.44 450 100 3 3.7 2 1.26 × 106 5.01 × 106 1.1

SL is the whale call source level [1], T is the time duration, f̄ is the center frequency of baleen whale
vocalizations relevant for target detection, BW1/3 is the one-third octave bandwidth centered at frequency f̄ ,
DT is the detection threshold, AG is the array gain given whale acoustic parameters, L is the spatial distance
between the two omni-directional receiver with spatial coherence, α is the waveguide propagation factor [35],
β is the constant baseline ambient noise intensity, and n is the power law coefficient of wind-speed-dependent
ambient noise. The parameter values for SL are given in the form of mean ± standard deviation.

Table 2. Parameters of herring shoals.

Herring Shoals z0 H znb l 〈nA〉
(m) (m) (m) (cm) (fish/m2)

Deep 155 ± 6.5 50 ± 15.6 83 ± 31.3 24.2 ± 1.7 5.0

Shallow 25 ± 1.0 20 ± 6.2 20 ± 6.5 24.2 ± 1.7 1.0

z0 is the mean depth of herring layer, H is the shoal thickness, znb is the neutral buoyancy depth of herring,
l is the fork length of herring, and nA is the areal population density of herring shoals. The parameter values
for z0, H, znb, and l are given in the form of mean ± standard deviation.

The expected magnitude square of the scattered field 〈|ΦS|2〉 from the seafloor is determined
from [25]:
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10 log10

〈∣∣∣∣∣ ΦS
Φre f

∣∣∣∣∣
2〉
≈ SL + 10 log10

(∫∫∫
VR(ρC)

(4π)2〈|G(r|rS; f , c(rw), d(rw))|4|rS〉drS
3/r−1

re f

)
+ 10 log10

(〈
|AS( f , Γκ , Γd, VC)|2

〉
/r−1

re f

) (6)

where SL is the whale call source level, VR(ρC) is the volume of the resolution cell centered at horizontal
location ρC , G(r|rS; f , c(rw), d(rw)) is the Green function between the target location rS = (ρS, zS) and
the receiver location r, c(rw) and d(rw) are the sound speed and the density at any point rw in the
propagation path, respectively. The Green function and the conditional expectation over the water
column sound speed and the density in Equation (6) are determined by following the same procedures
given for those in Equation (5). The expected magnitude square of Rayleigh-Born seafloor scattering
amplitude per coherence volume 〈|AS( f , Γκ , Γd, VC)|2〉 is defined as [25]:

〈|AS( f , Γκ , Γd, VC)|2〉 = k4VC [Var(Γκ) + FdVar(Γd) + FcCov(Γκ , Γd)] (7)

where Γκ is the fractional change in seafloor compressibility, Γd is the fractional change in
seafloor density, VC is the coherence volume of inhomogeneities, and Fκ and Fd are the
proportionality constants of scattering contributions from dipole and cross terms to monopole
scattering contributions, respectively. The frequency dependence of the expected magnitude square of
Rayleigh-Born seafloor scattering amplitude per coherence volume 〈|AS( f , Γκ , Γd, VC)|2〉 is measured
during the OAWRS 2006 experiment [25] as:

〈|AS( f , Γκ , Γd, VC)|2〉 = C× f q (8)

where C ≈ 1.78× 10−8 m−1 Hz−q is the proportionality constant, f is the frequency, and q ≈ 2.12 is
the power law coefficient of frequency dependence of the expected magnitude square of the seafloor
scattering amplitude. The level of magnitude square of Rayleigh-Born seafloor scattering amplitude
per coherence volume is assumed to vary with standard deviation up to 2 dB as empirically determined
in Reference [25].

The expected magnitude square of ambient noise field is determined as [1,2]:

〈|ΦN |2〉 ≈
1
τ

∫
BW1/3

|Φdata
N ( f )|2d f ≈ 1

τ
|Φdata

N ( f̄ )|2 × BW1/3 (9)

where τ is the measurement time, f is the frequency, Φdata
N ( f ) is the Fourier transform of the measured

ambient noise field time series, Φdata
N ( f̄ ) is the Fourier transform of the measured ambient noise

field time series evaluated at the center frequency f̄ of baleen whale vocalizations given in Table 1,
and BW1/3 is the one-third octave frequency bandwidth of various baleen whale vocalizations
given in Table 1. The expected magnitude square of the beamformed ambient noise field ΦN,BF
is determined from:

10 log10
〈|ΦN |2〉
〈|ΦN,BF|2〉

= AG (10)

where AG is the array gain of the receiver array given in Table 1. The wind-speed dependence of
ambient noise is modeled as [2]: 〈∣∣∣∣∣ ΦN

Φre f

∣∣∣∣∣
2〉

= αvn + β (11)

where Φre f = 1 µPa is the reference acoustic pressure in water, v is the wind speed, n is the power
law coefficient of wind-speed-dependent ambient noise, α is the waveguide propagation factor [35],
and β is the constant baseline ambient noise intensity. The coefficients n, α, and β given in Table 1 are
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empirically determined [2] by least-square fitting between the measured and the modeled ambient
noise levels as a function of measured wind speed during the OAWRS 2006 experiment [22] (Figure A1).
The instantaneous measurements of ambient noise vary with 5.6 dB standard deviation [26].

For target detection under seafloor scattering limited detection conditions, the expected magnitude
square of the scattered field from herring shoals should be greater than that of the scattered field from
the seafloor by a factor that corresponds to detection threshold DT given in Table 1:

10 log10
〈|ΦF|2〉
〈|ΦS|2〉

≥ DT (12)

where the maximum detection range is found when the equality holds. Similarly for target detection
under noise limited conditions, the expected magnitude square of the scattered field from herring
shoals should be greater than that of the beamformed ambient noise field ΦN,BF by a factor that
corresponds to DT given in Table 1:

10 log10
〈|ΦF|2〉
〈|ΦN,BF|2〉

≥ DT (13)

where the maximum detection range is found when the equality holds. The detection threshold DT
is determined by requiring that the scattered returns from fish targets stand at least one standard
deviation [26,36] above background levels from seafloor scattering or ambient noise.

2.3. OAWRS Experiment during Peak Herring Spawning Processes in the Gulf of Maine in Fall 2006

An OAWRS experiment was conducted on the northern flank of Georges Bank during the peak
annual Atlantic herring spawning period in the Fall of 2006 [1,22,24]. The spatial distribution of herring
was instantaneously imaged and continuously monitored [22]. The spawning process was found
to follow a regular diurnal pattern, where herring were diffusely scattered near the seafloor during
daylight hours, formed dense and large shoals near the 180–200 m depth contours near sunset, and
then migrated synchronously towards spawning grounds at depths less than 50 m in the evening as
shown in Figure 3A [22].

Parabolic equation transmission loss modeling [32] was calibrated and verified with roughly one
hundred two-way transmission loss measurements made from calibrated targets with known scattering
properties [37] and thousands of one-way transmission loss measurements [24,36] during the same
experiment. Herring target strength was determined by empirical fit to a resonance model [31] over
multi-frequencies in ranges relevant to this study [24]. Thousands of baleen whale vocalizations were
passively recorded and localized in the vicinity of large herring shoals and call parameters, as shown
in Table 1, were determined [1,2]. Ambient noise levels that include wind-driven and shipping noise
contributions were measured and fit to empirical models at baleen whale vocalization frequencies [1,2].
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Figure 3. (A) Migration of herring shoals from depths greater than 100 m to less than 50 m in the Gulf
of Maine; (B) Corresponding frequency dependence of resonance scattering of herring swimbladders
for deep and shallow shoals. Blue and red solid lines represent the herring target strength when herring
layer is at depths zherring of 130–180 m with a neutral buoyancy depth znb of 83 m on the northern flank
of Georges Bank and at depths zherring of 15–35 m with a neutral buoyancy depth znb of 20 m on Georges
Bank, respectively.

3. Results

We find acoustic detections of herring shoals are physically feasible up to 10 ± 6 km in
range for humpback (Megaptera novaeangliae) parameters and 1 ± 1 km for minke (Balaenoptera
acutorostrata) parameters in common herring spawning scenarios of dense near-surface concentrations
at 15–35 m depth, but not for herring concentrations at 130–180 m depth even at zero horizontal
range (Figures 4 and 5). This assumes detections are possible when scattered returns from herring
shoals stand at least one standard deviation above mean ambient noise and seafloor scattering
levels, and the measured ambient noise conditions, herring shoal distributions, baleen whale
time-frequency vocalization spectra, and geophysical parameters of the ocean waveguide in the
Gulf of Maine during the 2006 herring spawning period. The detection range of 1 ± 1 km, where
spherical spreading dominates, suggests that the corresponding minke parameters are better suited to
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direct-path waterborne rather than waveguide acoustic sensing. For fin (Balaenoptera physalus) and
blue (Balaenoptera musculus) parameters, we find detection of herring shoals is not feasible even at
zero horizontal range (Figures 4 and 5) for any of the shoal depths considered because the scattered
intensity from the shoals is at least two orders of magnitude lower than those from the seafloor.
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Figure 4. Detections of herring shoals are feasible up to 10 ± 6 km in range for humpback parameters
and 1 ± 1 km for minke parameters in common Gulf of Maine herring spawning scenarios of dense
near-surface concentrations at depths of 15–35 m (red solid lines). Detections of the seafloor are found
to be feasible up to 2 ± 1 km in range for blue and humpback parameters and roughly 1 km for fin
and minke parameters over local ambient noise. Dark red dashed lines represent seafloor scattering
for a seafloor depth of 50 m. Purple solid lines represent the beamformed ambient noise levels with
mean wind speed of 5.6 m/s during peak herring spawning period in the Gulf of Maine with one
detection threshold (DT) added. Light purple shaded areas range from the beamformed ambient
noise levels at 2 m/s wind speed minus 5.6 dB to those at 10 m/s wind speed plus 5.6 dB, to illustrate
the typical range of wind-speed-dependent ambient noise encountered. Gray solid lines represent
the beamformed ambient noise level without significant shipping with wind speed of 5.1 m/s [38]
with one DT added. Light gray shaded areas range from beamformed ambient noise levels without
significant shipping at 5.1 m/s wind speed plus/minus the instantaneous intensity standard deviation
of 5.6 dB. The beamformed ambient noise levels are determined for frequency bands of baleen whale
vocalizations given in Table 1 using Equations (9) and (10).
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Figure 5. Detections of herring shoals at depths of 130–180 m (blue solid lines) are found to be
unfeasible for the parameters of any baleen whale considered. Detections of the seafloor are found
to be feasible up to 2 ± 1 km in range for blue and humpback parameters and roughly 1 km for fin
and minke parameters over local ambient noise. Dark blue dashed lines represent seafloor scattering
for a seafloor depth of 180 m. Purple solid lines represent the beamformed ambient noise levels with
mean wind speed of 5.6 m/s during peak herring spawning period in the Gulf of Maine with one
detection threshold (DT) added. Light purple shaded areas range from the beamformed ambient
noise levels at 2 m/s wind speed minus 5.6 dB to those at 10 m/s wind speed plus 5.6 dB, to illustrate
the typical range of wind-speed-dependent ambient noise encountered. Gray solid lines represent
the beamformed ambient noise level without significant shipping with wind speed of 5.1 m/s [38]
with one DT added. Light gray shaded areas range from beamformed ambient noise levels without
significant shipping at 5.1 m/s wind speed plus/minus the instantaneous intensity standard deviation
of 5.6 dB. The beamformed ambient noise levels are determined for frequency bands of baleen whale
vocalizations given in Table 1 using Equations (9) and (10).

The observed variations in detection range are most strongly affected by the frequency dependence
of resonant scattering from herring swimbladders. For shallow shoals, whale frequency ranges closer
to the resonant scattering peak lead to greater detection ranges (Figure 3B). For deep shoals, all whale
frequency ranges considered are too far below the resonant scattering peak to lead to detections.
As herring shoals migrate to the south from the deep locations on the northern flank of Georges
Bank to shallower than 50 m on Georges Bank (Figure 3A), it is found that the resonant frequency of
herring swimbladders shifts to lower frequencies from roughly 1.5 kHz to roughly 600 Hz (Figure 3B).
Herring target strength at baleen whale vocalization frequencies then increases by roughly two orders
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of magnitude (Figure 3B), which is the key factor enabling active acoustic detection of herring shoals
for minke and humpback parameters.

We find seafloor detection is physically feasible up to 2 ± 1 km in range for blue and humpback
parameters and roughly 1 km for fin and minke parameters. This assumes scattered returns from
the seafloor stand at least one standard deviation above ambient noise levels (Figures 4 and 5).
This suggests that the baleen whales share a common acoustic sensation of rudimentary features of the
geophysical environment.

4. Discussion

Little information exists on the mechanisms by which baleen whales detect prey [28,39,40].
Since the current analysis does not examine behavioral data, no conclusions can be drawn
about whether the baleen whales considered actually employ active sensing to detect herring
shoal prey. The analysis merely considers the physical feasibility of such sensing from an acoustic
detection perspective. It is interesting, however, that the whale vocalization spectra do not appear to
be optimized to take advantage of the peak resonant target strength of the deeper herring shoals, and
only the humpback and perhaps the minke spectra are situated at or near the resonant peak for the
shallower shoals.

Our analysis shows that local ambient noise is the primary limiting factor in detection of herring
shoals for humpback and minke parameters as well as seafloor detections for the parameters of any
whale considered (Figures 4 and 5). It is possible that detections of herring shoals would then be
feasible at much longer ranges under ocean ambient noise conditions without significant shipping
traffic [38,41]. For example, under ambient noise conditions reported for Arafura and Timor Seas
in Australia [38] with insignificant shipping, detections of herring shoals would be feasible up to
10–30 km in range for humpback parameters and 2–5 km for minke parameters (Figure 4). Similarly,
detections of the seafloor would be feasible up to 5–8 km in range for blue parameters, 4–9 km for
humpback parameters, 2–4 km for fin parameters, and 1–3 km for minke parameters (Figures 4 and 5)
under ocean ambient noise conditions without significant shipping. These estimates could represent
possible detection ranges in ancient ocean environments that lacked shipping noise contributions.

5. Conclusions

The feasibility of acoustic remote sensing of large herring shoals and the seafloor by baleen
whales has been investigated. We have found that it is physically feasible to detect dense near-surface
herring shoals up to 10 ± 6 km in range with humpback acoustic parameters and 1 ± 1 km with
minke acoustic parameters over ambient noise and seafloor scattering levels in the Gulf of Maine
continental shelf environment. In contrast, detections of herring shoals are found to be unfeasible
for fin and blue whale parameters even at zero horizontal range because scattered intensity from the
seafloor are expected to be greater than the scattered intensity from herring shoals. These variations
in detection range are primarily due to the strong frequency dependence of resonant scattering from
herring swimbladders. We have found that detections of the seafloor are feasible up to 2 ± 1 km
in range for blue and humpback parameters and roughly 1 km for fin and minke parameters over
ambient noise, suggesting that the whales share a common acoustic sensation of rudimentary features
of the geophysical environment.
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Appendix A. Estimation of Expected Target Strength of a Single Herring in a Vertical Layer

The probability density function of a Gaussian variable x with mean µ and standard deviation
σx is:

f (x|µ, σ2
x) =

1√
2πσ2

x
e
− (x−µ)2

2σ2
x (A1)

with a cumulative distribution function:

F(x) =
1
2

[
1 + erf

(
x− µ

σx
√

2

)]
(A2)

where erf(x) = 1√
π

∫ x
−x e−t2

dt.
When the variable x is truncated within xlow < x < xhigh where xlow and xhigh are determined to

ensure positiveness of the parameters for target strength estimation of a single herring in a vertical
layer, the probability density function g(x) for the truncated Gaussian distribution is expressed as:

g(x|µ, σ2
x , xlow, xhigh) =

1√
2πσ2

x
e
− (x−µ)2

2σ2
x

1
F(xhigh)− F(xlow)

(A3)

This distribution is assumed for mean depth of herring shoal z0, shoal thickness H, neutral buoyancy
depth znb, and herring length with mean µ and standard deviation σx given in Table 2.

Using a fish swimbladder resonance model [23,31], the expected target strength TS of a single
herring in a uniform vertical layer of herring is determined from:

〈∣∣∣∣Sk
∣∣∣∣2
〉

=
∫∫∫∫ 1

H

∫ z0+H/2

z0−H/2

∣∣∣∣Sk
∣∣∣∣2 dzg(z0)dz0g(H)dHg(l)dlg(znb)dznb

=
∫∫∫∫ 1

H

∫ z0+H/2

z0−H/2

r2(z, znb, l)

f 2
0 (z,znb ,l)

f 2 η−2(z, znb, l, f ) +
(

f 2
0 (z,znb ,l)

f 2 − 1
)2 dzg(l)dlg(z0)dz0g(H)dHg(znb)dznb

(A4)

where S is the plane wave scatter function of a single herring, k is the acoustic wavenumber, f is the
frequency, z is the herring depth, l is the fork length of herring, r(z, znb, l) is the equivalent radius of
swimbladder, f0(z, znb, l) is the resonant frequency of swimbladder, η(z, znb, l, f ) is the damping factor,

TS = 10 log10

〈∣∣∣ S
rre f k

∣∣∣2〉, and rre f = 1 m is the reference length. In Equation (A4), the equivalent

radius of swimbladder r(z, znb, l) is determined by:

r(z, znb, l) =

[
3

4π

cnbm f lesh(l)
ρ f lesh

1 + znb/10
1 + z/10

]1/3

(A5)

assuming that the swimbladder volume varies with pressure according to Boyle’s law [42], where cnb
is the ratio of the swimbladder volume at neutral buoyancy to the volume of herring’s flesh Vf lesh
assumed to be 0.05 [43], Vf lesh = m f lesh(l)/ρ f lesh, m f lesh(l) is the mass of a single herring empirically
determined by the fork length of herring l as 3.35× 10−6l3.35 in kg when l is given in cm [24], and ρ f lesh
is the density of herring’s flesh of 1071 kg/m3 [44]. The resonant frequency of herring swimbladder
f0(z, znb, l) in Equation (A4) is determined by:

f0(z, znb, l) =
κ(ε(z, znb, l))
2πr(z, znb)

√
3γPatm(1 + z/10)

ρ f lesh
(A6)

where γ = 1.4 is the ratio of the specific heats of air, and Patm = 1.013 × 105 Pa is the
atmospheric pressure, κ(ε(z, znb, l)) is the swimbladder correction term, and ε(z, znb, l) is the
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swimbladder’s eccentricity. The correction term κ(ε(z, znb, l)) for a prolate spheroidal swimbladder [45]
is given by:

κ(ε(z, znb, l)) =
√

2(1− ε2(z, znb, l))1/4

ε1/3(z, znb, l)

[
ln

(
1 +

√
1 + ε2(z, znb, l)

1−
√

1− ε2(z, znb, l)

)]−1/2

(A7)

In Equation (A7), the ratio of the minor to major axis of a prolate spheroidal swimbladder

ε(z, znb, l) is
(

csb l/2
r(z,znb ,l)

)3/2
, and the ratio between the herring’s fork length l and the major axis of

the swimbladder is assumed to be csb ≈ 0.364 for herring [24]. The damping factor η(r, rnb, l, f ) in
Equation (A4) is obtained from:

1
η(z, znb, l, f )

=
2πr(z, znb, l) f 2

c f0(z, znb, l)
+

ξ

πr2(z, znb, l) f0(z, znb, l)ρ f lesh
(A8)

where f is the frequency, c is the sound speed, and ξ is the viscosity of herring’s flesh given to be
50 Pa s [44].
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Figure A1. Wind dependence of Gulf of Maine mean ambient noise levels for frequency bands of
baleen whale vocalizations given in Table 1. Gray filled circles represent the mean ambient noise
levels determined from measurements obtained during the OAWRS 2006 experiment [1,2,22] using
Equation (9) for frequency bands of baleen whale vocalizations given in Table 1. Black solid lines
represent the empirical best fit of the measured ambient noise levels to the model given in Equation (11).
Empirically determined coefficients of the model are given in Table 1. Black vertical lines represent
the variation of the measured mean ambient noise levels for given wind speed. Instantaneous
measurements of ambient noise fluctuate around each mean ambient noise level with 5.6 dB standard
deviation [26].
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