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The Berry connection describes transformations induced by adiabatically varying Hamiltonians. We
study how zero modes of the modular Hamiltonian are affected by varying the region that supplies the
modular Hamiltonian. In the vacuum of a 2D conformal field theory, global conformal symmetry singles
out a unique modular Berry connection, which we compute directly and in the dual three-dimensional
anti–de Sitter (AdS3) picture. In certain cases, Wilson loops of the modular Berry connection compute
lengths of curves in AdS3, reproducing the differential entropy formula. Modular Berry transformations
can be measured by bulk observers moving with varying accelerations.
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Introduction.—The last decade of research in the
AdS/CFT correspondence [1] has revealed that quantum
entanglement in conformal field theory (CFT) plays a central
role in the emergence of the bulk anti–de Sitter (AdS)
spacetime. On the CFT side, the entanglement structure of a
state ρ is encapsulated by the reduced density matrices
ρA ¼ TrAcρ of regions A. The most publicized example of
how the AdS spacetime geometrizes the CFT entanglement
is the Ryu-Takayanagi proposal [2], which relates the von
Neumann entropy of ρA to the area of an extremal surface
anchored on the borders of A. However, other aspects of
ρA also have crisp gravity duals. The flow generated by
HmodðAÞ ¼ − log ρA (the modular Hamiltonian of
A ⊂ CFT) acts in the bulk in the same way as the bulk
modular Hamiltonian, obtained from the reduced density
matrix of perturbative fields in a certain bulk region WðAÞ
called the entanglement wedge [3]. This fact lies at the core
of the recently proven assertion [4,5] that knowing ρA
suffices to reconstruct the perturbative physics in WðAÞ.
All reduced density matrices ρA descend from the same

global state ρ. On the gravity side, likewise, the different
entanglement wedges WðAÞ are patches of one global
geometry. The common origin of the ρAs and WðAÞs
suggests a new perspective on entanglement in the global
state—one that focuses on the relations between different
reduced density matrices. The present Letter makes a first
step in this direction. We study the space of zero modes of

the modular Hamiltonians HmodðAÞ ¼ − log ρA, which in
the holographic context play a special role because they
localize on the respective Ryu-Takayanagi surfaces [5]. Our
objective is to study the maps between them as one takes a
region A to another region A0. In more formal language, we
are interested in a connection on the bundle of modular zero
modes, fibered over the space of CFT subregions.
That varying the Hamiltonian induces a geometric trans-

formation of Hamiltonian eigenspaces was first understood
by Berry in his seminal paper [6]. We are interested in a
new incarnation of Berry’s problem, wherein the Hami-
ltonians are modular Hamiltonians (all drawn from the same
global state of a CFT) and the parameter space is simply the
space of CFT subregions.What defines the notion of parallel
transport in the bundle of modular zero modes? What
operators have nontrivial monodromies, and in holographic
theories, what information do modular Berry phases yield
about the bulk AdS spacetime? We answer these questions
in the setting of the three-dimensional anti–de Sitter
AdS3/CFT2 correspondence, and give a CFT formulation
when the global state is ρ ¼ j0ih0j.
A review of the Berry connection.—Berry studied a

system that evolves by a slowly varying Hamiltonian
H½λðtÞ�. Here, t is the physical time, while λ is a coordinate
on the parameter space from which the Hamiltonians
H½λðtÞ� are drawn. Consider a closed loop in parameter
space traversed over a time t ∈ ½0; TÞ, that is λð0Þ ¼ λðTÞ.
If the spectrum of the Hamiltonian is nondegenerate and
remains so throughout the trajectory, the evolution brings
an eigenstate jEi ¼ jEðλð0ÞÞi of the initial Hamiltonian to:
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Γλ ¼ ihEðλÞjd/dλjEðλÞi: ð2Þ

The Berry phase is the second factor in (1) and Γλ is the
Berry connection.
Equations (1)–(2) follow from the adiabatic theorem,

which says that if a slowly varying system starts out in a
Hamiltonian eigenstate jEðλð0ÞÞi, it remains in an eigen-
state of the instantaneous Hamiltonian. The dynamics are
therefore limited to the time dependence of the state’s
phase. The first term in (1) accumulates the ordinary
dynamical phases e−iEðλðtÞÞdt. The second factor in (1)
has a more interesting, geometric origin: it arises from a
precession of the instantaneous Hamiltonian eigenbasis.
A Berry transformation around a closed trajectory in

parameter space is always valued in a symmetry of an
energy eigenspace of HðλÞ. In the simplest setup reviewed
above, this symmetry was the freedom of rotating the phase
of an energy eigenstate. When additional operators com-
mute with the Hamiltonian, they produce degeneracies in
its spectrum and generate symmetries of its energy eigens-
paces. In such cases, Berry transformations can rotate the
degenerate eigenstates into one another, again acting by
automorphisms of energy eigenspaces [7].
The symmetries emphasized above are local symmetries;

they act independently at every point λ. The local character
of the automorphisms of energy eigenspaces of HðλÞ is the
reason why the Berry connection is a gauge connection.
Towit, we may transform a given Abelian Berry connection
to another by

Γλ → Γλ þ ∂λξ; ð3Þ

where ξ is a continuous function in parameter space. The
gauge transformation (3) changes the local eigenbases of
HðλÞ by the phase e−iξðλÞ. The non-Abelian generalization,
where ξ is valued in the Lie algebra of the automorphism
group of a given eigenspace of HðλÞ, is well-known.
Modular zero modes.—Consider a Lorentzian CFT in a

global state ρ and study the scenario of adiabatic evolution
described above. In the role of the Hamiltonians HðλÞ we
cast HmodðAÞ, the modular Hamiltonians of connected
subregions A. (From now on, we shall denote CFT
subregions with λ instead of A. This is to emphasize that
—from Berry’s perspective—choosing a region amounts to
choosing a modular Hamiltonian.) However, instead of
focusing on Berry phases acquired by modular eigenstates,
it is convenient to monitor the monodromies of a special
family of operators: modular zero modes BiðλÞ. These are
CFT operators that satisfy

½HmodðλÞ; BiðλÞ� ¼ 0: ð4Þ

The index i labels distinct zero modes of HmodðλÞ.
When the CFT has a gravity dual, the operators BiðλÞ

gain an additional significance. Reference [5] showed that

scalar CFT operators that satisfy (4) are holographically
dual to bulk operators localized on [λ], the extremal
(Ryu-Takayanagi) surface anchored on λ. This is guaran-
teed by the equivalence between the bulk and boundary
modular flows [3] and the fact that [λ] does not transform
under bulk modular flow. In holography, modular Berry
transformations will therefore reorganize bulk operators
localized on Ryu-Takayanagi surfaces.
Modular zero modes in the CFT2 ground state.—We

concentrate on the ground state ρ ¼ j0ih0j of a 1þ 1-
dimensional CFT. In this case, the modular Hamiltonians
for the regions considered are all related by conformal
transformations. Conformal symmetry is then sufficient to
fix the modular connection, up to a gauge redundancy.
The connected regions of a CFT2 are causal diamonds,

labeled by λ. (It is not useful to distinguish individual
spatial slices of the same causal diamond because their
reduced density matrices are related by unitary time
evolution).
A two-dimensional causal diamond is stabilized by an

SOð1; 1Þ × SOð1; 1Þ subgroup of the global conformal
group SOð2; 2Þ. The two factors transform the left- and
right-moving light cone coordinates of the diamond; see
Fig. 1. The symmetric combination of their generators is
the vacuum modular Hamiltonian HmodðλÞ, which gener-
ates the flow by modular time. The antisymmetric combi-
nation of the two SOð1; 1Þ s, which we call PDðλÞ,
implements translations along the modular time-slices.
Because the two operators commute

½HmodðλÞ; PDðλÞ� ¼ 0; ð5Þ

PDðλÞ defines an SOð1; 1Þ symmetry of the modular
Hamiltonian and, consequently, of the space of its zero
modes. It is therefore convenient to organize the modular
zero modes in eigenoperators of this symmetry.
One basis, which spans the zero modes of HmodðλÞ,

comprises familiar CFT objects called operator product

FIG. 1. A causal diamond in 1þ 1 dimensions is stabilized by
an SOð1; 1Þ × SOð1; 1Þ conformal symmetry. Their symmetric
combination is the modular Hamiltonian, which induces a flow
from the bottom to the top of the diamond. The antisymmetric
combination induces a flow from the left to the right endpoint. In
the bulk of AdS3 these symmetries generate, respectively,
trajectories of accelerating observers and translations along
spacelike geodesics.
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expansion (OPE) blocks [8]. Intuitively, OPE blocks are an
operator basis for the operator product expansion of two
spacelike-separated local operators:

OLðxLÞORðxRÞ ¼
X
Δ
jxR − xLj−ΔL−ΔRcLRi

× jxR − xLjΔðOΔ þ descendantsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
OPEBlockBκ

ΔðλÞ

: ð6Þ

The upper sum in (6) runs over the primary operators in the
CFT. The correct combination of descendants in the second
line of (6) is the OPE block. We shall denote OPE blocks
Bκ
ΔðλÞ, where λ is the causal diamond whose spatial corners

are xL and xR. The label κ, which parametrizes the zero
modes, is related to the external operators in Eq. (6)
as κ ¼ ΔR − ΔL.
The transformation generated by Hmod acts locally at xL,

xR as a boost. When OL, OR are scalars, Hmod commutes
with the left side of (6). This shows that scalar OPE blocks
are automatically modular zero modes.
The transformation generated by PD acts locally at xL,

xR as a positive and negative dilatation, respectively. Thus,
OLðxLÞORðxRÞ is an eigenoperator of PD:

½PD;OLOR� ¼ iκOLOR: ð7Þ

The OPE blocks on the right hand side of (6) transform in
the same way. Under a finite transformation of magnitude
s0, the OPE blocks transform as

Bκ
ΔðλÞ → es0κBκ

ΔðλÞ; ð8Þ

so that the effect is a change of normalization. Equation (8)
means that it is not possible to specify a κ ≠ 0 OPE block
without picking an SOð1; 1Þ gauge or, equivalently, a
conformal frame for the causal diamond of interest. This
ambiguity in the normalization of OPE blocks is analogous
to the phase ambiguity of energy eigenstates in the usual
Berry problem.
Modular Berry connection in the CFT2 ground state.—

Since Bκ
ΔðλÞ s transform under a symmetry of HmodðλÞ, a

closed trajectory that visits different causal diamonds will
in general bring an OPE block to itself up to an SOð1; 1Þ
transformation, which is analogous to the second factor in
(1). To compute this transformation, we need an analogue
of Eq. (2): a connection that maps the zero modes Bκ

ΔðλÞ to
Bκ
Δðλþ dλÞ. As we shall see, up to a choice of gauge, there

is a unique connection compatible with conformal
symmetry.
To find it, let us examine the parameter space of our

Berry problem. It consists of causal diamonds λ. Because
any causal diamond can be mapped to any other by the
global conformal group, and because the state ρ ¼ j0ih0j
does not break this symmetry, our parameter space must be
a coset space of SOð2; 2Þ. Since, as we noted above, a

causal diamond is stabilized by an SOð1; 1Þ × SOð1; 1Þ
subgroup, the parameter space is:

K ¼ SOð2; 2Þ
SOð1; 1Þ × SOð1; 1Þ ¼

SOð2; 1Þ
SOð1; 1Þ ×

SOð2; 1Þ
SOð1; 1Þ : ð9Þ

This object—the space of causal diamonds—was studied in
[8,9] (see also [10]), and named the kinematic space.
Recognizing our parameter space as a coset space

highlights a useful fact: that the stabilizer group of a causal
diamond λ (the group under which the modular zero modes
transform) is the isometry group of the tangent space of
λ ∈ K. From (8), we see that the OPE block transforms
under the two SOð1; 1Þ isometries like it is a (possibly
noninteger) power of certain combination of vector com-
ponents:

Antisymmetric∶ vzLvz̄L → es0vzLvz̄L

Symmetric∶ vzLvz̄L → vzLvz̄L : ð10Þ

Noting this, we can then immediately write down an
appropriate connection for the OPE block. This is because
the coset space (9) is a metric space: a product of two two-
dimensional de Sitter geometries. Using CFT light cone
coordinates for presenting xL ¼ ðzL; z̄LÞ and xR ¼ ðzR; z̄RÞ,
the metric is:

ds2 ¼ e−2SðzL;zRÞdzLdzR þ e−2S̄ðz̄L;z̄RÞdz̄Ldz̄R;

with SðzL; zRÞ ¼ logðzR − zLÞ/ϵ; ð11Þ

and the same function for S̄ðz̄L; z̄RÞ. For future reference,
note that SðzL; zRÞ is proportional to the left-moving
contribution to the vacuum entanglement entropy of the
causal diamond ðxL; xRÞ, with ϵ setting the UV cutoff.
From Eq. (11), we determine the metric-compatible

connection Γ on kinematic space for the OPE block:

Γ ¼ −
∂
∂xμL SðxL; xRÞdx

μ
L;

with SðxL; xRÞ ¼ SðzL; zRÞ þ S̄ðz̄L; z̄RÞ: ð12Þ

In each representation of the SOð1; 1Þ gauge fiber, we
multiply the connection by the charge κ. Because Eq. (11)
is fixed by conformal symmetry, so is the connection (12).
Its curvature two-form dΓ is

dΓ ¼ ∂2SðxL; xRÞ
∂xμL∂xνR dxμL ∧ dxνR; ð13Þ

so the connection is not flat. As a consequence, modular
zero modes will pick up nontrivial holonomies under
closed trajectories in kinematic space.
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Gauge freedom.—The connection Γ can be shifted by a
total derivative Γ → Γþ dΛðxL; xRÞ without affecting its
curvature or any Wilson loops constructed from it. This
represents a gauge freedom due to the local frame in which
we view Eq. (10). In particular, it is amusing to consider the
gauge choice ΛðxL; xRÞ ¼ − logðϵ̃ðxLÞϵ̃ðxRÞ/ϵ2Þ. Its effect
is equivalent to changing the UV cutoff ϵ to a nonuniform
cutoff ϵ̃ that regulates the ultraviolet physics at the left and
right corners of the causal diamond differently. Thus, the
appearance of our gauge freedom may be understood as the
local choice of a reference scale ϵ to set a local UV cutoff.
In a theory without a scale, setting a cutoff is a gauge
choice.
Bulk derivation of the modular Berry connection.—The

above argument may seem a bit formal. Luckily, the
holographic picture is more illuminating: Here, is a bulk
argument, which also leads to a connection (12).
We describe a connection in the bulk for nearby geo-

desics [λ] and ½λþ dλ� that intersect. (This restriction can
be lifted, see [11].) The connection is the unique isometric
map that takes points on [λ] to points on ½λþ dλ� equidis-
tant to the intersection point (see Fig. 2). Here we have
implicitly identified points by their distance to the inter-
section point. This identification is really a choice of gauge.
A general gauge varies by an SOð1; 1Þ translation that will
label points with respect to different origins on each
geodesic.
To see the effect of the connection on operators, note that

a scalar OPE block is holographically dual to the bulk
operator [8,12]:

Bκ
ΔðλÞ ¼ N

Z
½λ�
dsϕΔðsÞe−κs: ð14Þ

Here, s is the proper length parameter along the bulk
geodesic [λ] (in units of LAdS), and ϕΔ is the bulk operator
dual to OΔ. The SOð1; 1Þ generated by PDðλÞ comprises

translations along [λ]; see Fig. 1. A translation by s0
induces a shift s → s − s0, which transforms the right-hand
side of (14) as in Eq. (8). Once again, it is not possible to
present an OPE block without picking an SOð1; 1Þ gauge.
As noted above, choosing the gauge amounts to selecting a
privileged point on the geodesic, which serves as the origin
of the local coordinate s on [λ].
Now consider a closed trajectory λðσÞ in kinematic

space, such that the geodesics ½λðσÞ� and ½λðσ þ dσÞ�
intersect for all σ. Let us inspect what happens to some
privileged point s ¼ s0 under a kinematic trajectory. Our
connection maps the point s ¼ s0 on ½λðσÞ� to one equi-
distant from the intersection point on ½λðσ þ dσÞ�.
Transforming the point through a sequence of intersections
results in a precession of the point s ¼ s0, which recedes
farther and farther away from successive intersection
points. This is illustrated in Fig. 2. After the trajectory
closes, the amount by which the privileged point s ¼ s0
recedes, equals the sum of the distances between consecu-
tive intersection points. In a continuous limit, this distance
becomes the circumference of the bulk curve that sits on the
common envelope of the geodesics ½λðσÞ�.
Reference [13] gave a useful formula for the circum-

ference of the envelope of a sequence of geodesics:

l ¼ −
I ∂SðxL; xRÞ

∂xμL dxμL: ð15Þ

The quantity SðxL; xRÞ is the same as in Eq. (12). This is
(the logarithm of) the Wilson loop of connection (12), so
our bulk definition of the connection agrees with the
boundary computation. The normalization of a scalar
OPE block Bκ

Δ changes under this trajectory by:

Bκ
ΔðλÞ → eκ·lBκ

ΔðλÞ: ð16Þ

When all ½λðσÞ� live on a static slice of the bulk geometry,
Eq. (16) can be rewritten as a two-dimensional integral over
all geodesics in the static slice, which intersect with the
bulk curve [9]. The integrand of that formula, called the
Crofton form, can be thought of as a density of geodesics.
We now recognize the Crofton form as the curvature two-
form of the modular Berry connection (13).
A bulk measurement of the Berry transformation.—

Consider Alice who travels through AdS3 with uniform
acceleration. Assume the acceleration is sufficient to
produce a Rindler horizon, which is a spacelike geodesic
[λ]. Alice’s time evolution is generated byHmodðλÞ; i.e., the
proper time along the trajectory is proportional to modular
time. While the physics behind [λ] remain hidden behind
the Rindler horizon, the value of the field ϕΔ at a point s on
[λ] is marginally accessible to Alice. To measure it, she
couples her detector to the modular zero mode ϕΔðsÞ. This
modular zero mode can be obtained from the OPE blocks

FIG. 2. The bulk realization of the modular connection is
determined by a map between neighboring geodesics. Given a
fixed 1-parameter family of intersecting geodesics ½λðσÞ�, a
natural gauge is one where the connection leaves the point of
intersection between ½λðσÞ� and ½λðσ þ dσÞ] fixed. The origin s ¼
0 will then recede as it traverses the family of geodesics. The total
precession is the length of the curve connecting all of the
intersection points. We can think of the connection as a “rolling
without slipping” condition, where the point on the geodesic
tangent to this curve is always momentarily at rest.
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Bκ
ΔðλÞ studied in this Letter by an inverse Laplace trans-

formation with respect to κ.
Our modular Wilson loops describe how zero modes

transform due to changes of λ. To measure such a Wilson
loop, Alice will have to conduct a Berry experiment, where
the modular Hamiltonian that generates her evolution
changes adiabatically in time. She can achieve this by
controlling the magnitude and direction of her instanta-
neous acceleration, so that her time translations are gen-
erated by the modular Hamiltonians of a sequence of
Rindler wedges. For a closed trajectory in kinematic space,
Alice would start and end by evolving according to the
same HmodðλÞ. Note that Alice has an infinite amount of
modular time to fiddle with her acceleration and explore
different Hamiltonians along the way, so that any kinematic
trajectory can be traversed adiabatically. As is usual in
measurements of Berry transformations, at the end of her
journey Alice can compare notes with a friend who moved
with unchanging acceleration. If they initially coordinated
their labeling of fields ϕΔðsÞ on [λ], Alice will find her
labels shifted by l from Eq. (16).
Extensions.—It is an intriguing problem to define a

physically motivated modular Berry connection in states
other than the vacuum. In holographic theories, we could
repeat the argument in Fig. 2 for a connection that maps
geodesics isometrically, but the CFT meaning of this
definition is unclear. In some applications, we may consider
connections valued in geodesic reparametrizations—the
full symmetry group of the geodesic.
We hope that the concept of modular Wilson loops will

prove useful in understanding the construction of local bulk
operators [14] because modern treatments [5,15] emphasize
the importance of modular Hamiltonians. We also hope that
modular Wilson loops will offer a new light on holographic
complexity [16]. At least in the vacuum, the concept also
makes sense away from holographic settings, so it may be
useful for studying critical systems.
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